xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34 
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_panel.h>
41 
42 #include "drm_dp_helper_internal.h"
43 
44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 			"DRM_UT_CORE",
46 			"DRM_UT_DRIVER",
47 			"DRM_UT_KMS",
48 			"DRM_UT_PRIME",
49 			"DRM_UT_ATOMIC",
50 			"DRM_UT_VBL",
51 			"DRM_UT_STATE",
52 			"DRM_UT_LEASE",
53 			"DRM_UT_DP",
54 			"DRM_UT_DRMRES");
55 
56 struct dp_aux_backlight {
57 	struct backlight_device *base;
58 	struct drm_dp_aux *aux;
59 	struct drm_edp_backlight_info info;
60 	bool enabled;
61 };
62 
63 /**
64  * DOC: dp helpers
65  *
66  * These functions contain some common logic and helpers at various abstraction
67  * levels to deal with Display Port sink devices and related things like DP aux
68  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69  * blocks, ...
70  */
71 
72 /* Helpers for DP link training */
73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 {
75 	return link_status[r - DP_LANE0_1_STATUS];
76 }
77 
78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 			     int lane)
80 {
81 	int i = DP_LANE0_1_STATUS + (lane >> 1);
82 	int s = (lane & 1) * 4;
83 	u8 l = dp_link_status(link_status, i);
84 
85 	return (l >> s) & 0xf;
86 }
87 
88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 			  int lane_count)
90 {
91 	u8 lane_align;
92 	u8 lane_status;
93 	int lane;
94 
95 	lane_align = dp_link_status(link_status,
96 				    DP_LANE_ALIGN_STATUS_UPDATED);
97 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 		return false;
99 	for (lane = 0; lane < lane_count; lane++) {
100 		lane_status = dp_get_lane_status(link_status, lane);
101 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 			return false;
103 	}
104 	return true;
105 }
106 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107 
108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 			      int lane_count)
110 {
111 	int lane;
112 	u8 lane_status;
113 
114 	for (lane = 0; lane < lane_count; lane++) {
115 		lane_status = dp_get_lane_status(link_status, lane);
116 		if ((lane_status & DP_LANE_CR_DONE) == 0)
117 			return false;
118 	}
119 	return true;
120 }
121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122 
123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 				     int lane)
125 {
126 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 	int s = ((lane & 1) ?
128 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 	u8 l = dp_link_status(link_status, i);
131 
132 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135 
136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 					  int lane)
138 {
139 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 	int s = ((lane & 1) ?
141 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 	u8 l = dp_link_status(link_status, i);
144 
145 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 }
147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148 
149 /* DP 2.0 128b/132b */
150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 				   int lane)
152 {
153 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 	int s = ((lane & 1) ?
155 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 	u8 l = dp_link_status(link_status, i);
158 
159 	return (l >> s) & 0xf;
160 }
161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162 
163 /* DP 2.0 errata for 128b/132b */
164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 					  int lane_count)
166 {
167 	u8 lane_align, lane_status;
168 	int lane;
169 
170 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 		return false;
173 
174 	for (lane = 0; lane < lane_count; lane++) {
175 		lane_status = dp_get_lane_status(link_status, lane);
176 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 			return false;
178 	}
179 	return true;
180 }
181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182 
183 /* DP 2.0 errata for 128b/132b */
184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 					int lane_count)
186 {
187 	u8 lane_status;
188 	int lane;
189 
190 	for (lane = 0; lane < lane_count; lane++) {
191 		lane_status = dp_get_lane_status(link_status, lane);
192 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 			return false;
194 	}
195 	return true;
196 }
197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198 
199 /* DP 2.0 errata for 128b/132b */
200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 {
202 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203 
204 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 }
206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207 
208 /* DP 2.0 errata for 128b/132b */
209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 {
211 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212 
213 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 }
215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216 
217 /* DP 2.0 errata for 128b/132b */
218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 {
220 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221 
222 	return status & DP_128B132B_LT_FAILED;
223 }
224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225 
226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 {
228 	if (rd_interval > 4)
229 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 			    aux->name, rd_interval);
231 
232 	if (rd_interval == 0)
233 		return 100;
234 
235 	return rd_interval * 4 * USEC_PER_MSEC;
236 }
237 
238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 {
240 	if (rd_interval > 4)
241 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 			    aux->name, rd_interval);
243 
244 	if (rd_interval == 0)
245 		return 400;
246 
247 	return rd_interval * 4 * USEC_PER_MSEC;
248 }
249 
250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 {
252 	switch (rd_interval) {
253 	default:
254 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 			    aux->name, rd_interval);
256 		fallthrough;
257 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 		return 400;
259 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 		return 4000;
261 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 		return 8000;
263 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 		return 12000;
265 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 		return 16000;
267 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 		return 32000;
269 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 		return 64000;
271 	}
272 }
273 
274 /*
275  * The link training delays are different for:
276  *
277  *  - Clock recovery vs. channel equalization
278  *  - DPRX vs. LTTPR
279  *  - 128b/132b vs. 8b/10b
280  *  - DPCD rev 1.3 vs. later
281  *
282  * Get the correct delay in us, reading DPCD if necessary.
283  */
284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 {
287 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 	unsigned int offset;
289 	u8 rd_interval, mask;
290 
291 	if (dp_phy == DP_PHY_DPRX) {
292 		if (uhbr) {
293 			if (cr)
294 				return 100;
295 
296 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 			parse = __128b132b_channel_eq_delay_us;
299 		} else {
300 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 				return 100;
302 
303 			offset = DP_TRAINING_AUX_RD_INTERVAL;
304 			mask = DP_TRAINING_AUX_RD_MASK;
305 			if (cr)
306 				parse = __8b10b_clock_recovery_delay_us;
307 			else
308 				parse = __8b10b_channel_eq_delay_us;
309 		}
310 	} else {
311 		if (uhbr) {
312 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 			parse = __128b132b_channel_eq_delay_us;
315 		} else {
316 			if (cr)
317 				return 100;
318 
319 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 			mask = DP_TRAINING_AUX_RD_MASK;
321 			parse = __8b10b_channel_eq_delay_us;
322 		}
323 	}
324 
325 	if (offset < DP_RECEIVER_CAP_SIZE) {
326 		rd_interval = dpcd[offset];
327 	} else {
328 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 				    aux->name);
331 			/* arbitrary default delay */
332 			return 400;
333 		}
334 	}
335 
336 	return parse(aux, rd_interval & mask);
337 }
338 
339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 				     enum drm_dp_phy dp_phy, bool uhbr)
341 {
342 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 }
344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345 
346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 				 enum drm_dp_phy dp_phy, bool uhbr)
348 {
349 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 }
351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352 
353 /* Per DP 2.0 Errata */
354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 {
356 	int unit;
357 	u8 val;
358 
359 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 			aux->name);
362 		/* default to max */
363 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 	}
365 
366 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368 
369 	return (val + 1) * unit * 1000;
370 }
371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372 
373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 {
376 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 		DP_TRAINING_AUX_RD_MASK;
378 	int delay_us;
379 
380 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 		delay_us = 100;
382 	else
383 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384 
385 	usleep_range(delay_us, delay_us * 2);
386 }
387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388 
389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 						 u8 rd_interval)
391 {
392 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393 
394 	usleep_range(delay_us, delay_us * 2);
395 }
396 
397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 {
400 	__drm_dp_link_train_channel_eq_delay(aux,
401 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 					     DP_TRAINING_AUX_RD_MASK);
403 }
404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405 
406 /**
407  * drm_dp_phy_name() - Get the name of the given DP PHY
408  * @dp_phy: The DP PHY identifier
409  *
410  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412  * non-NULL and valid.
413  *
414  * Returns: Name of the DP PHY.
415  */
416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 {
418 	static const char * const phy_names[] = {
419 		[DP_PHY_DPRX] = "DPRX",
420 		[DP_PHY_LTTPR1] = "LTTPR 1",
421 		[DP_PHY_LTTPR2] = "LTTPR 2",
422 		[DP_PHY_LTTPR3] = "LTTPR 3",
423 		[DP_PHY_LTTPR4] = "LTTPR 4",
424 		[DP_PHY_LTTPR5] = "LTTPR 5",
425 		[DP_PHY_LTTPR6] = "LTTPR 6",
426 		[DP_PHY_LTTPR7] = "LTTPR 7",
427 		[DP_PHY_LTTPR8] = "LTTPR 8",
428 	};
429 
430 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 	    WARN_ON(!phy_names[dp_phy]))
432 		return "<INVALID DP PHY>";
433 
434 	return phy_names[dp_phy];
435 }
436 EXPORT_SYMBOL(drm_dp_phy_name);
437 
438 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 {
440 	usleep_range(100, 200);
441 }
442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443 
444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 {
446 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 }
448 
449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 {
452 	u8 interval = dp_lttpr_phy_cap(phy_cap,
453 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 		      DP_TRAINING_AUX_RD_MASK;
455 
456 	__drm_dp_link_train_channel_eq_delay(aux, interval);
457 }
458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459 
460 u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 {
462 	switch (link_rate) {
463 	case 1000000:
464 		return DP_LINK_BW_10;
465 	case 1350000:
466 		return DP_LINK_BW_13_5;
467 	case 2000000:
468 		return DP_LINK_BW_20;
469 	default:
470 		/* Spec says link_bw = link_rate / 0.27Gbps */
471 		return link_rate / 27000;
472 	}
473 }
474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475 
476 int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 {
478 	switch (link_bw) {
479 	case DP_LINK_BW_10:
480 		return 1000000;
481 	case DP_LINK_BW_13_5:
482 		return 1350000;
483 	case DP_LINK_BW_20:
484 		return 2000000;
485 	default:
486 		/* Spec says link_rate = link_bw * 0.27Gbps */
487 		return link_bw * 27000;
488 	}
489 }
490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491 
492 #define AUX_RETRY_INTERVAL 500 /* us */
493 
494 static inline void
495 drm_dp_dump_access(const struct drm_dp_aux *aux,
496 		   u8 request, uint offset, void *buffer, int ret)
497 {
498 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499 
500 	if (ret > 0)
501 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 	else
504 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 			   aux->name, offset, arrow, ret);
506 }
507 
508 /**
509  * DOC: dp helpers
510  *
511  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512  * independent access to AUX functionality. Drivers can take advantage of
513  * this by filling in the fields of the drm_dp_aux structure.
514  *
515  * Transactions are described using a hardware-independent drm_dp_aux_msg
516  * structure, which is passed into a driver's .transfer() implementation.
517  * Both native and I2C-over-AUX transactions are supported.
518  */
519 
520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 			      unsigned int offset, void *buffer, size_t size)
522 {
523 	struct drm_dp_aux_msg msg;
524 	unsigned int retry, native_reply;
525 	int err = 0, ret = 0;
526 
527 	memset(&msg, 0, sizeof(msg));
528 	msg.address = offset;
529 	msg.request = request;
530 	msg.buffer = buffer;
531 	msg.size = size;
532 
533 	mutex_lock(&aux->hw_mutex);
534 
535 	/*
536 	 * If the device attached to the aux bus is powered down then there's
537 	 * no reason to attempt a transfer. Error out immediately.
538 	 */
539 	if (aux->powered_down) {
540 		ret = -EBUSY;
541 		goto unlock;
542 	}
543 
544 	/*
545 	 * The specification doesn't give any recommendation on how often to
546 	 * retry native transactions. We used to retry 7 times like for
547 	 * aux i2c transactions but real world devices this wasn't
548 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
549 	 */
550 	for (retry = 0; retry < 32; retry++) {
551 		if (ret != 0 && ret != -ETIMEDOUT) {
552 			usleep_range(AUX_RETRY_INTERVAL,
553 				     AUX_RETRY_INTERVAL + 100);
554 		}
555 
556 		ret = aux->transfer(aux, &msg);
557 		if (ret >= 0) {
558 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
559 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
560 				if (ret == size)
561 					goto unlock;
562 
563 				ret = -EPROTO;
564 			} else
565 				ret = -EIO;
566 		}
567 
568 		/*
569 		 * We want the error we return to be the error we received on
570 		 * the first transaction, since we may get a different error the
571 		 * next time we retry
572 		 */
573 		if (!err)
574 			err = ret;
575 	}
576 
577 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
578 		    aux->name, err);
579 	ret = err;
580 
581 unlock:
582 	mutex_unlock(&aux->hw_mutex);
583 	return ret;
584 }
585 
586 /**
587  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
588  * @aux: DisplayPort AUX channel (SST)
589  * @offset: address of the register to probe
590  *
591  * Probe the provided DPCD address by reading 1 byte from it. The function can
592  * be used to trigger some side-effect the read access has, like waking up the
593  * sink, without the need for the read-out value.
594  *
595  * Returns 0 if the read access suceeded, or a negative error code on failure.
596  */
597 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
598 {
599 	u8 buffer;
600 	int ret;
601 
602 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
603 	WARN_ON(ret == 0);
604 
605 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
606 
607 	return ret < 0 ? ret : 0;
608 }
609 EXPORT_SYMBOL(drm_dp_dpcd_probe);
610 
611 /**
612  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
613  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
614  *       and the function will be a no-op.
615  * @powered: true if powered; false if not
616  *
617  * If the endpoint device on the DP AUX bus is known to be powered down
618  * then this function can be called to make future transfers fail immediately
619  * instead of needing to time out.
