xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision d728fd03e5f2117853d91b3626d434a97fe896d1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <linux/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
37 
38 #define SN_DEVICE_ID_REGS			0x00	/* up to 0x07 */
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		*bridge_aux;
174 	struct auxiliary_device		*gpio_aux;
175 	struct auxiliary_device		*aux_aux;
176 	struct auxiliary_device		*pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if IS_REACHABLE(CONFIG_PWM)
200 	struct pwm_chip			*pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
247 static struct drm_display_mode *
248 get_new_adjusted_display_mode(struct drm_bridge *bridge,
249 			      struct drm_atomic_state *state)
250 {
251 	struct drm_connector *connector =
252 		drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
253 	struct drm_connector_state *conn_state =
254 		drm_atomic_get_new_connector_state(state, connector);
255 	struct drm_crtc_state *crtc_state =
256 		drm_atomic_get_new_crtc_state(state, conn_state->crtc);
257 
258 	return &crtc_state->adjusted_mode;
259 }
260 
261 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata,
262 				     struct drm_atomic_state *state)
263 {
264 	u32 bit_rate_khz, clk_freq_khz;
265 	struct drm_display_mode *mode =
266 		get_new_adjusted_display_mode(&pdata->bridge, state);
267 
268 	bit_rate_khz = mode->clock *
269 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
270 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
271 
272 	return clk_freq_khz;
273 }
274 
275 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
276 static const u32 ti_sn_bridge_refclk_lut[] = {
277 	12000000,
278 	19200000,
279 	26000000,
280 	27000000,
281 	38400000,
282 };
283 
284 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
285 static const u32 ti_sn_bridge_dsiclk_lut[] = {
286 	468000000,
287 	384000000,
288 	416000000,
289 	486000000,
290 	460800000,
291 };
292 
293 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata,
294 					 struct drm_atomic_state *state)
295 {
296 	int i;
297 	u32 refclk_rate;
298 	const u32 *refclk_lut;
299 	size_t refclk_lut_size;
300 
301 	if (pdata->refclk) {
302 		refclk_rate = clk_get_rate(pdata->refclk);
303 		refclk_lut = ti_sn_bridge_refclk_lut;
304 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
305 		clk_prepare_enable(pdata->refclk);
306 	} else {
307 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata, state) * 1000;
308 		refclk_lut = ti_sn_bridge_dsiclk_lut;
309 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
310 	}
311 
312 	/* for i equals to refclk_lut_size means default frequency */
313 	for (i = 0; i < refclk_lut_size; i++)
314 		if (refclk_lut[i] == refclk_rate)
315 			break;
316 
317 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
318 	if (i >= refclk_lut_size)
319 		i = 1;
320 
321 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
322 			   REFCLK_FREQ(i));
323 
324 	/*
325 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
326 	 * regardless of its actual sourcing.
327 	 */
328 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
329 }
330 
331 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata,
332 				      struct drm_atomic_state *state)
333 {
334 	mutex_lock(&pdata->comms_mutex);
335 
336 	/* configure bridge ref_clk */
337 	ti_sn_bridge_set_refclk_freq(pdata, state);
338 
339 	/*
340 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
341 	 * so the HPD is an internal signal that's only there to signal that
342 	 * the panel is done powering up.  ...but the bridge chip debounces
343 	 * this signal by between 100 ms and 400 ms (depending on process,
344 	 * voltage, and temperate--I measured it at about 200 ms).  One
345 	 * particular panel asserted HPD 84 ms after it was powered on meaning
346 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
347 	 * that instead of looking at HPD you could just hardcode a delay of
348 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
349 	 * delay in its prepare and always disable HPD.
350 	 *
351 	 * If HPD somehow makes sense on some future panel we'll have to
352 	 * change this to be conditional on someone specifying that HPD should
353 	 * be used.
354 	 */
355 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
356 			   HPD_DISABLE);
357 
358 	pdata->comms_enabled = true;
359 
360 	mutex_unlock(&pdata->comms_mutex);
361 }
362 
363 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
364 {
365 	mutex_lock(&pdata->comms_mutex);
366 
367 	pdata->comms_enabled = false;
368 	clk_disable_unprepare(pdata->refclk);
369 
370 	mutex_unlock(&pdata->comms_mutex);
371 }
372 
373 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
374 {
375 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
376 	int ret;
377 
378 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
379 	if (ret) {
380 		DRM_ERROR("failed to enable supplies %d\n", ret);
381 		return ret;
382 	}
383 
384 	/* td2: min 100 us after regulators before enabling the GPIO */
385 	usleep_range(100, 110);
386 
387 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
388 
389 	/*
390 	 * If we have a reference clock we can enable communication w/ the
391 	 * panel (including the aux channel) w/out any need for an input clock
392 	 * so we can do it in resume which lets us read the EDID before
393 	 * pre_enable(). Without a reference clock we need the MIPI reference
394 	 * clock so reading early doesn't work.
