1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf 5 */ 6 7 #include <linux/atomic.h> 8 #include <linux/auxiliary_bus.h> 9 #include <linux/bitfield.h> 10 #include <linux/bits.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/gpio/driver.h> 15 #include <linux/i2c.h> 16 #include <linux/iopoll.h> 17 #include <linux/module.h> 18 #include <linux/of_graph.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/pwm.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 24 #include <asm/unaligned.h> 25 26 #include <drm/display/drm_dp_aux_bus.h> 27 #include <drm/display/drm_dp_helper.h> 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_bridge.h> 31 #include <drm/drm_bridge_connector.h> 32 #include <drm/drm_edid.h> 33 #include <drm/drm_mipi_dsi.h> 34 #include <drm/drm_of.h> 35 #include <drm/drm_panel.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_probe_helper.h> 38 39 #define SN_DEVICE_REV_REG 0x08 40 #define SN_DPPLL_SRC_REG 0x0A 41 #define DPPLL_CLK_SRC_DSICLK BIT(0) 42 #define REFCLK_FREQ_MASK GENMASK(3, 1) 43 #define REFCLK_FREQ(x) ((x) << 1) 44 #define DPPLL_SRC_DP_PLL_LOCK BIT(7) 45 #define SN_PLL_ENABLE_REG 0x0D 46 #define SN_DSI_LANES_REG 0x10 47 #define CHA_DSI_LANES_MASK GENMASK(4, 3) 48 #define CHA_DSI_LANES(x) ((x) << 3) 49 #define SN_DSIA_CLK_FREQ_REG 0x12 50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20 51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24 52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C 53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D 54 #define CHA_HSYNC_POLARITY BIT(7) 55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30 56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31 57 #define CHA_VSYNC_POLARITY BIT(7) 58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34 59 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36 60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38 61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A 62 #define SN_LN_ASSIGN_REG 0x59 63 #define LN_ASSIGN_WIDTH 2 64 #define SN_ENH_FRAME_REG 0x5A 65 #define VSTREAM_ENABLE BIT(3) 66 #define LN_POLRS_OFFSET 4 67 #define LN_POLRS_MASK 0xf0 68 #define SN_DATA_FORMAT_REG 0x5B 69 #define BPP_18_RGB BIT(0) 70 #define SN_HPD_DISABLE_REG 0x5C 71 #define HPD_DISABLE BIT(0) 72 #define HPD_DEBOUNCED_STATE BIT(4) 73 #define SN_GPIO_IO_REG 0x5E 74 #define SN_GPIO_INPUT_SHIFT 4 75 #define SN_GPIO_OUTPUT_SHIFT 0 76 #define SN_GPIO_CTRL_REG 0x5F 77 #define SN_GPIO_MUX_INPUT 0 78 #define SN_GPIO_MUX_OUTPUT 1 79 #define SN_GPIO_MUX_SPECIAL 2 80 #define SN_GPIO_MUX_MASK 0x3 81 #define SN_AUX_WDATA_REG(x) (0x64 + (x)) 82 #define SN_AUX_ADDR_19_16_REG 0x74 83 #define SN_AUX_ADDR_15_8_REG 0x75 84 #define SN_AUX_ADDR_7_0_REG 0x76 85 #define SN_AUX_ADDR_MASK GENMASK(19, 0) 86 #define SN_AUX_LENGTH_REG 0x77 87 #define SN_AUX_CMD_REG 0x78 88 #define AUX_CMD_SEND BIT(0) 89 #define AUX_CMD_REQ(x) ((x) << 4) 90 #define SN_AUX_RDATA_REG(x) (0x79 + (x)) 91 #define SN_SSC_CONFIG_REG 0x93 92 #define DP_NUM_LANES_MASK GENMASK(5, 4) 93 #define DP_NUM_LANES(x) ((x) << 4) 94 #define SN_DATARATE_CONFIG_REG 0x94 95 #define DP_DATARATE_MASK GENMASK(7, 5) 96 #define DP_DATARATE(x) ((x) << 5) 97 #define SN_TRAINING_SETTING_REG 0x95 98 #define SCRAMBLE_DISABLE BIT(4) 99 #define SN_ML_TX_MODE_REG 0x96 100 #define ML_TX_MAIN_LINK_OFF 0 101 #define ML_TX_NORMAL_MODE BIT(0) 102 #define SN_PWM_PRE_DIV_REG 0xA0 103 #define SN_BACKLIGHT_SCALE_REG 0xA1 104 #define BACKLIGHT_SCALE_MAX 0xFFFF 105 #define SN_BACKLIGHT_REG 0xA3 106 #define SN_PWM_EN_INV_REG 0xA5 107 #define SN_PWM_INV_MASK BIT(0) 108 #define SN_PWM_EN_MASK BIT(1) 109 #define SN_AUX_CMD_STATUS_REG 0xF4 110 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) 111 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) 112 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6) 113 114 #define MIN_DSI_CLK_FREQ_MHZ 40 115 116 /* fudge factor required to account for 8b/10b encoding */ 117 #define DP_CLK_FUDGE_NUM 10 118 #define DP_CLK_FUDGE_DEN 8 119 120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */ 121 #define SN_AUX_MAX_PAYLOAD_BYTES 16 122 123 #define SN_REGULATOR_SUPPLY_NUM 4 124 125 #define SN_MAX_DP_LANES 4 126 #define SN_NUM_GPIOS 4 127 #define SN_GPIO_PHYSICAL_OFFSET 1 128 129 #define SN_LINK_TRAINING_TRIES 10 130 131 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ 132 133 /** 134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. 135 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. 136 * @gpio_aux: AUX-bus sub device for GPIO controller functionality. 137 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. 138 * @pwm_aux: AUX-bus sub device for PWM controller functionality. 139 * 140 * @dev: Pointer to the top level (i2c) device. 141 * @regmap: Regmap for accessing i2c. 142 * @aux: Our aux channel. 143 * @bridge: Our bridge. 144 * @connector: Our connector. 145 * @host_node: Remote DSI node. 146 * @dsi: Our MIPI DSI source. 147 * @refclk: Our reference clock. 148 * @next_bridge: The bridge on the eDP side. 149 * @enable_gpio: The GPIO we toggle to enable the bridge. 150 * @supplies: Data for bulk enabling/disabling our regulators. 151 * @dp_lanes: Count of dp_lanes we're using. 152 * @ln_assign: Value to program to the LN_ASSIGN register. 153 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG. 154 * @comms_enabled: If true then communication over the aux channel is enabled. 155 * @comms_mutex: Protects modification of comms_enabled. 156 * 157 * @gchip: If we expose our GPIOs, this is used. 158 * @gchip_output: A cache of whether we've set GPIOs to output. This 159 * serves double-duty of keeping track of the direction and 160 * also keeping track of whether we've incremented the 161 * pm_runtime reference count for this pin, which we do 162 * whenever a pin is configured as an output. This is a 163 * bitmap so we can do atomic ops on it without an extra 164 * lock so concurrent users of our 4 GPIOs don't stomp on 165 * each other's read-modify-write. 166 * 167 * @pchip: pwm_chip if the PWM is exposed. 168 * @pwm_enabled: Used to track if the PWM signal is currently enabled. 169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. 