620  *
621  * If this function is never called then a device defaults to being powered.
622  */
623 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
624 {
625 	if (!aux)
626 		return;
627 
628 	mutex_lock(&aux->hw_mutex);
629 	aux->powered_down = !powered;
630 	mutex_unlock(&aux->hw_mutex);
631 }
632 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
633 
634 /**
635  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
636  * @aux: DisplayPort AUX channel (SST or MST)
637  * @offset: address of the (first) register to read
638  * @buffer: buffer to store the register values
639  * @size: number of bytes in @buffer
640  *
641  * Returns the number of bytes transferred on success, or a negative error
642  * code on failure. -EIO is returned if the request was NAKed by the sink or
643  * if the retry count was exceeded. If not all bytes were transferred, this
644  * function returns -EPROTO. Errors from the underlying AUX channel transfer
645  * function, with the exception of -EBUSY (which causes the transaction to
646  * be retried), are propagated to the caller.
647  */
648 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
649 			 void *buffer, size_t size)
650 {
651 	int ret;
652 
653 	/*
654 	 * HP ZR24w corrupts the first DPCD access after entering power save
655 	 * mode. Eg. on a read, the entire buffer will be filled with the same
656 	 * byte. Do a throw away read to avoid corrupting anything we care
657 	 * about. Afterwards things will work correctly until the monitor
658 	 * gets woken up and subsequently re-enters power save mode.
659 	 *
660 	 * The user pressing any button on the monitor is enough to wake it
661 	 * up, so there is no particularly good place to do the workaround.
662 	 * We just have to do it before any DPCD access and hope that the
663 	 * monitor doesn't power down exactly after the throw away read.
664 	 */
665 	if (!aux->is_remote) {
666 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
667 		if (ret < 0)
668 			return ret;
669 	}
670 
671 	if (aux->is_remote)
672 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
673 	else
674 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
675 					 buffer, size);
676 
677 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
678 	return ret;
679 }
680 EXPORT_SYMBOL(drm_dp_dpcd_read);
681 
682 /**
683  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
684  * @aux: DisplayPort AUX channel (SST or MST)
685  * @offset: address of the (first) register to write
686  * @buffer: buffer containing the values to write
687  * @size: number of bytes in @buffer
688  *
689  * Returns the number of bytes transferred on success, or a negative error
690  * code on failure. -EIO is returned if the request was NAKed by the sink or
691  * if the retry count was exceeded. If not all bytes were transferred, this
692  * function returns -EPROTO. Errors from the underlying AUX channel transfer
693  * function, with the exception of -EBUSY (which causes the transaction to
694  * be retried), are propagated to the caller.
695  */
696 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
697 			  void *buffer, size_t size)
698 {
699 	int ret;
700 
701 	if (aux->is_remote)
702 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
703 	else
704 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
705 					 buffer, size);
706 
707 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
708 	return ret;
709 }
710 EXPORT_SYMBOL(drm_dp_dpcd_write);
711 
712 /**
713  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
714  * @aux: DisplayPort AUX channel
715  * @status: buffer to store the link status in (must be at least 6 bytes)
716  *
717  * Returns the number of bytes transferred on success or a negative error
718  * code on failure.
719  */
720 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
721 				 u8 status[DP_LINK_STATUS_SIZE])
722 {
723 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
724 				DP_LINK_STATUS_SIZE);
725 }
726 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
727 
728 /**
729  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
730  * @aux: DisplayPort AUX channel
731  * @dp_phy: the DP PHY to get the link status for
732  * @link_status: buffer to return the status in
733  *
734  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
735  * layout of the returned @link_status matches the DPCD register layout of the
736  * DPRX PHY link status.
737  *
738  * Returns 0 if the information was read successfully or a negative error code
739  * on failure.
740  */
741 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
742 				     enum drm_dp_phy dp_phy,
743 				     u8 link_status[DP_LINK_STATUS_SIZE])
744 {
745 	int ret;
746 
747 	if (dp_phy == DP_PHY_DPRX) {
748 		ret = drm_dp_dpcd_read(aux,
749 				       DP_LANE0_1_STATUS,
750 				       link_status,
751 				       DP_LINK_STATUS_SIZE);
752 
753 		if (ret < 0)
754 			return ret;
755 
756 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
757 
758 		return 0;
759 	}
760 
761 	ret = drm_dp_dpcd_read(aux,
762 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
763 			       link_status,
764 			       DP_LINK_STATUS_SIZE - 1);
765 
766 	if (ret < 0)
767 		return ret;
768 
769 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
770 
771 	/* Convert the LTTPR to the sink PHY link status layout */
772 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
773 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
774 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
775 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
776 
777 	return 0;
778 }
779 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
780 
781 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
782 {
783 	/* FIXME: get rid of drm_edid_raw() */
784 	const struct edid *edid = drm_edid_raw(drm_edid);
785 
786 	return edid && edid->revision >= 4 &&
787 		edid->input & DRM_EDID_INPUT_DIGITAL &&
788 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
789 }
790 
791 /**
792  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
793  * @dpcd: DisplayPort configuration data
794  * @port_cap: port capabilities
795  * @type: port type to be checked. Can be:
796  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
797  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
798  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
799  *
800  * Caveat: Only works with DPCD 1.1+ port caps.
801  *
802  * Returns: whether the downstream facing port matches the type.
803  */
804 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
805 			       const u8 port_cap[4], u8 type)
806 {
807 	return drm_dp_is_branch(dpcd) &&
808 		dpcd[DP_DPCD_REV] >= 0x11 &&
809 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
810 }
811 EXPORT_SYMBOL(drm_dp_downstream_is_type);
812 
813 /**
814  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
815  * @dpcd: DisplayPort configuration data
816  * @port_cap: port capabilities
817  * @drm_edid: EDID
818  *
819  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
820  */
821 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
822 			       const u8 port_cap[4],
823 			       const struct drm_edid *drm_edid)
824 {
825 	if (dpcd[DP_DPCD_REV] < 0x11) {
826 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
827 		case DP_DWN_STRM_PORT_TYPE_TMDS:
828 			return true;
829 		default:
830 			return false;
831 		}
832 	}
833 
834 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
835 	case DP_DS_PORT_TYPE_DP_DUALMODE:
836 		if (is_edid_digital_input_dp(drm_edid))
837 			return false;
838 		fallthrough;
839 	case DP_DS_PORT_TYPE_DVI:
840 	case DP_DS_PORT_TYPE_HDMI:
841 		return true;
842 	default:
843 		return false;
844 	}
845 }
846 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
847 
848 /**
849  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
850  * @aux: DisplayPort AUX channel
851  * @real_edid_checksum: real edid checksum for the last block
852  *
853  * Returns:
854  * True on success
855  */
856 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
857 				    u8 real_edid_checksum)
858 {
859 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
860 
861 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
862 			     &auto_test_req, 1) < 1) {
863 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
864 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
865 		return false;
866 	}
867 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
868 
869 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
870 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
871 			aux->name, DP_TEST_REQUEST);
872 		return false;
873 	}
874 	link_edid_read &= DP_TEST_LINK_EDID_READ;
875 
876 	if (!auto_test_req || !link_edid_read) {
877 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
878 			    aux->name);
879 		return false;
880 	}
881 
882 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
883 			      &auto_test_req, 1) < 1) {
884 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
885 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
886 		return false;
887 	}
888 
889 	/* send back checksum for the last edid extension block data */
890 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
891 			      &real_edid_checksum, 1) < 1) {
892 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
893 			aux->name, DP_TEST_EDID_CHECKSUM);
894 		return false;
895 	}
896 
897 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
898 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
899 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
900 			aux->name, DP_TEST_RESPONSE);
901 		return false;
902 	}
903 
904 	return true;
905 }
906 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
907 
908 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
909 {
910 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
911 
912 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
913 		port_count = 4;
914 
915 	return port_count;
916 }
917 
918 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
919 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
920 {
921 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
922 	int ret;
923 
924 	/*
925 	 * Prior to DP1.3 the bit represented by
926 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
927 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
928 	 * the true capability of the panel. The only way to check is to
929 	 * then compare 0000h and 2200h.
930 	 */
931 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
932 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
933 		return 0;
934 
935 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
936 			       sizeof(dpcd_ext));
937 	if (ret < 0)
938 		return ret;
939 	if (ret != sizeof(dpcd_ext))
940 		return -EIO;
941 
942 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
943 		drm_dbg_kms(aux->drm_dev,
944 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
945 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
946 		return 0;
947 	}
948 
949 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
950 		return 0;
951 
952 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
953 
954 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
955 
956 	return 0;
957 }
958 
959 /**
960  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
961  * available
962  * @aux: DisplayPort AUX channel
963  * @dpcd: Buffer to store the resulting DPCD in
964  *
965  * Attempts to read the base DPCD caps for @aux. Additionally, this function
966  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
967  * present.
968  *
969  * Returns: %0 if the DPCD was read successfully, negative error code
970  * otherwise.
971  */
972 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
973 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
974 {
975 	int ret;
976 
977 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
978 	if (ret < 0)
979 		return ret;
980 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
981 		return -EIO;
982 
983 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
984 	if (ret < 0)
985 		return ret;
986 
987 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
988 
989 	return ret;
990 }
991 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
992 
993 /**
994  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
995  * @aux: DisplayPort AUX channel
996  * @dpcd: A cached copy of the port's DPCD
997  * @downstream_ports: buffer to store the downstream port info in
998  *
999  * See also:
1000  * drm_dp_downstream_max_clock()
1001  * drm_dp_downstream_max_bpc()
1002  *
1003  * Returns: 0 if either the downstream port info was read successfully or
1004  * there was no downstream info to read, or a negative error code otherwise.
1005  */
1006 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1007 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1008 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1009 {
1010 	int ret;
1011 	u8 len;
1012 
1013 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1014 
1015 	/* No downstream info to read */
1016 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1017 		return 0;
1018 
1019 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1020 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1021 	 * some branches do it we need to handle it regardless.
1022 	 */
1023 	len = drm_dp_downstream_port_count(dpcd);
1024 	if (!len)
1025 		return 0;
1026 
1027 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1028 		len *= 4;
1029 
1030 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1031 	if (ret < 0)
1032 		return ret;
1033 	if (ret != len)
1034 		return -EIO;
1035 
1036 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1041 
1042 /**
1043  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1044  * @dpcd: DisplayPort configuration data
1045  * @port_cap: port capabilities
1046  *
1047  * Returns: Downstream facing port max dot clock in kHz on success,
1048  * or 0 if max clock not defined
1049  */
1050 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1051 				   const u8 port_cap[4])
1052 {
1053 	if (!drm_dp_is_branch(dpcd))
1054 		return 0;
1055 
1056 	if (dpcd[DP_DPCD_REV] < 0x11)
1057 		return 0;
1058 
1059 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1060 	case DP_DS_PORT_TYPE_VGA:
1061 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1062 			return 0;
1063 		return port_cap[1] * 8000;
1064 	default:
1065 		return 0;
1066 	}
1067 }
1068 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1069 
1070 /**
1071  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1072  * @dpcd: DisplayPort configuration data
1073  * @port_cap: port capabilities
1074  * @drm_edid: EDID
1075  *
1076  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1077  * or 0 if max TMDS clock not defined
1078  */
1079 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1080 				     const u8 port_cap[4],
1081 				     const struct drm_edid *drm_edid)
1082 {
1083 	if (!drm_dp_is_branch(dpcd))
1084 		return 0;
1085 
1086 	if (dpcd[DP_DPCD_REV] < 0x11) {
1087 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1088 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1089 			return 165000;
1090 		default:
1091 			return 0;
1092 		}
1093 	}
1094 
1095 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1096 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1097 		if (is_edid_digital_input_dp(drm_edid))
1098 			return 0;
1099 		/*
1100 		 * It's left up to the driver to check the
1101 		 * DP dual mode adapter's max TMDS clock.
1102 		 *
1103 		 * Unfortunately it looks like branch devices
1104 		 * may not fordward that the DP dual mode i2c
1105 		 * access so we just usually get i2c nak :(
1106 		 */
1107 		fallthrough;
1108 	case DP_DS_PORT_TYPE_HDMI:
1109 		 /*
1110 		  * We should perhaps assume 165 MHz when detailed cap
1111 		  * info is not available. But looks like many typical
1112 		  * branch devices fall into that category and so we'd
1113 		  * probably end up with users complaining that they can't
1114 		  * get high resolution modes with their favorite dongle.
1115 		  *
1116 		  * So let's limit to 300 MHz instead since DPCD 1.4
1117 		  * HDMI 2.0 DFPs are required to have the detailed cap
1118 		  * info. So it's more likely we're dealing with a HDMI 1.4
1119 		  * compatible* device here.