395 	 */
396 	if (pdata->refclk)
397 		ti_sn65dsi86_enable_comms(pdata, NULL);
398 
399 	return ret;
400 }
401 
402 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
403 {
404 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
405 	int ret;
406 
407 	if (pdata->refclk)
408 		ti_sn65dsi86_disable_comms(pdata);
409 
410 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
411 
412 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
413 	if (ret)
414 		DRM_ERROR("failed to disable supplies %d\n", ret);
415 
416 	return ret;
417 }
418 
419 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
420 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
421 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
422 				pm_runtime_force_resume)
423 };
424 
425 static int status_show(struct seq_file *s, void *data)
426 {
427 	struct ti_sn65dsi86 *pdata = s->private;
428 	unsigned int reg, val;
429 
430 	seq_puts(s, "STATUS REGISTERS:\n");
431 
432 	pm_runtime_get_sync(pdata->dev);
433 
434 	/* IRQ Status Registers, see Table 31 in datasheet */
435 	for (reg = 0xf0; reg <= 0xf8; reg++) {
436 		regmap_read(pdata->regmap, reg, &val);
437 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
438 	}
439 
440 	pm_runtime_put_autosuspend(pdata->dev);
441 
442 	return 0;
443 }
444 DEFINE_SHOW_ATTRIBUTE(status);
445 
446 /* -----------------------------------------------------------------------------
447  * Auxiliary Devices (*not* AUX)
448  */
449 
450 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
451 				       struct auxiliary_device **aux_out,
452 				       const char *name)
453 {
454 	struct device *dev = pdata->dev;
455 	const struct i2c_client *client = to_i2c_client(dev);
456 	struct auxiliary_device *aux;
457 	int id;
458 
459 	id = (client->adapter->nr << 10) | client->addr;
460 	aux = __devm_auxiliary_device_create(dev, KBUILD_MODNAME, name,
461 					     NULL, id);
462 	if (!aux)
463 		return -ENODEV;
464 
465 	*aux_out = aux;
466 	return 0;
467 }
468 
469 /* -----------------------------------------------------------------------------
470  * AUX Adapter
471  */
472 
473 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
474 {
475 	return container_of(aux, struct ti_sn65dsi86, aux);
476 }
477 
478 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
479 				  struct drm_dp_aux_msg *msg)
480 {
481 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
482 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
483 	u32 request_val = AUX_CMD_REQ(msg->request);
484 	u8 *buf = msg->buffer;
485 	unsigned int len = msg->size;
486 	unsigned int short_len;
487 	unsigned int val;
488 	int ret;
489 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
490 
491 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
492 		return -EINVAL;
493 
494 	pm_runtime_get_sync(pdata->dev);
495 	mutex_lock(&pdata->comms_mutex);
496 
497 	/*
498 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
499 	 * on a device without a dedicated reference clock then we just can't
500 	 * do it. Fail right away. This prevents non-refclk users from reading
501 	 * the EDID before enabling the panel but such is life.
502 	 */
503 	if (!pdata->comms_enabled) {
504 		ret = -EIO;
505 		goto exit;
506 	}
507 
508 	switch (request) {
509 	case DP_AUX_NATIVE_WRITE:
510 	case DP_AUX_I2C_WRITE:
511 	case DP_AUX_NATIVE_READ:
512 	case DP_AUX_I2C_READ:
513 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
514 		/* Assume it's good */
515 		msg->reply = 0;
516 		break;
517 	default:
518 		ret = -EINVAL;
519 		goto exit;
520 	}
521 
522 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
523 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
524 			   addr_len);
525 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
526 			  ARRAY_SIZE(addr_len));
527 
528 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
529 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
530 
531 	/* Clear old status bits before start so we don't get confused */
532 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
533 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
534 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
535 		     AUX_IRQ_STATUS_AUX_SHORT);
536 
537 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
538 
539 	/* Zero delay loop because i2c transactions are slow already */
540 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
541 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
542 	if (ret)
543 		goto exit;
544 
545 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
546 	if (ret)
547 		goto exit;
548 
549 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
550 		/*
551 		 * The hardware tried the message seven times per the DP spec
552 		 * but it hit a timeout. We ignore defers here because they're
553 		 * handled in hardware.
554 		 */
555 		ret = -ETIMEDOUT;
556 		goto exit;
557 	}
558 
559 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
560 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
561 		len = min(len, short_len);
562 		if (ret)
563 			goto exit;
564 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
565 		switch (request) {
566 		case DP_AUX_I2C_WRITE:
567 		case DP_AUX_I2C_READ:
568 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
569 			break;
570 		case DP_AUX_NATIVE_READ:
571 		case DP_AUX_NATIVE_WRITE:
572 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
573 			break;
574 		}
575 		len = 0;
576 		goto exit;
577 	}
578 
579 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
580 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
581 
582 exit:
583 	mutex_unlock(&pdata->comms_mutex);
584 	pm_runtime_mark_last_busy(pdata->dev);
585 	pm_runtime_put_autosuspend(pdata->dev);
586 
587 	if (ret)
588 		return ret;
589 	return len;
590 }
591 
592 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
593 {
594 	/*
595 	 * The HPD in this chip is a bit useless (See comment in
596 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
597 	 * for HPD, we just assume it's asserted after the wait_us delay.
598 	 *
599 	 * In case we are asked to wait forever (wait_us=0) take conservative
600 	 * 500ms delay.
601 	 */
602 	if (wait_us == 0)
603 		wait_us = 500000;
604 
605 	usleep_range(wait_us, wait_us + 1000);
606 
607 	return 0;
608 }
609 
610 static int ti_sn_aux_probe(struct auxiliary_device *adev,
611 			   const struct auxiliary_device_id *id)
612 {
613 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
614 	int ret;
615 
616 	pdata->aux.name = "ti-sn65dsi86-aux";
617 	pdata->aux.dev = &adev->dev;
618 	pdata->aux.transfer = ti_sn_aux_transfer;
619 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
620 	drm_dp_aux_init(&pdata->aux);
621 
622 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
623 	if (ret)
624 		return ret;
625 
626 	/*
627 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
628 	 * setup so we don't add it in the main driver probe, we add it now.
629 	 */
630 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
631 }
632 
633 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
634 	{ .name = "ti_sn65dsi86.aux", },
635 	{},
636 };
637 
638 static struct auxiliary_driver ti_sn_aux_driver = {
639 	.name = "aux",
640 	.probe = ti_sn_aux_probe,
641 	.id_table = ti_sn_aux_id_table,
642 };
643 
644 /*------------------------------------------------------------------------------
645  * DRM Bridge
646  */
647 
648 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
649 {
650 	return container_of(bridge, struct ti_sn65dsi86, bridge);
651 }
652 
653 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
654 {
655 	int val;
656 	struct mipi_dsi_host *host;
657 	struct mipi_dsi_device *dsi;
658 	struct device *dev = pdata->dev;
659 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
660 						   .channel = 0,
661 						   .node = NULL,
662 	};
663 
664 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
665 	if (!host)
666 		return -EPROBE_DEFER;
667 
668 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
669 	if (IS_ERR(dsi))
670 		return PTR_ERR(dsi);
671 
672 	/* TODO: setting to 4 MIPI lanes always for now */
673 	dsi->lanes = 4;
674 	dsi->format = MIPI_DSI_FMT_RGB888;
675 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
676 
677 	/* check if continuous dsi clock is required or not */
678 	pm_runtime_get_sync(dev);
679 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
680 	pm_runtime_put_autosuspend(dev);
681 	if (!(val & DPPLL_CLK_SRC_DSICLK))
682 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
683 
684 	pdata->dsi = dsi;
685 
686 	return devm_mipi_dsi_attach(&adev->dev, dsi);
687 }
688 
689 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
690 			       struct drm_encoder *encoder,
691 			       enum drm_bridge_attach_flags flags)
692 {
693 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
694 	int ret;
695 
696 	pdata->aux.drm_dev = bridge->dev;
697 	ret = drm_dp_aux_register(&pdata->aux);
698 	if (ret < 0) {
699 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
700 		return ret;
701 	}
702 
703 	/*
704 	 * Attach the next bridge.