170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM. 171 */ 172 struct ti_sn65dsi86 { 173 struct auxiliary_device *bridge_aux; 174 struct auxiliary_device *gpio_aux; 175 struct auxiliary_device *aux_aux; 176 struct auxiliary_device *pwm_aux; 177 178 struct device *dev; 179 struct regmap *regmap; 180 struct drm_dp_aux aux; 181 struct drm_bridge bridge; 182 struct drm_connector *connector; 183 struct device_node *host_node; 184 struct mipi_dsi_device *dsi; 185 struct clk *refclk; 186 struct drm_bridge *next_bridge; 187 struct gpio_desc *enable_gpio; 188 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM]; 189 int dp_lanes; 190 u8 ln_assign; 191 u8 ln_polrs; 192 bool comms_enabled; 193 struct mutex comms_mutex; 194 195 #if defined(CONFIG_OF_GPIO) 196 struct gpio_chip gchip; 197 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); 198 #endif 199 #if defined(CONFIG_PWM) 200 struct pwm_chip pchip; 201 bool pwm_enabled; 202 atomic_t pwm_pin_busy; 203 #endif 204 unsigned int pwm_refclk_freq; 205 }; 206 207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { 208 { .range_min = 0, .range_max = 0xFF }, 209 }; 210 211 static const struct regmap_access_table ti_sn_bridge_volatile_table = { 212 .yes_ranges = ti_sn65dsi86_volatile_ranges, 213 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges), 214 }; 215 216 static const struct regmap_config ti_sn65dsi86_regmap_config = { 217 .reg_bits = 8, 218 .val_bits = 8, 219 .volatile_table = &ti_sn_bridge_volatile_table, 220 .cache_type = REGCACHE_NONE, 221 .max_register = 0xFF, 222 }; 223 224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, 225 unsigned int reg, u16 *val) 226 { 227 u8 buf[2]; 228 int ret; 229 230 ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 231 if (ret) 232 return ret; 233 234 *val = buf[0] | (buf[1] << 8); 235 236 return 0; 237 } 238 239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, 240 unsigned int reg, u16 val) 241 { 242 u8 buf[2] = { val & 0xff, val >> 8 }; 243 244 regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf)); 245 } 246 247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata) 248 { 249 u32 bit_rate_khz, clk_freq_khz; 250 struct drm_display_mode *mode = 251 &pdata->bridge.encoder->crtc->state->adjusted_mode; 252 253 bit_rate_khz = mode->clock * 254 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 255 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2); 256 257 return clk_freq_khz; 258 } 259 260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */ 261 static const u32 ti_sn_bridge_refclk_lut[] = { 262 12000000, 263 19200000, 264 26000000, 265 27000000, 266 38400000, 267 }; 268 269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */ 270 static const u32 ti_sn_bridge_dsiclk_lut[] = { 271 468000000, 272 384000000, 273 416000000, 274 486000000, 275 460800000, 276 }; 277 278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) 279 { 280 int i; 281 u32 refclk_rate; 282 const u32 *refclk_lut; 283 size_t refclk_lut_size; 284 285 if (pdata->refclk) { 286 refclk_rate = clk_get_rate(pdata->refclk); 287 refclk_lut = ti_sn_bridge_refclk_lut; 288 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut); 289 clk_prepare_enable(pdata->refclk); 290 } else { 291 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000; 292 refclk_lut = ti_sn_bridge_dsiclk_lut; 293 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut); 294 } 295 296 /* for i equals to refclk_lut_size means default frequency */ 297 for (i = 0; i < refclk_lut_size; i++) 298 if (refclk_lut[i] == refclk_rate) 299 break; 300 301 /* avoid buffer overflow and "1" is the default rate in the datasheet. */ 302 if (i >= refclk_lut_size) 303 i = 1; 304 305 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, 306 REFCLK_FREQ(i)); 307 308 /* 309 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, 310 * regardless of its actual sourcing. 311 */ 312 pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; 313 } 314 315 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) 316 { 317 mutex_lock(&pdata->comms_mutex); 318 319 /* configure bridge ref_clk */ 320 ti_sn_bridge_set_refclk_freq(pdata); 321 322 /* 323 * HPD on this bridge chip is a bit useless. This is an eDP bridge 324 * so the HPD is an internal signal that's only there to signal that 325 * the panel is done powering up. ...but the bridge chip debounces 326 * this signal by between 100 ms and 400 ms (depending on process, 327 * voltage, and temperate--I measured it at about 200 ms). One 328 * particular panel asserted HPD 84 ms after it was powered on meaning 329 * that we saw HPD 284 ms after power on. ...but the same panel said 330 * that instead of looking at HPD you could just hardcode a delay of 331 * 200 ms. We'll assume that the panel driver will have the hardcoded 332 * delay in its prepare and always disable HPD. 333 * 334 * If HPD somehow makes sense on some future panel we'll have to 335 * change this to be conditional on someone specifying that HPD should 336 * be used. 337 */ 338 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE, 339 HPD_DISABLE); 340 341 pdata->comms_enabled = true; 342 343 mutex_unlock(&pdata->comms_mutex); 344 } 345 346 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata) 347 { 348 mutex_lock(&pdata->comms_mutex); 349 350 pdata->comms_enabled = false; 351 clk_disable_unprepare(pdata->refclk); 352 353 mutex_unlock(&pdata->comms_mutex); 354 } 355 356 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev) 357 { 358 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 359 int ret; 360 361 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 362 if (ret) { 363 DRM_ERROR("failed to enable supplies %d\n", ret); 364 return ret; 365 } 366 367 /* td2: min 100 us after regulators before enabling the GPIO */ 368 usleep_range(100, 110); 369 370 gpiod_set_value_cansleep(pdata->enable_gpio, 1); 371 372 /* 373 * If we have a reference clock we can enable communication w/ the 374 * panel (including the aux channel) w/out any need for an input clock 375 * so we can do it in resume which lets us read the EDID before 376 * pre_enable(). Without a reference clock we need the MIPI reference 377 * clock so reading early doesn't work. 378 */ 379 if (pdata->refclk) 380 ti_sn65dsi86_enable_comms(pdata); 381 382 return ret; 383 } 384 385 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev) 386 { 387 