1120 		  */
1121 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1122 			return 300000;
1123 		return port_cap[1] * 2500;
1124 	case DP_DS_PORT_TYPE_DVI:
1125 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1126 			return 165000;
1127 		/* FIXME what to do about DVI dual link? */
1128 		return port_cap[1] * 2500;
1129 	default:
1130 		return 0;
1131 	}
1132 }
1133 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1134 
1135 /**
1136  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1137  * @dpcd: DisplayPort configuration data
1138  * @port_cap: port capabilities
1139  * @drm_edid: EDID
1140  *
1141  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1142  * or 0 if max TMDS clock not defined
1143  */
1144 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1145 				     const u8 port_cap[4],
1146 				     const struct drm_edid *drm_edid)
1147 {
1148 	if (!drm_dp_is_branch(dpcd))
1149 		return 0;
1150 
1151 	if (dpcd[DP_DPCD_REV] < 0x11) {
1152 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1153 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1154 			return 25000;
1155 		default:
1156 			return 0;
1157 		}
1158 	}
1159 
1160 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1161 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1162 		if (is_edid_digital_input_dp(drm_edid))
1163 			return 0;
1164 		fallthrough;
1165 	case DP_DS_PORT_TYPE_DVI:
1166 	case DP_DS_PORT_TYPE_HDMI:
1167 		/*
1168 		 * Unclear whether the protocol converter could
1169 		 * utilize pixel replication. Assume it won't.
1170 		 */
1171 		return 25000;
1172 	default:
1173 		return 0;
1174 	}
1175 }
1176 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1177 
1178 /**
1179  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1180  *                               bits per component
1181  * @dpcd: DisplayPort configuration data
1182  * @port_cap: downstream facing port capabilities
1183  * @drm_edid: EDID
1184  *
1185  * Returns: Max bpc on success or 0 if max bpc not defined
1186  */
1187 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1188 			      const u8 port_cap[4],
1189 			      const struct drm_edid *drm_edid)
1190 {
1191 	if (!drm_dp_is_branch(dpcd))
1192 		return 0;
1193 
1194 	if (dpcd[DP_DPCD_REV] < 0x11) {
1195 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1196 		case DP_DWN_STRM_PORT_TYPE_DP:
1197 			return 0;
1198 		default:
1199 			return 8;
1200 		}
1201 	}
1202 
1203 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1204 	case DP_DS_PORT_TYPE_DP:
1205 		return 0;
1206 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1207 		if (is_edid_digital_input_dp(drm_edid))
1208 			return 0;
1209 		fallthrough;
1210 	case DP_DS_PORT_TYPE_HDMI:
1211 	case DP_DS_PORT_TYPE_DVI:
1212 	case DP_DS_PORT_TYPE_VGA:
1213 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1214 			return 8;
1215 
1216 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1217 		case DP_DS_8BPC:
1218 			return 8;
1219 		case DP_DS_10BPC:
1220 			return 10;
1221 		case DP_DS_12BPC:
1222 			return 12;
1223 		case DP_DS_16BPC:
1224 			return 16;
1225 		default:
1226 			return 8;
1227 		}
1228 		break;
1229 	default:
1230 		return 8;
1231 	}
1232 }
1233 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1234 
1235 /**
1236  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1237  *                                       YCbCr 4:2:0 pass-through capability
1238  * @dpcd: DisplayPort configuration data
1239  * @port_cap: downstream facing port capabilities
1240  *
1241  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1242  */
1243 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1244 				       const u8 port_cap[4])
1245 {
1246 	if (!drm_dp_is_branch(dpcd))
1247 		return false;
1248 
1249 	if (dpcd[DP_DPCD_REV] < 0x13)
1250 		return false;
1251 
1252 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1253 	case DP_DS_PORT_TYPE_DP:
1254 		return true;
1255 	case DP_DS_PORT_TYPE_HDMI:
1256 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1257 			return false;
1258 
1259 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1260 	default:
1261 		return false;
1262 	}
1263 }
1264 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1265 
1266 /**
1267  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1268  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1269  * @dpcd: DisplayPort configuration data
1270  * @port_cap: downstream facing port capabilities
1271  *
1272  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1273  */
1274 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1275 					     const u8 port_cap[4])
1276 {
1277 	if (!drm_dp_is_branch(dpcd))
1278 		return false;
1279 
1280 	if (dpcd[DP_DPCD_REV] < 0x13)
1281 		return false;
1282 
1283 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1284 	case DP_DS_PORT_TYPE_HDMI:
1285 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1286 			return false;
1287 
1288 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1289 	default:
1290 		return false;
1291 	}
1292 }
1293 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1294 
1295 /**
1296  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1297  *                                               RGB->YCbCr conversion capability
1298  * @dpcd: DisplayPort configuration data
1299  * @port_cap: downstream facing port capabilities
1300  * @color_spc: Colorspace for which conversion cap is sought
1301  *
1302  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1303  * colorspace.
1304  */
1305 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1306 					       const u8 port_cap[4],
1307 					       u8 color_spc)
1308 {
1309 	if (!drm_dp_is_branch(dpcd))
1310 		return false;
1311 
1312 	if (dpcd[DP_DPCD_REV] < 0x13)
1313 		return false;
1314 
1315 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1316 	case DP_DS_PORT_TYPE_HDMI:
1317 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1318 			return false;
1319 
1320 		return port_cap[3] & color_spc;
1321 	default:
1322 		return false;
1323 	}
1324 }
1325 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1326 
1327 /**
1328  * drm_dp_downstream_mode() - return a mode for downstream facing port
1329  * @dev: DRM device
1330  * @dpcd: DisplayPort configuration data
1331  * @port_cap: port capabilities
1332  *
1333  * Provides a suitable mode for downstream facing ports without EDID.
1334  *
1335  * Returns: A new drm_display_mode on success or NULL on failure
1336  */
1337 struct drm_display_mode *
1338 drm_dp_downstream_mode(struct drm_device *dev,
1339 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1340 		       const u8 port_cap[4])
1341 
1342 {
1343 	u8 vic;
1344 
1345 	if (!drm_dp_is_branch(dpcd))
1346 		return NULL;
1347 
1348 	if (dpcd[DP_DPCD_REV] < 0x11)
1349 		return NULL;
1350 
1351 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1352 	case DP_DS_PORT_TYPE_NON_EDID:
1353 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1354 		case DP_DS_NON_EDID_720x480i_60:
1355 			vic = 6;
1356 			break;
1357 		case DP_DS_NON_EDID_720x480i_50:
1358 			vic = 21;
1359 			break;
1360 		case DP_DS_NON_EDID_1920x1080i_60:
1361 			vic = 5;
1362 			break;
1363 		case DP_DS_NON_EDID_1920x1080i_50:
1364 			vic = 20;
1365 			break;
1366 		case DP_DS_NON_EDID_1280x720_60:
1367 			vic = 4;
1368 			break;
1369 		case DP_DS_NON_EDID_1280x720_50:
1370 			vic = 19;
1371 			break;
1372 		default:
1373 			return NULL;
1374 		}
1375 		return drm_display_mode_from_cea_vic(dev, vic);
1376 	default:
1377 		return NULL;
1378 	}
1379 }
1380 EXPORT_SYMBOL(drm_dp_downstream_mode);
1381 
1382 /**
1383  * drm_dp_downstream_id() - identify branch device
1384  * @aux: DisplayPort AUX channel
1385  * @id: DisplayPort branch device id
1386  *
1387  * Returns branch device id on success or NULL on failure
1388  */
1389 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1390 {
1391 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1392 }
1393 EXPORT_SYMBOL(drm_dp_downstream_id);
1394 
1395 /**
1396  * drm_dp_downstream_debug() - debug DP branch devices
1397  * @m: pointer for debugfs file
1398  * @dpcd: DisplayPort configuration data
1399  * @port_cap: port capabilities
1400  * @drm_edid: EDID
1401  * @aux: DisplayPort AUX channel
1402  *
1403  */
1404 void drm_dp_downstream_debug(struct seq_file *m,
1405 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1406 			     const u8 port_cap[4],
1407 			     const struct drm_edid *drm_edid,
1408 			     struct drm_dp_aux *aux)
1409 {
1410 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1411 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1412 	int clk;
1413 	int bpc;
1414 	char id[7];
1415 	int len;
1416 	uint8_t rev[2];
1417 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1418 	bool branch_device = drm_dp_is_branch(dpcd);
1419 
1420 	seq_printf(m, "\tDP branch device present: %s\n",
1421 		   str_yes_no(branch_device));
1422 
1423 	if (!branch_device)
1424 		return;
1425 
1426 	switch (type) {
1427 	case DP_DS_PORT_TYPE_DP:
1428 		seq_puts(m, "\t\tType: DisplayPort\n");
1429 		break;
1430 	case DP_DS_PORT_TYPE_VGA:
1431 		seq_puts(m, "\t\tType: VGA\n");
1432 		break;
1433 	case DP_DS_PORT_TYPE_DVI:
1434 		seq_puts(m, "\t\tType: DVI\n");
1435 		break;
1436 	case DP_DS_PORT_TYPE_HDMI:
1437 		seq_puts(m, "\t\tType: HDMI\n");
1438 		break;
1439 	case DP_DS_PORT_TYPE_NON_EDID:
1440 		seq_puts(m, "\t\tType: others without EDID support\n");
1441 		break;
1442 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1443 		seq_puts(m, "\t\tType: DP++\n");
1444 		break;
1445 	case DP_DS_PORT_TYPE_WIRELESS:
1446 		seq_puts(m, "\t\tType: Wireless\n");
1447 		break;
1448 	default:
1449 		seq_puts(m, "\t\tType: N/A\n");
1450 	}
1451 
1452 	memset(id, 0, sizeof(id));
1453 	drm_dp_downstream_id(aux, id);
1454 	seq_printf(m, "\t\tID: %s\n", id);
1455 
1456 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1457 	if (len > 0)
1458 		seq_printf(m, "\t\tHW: %d.%d\n",
1459 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1460 
1461 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1462 	if (len > 0)
1463 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1464 
1465 	if (detailed_cap_info) {
1466 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1467 		if (clk > 0)
1468 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1469 
1470 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1471 		if (clk > 0)
1472 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1473 
1474 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1475 		if (clk > 0)
1476 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1477 
1478 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1479 
1480 		if (bpc > 0)
1481 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1482 	}
1483 }
1484 EXPORT_SYMBOL(drm_dp_downstream_debug);
1485 
1486 /**
1487  * drm_dp_subconnector_type() - get DP branch device type
1488  * @dpcd: DisplayPort configuration data
1489  * @port_cap: port capabilities
1490  */
1491 enum drm_mode_subconnector
1492 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1493 			 const u8 port_cap[4])
1494 {
1495 	int type;
1496 	if (!drm_dp_is_branch(dpcd))
1497 		return DRM_MODE_SUBCONNECTOR_Native;
1498 	/* DP 1.0 approach */
1499 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1500 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1501 		       DP_DWN_STRM_PORT_TYPE_MASK;
1502 
1503 		switch (type) {
1504 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1505 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1506 			return DRM_MODE_SUBCONNECTOR_DVID;
1507 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1508 			/* Can be VGA or DVI-A, VGA is more popular */
1509 			return DRM_MODE_SUBCONNECTOR_VGA;
1510 		case DP_DWN_STRM_PORT_TYPE_DP:
1511 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1512 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1513 		default:
1514 			return DRM_MODE_SUBCONNECTOR_Unknown;
1515 		}
1516 	}
1517 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1518 
1519 	switch (type) {
1520 	case DP_DS_PORT_TYPE_DP:
1521 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1522 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1523 	case DP_DS_PORT_TYPE_VGA:
1524 		return DRM_MODE_SUBCONNECTOR_VGA;
1525 	case DP_DS_PORT_TYPE_DVI:
1526 		return DRM_MODE_SUBCONNECTOR_DVID;
1527 	case DP_DS_PORT_TYPE_HDMI:
1528 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1529 	case DP_DS_PORT_TYPE_WIRELESS:
1530 		return DRM_MODE_SUBCONNECTOR_Wireless;
1531 	case DP_DS_PORT_TYPE_NON_EDID:
1532 	default:
1533 		return DRM_MODE_SUBCONNECTOR_Unknown;
1534 	}
1535 }
1536 EXPORT_SYMBOL(drm_dp_subconnector_type);
1537 
1538 /**
1539  * drm_dp_set_subconnector_property - set subconnector for DP connector
1540  * @connector: connector to set property on
1541  * @status: connector status
1542  * @dpcd: DisplayPort configuration data
1543  * @port_cap: port capabilities
1544  *
1545  * Called by a driver on every detect event.
1546  */
1547 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1548 				      enum drm_connector_status status,
1549 				      const u8 *dpcd,
1550 				      const u8 port_cap[4])
1551 {
1552 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1553 
1554 	if (status == connector_status_connected)
1555 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1556 	drm_object_property_set_value(&connector->base,
1557 			connector->dev->mode_config.dp_subconnector_property,
1558 			subconnector);
1559 }
1560 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1561 
1562 /**
1563  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1564  * count
1565  * @connector: The DRM connector to check
1566  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1567  * @desc: A cached copy of the connector's DP descriptor
1568  *
1569  * See also: drm_dp_read_sink_count()
1570  *
1571  * Returns: %True if the (e)DP connector has a valid sink count that should
1572  * be probed, %false otherwise.
1573  */
1574 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1575 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1576 				const struct drm_dp_desc *desc)
1577 {
1578 	/* Some eDP panels don't set a valid value for the sink count */
1579 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1580 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1581 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1582 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1583 }
1584 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1585 
1586 /**
1587  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1588  * @aux: The DP AUX channel to use
1589  *
1590  * See also: drm_dp_read_sink_count_cap()
1591  *
1592  * Returns: The current sink count reported by @aux, or a negative error code
1593  * otherwise.