705 	 * We never want the next bridge to *also* create a connector.
706 	 */
707 	ret = drm_bridge_attach(encoder, pdata->next_bridge,
708 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
709 	if (ret < 0)
710 		goto err_initted_aux;
711 
712 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
713 		return 0;
714 
715 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
716 						     pdata->bridge.encoder);
717 	if (IS_ERR(pdata->connector)) {
718 		ret = PTR_ERR(pdata->connector);
719 		goto err_initted_aux;
720 	}
721 
722 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
723 
724 	return 0;
725 
726 err_initted_aux:
727 	drm_dp_aux_unregister(&pdata->aux);
728 	return ret;
729 }
730 
731 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
732 {
733 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
734 }
735 
736 static enum drm_mode_status
737 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
738 			const struct drm_display_info *info,
739 			const struct drm_display_mode *mode)
740 {
741 	/* maximum supported resolution is 4K at 60 fps */
742 	if (mode->clock > 594000)
743 		return MODE_CLOCK_HIGH;
744 
745 	/*
746 	 * The front and back porch registers are 8 bits, and pulse width
747 	 * registers are 15 bits, so reject any modes with larger periods.
748 	 */
749 
750 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
751 		return MODE_HBLANK_WIDE;
752 
753 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
754 		return MODE_VBLANK_WIDE;
755 
756 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
757 		return MODE_HSYNC_WIDE;
758 
759 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
760 		return MODE_VSYNC_WIDE;
761 
762 	if ((mode->htotal - mode->hsync_end) > 0xff)
763 		return MODE_HBLANK_WIDE;
764 
765 	if ((mode->vtotal - mode->vsync_end) > 0xff)
766 		return MODE_VBLANK_WIDE;
767 
768 	return MODE_OK;
769 }
770 
771 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
772 					struct drm_atomic_state *state)
773 {
774 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
775 
776 	/* disable video stream */
777 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
778 }
779 
780 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata,
781 				      struct drm_atomic_state *state)
782 {
783 	unsigned int bit_rate_mhz, clk_freq_mhz;
784 	unsigned int val;
785 	struct drm_display_mode *mode =
786 		get_new_adjusted_display_mode(&pdata->bridge, state);
787 
788 	/* set DSIA clk frequency */
789 	bit_rate_mhz = (mode->clock / 1000) *
790 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
791 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
792 
793 	/* for each increment in val, frequency increases by 5MHz */
794 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
795 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
796 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
797 }
798 
799 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
800 {
801 	if (connector->display_info.bpc <= 6)
802 		return 18;
803 	else
804 		return 24;
805 }
806 
807 /*
808  * LUT index corresponds to register value and
809  * LUT values corresponds to dp data rate supported
810  * by the bridge in Mbps unit.
811  */
812 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
813 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
814 };
815 
816 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata,
817 					     struct drm_atomic_state *state,
818 					     unsigned int bpp)
819 {
820 	unsigned int bit_rate_khz, dp_rate_mhz;
821 	unsigned int i;
822 	struct drm_display_mode *mode =
823 		get_new_adjusted_display_mode(&pdata->bridge, state);
824 
825 	/* Calculate minimum bit rate based on our pixel clock. */
826 	bit_rate_khz = mode->clock * bpp;
827 
828 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
829 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
830 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
831 
832 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
833 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
834 			break;
835 
836 	return i;
837 }
838 
839 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
840 {
841 	unsigned int valid_rates = 0;
842 	unsigned int rate_per_200khz;
843 	unsigned int rate_mhz;
844 	u8 dpcd_val;
845 	int ret;
846 	int i, j;
847 
848 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
849 	if (ret != 1) {
850 		DRM_DEV_ERROR(pdata->dev,
851 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
852 		dpcd_val = DP_EDP_11;
853 	}
854 
855 	if (dpcd_val >= DP_EDP_14) {
856 		/* eDP 1.4 devices must provide a custom table */
857 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
858 
859 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
860 				       sink_rates, sizeof(sink_rates));
861 
862 		if (ret != sizeof(sink_rates)) {
863 			DRM_DEV_ERROR(pdata->dev,
864 				"Can't read supported rate table (%d)\n", ret);
865 
866 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
867 			memset(sink_rates, 0, sizeof(sink_rates));
868 		}
869 
870 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
871 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
872 
873 			if (!rate_per_200khz)
874 				break;
875 
876 			rate_mhz = rate_per_200khz * 200 / 1000;
877 			for (j = 0;
878 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
879 			     j++) {
880 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
881 					valid_rates |= BIT(j);
882 			}
883 		}
884 
885 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
886 			if (valid_rates & BIT(i))
887 				return valid_rates;
888 		}
889 		DRM_DEV_ERROR(pdata->dev,
890 			      "No matching eDP rates in table; falling back\n");
891 	}
892 
893 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
894 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
895 	if (ret != 1) {
896 		DRM_DEV_ERROR(pdata->dev,
897 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
898 			      ret);
899 		dpcd_val = DP_LINK_BW_5_4;
900 	}
901 
902 	switch (dpcd_val) {
903 	default:
904 		DRM_DEV_ERROR(pdata->dev,
905 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
906 			      (int)dpcd_val);
907 		fallthrough;
908 	case DP_LINK_BW_5_4:
909 		valid_rates |= BIT(7);
910 		fallthrough;
911 	case DP_LINK_BW_2_7:
912 		valid_rates |= BIT(4);
913 		fallthrough;
914 	case DP_LINK_BW_1_62:
915 		valid_rates |= BIT(1);
916 		break;
917 	}
918 
919 	return valid_rates;
920 }
921 
922 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata,
923 					   struct drm_atomic_state *state)
924 {
925 	struct drm_display_mode *mode =
926 		get_new_adjusted_display_mode(&pdata->bridge, state);
927 	u8 hsync_polarity = 0, vsync_polarity = 0;
928 
929 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
930 		hsync_polarity = CHA_HSYNC_POLARITY;
931 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
932 		vsync_polarity = CHA_VSYNC_POLARITY;
933 
934 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
935 			       mode->hdisplay);
936 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
937 			       mode->vdisplay);
938 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
939 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
940 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