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev); 388 int ret; 389 390 if (pdata->refclk) 391 ti_sn65dsi86_disable_comms(pdata); 392 393 gpiod_set_value_cansleep(pdata->enable_gpio, 0); 394 395 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies); 396 if (ret) 397 DRM_ERROR("failed to disable supplies %d\n", ret); 398 399 return ret; 400 } 401 402 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = { 403 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL) 404 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 405 pm_runtime_force_resume) 406 }; 407 408 static int status_show(struct seq_file *s, void *data) 409 { 410 struct ti_sn65dsi86 *pdata = s->private; 411 unsigned int reg, val; 412 413 seq_puts(s, "STATUS REGISTERS:\n"); 414 415 pm_runtime_get_sync(pdata->dev); 416 417 /* IRQ Status Registers, see Table 31 in datasheet */ 418 for (reg = 0xf0; reg <= 0xf8; reg++) { 419 regmap_read(pdata->regmap, reg, &val); 420 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val); 421 } 422 423 pm_runtime_put_autosuspend(pdata->dev); 424 425 return 0; 426 } 427 428 DEFINE_SHOW_ATTRIBUTE(status); 429 430 static void ti_sn65dsi86_debugfs_remove(void *data) 431 { 432 debugfs_remove_recursive(data); 433 } 434 435 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata) 436 { 437 struct device *dev = pdata->dev; 438 struct dentry *debugfs; 439 int ret; 440 441 debugfs = debugfs_create_dir(dev_name(dev), NULL); 442 443 /* 444 * We might get an error back if debugfs wasn't enabled in the kernel 445 * so let's just silently return upon failure. 446 */ 447 if (IS_ERR_OR_NULL(debugfs)) 448 return; 449 450 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs); 451 if (ret) 452 return; 453 454 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops); 455 } 456 457 /* ----------------------------------------------------------------------------- 458 * Auxiliary Devices (*not* AUX) 459 */ 460 461 static void ti_sn65dsi86_uninit_aux(void *data) 462 { 463 auxiliary_device_uninit(data); 464 } 465 466 static void ti_sn65dsi86_delete_aux(void *data) 467 { 468 auxiliary_device_delete(data); 469 } 470 471 static void ti_sn65dsi86_aux_device_release(struct device *dev) 472 { 473 struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev); 474 475 kfree(aux); 476 } 477 478 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata, 479 struct auxiliary_device **aux_out, 480 const char *name) 481 { 482 struct device *dev = pdata->dev; 483 struct auxiliary_device *aux; 484 int ret; 485 486 aux = kzalloc(sizeof(*aux), GFP_KERNEL); 487 if (!aux) 488 return -ENOMEM; 489 490 aux->name = name; 491 aux->dev.parent = dev; 492 aux->dev.release = ti_sn65dsi86_aux_device_release; 493 device_set_of_node_from_dev(&aux->dev, dev); 494 ret = auxiliary_device_init(aux); 495 if (ret) { 496 kfree(aux); 497 return ret; 498 } 499 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux); 500 if (ret) 501 return ret; 502 503 ret = auxiliary_device_add(aux); 504 if (ret) 505 return ret; 506 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux); 507 if (!ret) 508 *aux_out = aux; 509 510 return ret; 511 } 512 513 /* ----------------------------------------------------------------------------- 514 * AUX Adapter 515 */ 516 517 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux) 518 { 519 return container_of(aux, struct ti_sn65dsi86, aux); 520 } 521 522 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux, 523 struct drm_dp_aux_msg *msg) 524 { 525 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux); 526 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE); 527 u32 request_val = AUX_CMD_REQ(msg->request); 528 u8 *buf = msg->buffer; 529 unsigned int len = msg->size; 530 unsigned int short_len; 531 unsigned int val; 532 int ret; 533 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG]; 534 535 if (len > SN_AUX_MAX_PAYLOAD_BYTES) 536 return -EINVAL; 537 538 pm_runtime_get_sync(pdata->dev); 539 mutex_lock(&pdata->comms_mutex); 540 541 /* 542 * If someone tries to do a DDC over AUX transaction before pre_enable() 543 * on a device without a dedicated reference clock then we just can't 544 * do it. Fail right away. This prevents non-refclk users from reading 545 * the EDID before enabling the panel but such is life. 546 */ 547 if (!pdata->comms_enabled) { 548 ret = -EIO; 549 goto exit; 550 } 551 552 switch (request) { 553 case DP_AUX_NATIVE_WRITE: 554 case DP_AUX_I2C_WRITE: 555 case DP_AUX_NATIVE_READ: 556 case DP_AUX_I2C_READ: 557 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val); 558 /* Assume it's good */ 559 msg->reply = 0; 560 break; 561 default: 562 ret = -EINVAL; 563 goto exit; 564 } 565 566 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32)); 567 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len, 568 addr_len); 569 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len, 570 ARRAY_SIZE(addr_len)); 571 572 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) 573 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len); 574 575 /* Clear old status bits before start so we don't get confused */ 576 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG, 577 AUX_IRQ_STATUS_NAT_I2C_FAIL | 578 AUX_IRQ_STATUS_AUX_RPLY_TOUT | 579 AUX_IRQ_STATUS_AUX_SHORT); 580 581 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND); 582 583 /* Zero delay loop because i2c transactions are slow already */ 584 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val, 585 !(val & AUX_CMD_SEND), 0, 50 * 1000); 586 if (ret) 587 goto exit; 588 589 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val); 590 if (ret) 591 goto exit; 592 593 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) { 594 /* 595 * The hardware tried the message seven times per the DP spec 596 * but it hit a timeout. We ignore defers here because they're 597 * handled in hardware. 