1594  */
1595 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1596 {
1597 	u8 count;
1598 	int ret;
1599 
1600 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1601 	if (ret < 0)
1602 		return ret;
1603 	if (ret != 1)
1604 		return -EIO;
1605 
1606 	return DP_GET_SINK_COUNT(count);
1607 }
1608 EXPORT_SYMBOL(drm_dp_read_sink_count);
1609 
1610 /*
1611  * I2C-over-AUX implementation
1612  */
1613 
1614 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1615 {
1616 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1617 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1618 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1619 	       I2C_FUNC_10BIT_ADDR;
1620 }
1621 
1622 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1623 {
1624 	/*
1625 	 * In case of i2c defer or short i2c ack reply to a write,
1626 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1627 	 * rest of the message
1628 	 */
1629 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1630 		msg->request &= DP_AUX_I2C_MOT;
1631 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1632 	}
1633 }
1634 
1635 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1636 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1637 #define AUX_STOP_LEN 4
1638 #define AUX_CMD_LEN 4
1639 #define AUX_ADDRESS_LEN 20
1640 #define AUX_REPLY_PAD_LEN 4
1641 #define AUX_LENGTH_LEN 8
1642 
1643 /*
1644  * Calculate the duration of the AUX request/reply in usec. Gives the
1645  * "best" case estimate, ie. successful while as short as possible.
1646  */
1647 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1648 {
1649 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1650 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1651 
1652 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1653 		len += msg->size * 8;
1654 
1655 	return len;
1656 }
1657 
1658 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1659 {
1660 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1661 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1662 
1663 	/*
1664 	 * For read we expect what was asked. For writes there will
1665 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1666 	 */
1667 	if (msg->request & DP_AUX_I2C_READ)
1668 		len += msg->size * 8;
1669 
1670 	return len;
1671 }
1672 
1673 #define I2C_START_LEN 1
1674 #define I2C_STOP_LEN 1
1675 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1676 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1677 
1678 /*
1679  * Calculate the length of the i2c transfer in usec, assuming
1680  * the i2c bus speed is as specified. Gives the "worst"
1681  * case estimate, ie. successful while as long as possible.
1682  * Doesn't account the "MOT" bit, and instead assumes each
1683  * message includes a START, ADDRESS and STOP. Neither does it
1684  * account for additional random variables such as clock stretching.
1685  */
1686 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1687 				   int i2c_speed_khz)
1688 {
1689 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1690 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1691 			     msg->size * I2C_DATA_LEN +
1692 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1693 }
1694 
1695 /*
1696  * Determine how many retries should be attempted to successfully transfer
1697  * the specified message, based on the estimated durations of the
1698  * i2c and AUX transfers.
1699  */
1700 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1701 			      int i2c_speed_khz)
1702 {
1703 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1704 		drm_dp_aux_reply_duration(msg);
1705 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1706 
1707 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1708 }
1709 
1710 /*
1711  * FIXME currently assumes 10 kHz as some real world devices seem
1712  * to require it. We should query/set the speed via DPCD if supported.
1713  */
1714 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1715 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1716 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1717 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1718 
1719 /*
1720  * Transfer a single I2C-over-AUX message and handle various error conditions,
1721  * retrying the transaction as appropriate.  It is assumed that the
1722  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1723  * reply field.
1724  *
1725  * Returns bytes transferred on success, or a negative error code on failure.
1726  */
1727 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1728 {
1729 	unsigned int retry, defer_i2c;
1730 	int ret;
1731 	/*
1732 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1733 	 * is required to retry at least seven times upon receiving AUX_DEFER
1734 	 * before giving up the AUX transaction.
1735 	 *
1736 	 * We also try to account for the i2c bus speed.
1737 	 */
1738 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1739 
1740 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1741 		ret = aux->transfer(aux, msg);
1742 		if (ret < 0) {
1743 			if (ret == -EBUSY)
1744 				continue;
1745 
1746 			/*
1747 			 * While timeouts can be errors, they're usually normal
1748 			 * behavior (for instance, when a driver tries to
1749 			 * communicate with a non-existent DisplayPort device).
1750 			 * Avoid spamming the kernel log with timeout errors.
1751 			 */
1752 			if (ret == -ETIMEDOUT)
1753 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1754 							aux->name);
1755 			else
1756 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1757 					    aux->name, ret);
1758 			return ret;
1759 		}
1760 
1761 
1762 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1763 		case DP_AUX_NATIVE_REPLY_ACK:
1764 			/*
1765 			 * For I2C-over-AUX transactions this isn't enough, we
1766 			 * need to check for the I2C ACK reply.
1767 			 */
1768 			break;
1769 
1770 		case DP_AUX_NATIVE_REPLY_NACK:
1771 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1772 				    aux->name, ret, msg->size);
1773 			return -EREMOTEIO;
1774 
1775 		case DP_AUX_NATIVE_REPLY_DEFER:
1776 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1777 			/*
1778 			 * We could check for I2C bit rate capabilities and if
1779 			 * available adjust this interval. We could also be
1780 			 * more careful with DP-to-legacy adapters where a
1781 			 * long legacy cable may force very low I2C bit rates.
1782 			 *
1783 			 * For now just defer for long enough to hopefully be
1784 			 * safe for all use-cases.
1785 			 */
1786 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1787 			continue;
1788 
1789 		default:
1790 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1791 				aux->name, msg->reply);
1792 			return -EREMOTEIO;
1793 		}
1794 
1795 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1796 		case DP_AUX_I2C_REPLY_ACK:
1797 			/*
1798 			 * Both native ACK and I2C ACK replies received. We
1799 			 * can assume the transfer was successful.
1800 			 */
1801 			if (ret != msg->size)
1802 				drm_dp_i2c_msg_write_status_update(msg);
1803 			return ret;
1804 
1805 		case DP_AUX_I2C_REPLY_NACK:
1806 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1807 				    aux->name, ret, msg->size);
1808 			aux->i2c_nack_count++;
1809 			return -EREMOTEIO;
1810 
1811 		case DP_AUX_I2C_REPLY_DEFER:
1812 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1813 			/* DP Compliance Test 4.2.2.5 Requirement:
1814 			 * Must have at least 7 retries for I2C defers on the
1815 			 * transaction to pass this test
1816 			 */
1817 			aux->i2c_defer_count++;
1818 			if (defer_i2c < 7)
1819 				defer_i2c++;
1820 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1821 			drm_dp_i2c_msg_write_status_update(msg);
1822 
1823 			continue;
1824 
1825 		default:
1826 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1827 				aux->name, msg->reply);
1828 			return -EREMOTEIO;
1829 		}
1830 	}
1831 
1832 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1833 	return -EREMOTEIO;
1834 }
1835 
1836 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1837 				       const struct i2c_msg *i2c_msg)
1838 {
1839 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1840 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1841 	if (!(i2c_msg->flags & I2C_M_STOP))
1842 		msg->request |= DP_AUX_I2C_MOT;
1843 }
1844 
1845 /*
1846  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1847  *
1848  * Returns an error code on failure, or a recommended transfer size on success.
1849  */
1850 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1851 {
1852 	int err, ret = orig_msg->size;
1853 	struct drm_dp_aux_msg msg = *orig_msg;
1854 
1855 	while (msg.size > 0) {
1856 		err = drm_dp_i2c_do_msg(aux, &msg);
1857 		if (err <= 0)
1858 			return err == 0 ? -EPROTO : err;
1859 
1860 		if (err < msg.size && err < ret) {
1861 			drm_dbg_kms(aux->drm_dev,
1862 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1863 				    aux->name, msg.size, err);
1864 			ret = err;
1865 		}
1866 
1867 		msg.size -= err;
1868 		msg.buffer += err;
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 /*
1875  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1876  * packets to be as large as possible. If not, the I2C transactions never
1877  * succeed. Hence the default is maximum.
1878  */
1879 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1880 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1881 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1882 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1883 
1884 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1885 			   int num)
1886 {
1887 	struct drm_dp_aux *aux = adapter->algo_data;
1888 	unsigned int i, j;
1889 	unsigned transfer_size;
1890 	struct drm_dp_aux_msg msg;
1891 	int err = 0;
1892 
1893 	if (aux->powered_down)
1894 		return -EBUSY;
1895 
1896 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1897 
1898 	memset(&msg, 0, sizeof(msg));
1899 
1900 	for (i = 0; i < num; i++) {
1901 		msg.address = msgs[i].addr;
1902 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1903 		/* Send a bare address packet to start the transaction.
1904 		 * Zero sized messages specify an address only (bare
1905 		 * address) transaction.
1906 		 */
1907 		msg.buffer = NULL;
1908 		msg.size = 0;
1909 		err = drm_dp_i2c_do_msg(aux, &msg);
1910 
1911 		/*
1912 		 * Reset msg.request in case in case it got
1913 		 * changed into a WRITE_STATUS_UPDATE.
1914 		 */
1915 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1916 
1917 		if (err < 0)
1918 			break;
1919 		/* We want each transaction to be as large as possible, but
1920 		 * we'll go to smaller sizes if the hardware gives us a
1921 		 * short reply.
1922 		 */
1923 		transfer_size = dp_aux_i2c_transfer_size;
1924 		for (j = 0; j < msgs[i].len; j += msg.size) {
1925 			msg.buffer = msgs[i].buf + j;
1926 			msg.size = min(transfer_size, msgs[i].len - j);
1927 
1928 			err = drm_dp_i2c_drain_msg(aux, &msg);
1929 
1930 			/*
1931 			 * Reset msg.request in case in case it got
1932 			 * changed into a WRITE_STATUS_UPDATE.
1933 			 */
1934 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1935 
1936 			if (err < 0)
1937 				break;
1938 			transfer_size = err;
1939 		}
1940 		if (err < 0)
1941 			break;
1942 	}
1943 	if (err >= 0)
1944 		err = num;
1945 	/* Send a bare address packet to close out the transaction.
1946 	 * Zero sized messages specify an address only (bare
1947 	 * address) transaction.
1948 	 */
1949 	msg.request &= ~DP_AUX_I2C_MOT;
1950 	msg.buffer = NULL;
1951 	msg.size = 0;
1952 	(void)drm_dp_i2c_do_msg(aux, &msg);
1953 
1954 	return err;
1955 }
1956 
1957 static const struct i2c_algorithm drm_dp_i2c_algo = {
1958 	.functionality = drm_dp_i2c_functionality,
1959 	.master_xfer = drm_dp_i2c_xfer,
1960 };
1961 
1962 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1963 {
1964 	return container_of(i2c, struct drm_dp_aux, ddc);
1965 }
1966 
1967 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1968 {
1969 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1970 }
1971 
1972 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1973 {
1974 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1975 }
1976 
1977 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1978 {
1979 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1980 }
1981 
1982 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1983 	.lock_bus = lock_bus,
1984 	.trylock_bus = trylock_bus,
1985 	.unlock_bus = unlock_bus,
1986 };
1987 
1988 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1989 {
1990 	u8 buf, count;
1991 	int ret;
1992 
1993 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1994 	if (ret < 0)
1995 		return ret;
1996 
1997 	WARN_ON(!(buf & DP_TEST_SINK_START));
1998 
1999 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2000 	if (ret < 0)
2001 		return ret;
2002 
2003 	count = buf & DP_TEST_COUNT_MASK;
2004 	if (count == aux->crc_count)
2005 		return -EAGAIN; /* No CRC yet */
2006 
2007 	aux->crc_count = count;
2008 
2009 	/*
2010 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2011 	 * per component (RGB or CrYCb).
2012 	 */
2013 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2014 	if (ret < 0)
2015 		return ret;
2016 
2017 	return 0;
2018 }
2019 
2020 static void drm_dp_aux_crc_work(struct work_struct *work)
2021 {
2022 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2023 					      crc_work);
2024 	struct drm_crtc *crtc;
2025 	u8 crc_bytes[6];
2026 	uint32_t crcs[3];
2027 	int ret;
2028 
2029 	if (WARN_ON(!aux->crtc))
2030 		return;
2031 
2032 	crtc = aux->crtc;
2033 	while (crtc->crc.opened) {
2034 		drm_crtc_wait_one_vblank(crtc);
2035 		if (!crtc->crc.opened)
2036 			break;
2037 
2038 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2039 		if (ret == -EAGAIN) {
2040 			usleep_range(1000, 2000);
2041 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2042 		}
2043 
2044 		if (ret == -EAGAIN) {
2045 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2046 				    aux->name, ret);
2047 			continue;
2048 		} else if (ret) {
2049 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2050 			continue;
2051 		}
2052 
2053 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2054 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2055 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2056 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2057 	}
2058 }
2059 
2060 /**
2061  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2062  * @aux: DisplayPort AUX channel
2063  *
2064  * Used for remote aux channel in general. Merely initialize the crc work
2065  * struct.
2066  */
2067 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2068 {
2069 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2070 }
2071 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2072 
2073 /**
2074  * drm_dp_aux_init() - minimally initialise an aux channel
2075  * @aux: DisplayPort AUX channel
2076  *
2077  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2078  * the outside world, call drm_dp_aux_init() first. For drivers which are
2079  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2080  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2081  * has been registered to allow userspace access to the auxiliary DP channel.
2082  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2083  * early as possible so that the &drm_device that corresponds to the AUX adapter
2084  * may be mentioned in debugging output from the DRM DP helpers.