941 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
942 		     hsync_polarity);
943 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
944 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
945 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
946 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
947 		     vsync_polarity);
948 
949 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
950 		     (mode->htotal - mode->hsync_end) & 0xFF);
951 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
952 		     (mode->vtotal - mode->vsync_end) & 0xFF);
953 
954 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
955 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
956 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
957 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
958 
959 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
960 }
961 
962 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
963 {
964 	u8 data;
965 	int ret;
966 
967 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
968 	if (ret != 1) {
969 		DRM_DEV_ERROR(pdata->dev,
970 			      "Can't read lane count (%d); assuming 4\n", ret);
971 		return 4;
972 	}
973 
974 	return data & DP_LANE_COUNT_MASK;
975 }
976 
977 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
978 			       const char **last_err_str)
979 {
980 	unsigned int val;
981 	int ret;
982 	int i;
983 
984 	/* set dp clk frequency value */
985 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
986 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
987 
988 	/* enable DP PLL */
989 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
990 
991 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
992 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
993 				       50 * 1000);
994 	if (ret) {
995 		*last_err_str = "DP_PLL_LOCK polling failed";
996 		goto exit;
997 	}
998 
999 	/*
1000 	 * We'll try to link train several times.  As part of link training
1001 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1002 	 * the panel isn't ready quite it might respond NAK here which means
1003 	 * we need to try again.
1004 	 */
1005 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1006 		/* Semi auto link training mode */
1007 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1008 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1009 					       val == ML_TX_MAIN_LINK_OFF ||
1010 					       val == ML_TX_NORMAL_MODE, 1000,
1011 					       500 * 1000);
1012 		if (ret) {
1013 			*last_err_str = "Training complete polling failed";
1014 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1015 			*last_err_str = "Link training failed, link is off";
1016 			ret = -EIO;
1017 			continue;
1018 		}
1019 
1020 		break;
1021 	}
1022 
1023 	/* If we saw quite a few retries, add a note about it */
1024 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1025 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1026 
1027 exit:
1028 	/* Disable the PLL if we failed */
1029 	if (ret)
1030 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1031 
1032 	return ret;
1033 }
1034 
1035 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1036 				       struct drm_atomic_state *state)
1037 {
1038 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1039 	struct drm_connector *connector;
1040 	const char *last_err_str = "No supported DP rate";
1041 	unsigned int valid_rates;
1042 	int dp_rate_idx;
1043 	unsigned int val;
1044 	int ret = -EINVAL;
1045 	int max_dp_lanes;
1046 	unsigned int bpp;
1047 
1048 	connector = drm_atomic_get_new_connector_for_encoder(state,
1049 							     bridge->encoder);
1050 	if (!connector) {
1051 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1052 		return;
1053 	}
1054 
1055 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1056 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1057 
1058 	/* DSI_A lane config */
1059 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1060 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1061 			   CHA_DSI_LANES_MASK, val);
1062 
1063 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1064 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1065 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1066 
1067 	/* set dsi clk frequency value */
1068 	ti_sn_bridge_set_dsi_rate(pdata, state);
1069 
1070 	/*
1071 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1072 	 * this method is enabled for eDP panels. An eDP panel must support this
1073 	 * authentication method. We need to enable this method in the eDP panel
1074 	 * at DisplayPort address 0x0010A prior to link training.
1075 	 *
1076 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1077 	 * we need to disable the scrambler.
1078 	 */
1079 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1080 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1081 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1082 
1083 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1084 				   SCRAMBLE_DISABLE, 0);
1085 	} else {
1086 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1087 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1088 	}
1089 
1090 	bpp = ti_sn_bridge_get_bpp(connector);
1091 	/* Set the DP output format (18 bpp or 24 bpp) */
1092 	val = bpp == 18 ? BPP_18_RGB : 0;
1093 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1094 
1095 	/* DP lane config */
1096 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1097 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1098 			   val);
1099 
1100 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1101 
1102 	/* Train until we run out of rates */
1103 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, state, bpp);
1104 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1105 	     dp_rate_idx++) {
1106 		if (!(valid_rates & BIT(dp_rate_idx)))
1107 			continue;
1108 
1109 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1110 		if (!ret)
1111 			break;
1112 	}
1113 	if (ret) {
1114 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1115 		return;
1116 	}
1117 
1118 	/* config video parameters */
1119 	ti_sn_bridge_set_video_timings(pdata, state);
1120 
1121 	/* enable video stream */
1122 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1123 			   VSTREAM_ENABLE);
1124 }
1125 
1126 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1127 					   struct drm_atomic_state *state)
1128 {
1129 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1130 
1131 	pm_runtime_get_sync(pdata->dev);
1132 
1133 	if (!pdata->refclk)
1134 		ti_sn65dsi86_enable_comms(pdata, state);
1135 
1136 	/* td7: min 100 us after enable before DSI data */
1137 	usleep_range(100, 110);
1138 }
1139 
1140 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1141 					     struct drm_atomic_state *state)
1142 {
1143 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1144 
1145 	/* semi auto link training mode OFF */
1146 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1147 	/* Num lanes to 0 as per power sequencing in data sheet */
1148 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1149 	/* disable DP PLL */
1150 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1151 
1152 	if (!pdata->refclk)