598 */ 599 ret = -ETIMEDOUT; 600 goto exit; 601 } 602 603 if (val & AUX_IRQ_STATUS_AUX_SHORT) { 604 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len); 605 len = min(len, short_len); 606 if (ret) 607 goto exit; 608 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) { 609 switch (request) { 610 case DP_AUX_I2C_WRITE: 611 case DP_AUX_I2C_READ: 612 msg->reply |= DP_AUX_I2C_REPLY_NACK; 613 break; 614 case DP_AUX_NATIVE_READ: 615 case DP_AUX_NATIVE_WRITE: 616 msg->reply |= DP_AUX_NATIVE_REPLY_NACK; 617 break; 618 } 619 len = 0; 620 goto exit; 621 } 622 623 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0) 624 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len); 625 626 exit: 627 mutex_unlock(&pdata->comms_mutex); 628 pm_runtime_mark_last_busy(pdata->dev); 629 pm_runtime_put_autosuspend(pdata->dev); 630 631 if (ret) 632 return ret; 633 return len; 634 } 635 636 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us) 637 { 638 /* 639 * The HPD in this chip is a bit useless (See comment in 640 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait 641 * for HPD, we just assume it's asserted after the wait_us delay. 642 * 643 * In case we are asked to wait forever (wait_us=0) take conservative 644 * 500ms delay. 645 */ 646 if (wait_us == 0) 647 wait_us = 500000; 648 649 usleep_range(wait_us, wait_us + 1000); 650 651 return 0; 652 } 653 654 static int ti_sn_aux_probe(struct auxiliary_device *adev, 655 const struct auxiliary_device_id *id) 656 { 657 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 658 int ret; 659 660 pdata->aux.name = "ti-sn65dsi86-aux"; 661 pdata->aux.dev = &adev->dev; 662 pdata->aux.transfer = ti_sn_aux_transfer; 663 pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted; 664 drm_dp_aux_init(&pdata->aux); 665 666 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux); 667 if (ret) 668 return ret; 669 670 /* 671 * The eDP to MIPI bridge parts don't work until the AUX channel is 672 * setup so we don't add it in the main driver probe, we add it now. 673 */ 674 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge"); 675 } 676 677 static const struct auxiliary_device_id ti_sn_aux_id_table[] = { 678 { .name = "ti_sn65dsi86.aux", }, 679 {}, 680 }; 681 682 static struct auxiliary_driver ti_sn_aux_driver = { 683 .name = "aux", 684 .probe = ti_sn_aux_probe, 685 .id_table = ti_sn_aux_id_table, 686 }; 687 688 /*------------------------------------------------------------------------------ 689 * DRM Bridge 690 */ 691 692 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge) 693 { 694 return container_of(bridge, struct ti_sn65dsi86, bridge); 695 } 696 697 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata) 698 { 699 int val; 700 struct mipi_dsi_host *host; 701 struct mipi_dsi_device *dsi; 702 struct device *dev = pdata->dev; 703 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge", 704 .channel = 0, 705 .node = NULL, 706 }; 707 708 host = of_find_mipi_dsi_host_by_node(pdata->host_node); 709 if (!host) 710 return -EPROBE_DEFER; 711 712 dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info); 713 if (IS_ERR(dsi)) 714 return PTR_ERR(dsi); 715 716 /* TODO: setting to 4 MIPI lanes always for now */ 717 dsi->lanes = 4; 718 dsi->format = MIPI_DSI_FMT_RGB888; 719 dsi->mode_flags = MIPI_DSI_MODE_VIDEO; 720 721 /* check if continuous dsi clock is required or not */ 722 pm_runtime_get_sync(dev); 723 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val); 724 pm_runtime_put_autosuspend(dev); 725 if (!(val & DPPLL_CLK_SRC_DSICLK)) 726 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS; 727 728 pdata->dsi = dsi; 729 730 return devm_mipi_dsi_attach(&adev->dev, dsi); 731 } 732 733 static int ti_sn_bridge_attach(struct drm_bridge *bridge, 734 enum drm_bridge_attach_flags flags) 735 { 736 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 737 int ret; 738 739 pdata->aux.drm_dev = bridge->dev; 740 ret = drm_dp_aux_register(&pdata->aux); 741 if (ret < 0) { 742 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret); 743 return ret; 744 } 745 746 /* 747 * Attach the next bridge. 748 * We never want the next bridge to *also* create a connector. 749 */ 750 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge, 751 &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR); 752 if (ret < 0) 753 goto err_initted_aux; 754 755 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) 756 return 0; 757 758 pdata->connector = drm_bridge_connector_init(pdata->bridge.dev, 759 pdata->bridge.encoder); 760 if (IS_ERR(pdata->connector)) { 761 ret = PTR_ERR(pdata->connector); 762 goto err_initted_aux; 763 } 764 765 drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder); 766 767 return 0; 768 769 err_initted_aux: 770 drm_dp_aux_unregister(&pdata->aux); 771 return ret; 772 } 773 774 static void ti_sn_bridge_detach(struct drm_bridge *bridge) 775 { 776 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux); 777 } 778 779 static enum drm_mode_status 780 ti_sn_bridge_mode_valid(struct drm_bridge *bridge, 781 const struct drm_display_info *info, 782 const struct drm_display_mode *mode) 783 { 784 /* maximum supported resolution is 4K at 60 fps */ 785 if (mode->clock > 594000) 786 return MODE_CLOCK_HIGH; 787 788 /* 789 * The front and back porch registers are 8 bits, and pulse width 790 * registers are 15 bits, so reject any modes with larger periods. 791 */ 792 793 if ((mode->hsync_start - mode->hdisplay) > 0xff) 794 return MODE_HBLANK_WIDE; 795 796 if ((mode->vsync_start - mode->vdisplay) > 0xff) 797 return MODE_VBLANK_WIDE; 798 799 if ((mode->hsync_end - mode->hsync_start) > 0x7fff) 800 return MODE_HSYNC_WIDE; 801 802 if ((mode->vsync_end - mode->vsync_start) > 0x7fff) 803 return MODE_VSYNC_WIDE; 804 805 if ((mode->htotal - mode->hsync_end) > 0xff) 806 return MODE_HBLANK_WIDE; 807 808 if ((mode->vtotal - mode->vsync_end) > 0xff) 809 return MODE_VBLANK_WIDE; 810 811 return MODE_OK; 812 } 813 814 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge, 815 struct drm_bridge_state *old_bridge_state) 816 { 817 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 818 819 /* disable video stream */ 820 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0); 821 } 822 823 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata) 824 { 825 unsigned int bit_rate_mhz, clk_freq_mhz; 826 unsigned int val; 827 struct drm_display_mode *mode = 828 &pdata->bridge.encoder->crtc->state->adjusted_mode; 829 830 /* set DSIA clk frequency */ 831 bit_rate_mhz = (mode->clock / 1000) * 832 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format); 833 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2); 834 835 /* for each increment in val, frequency increases by 5MHz */ 836 val = (MIN_DSI_CLK_FREQ_MHZ / 5) + 837 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF); 838 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val); 839 } 840 841 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector) 842 { 843 if (connector->display_info.bpc <= 6) 844 return 18; 845 else 846 return 24; 847 } 848 849 /* 850 * LUT index corresponds to register value and 851 * LUT values corresponds to dp data rate supported 852 * by the bridge in Mbps unit. 853 */ 854 static const unsigned int ti_sn_bridge_dp_rate_lut[] = { 855 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400 856 }; 857 858 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp) 859 { 860 unsigned int bit_rate_khz, dp_rate_mhz; 861 unsigned int i; 862 struct drm_display_mode *mode = 863 &pdata->bridge.encoder->crtc->state->adjusted_mode; 864 865 /* Calculate minimum bit rate based on our pixel clock. */ 866 bit_rate_khz = mode->clock * bpp; 867 868 /* Calculate minimum DP data rate, taking 80% as per DP spec */ 869 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM, 870 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN); 871 872 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++) 873 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz) 874 break; 875 876 return i; 877 } 878 879 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata) 880 { 881 unsigned int valid_rates = 0; 882 unsigned int rate_per_200khz; 883 unsigned int rate_mhz; 884 u8 dpcd_val; 885 int ret; 886 int i, j; 887 888 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val); 889 if (ret != 1) { 890 DRM_DEV_ERROR(pdata->dev, 891 "Can't read eDP rev (%d), assuming 1.1\n", ret); 892 dpcd_val = DP_EDP_11; 893 } 894 895 if (dpcd_val >= DP_EDP_14) { 896 /* eDP 1.4 devices must provide a custom table */ 897 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 898 899 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES, 900 sink_rates, sizeof(sink_rates)); 901 902 if (ret != sizeof(sink_rates)) { 903 DRM_DEV_ERROR(pdata->dev, 904 "Can't read supported rate table (%d)\n", ret); 905 906 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */ 907 memset(sink_rates, 0, sizeof(sink_rates)); 908 } 909 910 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 911 rate_per_200khz = le16_to_cpu(sink_rates[i]); 912 913 if (!rate_per_200khz) 914 break; 915 916 rate_mhz = rate_per_200khz * 200 / 1000; 917 for (j = 0; 918 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 919 j++) { 920 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz) 921 valid_rates |= BIT(j); 922 } 923 } 924 925 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) { 926 if (valid_rates & BIT(i)) 927 return valid_rates; 928 } 929 DRM_DEV_ERROR(pdata->dev, 930 "No matching eDP rates in table; falling back\n"); 931 } 932 933 /* On older versions best we can do is use DP_MAX_LINK_RATE */ 934 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val); 935 if (ret != 1) { 936 DRM_DEV_ERROR(pdata->dev, 937 "Can't read max rate (%d); assuming 5.4 GHz\n", 938 ret); 939 dpcd_val = DP_LINK_BW_5_4; 940 } 941 942 switch (dpcd_val) { 943 default: 944 DRM_DEV_ERROR(pdata->dev, 945 "Unexpected max rate (%#x); assuming 5.4 GHz\n", 946 (int)dpcd_val); 947 fallthrough; 948 case DP_LINK_BW_5_4: 949 valid_rates |= BIT(7); 950 fallthrough; 951 case DP_LINK_BW_2_7: 952 valid_rates |= BIT(4); 953 fallthrough; 954 case DP_LINK_BW_1_62: 955 valid_rates |= BIT(1); 956 break; 957 } 958 959 return valid_rates; 960 } 961 962 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata) 963 { 964 struct drm_display_mode *mode = 965 &pdata->bridge.encoder->crtc->state->adjusted_mode; 966 u8 hsync_polarity = 0, vsync_polarity = 0; 967 968 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 969 hsync_polarity = CHA_HSYNC_POLARITY; 970 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 971 vsync_polarity = CHA_VSYNC_POLARITY; 972 973 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG, 974 mode->hdisplay); 975 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG, 976 mode->vdisplay); 977 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG, 978 (mode->hsync_end - mode->hsync_start) & 0xFF); 979 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG, 980 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) | 981 hsync_polarity); 982 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG, 983 (mode->vsync_end - mode->vsync_start) & 0xFF); 984 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG, 985 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) | 986 vsync_polarity); 987 988 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG, 989 (mode->htotal - mode->hsync_end) & 0xFF); 990 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG, 991 (mode->vtotal - mode->vsync_end) & 0xFF); 992 993 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG, 994 (mode->hsync_start - mode->hdisplay) & 0xFF); 995 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG, 996 (mode->vsync_start - mode->vdisplay) & 0xFF); 997 998 usleep_range(10000, 10500); /* 10ms delay recommended by spec */ 999 } 1000 1001 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata) 1002 { 1003 u8 data; 1004 int ret; 1005 1006 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data); 1007 if (ret != 1) { 1008 DRM_DEV_ERROR(pdata->dev, 1009 "Can't read lane count (%d); assuming 4\n", ret); 1010 return 4; 1011 } 1012 1013 return data & DP_LANE_COUNT_MASK; 1014 } 1015 1016 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx, 1017 const char **last_err_str) 1018 { 1019 unsigned int val; 1020 int ret; 1021 int i; 1022 1023 /* set dp clk frequency value */ 1024 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG, 1025 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx)); 1026 1027 /* enable DP PLL */ 1028 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1); 1029 1030 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val, 1031 val & DPPLL_SRC_DP_PLL_LOCK, 1000, 1032 50 * 1000); 1033 if (ret) { 1034 *last_err_str = "DP_PLL_LOCK polling failed"; 1035 goto exit; 1036 } 1037 1038 /* 1039 * We'll try to link train several times. As part of link training 1040 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If 1041 * the panel isn't ready quite it might respond NAK here which means 1042 * we need to try again. 