2085  *
2086  * For devices which use a separate platform device for their AUX adapters, this
2087  * may be called as early as required by the driver.
2088  *
2089  */
2090 void drm_dp_aux_init(struct drm_dp_aux *aux)
2091 {
2092 	mutex_init(&aux->hw_mutex);
2093 	mutex_init(&aux->cec.lock);
2094 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2095 
2096 	aux->ddc.algo = &drm_dp_i2c_algo;
2097 	aux->ddc.algo_data = aux;
2098 	aux->ddc.retries = 3;
2099 
2100 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2101 }
2102 EXPORT_SYMBOL(drm_dp_aux_init);
2103 
2104 /**
2105  * drm_dp_aux_register() - initialise and register aux channel
2106  * @aux: DisplayPort AUX channel
2107  *
2108  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2109  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2110  * initialized. For devices which are grandparents of their AUX channels,
2111  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2112  * corresponds to @aux. For these devices, it's advised to call
2113  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2114  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2115  * Functions which don't follow this will likely Oops when
2116  * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2117  *
2118  * For devices where the AUX channel is a device that exists independently of
2119  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2120  * recommended to call drm_dp_aux_register() after a &drm_device has been
2121  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2122  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2123  * with the AUX channel (e.g. on bridge detach).
2124  *
2125  * Drivers which need to use the aux channel before either of the two points
2126  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2127  * channel before registration.
2128  *
2129  * Returns 0 on success or a negative error code on failure.
2130  */
2131 int drm_dp_aux_register(struct drm_dp_aux *aux)
2132 {
2133 	int ret;
2134 
2135 	WARN_ON_ONCE(!aux->drm_dev);
2136 
2137 	if (!aux->ddc.algo)
2138 		drm_dp_aux_init(aux);
2139 
2140 	aux->ddc.owner = THIS_MODULE;
2141 	aux->ddc.dev.parent = aux->dev;
2142 
2143 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2144 		sizeof(aux->ddc.name));
2145 
2146 	ret = drm_dp_aux_register_devnode(aux);
2147 	if (ret)
2148 		return ret;
2149 
2150 	ret = i2c_add_adapter(&aux->ddc);
2151 	if (ret) {
2152 		drm_dp_aux_unregister_devnode(aux);
2153 		return ret;
2154 	}
2155 
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(drm_dp_aux_register);
2159 
2160 /**
2161  * drm_dp_aux_unregister() - unregister an AUX adapter
2162  * @aux: DisplayPort AUX channel
2163  */
2164 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2165 {
2166 	drm_dp_aux_unregister_devnode(aux);
2167 	i2c_del_adapter(&aux->ddc);
2168 }
2169 EXPORT_SYMBOL(drm_dp_aux_unregister);
2170 
2171 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2172 
2173 /**
2174  * drm_dp_psr_setup_time() - PSR setup in time usec
2175  * @psr_cap: PSR capabilities from DPCD
2176  *
2177  * Returns:
2178  * PSR setup time for the panel in microseconds,  negative
2179  * error code on failure.
2180  */
2181 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2182 {
2183 	static const u16 psr_setup_time_us[] = {
2184 		PSR_SETUP_TIME(330),
2185 		PSR_SETUP_TIME(275),
2186 		PSR_SETUP_TIME(220),
2187 		PSR_SETUP_TIME(165),
2188 		PSR_SETUP_TIME(110),
2189 		PSR_SETUP_TIME(55),
2190 		PSR_SETUP_TIME(0),
2191 	};
2192 	int i;
2193 
2194 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2195 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2196 		return -EINVAL;
2197 
2198 	return psr_setup_time_us[i];
2199 }
2200 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2201 
2202 #undef PSR_SETUP_TIME
2203 
2204 /**
2205  * drm_dp_start_crc() - start capture of frame CRCs
2206  * @aux: DisplayPort AUX channel
2207  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2208  *
2209  * Returns 0 on success or a negative error code on failure.
2210  */
2211 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2212 {
2213 	u8 buf;
2214 	int ret;
2215 
2216 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2217 	if (ret < 0)
2218 		return ret;
2219 
2220 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2221 	if (ret < 0)
2222 		return ret;
2223 
2224 	aux->crc_count = 0;
2225 	aux->crtc = crtc;
2226 	schedule_work(&aux->crc_work);
2227 
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(drm_dp_start_crc);
2231 
2232 /**
2233  * drm_dp_stop_crc() - stop capture of frame CRCs
2234  * @aux: DisplayPort AUX channel
2235  *
2236  * Returns 0 on success or a negative error code on failure.
2237  */
2238 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2239 {
2240 	u8 buf;
2241 	int ret;
2242 
2243 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2244 	if (ret < 0)
2245 		return ret;
2246 
2247 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2248 	if (ret < 0)
2249 		return ret;
2250 
2251 	flush_work(&aux->crc_work);
2252 	aux->crtc = NULL;
2253 
2254 	return 0;
2255 }
2256 EXPORT_SYMBOL(drm_dp_stop_crc);
2257 
2258 struct dpcd_quirk {
2259 	u8 oui[3];
2260 	u8 device_id[6];
2261 	bool is_branch;
2262 	u32 quirks;
2263 };
2264 
2265 #define OUI(first, second, third) { (first), (second), (third) }
2266 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2267 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2268 
2269 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2270 
2271 static const struct dpcd_quirk dpcd_quirk_list[] = {
2272 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2273 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2274 	/* LG LP140WF6-SPM1 eDP panel */
2275 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2276 	/* Apple panels need some additional handling to support PSR */
2277 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2278 	/* CH7511 seems to leave SINK_COUNT zeroed */
2279 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2280 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2281 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2282 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2283 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2284 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2285 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2286 };
2287 
2288 #undef OUI
2289 
2290 /*
2291  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2292  * ident. The quirk data is shared but it's up to the drivers to act on the
2293  * data.
2294  *
2295  * For now, only the OUI (first three bytes) is used, but this may be extended
2296  * to device identification string and hardware/firmware revisions later.
2297  */
2298 static u32
2299 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2300 {
2301 	const struct dpcd_quirk *quirk;
2302 	u32 quirks = 0;
2303 	int i;
2304 	u8 any_device[] = DEVICE_ID_ANY;
2305 
2306 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2307 		quirk = &dpcd_quirk_list[i];
2308 
2309 		if (quirk->is_branch != is_branch)
2310 			continue;
2311 
2312 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2313 			continue;
2314 
2315 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2316 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2317 			continue;
2318 
2319 		quirks |= quirk->quirks;
2320 	}
2321 
2322 	return quirks;
2323 }
2324 
2325 #undef DEVICE_ID_ANY
2326 #undef DEVICE_ID
2327 
2328 /**
2329  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2330  * @aux: DisplayPort AUX channel
2331  * @desc: Device descriptor to fill from DPCD
2332  * @is_branch: true for branch devices, false for sink devices
2333  *
2334  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2335  * identification.
2336  *
2337  * Returns 0 on success or a negative error code on failure.
2338  */
2339 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2340 		     bool is_branch)
2341 {
2342 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2343 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2344 	int ret, dev_id_len;
2345 
2346 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2347 	if (ret < 0)
2348 		return ret;
2349 
2350 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2351 
2352 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2353 
2354 	drm_dbg_kms(aux->drm_dev,
2355 		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2356 		    aux->name, is_branch ? "branch" : "sink",
2357 		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2358 		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2359 		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2360 
2361 	return 0;
2362 }
2363 EXPORT_SYMBOL(drm_dp_read_desc);
2364 
2365 /**
2366  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2367  * @dsc_dpcd: DSC capabilities from DPCD
2368  *
2369  * Returns the bpp precision supported by the DP sink.
2370  */
2371 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2372 {
2373 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2374 
2375 	switch (bpp_increment_dpcd) {
2376 	case DP_DSC_BITS_PER_PIXEL_1_16:
2377 		return 16;
2378 	case DP_DSC_BITS_PER_PIXEL_1_8:
2379 		return 8;
2380 	case DP_DSC_BITS_PER_PIXEL_1_4:
2381 		return 4;
2382 	case DP_DSC_BITS_PER_PIXEL_1_2:
2383 		return 2;
2384 	case DP_DSC_BITS_PER_PIXEL_1_1:
2385 		return 1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2391 
2392 /**
2393  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2394  * supported by the DSC sink.
2395  * @dsc_dpcd: DSC capabilities from DPCD
2396  * @is_edp: true if its eDP, false for DP
2397  *
2398  * Read the slice capabilities DPCD register from DSC sink to get
2399  * the maximum slice count supported. This is used to populate
2400  * the DSC parameters in the &struct drm_dsc_config by the driver.
2401  * Driver creates an infoframe using these parameters to populate
2402  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2403  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2404  *
2405  * Returns:
2406  * Maximum slice count supported by DSC sink or 0 its invalid
2407  */
2408 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2409 				   bool is_edp)
2410 {
2411 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2412 
2413 	if (is_edp) {
2414 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2415 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2416 			return 4;
2417 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2418 			return 2;
2419 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2420 			return 1;
2421 	} else {
2422 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2423 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2424 
2425 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2426 			return 24;
2427 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2428 			return 20;
2429 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2430 			return 16;
2431 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2432 			return 12;
2433 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2434 			return 10;
2435 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2436 			return 8;
2437 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2438 			return 6;
2439 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2440 			return 4;
2441 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2442 			return 2;
2443 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2444 			return 1;
2445 	}
2446 
2447 	return 0;
2448 }
2449 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2450 
2451 /**
2452  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2453  * @dsc_dpcd: DSC capabilities from DPCD
2454  *
2455  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2456  * number of bits of precision within the decoder line buffer supported by
2457  * the DSC sink. This is used to populate the DSC parameters in the
2458  * &struct drm_dsc_config by the driver.
2459  * Driver creates an infoframe using these parameters to populate
2460  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2461  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2462  *
2463  * Returns:
2464  * Line buffer depth supported by DSC panel or 0 its invalid
2465  */
2466 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2467 {
2468 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2469 
2470 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2471 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2472 		return 9;
2473 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2474 		return 10;
2475 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2476 		return 11;
2477 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2478 		return 12;
2479 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2480 		return 13;
2481 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2482 		return 14;
2483 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2484 		return 15;
2485 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2486 		return 16;
2487 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2488 		return 8;
2489 	}
2490 
2491 	return 0;
2492 }
2493 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2494 
2495 /**
2496  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2497  * values supported by the DSC sink.
2498  * @dsc_dpcd: DSC capabilities from DPCD
2499  * @dsc_bpc: An array to be filled by this helper with supported
2500  *           input bpcs.
2501  *
2502  * Read the DSC DPCD from the sink device to parse the supported bits per
2503  * component values. This is used to populate the DSC parameters
2504  * in the &struct drm_dsc_config by the driver.
2505  * Driver creates an infoframe using these parameters to populate
2506  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2507  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2508  *
2509  * Returns:
2510  * Number of input BPC values parsed from the DPCD
2511  */
2512 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2513 					 u8 dsc_bpc[3])
2514 {
2515 	int num_bpc = 0;
2516 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2517 
2518 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2519 		return 0;
2520 
2521 	if (color_depth & DP_DSC_12_BPC)
2522 		dsc_bpc[num_bpc++] = 12;
2523 	if (color_depth & DP_DSC_10_BPC)
2524 		dsc_bpc[num_bpc++] = 10;
2525 
2526 	/* A DP DSC Sink device shall support 8 bpc. */
2527 	dsc_bpc[num_bpc++] = 8;
2528 
2529 	return num_bpc;
2530 }
2531 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2532 
2533 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2534 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2535 				  u8 *buf, int buf_size)
2536 {
2537 	/*
2538 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2539 	 * corrupted values when reading from the 0xF0000- range with a block
2540 	 * size bigger than 1.
2541 	 */
2542 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2543 	int offset;
2544 	int ret;
2545 
2546 	for (offset = 0; offset < buf_size; offset += block_size) {
2547 		ret = drm_dp_dpcd_read(aux,
2548 				       address + offset,
2549 				       &buf[offset], block_size);
2550 		if (ret < 0)
2551 			return ret;
2552 
2553 		WARN_ON(ret != block_size);
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 /**
2560  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2561  * @aux: DisplayPort AUX channel
2562  * @dpcd: DisplayPort configuration data
2563  * @caps: buffer to return the capability info in
2564  *
2565  * Read capabilities common to all LTTPRs.
2566  *
2567  * Returns 0 on success or a negative error code on failure.
2568  */
2569 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2570 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2571 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2572 {
2573 	return drm_dp_read_lttpr_regs(aux, dpcd,
2574 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2575 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2576 }
2577 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2578 
2579 /**
2580  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2581  * @aux: DisplayPort AUX channel
2582  * @dpcd: DisplayPort configuration data
2583  * @dp_phy: LTTPR PHY to read the capabilities for
2584  * @caps: buffer to return the capability info in
2585  *
2586  * Read the capabilities for the given LTTPR PHY.
2587  *
2588  * Returns 0 on success or a negative error code on failure.