1153 		ti_sn65dsi86_disable_comms(pdata);
1154 
1155 	pm_runtime_put_sync(pdata->dev);
1156 }
1157 
1158 static enum drm_connector_status
1159 ti_sn_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector)
1160 {
1161 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1162 	int val = 0;
1163 
1164 	pm_runtime_get_sync(pdata->dev);
1165 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1166 	pm_runtime_put_autosuspend(pdata->dev);
1167 
1168 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1169 					 : connector_status_disconnected;
1170 }
1171 
1172 static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1173 						     struct drm_connector *connector)
1174 {
1175 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1176 
1177 	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1178 }
1179 
1180 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1181 {
1182 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1183 	struct dentry *debugfs;
1184 
1185 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1186 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1187 }
1188 
1189 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1190 	.attach = ti_sn_bridge_attach,
1191 	.detach = ti_sn_bridge_detach,
1192 	.mode_valid = ti_sn_bridge_mode_valid,
1193 	.edid_read = ti_sn_bridge_edid_read,
1194 	.detect = ti_sn_bridge_detect,
1195 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1196 	.atomic_enable = ti_sn_bridge_atomic_enable,
1197 	.atomic_disable = ti_sn_bridge_atomic_disable,
1198 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1199 	.atomic_reset = drm_atomic_helper_bridge_reset,
1200 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1201 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1202 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1203 };
1204 
1205 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1206 				     struct device_node *np)
1207 {
1208 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1209 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1210 	struct device_node *endpoint;
1211 	u8 ln_assign = 0;
1212 	u8 ln_polrs = 0;
1213 	int dp_lanes;
1214 	int i;
1215 
1216 	/*
1217 	 * Read config from the device tree about lane remapping and lane
1218 	 * polarities.  These are optional and we assume identity map and
1219 	 * normal polarity if nothing is specified.  It's OK to specify just
1220 	 * data-lanes but not lane-polarities but not vice versa.
1221 	 *
1222 	 * Error checking is light (we just make sure we don't crash or
1223 	 * buffer overrun) and we assume dts is well formed and specifying
1224 	 * mappings that the hardware supports.
1225 	 */
1226 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1227 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1228 	if (dp_lanes > 0) {
1229 		of_property_read_u32_array(endpoint, "data-lanes",
1230 					   lane_assignments, dp_lanes);
1231 		of_property_read_u32_array(endpoint, "lane-polarities",
1232 					   lane_polarities, dp_lanes);
1233 	} else {
1234 		dp_lanes = SN_MAX_DP_LANES;
1235 	}
1236 	of_node_put(endpoint);
1237 
1238 	/*
1239 	 * Convert into register format.  Loop over all lanes even if
1240 	 * data-lanes had fewer elements so that we nicely initialize
1241 	 * the LN_ASSIGN register.
1242 	 */
1243 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1244 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1245 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1246 	}
1247 
1248 	/* Stash in our struct for when we power on */
1249 	pdata->dp_lanes = dp_lanes;
1250 	pdata->ln_assign = ln_assign;
1251 	pdata->ln_polrs = ln_polrs;
1252 }
1253 
1254 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1255 {
1256 	struct device_node *np = pdata->dev->of_node;
1257 
1258 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1259 
1260 	if (!pdata->host_node) {
1261 		DRM_ERROR("remote dsi host node not found\n");
1262 		return -ENODEV;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1269 			      const struct auxiliary_device_id *id)
1270 {
1271 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1272 	struct device_node *np = pdata->dev->of_node;
1273 	int ret;
1274 
1275 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1276 	if (IS_ERR(pdata->next_bridge))
1277 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1278 				     "failed to create panel bridge\n");
1279 
1280 	ti_sn_bridge_parse_lanes(pdata, np);
1281 
1282 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1283 	if (ret)
1284 		return ret;
1285 
1286 	pdata->bridge.of_node = np;
1287 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1288 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1289 
1290 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1291 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1292 
1293 	drm_bridge_add(&pdata->bridge);
1294 
1295 	ret = ti_sn_attach_host(adev, pdata);
1296 	if (ret) {
1297 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1298 		goto err_remove_bridge;
1299 	}
1300 
1301 	return 0;
1302 
1303 err_remove_bridge:
1304 	drm_bridge_remove(&pdata->bridge);
1305 	return ret;
1306 }
1307 
1308 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1309 {
1310 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1311 
1312 	if (!pdata)
1313 		return;
1314 
1315 	drm_bridge_remove(&pdata->bridge);
1316 
1317 	of_node_put(pdata->host_node);
1318 }
1319 
1320 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1321 	{ .name = "ti_sn65dsi86.bridge", },
1322 	{},
1323 };
1324 
1325 static struct auxiliary_driver ti_sn_bridge_driver = {
1326 	.name = "bridge",
1327 	.probe = ti_sn_bridge_probe,
1328 	.remove = ti_sn_bridge_remove,
1329 	.id_table = ti_sn_bridge_id_table,
1330 };
1331 
1332 /* -----------------------------------------------------------------------------
1333  * PWM Controller
1334  */
1335 #if IS_REACHABLE(CONFIG_PWM)
1336 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1337 {
1338 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1339 }
1340 
1341 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1342 {
1343 	atomic_set(&pdata->pwm_pin_busy, 0);
1344 }
1345 
1346 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1347 {
1348 	return pwmchip_get_drvdata(chip);
1349 }
1350 
1351 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1352 {
1353 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1354 
1355 	return ti_sn_pwm_pin_request(pdata);
1356 }
1357 
1358 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1359 {
1360 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1361 
1362 	ti_sn_pwm_pin_release(pdata);
1363 }
1364 
1365 /*
1366  * Limitations:
1367  * - The PWM signal is not driven when the chip is powered down, or in its
1368  *   reset state and the driver does not implement the "suspend state"
1369  *   described in the documentation. In order to save power, state->enabled is
1370  *   interpreted as denoting if the signal is expected to be valid, and is used
1371  *   to determine if the chip needs to be kept powered.
1372  * - Changing both period and duty_cycle is not done atomically, neither is the
1373  *   multi-byte register updates, so the output might briefly be undefined
1374  *   during update.