1043 */ 1044 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) { 1045 /* Semi auto link training mode */ 1046 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A); 1047 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val, 1048 val == ML_TX_MAIN_LINK_OFF || 1049 val == ML_TX_NORMAL_MODE, 1000, 1050 500 * 1000); 1051 if (ret) { 1052 *last_err_str = "Training complete polling failed"; 1053 } else if (val == ML_TX_MAIN_LINK_OFF) { 1054 *last_err_str = "Link training failed, link is off"; 1055 ret = -EIO; 1056 continue; 1057 } 1058 1059 break; 1060 } 1061 1062 /* If we saw quite a few retries, add a note about it */ 1063 if (!ret && i > SN_LINK_TRAINING_TRIES / 2) 1064 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i); 1065 1066 exit: 1067 /* Disable the PLL if we failed */ 1068 if (ret) 1069 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1070 1071 return ret; 1072 } 1073 1074 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge, 1075 struct drm_bridge_state *old_bridge_state) 1076 { 1077 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1078 struct drm_connector *connector; 1079 const char *last_err_str = "No supported DP rate"; 1080 unsigned int valid_rates; 1081 int dp_rate_idx; 1082 unsigned int val; 1083 int ret = -EINVAL; 1084 int max_dp_lanes; 1085 unsigned int bpp; 1086 1087 connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state, 1088 bridge->encoder); 1089 if (!connector) { 1090 dev_err_ratelimited(pdata->dev, "Could not get the connector\n"); 1091 return; 1092 } 1093 1094 max_dp_lanes = ti_sn_get_max_lanes(pdata); 1095 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes); 1096 1097 /* DSI_A lane config */ 1098 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes); 1099 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG, 1100 CHA_DSI_LANES_MASK, val); 1101 1102 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign); 1103 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK, 1104 pdata->ln_polrs << LN_POLRS_OFFSET); 1105 1106 /* set dsi clk frequency value */ 1107 ti_sn_bridge_set_dsi_rate(pdata); 1108 1109 /* 1110 * The SN65DSI86 only supports ASSR Display Authentication method and 1111 * this method is enabled for eDP panels. An eDP panel must support this 1112 * authentication method. We need to enable this method in the eDP panel 1113 * at DisplayPort address 0x0010A prior to link training. 1114 * 1115 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays 1116 * we need to disable the scrambler. 1117 */ 1118 if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) { 1119 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET, 1120 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE); 1121 1122 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, 1123 SCRAMBLE_DISABLE, 0); 1124 } else { 1125 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG, 1126 SCRAMBLE_DISABLE, SCRAMBLE_DISABLE); 1127 } 1128 1129 bpp = ti_sn_bridge_get_bpp(connector); 1130 /* Set the DP output format (18 bpp or 24 bpp) */ 1131 val = bpp == 18 ? BPP_18_RGB : 0; 1132 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val); 1133 1134 /* DP lane config */ 1135 val = DP_NUM_LANES(min(pdata->dp_lanes, 3)); 1136 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 1137 val); 1138 1139 valid_rates = ti_sn_bridge_read_valid_rates(pdata); 1140 1141 /* Train until we run out of rates */ 1142 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp); 1143 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); 1144 dp_rate_idx++) { 1145 if (!(valid_rates & BIT(dp_rate_idx))) 1146 continue; 1147 1148 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str); 1149 if (!ret) 1150 break; 1151 } 1152 if (ret) { 1153 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret); 1154 return; 1155 } 1156 1157 /* config video parameters */ 1158 ti_sn_bridge_set_video_timings(pdata); 1159 1160 /* enable video stream */ 1161 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 1162 VSTREAM_ENABLE); 1163 } 1164 1165 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge, 1166 struct drm_bridge_state *old_bridge_state) 1167 { 1168 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1169 1170 pm_runtime_get_sync(pdata->dev); 1171 1172 if (!pdata->refclk) 1173 ti_sn65dsi86_enable_comms(pdata); 1174 1175 /* td7: min 100 us after enable before DSI data */ 1176 usleep_range(100, 110); 1177 } 1178 1179 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge, 1180 struct drm_bridge_state *old_bridge_state) 1181 { 1182 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1183 1184 /* semi auto link training mode OFF */ 1185 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0); 1186 /* Num lanes to 0 as per power sequencing in data sheet */ 1187 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0); 1188 /* disable DP PLL */ 1189 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0); 1190 1191 if (!pdata->refclk) 1192 ti_sn65dsi86_disable_comms(pdata); 1193 1194 pm_runtime_put_sync(pdata->dev); 1195 } 1196 1197 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge) 1198 { 1199 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1200 int val = 0; 1201 1202 pm_runtime_get_sync(pdata->dev); 1203 regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val); 1204 pm_runtime_put_autosuspend(pdata->dev); 1205 1206 return val & HPD_DEBOUNCED_STATE ? connector_status_connected 1207 : connector_status_disconnected; 1208 } 1209 1210 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge, 1211 struct drm_connector *connector) 1212 { 1213 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge); 1214 1215 return drm_get_edid(connector, &pdata->aux.ddc); 1216 } 1217 1218 static const struct drm_bridge_funcs ti_sn_bridge_funcs = { 1219 .attach = ti_sn_bridge_attach, 1220 .detach = ti_sn_bridge_detach, 1221 .mode_valid = ti_sn_bridge_mode_valid, 1222 .get_edid = ti_sn_bridge_get_edid, 1223 .detect = ti_sn_bridge_detect, 1224 .