2589  */
2590 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2591 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2592 			       enum drm_dp_phy dp_phy,
2593 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2594 {
2595 	return drm_dp_read_lttpr_regs(aux, dpcd,
2596 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2597 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2598 }
2599 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2600 
2601 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2602 {
2603 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2604 }
2605 
2606 /**
2607  * drm_dp_lttpr_count - get the number of detected LTTPRs
2608  * @caps: LTTPR common capabilities
2609  *
2610  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2611  *
2612  * Returns:
2613  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2614  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2615  *   otherwise the number of detected LTTPRs
2616  */
2617 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2618 {
2619 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2620 
2621 	switch (hweight8(count)) {
2622 	case 0:
2623 		return 0;
2624 	case 1:
2625 		return 8 - ilog2(count);
2626 	case 8:
2627 		return -ERANGE;
2628 	default:
2629 		return -EINVAL;
2630 	}
2631 }
2632 EXPORT_SYMBOL(drm_dp_lttpr_count);
2633 
2634 /**
2635  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2636  * @caps: LTTPR common capabilities
2637  *
2638  * Returns the maximum link rate supported by all detected LTTPRs.
2639  */
2640 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2641 {
2642 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2643 
2644 	return drm_dp_bw_code_to_link_rate(rate);
2645 }
2646 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2647 
2648 /**
2649  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2650  * @caps: LTTPR common capabilities
2651  *
2652  * Returns the maximum lane count supported by all detected LTTPRs.
2653  */
2654 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2655 {
2656 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2657 
2658 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2659 }
2660 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2661 
2662 /**
2663  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2664  * @caps: LTTPR PHY capabilities
2665  *
2666  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2667  * voltage swing level 3.
2668  */
2669 bool
2670 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2671 {
2672 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2673 
2674 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2675 }
2676 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2677 
2678 /**
2679  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2680  * @caps: LTTPR PHY capabilities
2681  *
2682  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2683  * pre-emphasis level 3.
2684  */
2685 bool
2686 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2687 {
2688 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2689 
2690 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2691 }
2692 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2693 
2694 /**
2695  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2696  * @aux: DisplayPort AUX channel
2697  * @data: DP phy compliance test parameters.
2698  *
2699  * Returns 0 on success or a negative error code on failure.
2700  */
2701 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2702 				struct drm_dp_phy_test_params *data)
2703 {
2704 	int err;
2705 	u8 rate, lanes;
2706 
2707 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2708 	if (err < 0)
2709 		return err;
2710 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2711 
2712 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2713 	if (err < 0)
2714 		return err;
2715 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2716 
2717 	if (lanes & DP_ENHANCED_FRAME_CAP)
2718 		data->enhanced_frame_cap = true;
2719 
2720 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2721 	if (err < 0)
2722 		return err;
2723 
2724 	switch (data->phy_pattern) {
2725 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2726 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2727 				       &data->custom80, sizeof(data->custom80));
2728 		if (err < 0)
2729 			return err;
2730 
2731 		break;
2732 	case DP_PHY_TEST_PATTERN_CP2520:
2733 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2734 				       &data->hbr2_reset,
2735 				       sizeof(data->hbr2_reset));
2736 		if (err < 0)
2737 			return err;
2738 	}
2739 
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2743 
2744 /**
2745  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2746  * @aux: DisplayPort AUX channel
2747  * @data: DP phy compliance test parameters.
2748  * @dp_rev: DP revision to use for compliance testing
2749  *
2750  * Returns 0 on success or a negative error code on failure.
2751  */
2752 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2753 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2754 {
2755 	int err, i;
2756 	u8 test_pattern;
2757 
2758 	test_pattern = data->phy_pattern;
2759 	if (dp_rev < 0x12) {
2760 		test_pattern = (test_pattern << 2) &
2761 			       DP_LINK_QUAL_PATTERN_11_MASK;
2762 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2763 					 test_pattern);
2764 		if (err < 0)
2765 			return err;
2766 	} else {
2767 		for (i = 0; i < data->num_lanes; i++) {
2768 			err = drm_dp_dpcd_writeb(aux,
2769 						 DP_LINK_QUAL_LANE0_SET + i,
2770 						 test_pattern);
2771 			if (err < 0)
2772 				return err;
2773 		}
2774 	}
2775 
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2779 
2780 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2781 {
2782 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2783 		return "Invalid";
2784 
2785 	switch (pixelformat) {
2786 	case DP_PIXELFORMAT_RGB:
2787 		return "RGB";
2788 	case DP_PIXELFORMAT_YUV444:
2789 		return "YUV444";
2790 	case DP_PIXELFORMAT_YUV422:
2791 		return "YUV422";
2792 	case DP_PIXELFORMAT_YUV420:
2793 		return "YUV420";
2794 	case DP_PIXELFORMAT_Y_ONLY:
2795 		return "Y_ONLY";
2796 	case DP_PIXELFORMAT_RAW:
2797 		return "RAW";
2798 	default:
2799 		return "Reserved";
2800 	}
2801 }
2802 
2803 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2804 					   enum dp_colorimetry colorimetry)
2805 {
2806 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2807 		return "Invalid";
2808 
2809 	switch (colorimetry) {
2810 	case DP_COLORIMETRY_DEFAULT:
2811 		switch (pixelformat) {
2812 		case DP_PIXELFORMAT_RGB:
2813 			return "sRGB";
2814 		case DP_PIXELFORMAT_YUV444:
2815 		case DP_PIXELFORMAT_YUV422:
2816 		case DP_PIXELFORMAT_YUV420:
2817 			return "BT.601";
2818 		case DP_PIXELFORMAT_Y_ONLY:
2819 			return "DICOM PS3.14";
2820 		case DP_PIXELFORMAT_RAW:
2821 			return "Custom Color Profile";
2822 		default:
2823 			return "Reserved";
2824 		}
2825 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2826 		switch (pixelformat) {
2827 		case DP_PIXELFORMAT_RGB:
2828 			return "Wide Fixed";
2829 		case DP_PIXELFORMAT_YUV444:
2830 		case DP_PIXELFORMAT_YUV422:
2831 		case DP_PIXELFORMAT_YUV420:
2832 			return "BT.709";
2833 		default:
2834 			return "Reserved";
2835 		}
2836 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2837 		switch (pixelformat) {
2838 		case DP_PIXELFORMAT_RGB:
2839 			return "Wide Float";
2840 		case DP_PIXELFORMAT_YUV444:
2841 		case DP_PIXELFORMAT_YUV422:
2842 		case DP_PIXELFORMAT_YUV420:
2843 			return "xvYCC 601";
2844 		default:
2845 			return "Reserved";
2846 		}
2847 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2848 		switch (pixelformat) {
2849 		case DP_PIXELFORMAT_RGB:
2850 			return "OpRGB";
2851 		case DP_PIXELFORMAT_YUV444:
2852 		case DP_PIXELFORMAT_YUV422:
2853 		case DP_PIXELFORMAT_YUV420:
2854 			return "xvYCC 709";
2855 		default:
2856 			return "Reserved";
2857 		}
2858 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2859 		switch (pixelformat) {
2860 		case DP_PIXELFORMAT_RGB:
2861 			return "DCI-P3";
2862 		case DP_PIXELFORMAT_YUV444:
2863 		case DP_PIXELFORMAT_YUV422:
2864 		case DP_PIXELFORMAT_YUV420:
2865 			return "sYCC 601";
2866 		default:
2867 			return "Reserved";
2868 		}
2869 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2870 		switch (pixelformat) {
2871 		case DP_PIXELFORMAT_RGB:
2872 			return "Custom Profile";
2873 		case DP_PIXELFORMAT_YUV444:
2874 		case DP_PIXELFORMAT_YUV422:
2875 		case DP_PIXELFORMAT_YUV420:
2876 			return "OpYCC 601";
2877 		default:
2878 			return "Reserved";
2879 		}
2880 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2881 		switch (pixelformat) {
2882 		case DP_PIXELFORMAT_RGB:
2883 			return "BT.2020 RGB";
2884 		case DP_PIXELFORMAT_YUV444:
2885 		case DP_PIXELFORMAT_YUV422:
2886 		case DP_PIXELFORMAT_YUV420:
2887 			return "BT.2020 CYCC";
2888 		default:
2889 			return "Reserved";
2890 		}
2891 	case DP_COLORIMETRY_BT2020_YCC:
2892 		switch (pixelformat) {
2893 		case DP_PIXELFORMAT_YUV444:
2894 		case DP_PIXELFORMAT_YUV422:
2895 		case DP_PIXELFORMAT_YUV420:
2896 			return "BT.2020 YCC";
2897 		default:
2898 			return "Reserved";
2899 		}
2900 	default:
2901 		return "Invalid";
2902 	}
2903 }
2904 
2905 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2906 {
2907 	switch (dynamic_range) {
2908 	case DP_DYNAMIC_RANGE_VESA:
2909 		return "VESA range";
2910 	case DP_DYNAMIC_RANGE_CTA:
2911 		return "CTA range";
2912 	default:
2913 		return "Invalid";
2914 	}
2915 }
2916 
2917 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2918 {
2919 	switch (content_type) {
2920 	case DP_CONTENT_TYPE_NOT_DEFINED:
2921 		return "Not defined";
2922 	case DP_CONTENT_TYPE_GRAPHICS:
2923 		return "Graphics";
2924 	case DP_CONTENT_TYPE_PHOTO:
2925 		return "Photo";
2926 	case DP_CONTENT_TYPE_VIDEO:
2927 		return "Video";
2928 	case DP_CONTENT_TYPE_GAME:
2929 		return "Game";
2930 	default:
2931 		return "Reserved";
2932 	}
2933 }
2934 
2935 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2936 {
2937 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2938 		   vsc->revision, vsc->length);
2939 	drm_printf(p, "    pixelformat: %s\n",
2940 		   dp_pixelformat_get_name(vsc->pixelformat));
2941 	drm_printf(p, "    colorimetry: %s\n",
2942 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2943 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
2944 	drm_printf(p, "    dynamic range: %s\n",
2945 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2946 	drm_printf(p, "    content type: %s\n",
2947 		   dp_content_type_get_name(vsc->content_type));
2948 }
2949 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2950 
2951 /**
2952  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
2953  * @aux: DisplayPort AUX channel
2954  * @dpcd: DisplayPort configuration data
2955  *
2956  * Returns true if vsc sdp is supported, else returns false
2957  */
2958 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
2959 {
2960 	u8 rx_feature;
2961 
2962 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
2963 		return false;
2964 
2965 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
2966 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
2967 		return false;
2968 	}
2969 
2970 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
2971 }
2972 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
2973 
2974 /**
2975  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
2976  * @vsc: vsc sdp initialized according to its purpose as defined in
2977  *       table 2-118 - table 2-120 in DP 1.4a specification
2978  * @sdp: valid handle to the generic dp_sdp which will be packed
2979  *
2980  * Returns length of sdp on success and error code on failure
2981  */
2982 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
2983 			    struct dp_sdp *sdp)
2984 {
2985 	size_t length = sizeof(struct dp_sdp);
2986 
2987 	memset(sdp, 0, sizeof(struct dp_sdp));
2988 
2989 	/*
2990 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
2991 	 * VSC SDP Header Bytes
2992 	 */
2993 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
2994 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
2995 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
2996 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
2997 
2998 	if (vsc->revision == 0x6) {
2999 		sdp->db[0] = 1;
3000 		sdp->db[3] = 1;
3001 	}
3002 
3003 	/*
3004 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3005 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3006 	 */
3007 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3008 		goto out;
3009 
3010 	/* VSC SDP Payload for DB16 through DB18 */
3011 	/* Pixel Encoding and Colorimetry Formats  */
3012 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3013 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3014 
3015 	switch (vsc->bpc) {
3016 	case 6:
3017 		/* 6bpc: 0x0 */
3018 		break;
3019 	case 8:
3020 		sdp->db[17] = 0x1; /* DB17[3:0] */
3021 		break;
3022 	case 10:
3023 		sdp->db[17] = 0x2;
3024 		break;
3025 	case 12:
3026 		sdp->db[17] = 0x3;
3027 		break;
3028 	case 16:
3029 		sdp->db[17] = 0x4;
3030 		break;
3031 	default:
3032 		WARN(1, "Missing case %d\n", vsc->bpc);
3033 		return -EINVAL;
3034 	}
3035 
3036 	/* Dynamic Range and Component Bit Depth */
3037 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3038 		sdp->db[17] |= 0x80;  /* DB17[7] */
3039 
3040 	/* Content Type */
3041 	sdp->db[18] = vsc->content_type & 0x7;
3042 
3043 out:
3044 	return length;
3045 }
3046 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3047 
3048 /**
3049  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3050  * @dpcd: DisplayPort configuration data
3051  * @port_cap: port capabilities
3052  *
3053  * Returns maximum frl bandwidth supported by PCON in GBPS,
3054  * returns 0 if not supported.
3055  */
3056 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3057 			       const u8 port_cap[4])
3058 {
3059 	int bw;
3060 	u8 buf;
3061 
3062 	buf = port_cap[2];
3063 	bw = buf & DP_PCON_MAX_FRL_BW;
3064 
3065 	switch (bw) {
3066 	case DP_PCON_MAX_9GBPS:
3067 		return 9;
3068 	case DP_PCON_MAX_18GBPS:
3069 		return 18;
3070 	case DP_PCON_MAX_24GBPS:
3071 		return 24;
3072 	case DP_PCON_MAX_32GBPS:
3073 		return 32;
3074 	case DP_PCON_MAX_40GBPS:
3075 		return 40;
3076 	case DP_PCON_MAX_48GBPS:
3077 		return 48;
3078 	case DP_PCON_MAX_0GBPS:
3079 	default:
3080 		return 0;
3081 	}
3082 
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3086 
3087 /**
3088  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3089  * @aux: DisplayPort AUX channel
3090  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3091  *
3092  * Returns 0 if success, else returns negative error code.