1375  */
1376 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1377 			   const struct pwm_state *state)
1378 {
1379 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1380 	unsigned int pwm_en_inv;
1381 	unsigned int backlight;
1382 	unsigned int pre_div;
1383 	unsigned int scale;
1384 	u64 period_max;
1385 	u64 period;
1386 	int ret;
1387 
1388 	if (!pdata->pwm_enabled) {
1389 		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1390 		if (ret < 0)
1391 			return ret;
1392 	}
1393 
1394 	if (state->enabled) {
1395 		if (!pdata->pwm_enabled) {
1396 			/*
1397 			 * The chip might have been powered down while we
1398 			 * didn't hold a PM runtime reference, so mux in the
1399 			 * PWM function on the GPIO pin again.
1400 			 */
1401 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1402 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1403 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1404 			if (ret) {
1405 				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1406 				goto out;
1407 			}
1408 		}
1409 
1410 		/*
1411 		 * Per the datasheet the PWM frequency is given by:
1412 		 *
1413 		 *                          REFCLK_FREQ
1414 		 *   PWM_FREQ = -----------------------------------
1415 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1416 		 *
1417 		 * However, after careful review the author is convinced that
1418 		 * the documentation has lost some parenthesis around
1419 		 * "BACKLIGHT_SCALE + 1".
1420 		 *
1421 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1422 		 *
1423 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1424 		 *
1425 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1426 		 * PWM_PRE_DIV must be:
1427 		 *
1428 		 *                     T_pwm * REFCLK_FREQ
1429 		 *   PWM_PRE_DIV >= -------------------------
1430 		 *                   BACKLIGHT_SCALE_MAX + 1
1431 		 *
1432 		 * To simplify the search and to favour higher resolution of
1433 		 * the duty cycle over accuracy of the period, the lowest
1434 		 * possible PWM_PRE_DIV is used. Finally the scale is
1435 		 * calculated as:
1436 		 *
1437 		 *                      T_pwm * REFCLK_FREQ
1438 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1439 		 *                          PWM_PRE_DIV
1440 		 *
1441 		 * Here T_pwm is represented in seconds, so appropriate scaling
1442 		 * to nanoseconds is necessary.
1443 		 */
1444 
1445 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1446 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1447 			ret = -EINVAL;
1448 			goto out;
1449 		}
1450 
1451 		/*
1452 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1453 		 * Limit period to this to avoid overflows
1454 		 */
1455 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1456 				     pdata->pwm_refclk_freq);
1457 		period = min(state->period, period_max);
1458 
1459 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1460 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1461 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1462 
1463 		/*
1464 		 * The documentation has the duty ratio given as:
1465 		 *
1466 		 *     duty          BACKLIGHT
1467 		 *   ------- = ---------------------
1468 		 *    period    BACKLIGHT_SCALE + 1
1469 		 *
1470 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1471 		 * to definition above and adjusting for nanosecond
1472 		 * representation of duty cycle gives us:
1473 		 */
1474 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1475 				      (u64)NSEC_PER_SEC * pre_div);
1476 		if (backlight > scale)
1477 			backlight = scale;
1478 
1479 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1480 		if (ret) {
1481 			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1482 			goto out;
1483 		}
1484 
1485 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1486 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1487 	}
1488 
1489 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1490 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1491 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1492 	if (ret) {
1493 		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1494 		goto out;
1495 	}
1496 
1497 	pdata->pwm_enabled = state->enabled;
1498 out:
1499 
1500 	if (!pdata->pwm_enabled)
1501 		pm_runtime_put_sync(pwmchip_parent(chip));
1502 
1503 	return ret;
1504 }
1505 
1506 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1507 			       struct pwm_state *state)
1508 {
1509 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1510 	unsigned int pwm_en_inv;
1511 	unsigned int pre_div;
1512 	u16 backlight;
1513 	u16 scale;
1514 	int ret;
1515 
1516 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1517 	if (ret)
1518 		return ret;
1519 
1520 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1521 	if (ret)
1522 		return ret;
1523 
1524 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1525 	if (ret)
1526 		return ret;
1527 
1528 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1529 	if (ret)
1530 		return ret;
1531 
1532 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1533 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1534 		state->polarity = PWM_POLARITY_INVERSED;
1535 	else
1536 		state->polarity = PWM_POLARITY_NORMAL;
1537 
1538 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1539 					 pdata->pwm_refclk_freq);
1540 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1541 					     pdata->pwm_refclk_freq);
1542 
1543 	if (state->duty_cycle > state->period)
1544 		state->duty_cycle = state->period;
1545 
1546 	return 0;
1547 }
1548 
1549 static const struct pwm_ops ti_sn_pwm_ops = {
1550 	.request = ti_sn_pwm_request,
1551 	.free = ti_sn_pwm_free,
1552 	.apply = ti_sn_pwm_apply,
1553 	.get_state = ti_sn_pwm_get_state,
1554 };
1555 
1556 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1557 			   const struct auxiliary_device_id *id)
1558 {
1559 	struct pwm_chip *chip;
1560 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1561 
1562 	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1563 	if (IS_ERR(chip))
1564 		return PTR_ERR(chip);
1565 
1566 	pwmchip_set_drvdata(chip, pdata);
1567 
1568 	chip->ops = &ti_sn_pwm_ops;
1569 	chip->of_xlate = of_pwm_single_xlate;
1570 
1571 	devm_pm_runtime_enable(&adev->dev);
1572 
1573 	return pwmchip_add(chip);
1574 }
1575 
1576 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1577 {
1578 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1579 
1580 	pwmchip_remove(pdata->pchip);
1581 
1582 	if (pdata->pwm_enabled)
1583 		pm_runtime_put_sync(&adev->dev);
1584 }
1585 
1586 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1587 	{ .name = "ti_sn65dsi86.pwm", },
1588 	{},
1589 };
1590 
1591 static struct auxiliary_driver ti_sn_pwm_driver = {
1592 	.name = "pwm",
1593 	.probe = ti_sn_pwm_probe,
1594 	.remove = ti_sn_pwm_remove,
1595 	.id_table = ti_sn_pwm_id_table,
1596 };
1597 
1598 static int __init ti_sn_pwm_register(void)
1599 {
1600 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1601 }
1602 
1603 static void ti_sn_pwm_unregister(void)
1604 {
1605 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1606 }
1607 
1608 #else
1609 static inline int __maybe_unused ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1610 static inline void __maybe_unused ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1611 
1612 static inline int ti_sn_pwm_register(void) { return 0; }
1613 static inline void ti_sn_pwm_unregister(void) {}
1614 #endif
1615 
1616 /* -----------------------------------------------------------------------------
1617  * GPIO Controller
1618  */
1619 #if defined(CONFIG_OF_GPIO)
1620 
1621 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1622 				 const struct of_phandle_args *gpiospec,
1623 				 u32 *flags)
1624 {
1625 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1626 		return -EINVAL;
1627 
1628 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1629 		return -EINVAL;
1630 
1631 	if (flags)
1632 		*flags = gpiospec->args[1];
1633 
1634 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1635 }
1636 
1637 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1638 					   unsigned int offset)
1639 {
1640 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1641 
1642 	/*
1643 	 * We already have to keep track of the direction because we use
1644 	 * that to figure out whether we've powered the device.  We can
1645 	 * just return that rather than (maybe) powering up the device
1646 	 * to ask its direction.