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable, 1225 .atomic_enable = ti_sn_bridge_atomic_enable, 1226 .atomic_disable = ti_sn_bridge_atomic_disable, 1227 .atomic_post_disable = ti_sn_bridge_atomic_post_disable, 1228 .atomic_reset = drm_atomic_helper_bridge_reset, 1229 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1230 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1231 }; 1232 1233 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata, 1234 struct device_node *np) 1235 { 1236 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 }; 1237 u32 lane_polarities[SN_MAX_DP_LANES] = { }; 1238 struct device_node *endpoint; 1239 u8 ln_assign = 0; 1240 u8 ln_polrs = 0; 1241 int dp_lanes; 1242 int i; 1243 1244 /* 1245 * Read config from the device tree about lane remapping and lane 1246 * polarities. These are optional and we assume identity map and 1247 * normal polarity if nothing is specified. It's OK to specify just 1248 * data-lanes but not lane-polarities but not vice versa. 1249 * 1250 * Error checking is light (we just make sure we don't crash or 1251 * buffer overrun) and we assume dts is well formed and specifying 1252 * mappings that the hardware supports. 1253 */ 1254 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1255 dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES); 1256 if (dp_lanes > 0) { 1257 of_property_read_u32_array(endpoint, "data-lanes", 1258 lane_assignments, dp_lanes); 1259 of_property_read_u32_array(endpoint, "lane-polarities", 1260 lane_polarities, dp_lanes); 1261 } else { 1262 dp_lanes = SN_MAX_DP_LANES; 1263 } 1264 of_node_put(endpoint); 1265 1266 /* 1267 * Convert into register format. Loop over all lanes even if 1268 * data-lanes had fewer elements so that we nicely initialize 1269 * the LN_ASSIGN register. 1270 */ 1271 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) { 1272 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i]; 1273 ln_polrs = ln_polrs << 1 | lane_polarities[i]; 1274 } 1275 1276 /* Stash in our struct for when we power on */ 1277 pdata->dp_lanes = dp_lanes; 1278 pdata->ln_assign = ln_assign; 1279 pdata->ln_polrs = ln_polrs; 1280 } 1281 1282 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) 1283 { 1284 struct device_node *np = pdata->dev->of_node; 1285 1286 pdata->host_node = of_graph_get_remote_node(np, 0, 0); 1287 1288 if (!pdata->host_node) { 1289 DRM_ERROR("remote dsi host node not found\n"); 1290 return -ENODEV; 1291 } 1292 1293 return 0; 1294 } 1295 1296 static int ti_sn_bridge_probe(struct auxiliary_device *adev, 1297 const struct auxiliary_device_id *id) 1298 { 1299 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1300 struct device_node *np = pdata->dev->of_node; 1301 int ret; 1302 1303 pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0); 1304 if (IS_ERR(pdata->next_bridge)) 1305 return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge), 1306 "failed to create panel bridge\n"); 1307 1308 ti_sn_bridge_parse_lanes(pdata, np); 1309 1310 ret = ti_sn_bridge_parse_dsi_host(pdata); 1311 if (ret) 1312 return ret; 1313 1314 pdata->bridge.funcs = &ti_sn_bridge_funcs; 1315 pdata->bridge.of_node = np; 1316 pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort 1317 ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP; 1318 1319 if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) 1320 pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT; 1321 1322 drm_bridge_add(&pdata->bridge); 1323 1324 ret = ti_sn_attach_host(adev, pdata); 1325 if (ret) { 1326 dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n"); 1327 goto err_remove_bridge; 1328 } 1329 1330 return 0; 1331 1332 err_remove_bridge: 1333 drm_bridge_remove(&pdata->bridge); 1334 return ret; 1335 } 1336 1337 static void ti_sn_bridge_remove(struct auxiliary_device *adev) 1338 { 1339 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1340 1341 if (!pdata) 1342 return; 1343 1344 drm_bridge_remove(&pdata->bridge); 1345 1346 of_node_put(pdata->host_node); 1347 } 1348 1349 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = { 1350 { .name = "ti_sn65dsi86.bridge", }, 1351 {}, 1352 }; 1353 1354 static struct auxiliary_driver ti_sn_bridge_driver = { 1355 .name = "bridge", 1356 .probe = ti_sn_bridge_probe, 1357 .remove = ti_sn_bridge_remove, 1358 .id_table = ti_sn_bridge_id_table, 1359 }; 1360 1361 /* ----------------------------------------------------------------------------- 1362 * PWM Controller 1363 */ 1364 #if defined(CONFIG_PWM) 1365 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) 1366 { 1367 return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; 1368 } 1369 1370 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) 1371 { 1372 atomic_set(&pdata->pwm_pin_busy, 0); 1373 } 1374 1375 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) 1376 { 1377 return container_of(chip, struct ti_sn65dsi86, pchip); 1378 } 1379 1380 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) 1381 { 1382 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1383 1384 return ti_sn_pwm_pin_request(pdata); 1385 } 1386 1387 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) 1388 { 1389 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1390 1391 ti_sn_pwm_pin_release(pdata); 1392 } 1393 1394 /* 1395 * Limitations: 1396 * - The PWM signal is not driven when the chip is powered down, or in its 1397 * reset state and the driver does not implement the "suspend state" 1398 * described in the documentation. In order to save power, state->enabled is 1399 * interpreted as denoting if the signal is expected to be valid, and is used 1400 * to determine if the chip needs to be kept powered. 1401 * - Changing both period and duty_cycle is not done atomically, neither is the 1402 * multi-byte register updates, so the output might briefly be undefined 1403 * during update. 1404 */ 1405 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 1406 const struct pwm_state *state) 1407 { 1408 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1409 unsigned int pwm_en_inv; 1410 unsigned int backlight; 1411 unsigned int pre_div; 1412 unsigned int scale; 1413 u64 period_max; 1414 u64 period; 1415 int ret; 1416 1417 if (!pdata->pwm_enabled) { 1418 ret = pm_runtime_resume_and_get(chip->dev); 1419 if (ret < 0) 1420 return ret; 1421 } 1422 1423 if (state->enabled) { 1424 if (!pdata->pwm_enabled) { 1425 /* 1426 * The chip might have been powered down while we 1427 * didn't hold a PM runtime reference, so mux in the 1428 * PWM function on the GPIO pin again. 