3093  */
3094 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3095 {
3096 	int ret;
3097 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3098 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3099 
3100 	if (enable_frl_ready_hpd)
3101 		buf |= DP_PCON_ENABLE_HPD_READY;
3102 
3103 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3104 
3105 	return ret;
3106 }
3107 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3108 
3109 /**
3110  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3111  * @aux: DisplayPort AUX channel
3112  *
3113  * Returns true if success, else returns false.
3114  */
3115 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3116 {
3117 	int ret;
3118 	u8 buf;
3119 
3120 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3121 	if (ret < 0)
3122 		return false;
3123 
3124 	if (buf & DP_PCON_FRL_READY)
3125 		return true;
3126 
3127 	return false;
3128 }
3129 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3130 
3131 /**
3132  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3133  * @aux: DisplayPort AUX channel
3134  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3135  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3136  * In Concurrent Mode, the FRL link bring up can be done along with
3137  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3138  * the DP Link training.
3139  *
3140  * Returns 0 if success, else returns negative error code.
3141  */
3142 
3143 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3144 				u8 frl_mode)
3145 {
3146 	int ret;
3147 	u8 buf;
3148 
3149 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3150 	if (ret < 0)
3151 		return ret;
3152 
3153 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3154 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3155 	else
3156 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3157 
3158 	switch (max_frl_gbps) {
3159 	case 9:
3160 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3161 		break;
3162 	case 18:
3163 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3164 		break;
3165 	case 24:
3166 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3167 		break;
3168 	case 32:
3169 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3170 		break;
3171 	case 40:
3172 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3173 		break;
3174 	case 48:
3175 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3176 		break;
3177 	case 0:
3178 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3179 		break;
3180 	default:
3181 		return -EINVAL;
3182 	}
3183 
3184 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3185 	if (ret < 0)
3186 		return ret;
3187 
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3191 
3192 /**
3193  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3194  * @aux: DisplayPort AUX channel
3195  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3196  * @frl_type : FRL training type, can be Extended, or Normal.
3197  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3198  * starting from min, and stops when link training is successful. In Extended
3199  * FRL training, all frl bw selected in the mask are trained by the PCON.
3200  *
3201  * Returns 0 if success, else returns negative error code.
3202  */
3203 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3204 				u8 frl_type)
3205 {
3206 	int ret;
3207 	u8 buf = max_frl_mask;
3208 
3209 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3210 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3211 	else
3212 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3213 
3214 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3215 	if (ret < 0)
3216 		return ret;
3217 
3218 	return 0;
3219 }
3220 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3221 
3222 /**
3223  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3224  * @aux: DisplayPort AUX channel
3225  *
3226  * Returns 0 if success, else returns negative error code.
3227  */
3228 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3229 {
3230 	int ret;
3231 
3232 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3233 	if (ret < 0)
3234 		return ret;
3235 
3236 	return 0;
3237 }
3238 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3239 
3240 /**
3241  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3242  * @aux: DisplayPort AUX channel
3243  *
3244  * Returns 0 if success, else returns negative error code.
3245  */
3246 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3247 {
3248 	int ret;
3249 	u8 buf = 0;
3250 
3251 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3252 	if (ret < 0)
3253 		return ret;
3254 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3255 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3256 			    aux->name);
3257 		return -EINVAL;
3258 	}
3259 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3260 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3261 	if (ret < 0)
3262 		return ret;
3263 
3264 	return 0;
3265 }
3266 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3267 
3268 /**
3269  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3270  * @aux: DisplayPort AUX channel
3271  *
3272  * Returns true if link is active else returns false.
3273  */
3274 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3275 {
3276 	u8 buf;
3277 	int ret;
3278 
3279 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3280 	if (ret < 0)
3281 		return false;
3282 
3283 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3284 }
3285 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3286 
3287 /**
3288  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3289  * @aux: DisplayPort AUX channel
3290  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3291  * Valid only if the MODE returned is FRL. For Normal Link training mode
3292  * only 1 of the bits will be set, but in case of Extended mode, more than
3293  * one bits can be set.
3294  *
3295  * Returns the link mode : TMDS or FRL on success, else returns negative error
3296  * code.
3297  */
3298 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3299 {
3300 	u8 buf;
3301 	int mode;
3302 	int ret;
3303 
3304 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3305 	if (ret < 0)
3306 		return ret;
3307 
3308 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3309 
3310 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3311 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3312 
3313 	return mode;
3314 }
3315 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3316 
3317 /**
3318  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3319  * during link failure between PCON and HDMI sink
3320  * @aux: DisplayPort AUX channel
3321  * @connector: DRM connector
3322  * code.
3323  **/
3324 
3325 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3326 					   struct drm_connector *connector)
3327 {
3328 	u8 buf, error_count;
3329 	int i, num_error;
3330 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3331 
3332 	for (i = 0; i < hdmi->max_lanes; i++) {
3333 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3334 			return;
3335 
3336 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3337 		switch (error_count) {
3338 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3339 			num_error = 100;
3340 			break;
3341 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3342 			num_error = 10;
3343 			break;
3344 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3345 			num_error = 3;
3346 			break;
3347 		default:
3348 			num_error = 0;
3349 		}
3350 
3351 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3352 			aux->name, num_error, i);
3353 	}
3354 }
3355 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3356 
3357 /*
3358  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3359  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3360  *
3361  * Returns true is PCON encoder is DSC 1.2 else returns false.
3362  */
3363 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3364 {
3365 	u8 buf;
3366 	u8 major_v, minor_v;
3367 
3368 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3369 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3370 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3371 
3372 	if (major_v == 1 && minor_v == 2)
3373 		return true;
3374 
3375 	return false;
3376 }
3377 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3378 
3379 /*
3380  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3381  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3382  *
3383  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3384  */
3385 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3386 {
3387 	u8 slice_cap1, slice_cap2;
3388 
3389 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3390 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3391 
3392 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3393 		return 24;
3394 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3395 		return 20;
3396 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3397 		return 16;
3398 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3399 		return 12;
3400 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3401 		return 10;
3402 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3403 		return 8;
3404 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3405 		return 6;
3406 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3407 		return 4;
3408 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3409 		return 2;
3410 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3411 		return 1;
3412 
3413 	return 0;
3414 }
3415 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3416 
3417 /*
3418  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3419  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3420  *
3421  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3422  */
3423 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3424 {
3425 	u8 buf;
3426 
3427 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3428 
3429 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3430 }
3431 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3432 
3433 /*
3434  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3435  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3436  *
3437  * Returns the bpp precision supported by the PCON encoder.
3438  */
3439 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3440 {
3441 	u8 buf;
3442 
3443 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3444 
3445 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3446 	case DP_PCON_DSC_ONE_16TH_BPP:
3447 		return 16;
3448 	case DP_PCON_DSC_ONE_8TH_BPP:
3449 		return 8;
3450 	case DP_PCON_DSC_ONE_4TH_BPP:
3451 		return 4;
3452 	case DP_PCON_DSC_ONE_HALF_BPP:
3453 		return 2;
3454 	case DP_PCON_DSC_ONE_BPP:
3455 		return 1;
3456 	}
3457 
3458 	return 0;
3459 }
3460 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3461 
3462 static
3463 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3464 {
3465 	u8 buf;
3466 	int ret;
3467 
3468 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3469 	if (ret < 0)
3470 		return ret;
3471 
3472 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3473 
3474 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3475 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3476 		buf |= pps_buf_config << 2;
3477 	}
3478 
3479 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3480 	if (ret < 0)
3481 		return ret;
3482 
3483 	return 0;
3484 }
3485 
3486 /**
3487  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3488  * for DSC1.2 between PCON & HDMI2.1 sink
3489  * @aux: DisplayPort AUX channel
3490  *
3491  * Returns 0 on success, else returns negative error code.
3492  */
3493 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3494 {
3495 	int ret;
3496 
3497 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3498 	if (ret < 0)
3499 		return ret;
3500 
3501 	return 0;
3502 }
3503 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3504 
3505 /**
3506  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3507  * HDMI sink
3508  * @aux: DisplayPort AUX channel
3509  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3510  *
3511  * Returns 0 on success, else returns negative error code.
3512  */
3513 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3514 {
3515 	int ret;
3516 
3517 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3518 	if (ret < 0)
3519 		return ret;
3520 
3521 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3522 	if (ret < 0)
3523 		return ret;
3524 
3525 	return 0;
3526 }
3527 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3528 
3529 /*
3530  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3531  * override registers
3532  * @aux: DisplayPort AUX channel
3533  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3534  * bits_per_pixel.
3535  *
3536  * Returns 0 on success, else returns negative error code.
3537  */
3538 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3539 {
3540 	int ret;
3541 
3542 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3543 	if (ret < 0)
3544 		return ret;
3545 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3546 	if (ret < 0)
3547 		return ret;
3548 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3549 	if (ret < 0)
3550 		return ret;
3551 
3552 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3553 	if (ret < 0)
3554 		return ret;
3555 
3556 	return 0;
3557 }
3558 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3559 
3560 /*
3561  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3562  * @aux: displayPort AUX channel
3563  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3564  *
3565  * Returns 0 on success, else returns negative error code.
3566  */
3567 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3568 {
3569 	int ret;
3570 	u8 buf;
3571 
3572 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3573 	if (ret < 0)
3574 		return ret;
3575 
3576 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3577 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3578 	else
3579 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3580 
3581 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3582 	if (ret < 0)
3583 		return ret;
3584 
3585 	return 0;
3586 }
3587 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3588 
3589 /**
3590  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3591  * @aux: The DP AUX channel to use
3592  * @bl: Backlight capability info from drm_edp_backlight_init()
3593  * @level: The brightness level to set
3594  *
3595  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3596  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3597  *
3598  * Returns: %0 on success, negative error code on failure
3599  */
3600 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3601 				u16 level)
3602 {
3603 	int ret;
3604 	u8 buf[2] = { 0 };
3605 
3606 	/* The panel uses the PWM for controlling brightness levels */
3607 	if (!bl->aux_set)
3608 		return 0;
3609 
3610 	if (bl->lsb_reg_used) {
3611 		buf[0] = (level & 0xff00) >> 8;
3612 		buf[1] = (level & 0x00ff);
3613 	} else {
3614 		buf[0] = level;
3615 	}
3616 
3617 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3618 	if (ret != sizeof(buf)) {
3619 		drm_err(aux->drm_dev,
3620 			"%s: Failed to write aux backlight level: %d\n",
3621 			aux->name, ret);
3622 		return ret < 0 ? ret : -EIO;
3623 	}
3624 
3625 	return 0;
3626 }
3627 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3628 
3629 static int
3630 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3631 			     bool enable)
3632 {
3633 	int ret;
3634 	u8 buf;
3635 
3636 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3637 	if (!bl->aux_enable)
3638 		return 0;
3639 
3640 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3641 	if (ret != 1) {
3642 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3643 			aux->name, ret);
3644 		return ret < 0 ? ret : -EIO;
3645 	}
3646 	if (enable)
3647 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3648 	else
3649 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3650 
3651 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3652 	if (ret != 1) {
3653 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3654 			aux->name, ret);
3655 		return ret < 0 ? ret : -EIO;
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 /**
3662  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3663  * @aux: The DP AUX channel to use
3664  * @bl: Backlight capability info from drm_edp_backlight_init()
3665  * @level: The initial backlight level to set via AUX, if there is one
3666  *
3667  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3668  * restoring any important backlight state such as the given backlight level, the brightness byte
3669  * count, backlight frequency, etc.
3670  *
3671  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3672  * that the driver handle enabling/disabling the panel through implementation-specific means using
3673  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3674  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3675  * the EDP_BL_PWR GPIO.
3676  *
3677  * Returns: %0 on success, negative error code on failure.
3678  */
3679 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3680 			     const u16 level)
3681 {
3682 	int ret;
3683 	u8 dpcd_buf;
3684 
3685 	if (bl->aux_set)
3686 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3687 	else
3688 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3689 
3690 	if (bl->pwmgen_bit_count) {
3691 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3692 		if (ret != 1)
3693 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3694 				    aux->name, ret);
3695 	}
3696 
3697 	if (bl->pwm_freq_pre_divider) {
3698 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3699 		if (ret != 1)
3700 			drm_dbg_kms(aux->drm_dev,
3701 				    "%s: Failed to write aux backlight frequency: %d\n",
3702 				    aux->name, ret);
3703 		else
3704 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3705 	}
3706 
3707 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3708 	if (ret != 1) {
3709 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3710 			    aux->name, ret);
3711 		return ret < 0 ? ret : -EIO;
3712 	}
3713 
3714 	ret = drm_edp_backlight_set_level(aux, bl, level);
3715 	if (ret < 0)
3716 		return ret;
3717 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3718 	if (ret < 0)
3719 		return ret;
3720 
3721 	return 0;
3722 }
3723 EXPORT_SYMBOL(drm_edp_backlight_enable);
3724 
3725 /**
3726  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3727  * @aux: The DP AUX channel to use
3728  * @bl: Backlight capability info from drm_edp_backlight_init()
3729  *
3730  * This function handles disabling DPCD backlight controls on a panel over AUX.