1647 	 */
1648 	return test_bit(offset, pdata->gchip_output) ?
1649 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1650 }
1651 
1652 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1653 {
1654 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1655 	unsigned int val;
1656 	int ret;
1657 
1658 	/*
1659 	 * When the pin is an input we don't forcibly keep the bridge
1660 	 * powered--we just power it on to read the pin.  NOTE: part of
1661 	 * the reason this works is that the bridge defaults (when
1662 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1663 	 * Also note that if something else is keeping the chip powered the
1664 	 * pm_runtime functions are lightweight increments of a refcount.
1665 	 */
1666 	pm_runtime_get_sync(pdata->dev);
1667 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1668 	pm_runtime_put_autosuspend(pdata->dev);
1669 
1670 	if (ret)
1671 		return ret;
1672 
1673 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1674 }
1675 
1676 static int ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1677 				 int val)
1678 {
1679 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1680 
1681 	val &= 1;
1682 	return regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1683 				  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1684 				  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1685 }
1686 
1687 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1688 					     unsigned int offset)
1689 {
1690 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1691 	int shift = offset * 2;
1692 	int ret;
1693 
1694 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1695 		return 0;
1696 
1697 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1698 				 SN_GPIO_MUX_MASK << shift,
1699 				 SN_GPIO_MUX_INPUT << shift);
1700 	if (ret) {
1701 		set_bit(offset, pdata->gchip_output);
1702 		return ret;
1703 	}
1704 
1705 	/*
1706 	 * NOTE: if nobody else is powering the device this may fully power
1707 	 * it off and when it comes back it will have lost all state, but
1708 	 * that's OK because the default is input and we're now an input.
1709 	 */
1710 	pm_runtime_put_autosuspend(pdata->dev);
1711 
1712 	return 0;
1713 }
1714 
1715 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1716 					      unsigned int offset, int val)
1717 {
1718 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1719 	int shift = offset * 2;
1720 	int ret;
1721 
1722 	if (test_and_set_bit(offset, pdata->gchip_output))
1723 		return 0;
1724 
1725 	pm_runtime_get_sync(pdata->dev);
1726 
1727 	/* Set value first to avoid glitching */
1728 	ti_sn_bridge_gpio_set(chip, offset, val);
1729 
1730 	/* Set direction */
1731 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1732 				 SN_GPIO_MUX_MASK << shift,
1733 				 SN_GPIO_MUX_OUTPUT << shift);
1734 	if (ret) {
1735 		clear_bit(offset, pdata->gchip_output);
1736 		pm_runtime_put_autosuspend(pdata->dev);
1737 	}
1738 
1739 	return ret;
1740 }
1741 
1742 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1743 {
1744 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1745 
1746 	if (offset == SN_PWM_GPIO_IDX)
1747 		return ti_sn_pwm_pin_request(pdata);
1748 
1749 	return 0;
1750 }
1751 
1752 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1753 {
1754 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1755 
1756 	/* We won't keep pm_runtime if we're input, so switch there on free */
1757 	ti_sn_bridge_gpio_direction_input(chip, offset);
1758 
1759 	if (offset == SN_PWM_GPIO_IDX)
1760 		ti_sn_pwm_pin_release(pdata);
1761 }
1762 
1763 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1764 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1765 };
1766 
1767 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1768 			    const struct auxiliary_device_id *id)
1769 {
1770 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1771 	int ret;
1772 
1773 	/* Only init if someone is going to use us as a GPIO controller */
1774 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1775 		return 0;
1776 
1777 	pdata->gchip.label = dev_name(pdata->dev);
1778 	pdata->gchip.parent = pdata->dev;
1779 	pdata->gchip.owner = THIS_MODULE;
1780 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1781 	pdata->gchip.of_gpio_n_cells = 2;
1782 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1783 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1784 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1785 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1786 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1787 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1788 	pdata->gchip.set_rv = ti_sn_bridge_gpio_set;
1789 	pdata->gchip.can_sleep = true;
1790 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1791 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1792 	pdata->gchip.base = -1;
1793 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1794 	if (ret)
1795 		dev_err(pdata->dev, "can't add gpio chip\n");
1796 
1797 	return ret;
1798 }
1799 
1800 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1801 	{ .name = "ti_sn65dsi86.gpio", },
1802 	{},
1803 };
1804 
1805 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1806 
1807 static struct auxiliary_driver ti_sn_gpio_driver = {
1808 	.name = "gpio",
1809 	.probe = ti_sn_gpio_probe,
1810 	.id_table = ti_sn_gpio_id_table,
1811 };
1812 
1813 static int __init ti_sn_gpio_register(void)
1814 {
1815 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1816 }
1817 
1818 static void ti_sn_gpio_unregister(void)
1819 {
1820 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1821 }
1822 
1823 #else
1824 
1825 static inline int ti_sn_gpio_register(void) { return 0; }
1826 static inline void ti_sn_gpio_unregister(void) {}
1827 
1828 #endif
1829 
1830 /* -----------------------------------------------------------------------------
1831  * Probe & Remove
1832  */
1833 
1834 static void ti_sn65dsi86_runtime_disable(void *data)
1835 {
1836 	pm_runtime_dont_use_autosuspend(data);
1837 	pm_runtime_disable(data);
1838 }
1839 
1840 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1841 {
1842 	unsigned int i;
1843 	const char * const ti_sn_bridge_supply_names[] = {
1844 		"vcca", "vcc", "vccio", "vpll",
1845 	};
1846 
1847 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1848 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1849 
1850 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1851 				       pdata->supplies);
1852 }
1853 
1854 static int ti_sn65dsi86_probe(struct i2c_client *client)
1855 {
1856 	struct device *dev = &client->dev;
1857 	struct ti_sn65dsi86 *pdata;
1858 	u8 id_buf[8];
1859 	int ret;
1860 
1861 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1862 		DRM_ERROR("device doesn't support I2C\n");
1863 		return -ENODEV;
1864 	}
1865 
1866 	pdata = devm_drm_bridge_alloc(dev, struct ti_sn65dsi86, bridge, &ti_sn_bridge_funcs);
1867 	if (IS_ERR(pdata))
1868 		return PTR_ERR(pdata);
1869 	dev_set_drvdata(dev, pdata);
1870 	pdata->dev = dev;
1871 
1872 	mutex_init(&pdata->comms_mutex);
1873 
1874 	pdata->regmap = devm_regmap_init_i2c(client,
1875 					     &ti_sn65dsi86_regmap_config);
1876 	if (IS_ERR(pdata->regmap))
1877 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1878 				     "regmap i2c init failed\n");
1879 
1880 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1881 						     GPIOD_OUT_LOW);
1882 	if (IS_ERR(pdata->enable_gpio))
1883 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1884 				     "failed to get enable gpio from DT\n");
1885 
1886 	ret = ti_sn65dsi86_parse_regulators(pdata);
1887 	if (ret)
1888 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1889 
1890 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1891 	if (IS_ERR(pdata->refclk))
1892 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1893 				     "failed to get reference clock\n");
1894 
1895 	pm_runtime_enable(dev);
1896 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1897 	pm_runtime_use_autosuspend(pdata->dev);
1898 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	pm_runtime_get_sync(dev);
1903 	ret = regmap_bulk_read(pdata->regmap, SN_DEVICE_ID_REGS, id_buf, ARRAY_SIZE(id_buf));
1904 	pm_runtime_put_autosuspend(dev);
1905 	if (ret)
1906 		return dev_err_probe(dev, ret, "failed to read device id\n");
1907 
1908 	/* The ID string is stored backwards */
1909 	if (strncmp(id_buf, "68ISD   ", ARRAY_SIZE(id_buf)))
1910 		return dev_err_probe(dev, -EOPNOTSUPP, "unsupported device id\n");
1911 
1912 	/*
1913 	 * Break ourselves up into a collection of aux devices. The only real
1914 	 * motiviation here is to solve the chicken-and-egg problem of probe
1915 	 * ordering. The bridge wants the panel to be there when it probes.
1916 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1917 	 * when it probes. The panel and maybe backlight might want the DDC
1918 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1919 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1920 	 * around the problems.
1921 	 */
1922 
1923 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1924 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1925 		if (ret)
1926 			return ret;
1927 	}
1928 
1929 	if (IS_REACHABLE(CONFIG_PWM)) {
1930 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1931 		if (ret)
1932 			return ret;
1933 	}
1934 
1935 	/*
1936 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1937 	 * for the bridge. This is because the bridge can't be used until the
1938 	 * AUX channel is there and this is a very simple solution to the
1939 	 * dependency problem.
1940 	 */
1941 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1942 }
1943 
1944 static const struct i2c_device_id ti_sn65dsi86_id[] = {
1945 	{ "ti,sn65dsi86" },
1946 	{}
1947 };
1948 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1949 
1950 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1951 	{.compatible = "ti,sn65dsi86"},
1952 	{},
1953 };
1954 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1955 
1956 static struct i2c_driver ti_sn65dsi86_driver = {
1957 	.driver = {
1958 		.name = "ti_sn65dsi86",
1959 		.of_match_table = ti_sn65dsi86_match_table,
1960 		.pm = &ti_sn65dsi86_pm_ops,
1961 	},
1962 	.probe = ti_sn65dsi86_probe,
1963 	.id_table = ti_sn65dsi86_id,
1964 };
1965 
1966 static int __init ti_sn65dsi86_init(void)
1967 {
1968 	int ret;
1969 
1970 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1971 	if (ret)
1972 		return ret;
1973 
1974 	ret = ti_sn_gpio_register();
1975 	if (ret)
1976 		goto err_main_was_registered;
1977 
1978 	ret = ti_sn_pwm_register();
1979 	if (ret)
1980 		goto err_gpio_was_registered;
1981 
1982 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1983 	if (ret)
1984 		goto err_pwm_was_registered;
1985 
1986 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1987 	if (ret)
1988 		goto err_aux_was_registered;
1989 
1990 	return 0;
1991 
1992 err_aux_was_registered:
1993 	auxiliary_driver_unregister(&ti_sn_aux_driver);
1994 err_pwm_was_registered:
1995 	ti_sn_pwm_unregister();
1996 err_gpio_was_registered:
1997 	ti_sn_gpio_unregister();
1998 err_main_was_registered:
1999 	i2c_del_driver(&ti_sn65dsi86_driver);
2000 
2001 	return ret;
2002 }
2003 module_init(ti_sn65dsi86_init);
2004 
2005 static void __exit ti_sn65dsi86_exit(void)
2006 {
2007 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2008 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2009 	ti_sn_pwm_unregister();
2010 	ti_sn_gpio_unregister();
2011 	i2c_del_driver(&ti_sn65dsi86_driver);
2012 }
2013 module_exit(ti_sn65dsi86_exit);
2014 
2015 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2016 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2017 MODULE_LICENSE("GPL v2");
2018