3731  *
3732  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3733  * that the driver handle enabling/disabling the panel through implementation-specific means using
3734  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3735  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3736  * the EDP_BL_PWR GPIO.
3737  *
3738  * Returns: %0 on success or no-op, negative error code on failure.
3739  */
3740 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3741 {
3742 	int ret;
3743 
3744 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3745 	if (ret < 0)
3746 		return ret;
3747 
3748 	return 0;
3749 }
3750 EXPORT_SYMBOL(drm_edp_backlight_disable);
3751 
3752 static inline int
3753 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3754 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3755 {
3756 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3757 	int ret;
3758 	u8 pn, pn_min, pn_max;
3759 
3760 	if (!bl->aux_set)
3761 		return 0;
3762 
3763 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3764 	if (ret != 1) {
3765 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3766 			    aux->name, ret);
3767 		return -ENODEV;
3768 	}
3769 
3770 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3771 	bl->max = (1 << pn) - 1;
3772 	if (!driver_pwm_freq_hz)
3773 		return 0;
3774 
3775 	/*
3776 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3777 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3778 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3779 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3780 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3781 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3782 	 */
3783 
3784 	/* Find desired value of (F x P)
3785 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3786 	 * applied automatically. So no need to check that.
3787 	 */
3788 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3789 
3790 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3791 	 * satisfying the conditions below.
3792 	 * - Pn is in the range of Pn_min and Pn_max
3793 	 * - F is in the range of 1 and 255
3794 	 * - FxP is within 25% of desired value.
3795 	 *   Note: 25% is arbitrary value and may need some tweak.
3796 	 */
3797 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3798 	if (ret != 1) {
3799 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3800 			    aux->name, ret);
3801 		return 0;
3802 	}
3803 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3804 	if (ret != 1) {
3805 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3806 			    aux->name, ret);
3807 		return 0;
3808 	}
3809 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3810 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3811 
3812 	/* Ensure frequency is within 25% of desired value */
3813 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3814 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3815 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3816 		drm_dbg_kms(aux->drm_dev,
3817 			    "%s: Driver defined backlight frequency (%d) out of range\n",
3818 			    aux->name, driver_pwm_freq_hz);
3819 		return 0;
3820 	}
3821 
3822 	for (pn = pn_max; pn >= pn_min; pn--) {
3823 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3824 		fxp_actual = f << pn;
3825 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3826 			break;
3827 	}
3828 
3829 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3830 	if (ret != 1) {
3831 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3832 			    aux->name, ret);
3833 		return 0;
3834 	}
3835 	bl->pwmgen_bit_count = pn;
3836 	bl->max = (1 << pn) - 1;
3837 
3838 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3839 		bl->pwm_freq_pre_divider = f;
3840 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3841 			    aux->name, driver_pwm_freq_hz);
3842 	}
3843 
3844 	return 0;
3845 }
3846 
3847 static inline int
3848 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3849 			      u8 *current_mode)
3850 {
3851 	int ret;
3852 	u8 buf[2];
3853 	u8 mode_reg;
3854 
3855 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3856 	if (ret != 1) {
3857 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3858 			    aux->name, ret);
3859 		return ret < 0 ? ret : -EIO;
3860 	}
3861 
3862 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3863 	if (!bl->aux_set)
3864 		return 0;
3865 
3866 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3867 		int size = 1 + bl->lsb_reg_used;
3868 
3869 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3870 		if (ret != size) {
3871 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3872 				    aux->name, ret);
3873 			return ret < 0 ? ret : -EIO;
3874 		}
3875 
3876 		if (bl->lsb_reg_used)
3877 			return (buf[0] << 8) | buf[1];
3878 		else
3879 			return buf[0];
3880 	}
3881 
3882 	/*
3883 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3884 	 * the driver should assume max brightness
3885 	 */
3886 	return bl->max;
3887 }
3888 
3889 /**
3890  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3891  * interface.
3892  * @aux: The DP aux device to use for probing
3893  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3894  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3895  * @edp_dpcd: A cached copy of the eDP DPCD
3896  * @current_level: Where to store the probed brightness level, if any
3897  * @current_mode: Where to store the currently set backlight control mode
3898  *
3899  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3900  * along with also probing the current and maximum supported brightness levels.
3901  *
3902  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3903  * default frequency from the panel is used.
3904  *
3905  * Returns: %0 on success, negative error code on failure.
3906  */
3907 int
3908 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3909 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3910 		       u16 *current_level, u8 *current_mode)
3911 {
3912 	int ret;
3913 
3914 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3915 		bl->aux_enable = true;
3916 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3917 		bl->aux_set = true;
3918 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3919 		bl->lsb_reg_used = true;
3920 
3921 	/* Sanity check caps */
3922 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3923 		drm_dbg_kms(aux->drm_dev,
3924 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3925 			    aux->name);
3926 		return -EINVAL;
3927 	}
3928 
3929 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3930 	if (ret < 0)
3931 		return ret;
3932 
3933 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3934 	if (ret < 0)
3935 		return ret;
3936 	*current_level = ret;
3937 
3938 	drm_dbg_kms(aux->drm_dev,
3939 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3940 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3941 	if (bl->aux_set) {
3942 		drm_dbg_kms(aux->drm_dev,
3943 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3944 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3945 			    bl->lsb_reg_used);
3946 	}
3947 
3948 	return 0;
3949 }
3950 EXPORT_SYMBOL(drm_edp_backlight_init);
3951 
3952 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3953 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3954 
3955 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3956 {
3957 	struct dp_aux_backlight *bl = bl_get_data(bd);
3958 	u16 brightness = backlight_get_brightness(bd);
3959 	int ret = 0;
3960 
3961 	if (!backlight_is_blank(bd)) {
3962 		if (!bl->enabled) {
3963 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3964 			bl->enabled = true;
3965 			return 0;
3966 		}
3967 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3968 	} else {
3969 		if (bl->enabled) {
3970 			drm_edp_backlight_disable(bl->aux, &bl->info);
3971 			bl->enabled = false;
3972 		}
3973 	}
3974 
3975 	return ret;
3976 }
3977 
3978 static const struct backlight_ops dp_aux_bl_ops = {
3979 	.update_status = dp_aux_backlight_update_status,
3980 };
3981 
3982 /**
3983  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3984  * @panel: DRM panel
3985  * @aux: The DP AUX channel to use
3986  *
3987  * Use this function to create and handle backlight if your panel
3988  * supports backlight control over DP AUX channel using DPCD
3989  * registers as per VESA's standard backlight control interface.
3990  *
3991  * When the panel is enabled backlight will be enabled after a
3992  * successful call to &drm_panel_funcs.enable()
3993  *
3994  * When the panel is disabled backlight will be disabled before the
3995  * call to &drm_panel_funcs.disable().
3996  *
3997  * A typical implementation for a panel driver supporting backlight
3998  * control over DP AUX will call this function at probe time.
3999  * Backlight will then be handled transparently without requiring
4000  * any intervention from the driver.
4001  *
4002  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4003  *
4004  * Return: 0 on success or a negative error code on failure.
4005  */
4006 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4007 {
4008 	struct dp_aux_backlight *bl;
4009 	struct backlight_properties props = { 0 };
4010 	u16 current_level;
4011 	u8 current_mode;
4012 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4013 	int ret;
4014 
4015 	if (!panel || !panel->dev || !aux)
4016 		return -EINVAL;
4017 
4018 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4019 			       EDP_DISPLAY_CTL_CAP_SIZE);
4020 	if (ret < 0)
4021 		return ret;
4022 
4023 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4024 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4025 		return 0;
4026 	}
4027 
4028 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4029 	if (!bl)
4030 		return -ENOMEM;
4031 
4032 	bl->aux = aux;
4033 
4034 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4035 				     &current_level, &current_mode);
4036 	if (ret < 0)
4037 		return ret;
4038 
4039 	props.type = BACKLIGHT_RAW;
4040 	props.brightness = current_level;
4041 	props.max_brightness = bl->info.max;
4042 
4043 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4044 						  panel->dev, bl,
4045 						  &dp_aux_bl_ops, &props);
4046 	if (IS_ERR(bl->base))
4047 		return PTR_ERR(bl->base);
4048 
4049 	backlight_disable(bl->base);
4050 
4051 	panel->backlight = bl->base;
4052 
4053 	return 0;
4054 }
4055 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4056 
4057 #endif
4058 
4059 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4060 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4061 				     int symbol_size, bool is_mst)
4062 {
4063 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4064 	int align = is_mst ? 4 / lane_count : 1;
4065 
4066 	return ALIGN(cycles, align);
4067 }
4068 
4069 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4070 					 int bpp_x16, int symbol_size, bool is_mst)
4071 {
4072 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4073 	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4074 							  bpp_x16, symbol_size, is_mst);
4075 	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4076 
4077 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4078 }
4079 
4080 /**
4081  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4082  * @lane_count: DP link lane count
4083  * @hactive: pixel count of the active period in one scanline of the stream
4084  * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4085  * @bpp_x16: bits per pixel in .4 binary fixed point
4086  * @flags: DRM_DP_OVERHEAD_x flags
4087  *
4088  * Calculate the BW allocation overhead of a DP link stream, depending
4089  * on the link's
4090  * - @lane_count
4091  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4092  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4093  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4094  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4095  * as well as the stream's
4096  * - @hactive timing
4097  * - @bpp_x16 color depth
4098  * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4099  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4100  * channel coding efficiency, for that see
4101  * @drm_dp_link_bw_channel_coding_efficiency().
4102  *
4103  * Returns the overhead as 100% + overhead% in 1ppm units.
4104  */
4105 int drm_dp_bw_overhead(int lane_count, int hactive,
4106 		       int dsc_slice_count,
4107 		       int bpp_x16, unsigned long flags)
4108 {
4109 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4110 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4111 	u32 overhead = 1000000;
4112 	int symbol_cycles;
4113 
4114 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4115 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 %d.%04d\n",
4116 			      lane_count, hactive,
4117 			      bpp_x16 >> 4, (bpp_x16 & 0xf) * 625);
4118 		return 0;
4119 	}
4120 
4121 	/*
4122 	 * DP Standard v2.1 2.6.4.1
4123 	 * SSC downspread and ref clock variation margin:
4124 	 *   5300ppm + 300ppm ~ 0.6%
4125 	 */
4126 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4127 		overhead += 6000;
4128 
4129 	/*
4130 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4131 	 * FEC symbol insertions for 8b/10b channel coding:
4132 	 * After each 250 data symbols on 2-4 lanes:
4133 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4134 	 * After each 2 x 250 data symbols on 1 lane:
4135 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4136 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4137 	 *   256 * 256 bytes + 1 FEC_PM
4138 	 * or
4139 	 *   128 * 512 bytes + 1 FEC_PM
4140 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4141 	 */
4142 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4143 		overhead += 24016;
4144 
4145 	/*
4146 	 * DP Standard v2.1 2.7.9, 5.9.7
4147 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4148 	 * coding efficiency.
4149 	 */
4150 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4151 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4152 
4153 	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4154 		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4155 							      dsc_slice_count,
4156 							      bpp_x16, symbol_size,
4157 							      is_mst);
4158 	else
4159 		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4160 							  bpp_x16, symbol_size,
4161 							  is_mst);
4162 
4163 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4164 					    overhead * 16),
4165 				hactive * bpp_x16);
4166 }
4167 EXPORT_SYMBOL(drm_dp_bw_overhead);
4168 
4169 /**
4170  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4171  * @is_uhbr: Whether the link has a 128b/132b channel coding
4172  *
4173  * Return the channel coding efficiency of the given DP link type, which is
4174  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4175  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4176  * and for 128b/132b any link or PHY level control symbol insertion overhead
4177  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4178  * corresponding FEC overhead is BW allocation specific, included in the value
4179  * returned by drm_dp_bw_overhead().
4180  *
4181  * Returns the efficiency in the 100%/coding-overhead% ratio in
4182  * 1ppm units.
4183  */
4184 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4185 {
4186 	if (is_uhbr)
4187 		return 967100;
4188 	else
4189 		/*
4190 		 * Note that on 8b/10b MST the efficiency is only
4191 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4192 		 * not accounted for here.
4193 		 */
4194 		return 800000;
4195 }
4196 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4197 
4198 /**
4199  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4200  * @max_link_rate: max DPRX link rate in 10kbps units
4201  * @max_lanes: max DPRX lane count
4202  *
4203  * Given a link rate and lanes, get the data bandwidth.
4204  *
4205  * Data bandwidth is the actual payload rate, which depends on the data
4206  * bandwidth efficiency and the link rate.
4207  *
4208  * Note that protocol layers above the DPRX link level considered here can
4209  * further limit the maximum data rate. Such layers are the MST topology (with
4210  * limits on the link between the source and first branch device as well as on
4211  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4212  * which in turn can encapsulate an MST link with its own limit - with each
4213  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4214  *
4215  * Returns the maximum data rate in kBps units.
4216  */
4217 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4218 {
4219 	int ch_coding_efficiency =
4220 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4221 
4222 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4223 					      ch_coding_efficiency),
4224 				  1000000 * 8);
4225 }
4226 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4227