1429 */ 1430 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1431 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), 1432 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); 1433 if (ret) { 1434 dev_err(chip->dev, "failed to mux in PWM function\n"); 1435 goto out; 1436 } 1437 } 1438 1439 /* 1440 * Per the datasheet the PWM frequency is given by: 1441 * 1442 * REFCLK_FREQ 1443 * PWM_FREQ = ----------------------------------- 1444 * PWM_PRE_DIV * BACKLIGHT_SCALE + 1 1445 * 1446 * However, after careful review the author is convinced that 1447 * the documentation has lost some parenthesis around 1448 * "BACKLIGHT_SCALE + 1". 1449 * 1450 * With the period T_pwm = 1/PWM_FREQ this can be written: 1451 * 1452 * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1) 1453 * 1454 * In order to keep BACKLIGHT_SCALE within its 16 bits, 1455 * PWM_PRE_DIV must be: 1456 * 1457 * T_pwm * REFCLK_FREQ 1458 * PWM_PRE_DIV >= ------------------------- 1459 * BACKLIGHT_SCALE_MAX + 1 1460 * 1461 * To simplify the search and to favour higher resolution of 1462 * the duty cycle over accuracy of the period, the lowest 1463 * possible PWM_PRE_DIV is used. Finally the scale is 1464 * calculated as: 1465 * 1466 * T_pwm * REFCLK_FREQ 1467 * BACKLIGHT_SCALE = ---------------------- - 1 1468 * PWM_PRE_DIV 1469 * 1470 * Here T_pwm is represented in seconds, so appropriate scaling 1471 * to nanoseconds is necessary. 1472 */ 1473 1474 /* Minimum T_pwm is 1 / REFCLK_FREQ */ 1475 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) { 1476 ret = -EINVAL; 1477 goto out; 1478 } 1479 1480 /* 1481 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ 1482 * Limit period to this to avoid overflows 1483 */ 1484 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1), 1485 pdata->pwm_refclk_freq); 1486 period = min(state->period, period_max); 1487 1488 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq, 1489 (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1)); 1490 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1; 1491 1492 /* 1493 * The documentation has the duty ratio given as: 1494 * 1495 * duty BACKLIGHT 1496 * ------- = --------------------- 1497 * period BACKLIGHT_SCALE + 1 1498 * 1499 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according 1500 * to definition above and adjusting for nanosecond 1501 * representation of duty cycle gives us: 1502 */ 1503 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq, 1504 (u64)NSEC_PER_SEC * pre_div); 1505 if (backlight > scale) 1506 backlight = scale; 1507 1508 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); 1509 if (ret) { 1510 dev_err(chip->dev, "failed to update PWM_PRE_DIV\n"); 1511 goto out; 1512 } 1513 1514 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); 1515 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); 1516 } 1517 1518 pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) | 1519 FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); 1520 ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); 1521 if (ret) { 1522 dev_err(chip->dev, "failed to update PWM_EN/PWM_INV\n"); 1523 goto out; 1524 } 1525 1526 pdata->pwm_enabled = state->enabled; 1527 out: 1528 1529 if (!pdata->pwm_enabled) 1530 pm_runtime_put_sync(chip->dev); 1531 1532 return ret; 1533 } 1534 1535 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 1536 struct pwm_state *state) 1537 { 1538 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); 1539 unsigned int pwm_en_inv; 1540 unsigned int pre_div; 1541 u16 backlight; 1542 u16 scale; 1543 int ret; 1544 1545 ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); 1546 if (ret) 1547 return ret; 1548 1549 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); 1550 if (ret) 1551 return ret; 1552 1553 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); 1554 if (ret) 1555 return ret; 1556 1557 ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); 1558 if (ret) 1559 return ret; 1560 1561 state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); 1562 if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) 1563 state->polarity = PWM_POLARITY_INVERSED; 1564 else 1565 state->polarity = PWM_POLARITY_NORMAL; 1566 1567 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1), 1568 pdata->pwm_refclk_freq); 1569 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight, 1570 pdata->pwm_refclk_freq); 1571 1572 if (state->duty_cycle > state->period) 1573 state->duty_cycle = state->period; 1574 1575 return 0; 1576 } 1577 1578 static const struct pwm_ops ti_sn_pwm_ops = { 1579 .request = ti_sn_pwm_request, 1580 .free = ti_sn_pwm_free, 1581 .apply = ti_sn_pwm_apply, 1582 .get_state = ti_sn_pwm_get_state, 1583 }; 1584 1585 static int ti_sn_pwm_probe(struct auxiliary_device *adev, 1586 const struct auxiliary_device_id *id) 1587 { 1588 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1589 1590 pdata->pchip.dev = &adev->dev; 1591 pdata->pchip.ops = &ti_sn_pwm_ops; 1592 pdata->pchip.npwm = 1; 1593 pdata->pchip.of_xlate = of_pwm_single_xlate; 1594 pdata->pchip.of_pwm_n_cells = 1; 1595 1596 devm_pm_runtime_enable(&adev->dev); 1597 1598 return pwmchip_add(&pdata->pchip); 1599 } 1600 1601 static void ti_sn_pwm_remove(struct auxiliary_device *adev) 1602 { 1603 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1604 1605 pwmchip_remove(&pdata->pchip); 1606 1607 if (pdata->pwm_enabled) 1608 pm_runtime_put_sync(&adev->dev); 1609 } 1610 1611 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = { 1612 { .name = "ti_sn65dsi86.pwm", }, 1613 {}, 1614 }; 1615 1616 static struct auxiliary_driver ti_sn_pwm_driver = { 1617 .name = "pwm", 1618 .probe = ti_sn_pwm_probe, 1619 .remove = ti_sn_pwm_remove, 1620 .id_table = ti_sn_pwm_id_table, 1621 }; 1622 1623 static int __init ti_sn_pwm_register(void) 1624 { 1625 return auxiliary_driver_register(&ti_sn_pwm_driver); 1626 } 1627 1628 static void ti_sn_pwm_unregister(void) 1629 { 1630 auxiliary_driver_unregister(&ti_sn_pwm_driver); 1631 } 1632 1633 #else 1634 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; } 1635 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {} 1636 1637 static inline int ti_sn_pwm_register(void) { return 0; } 1638 static inline void ti_sn_pwm_unregister(void) {} 1639 #endif 1640 1641 /* ----------------------------------------------------------------------------- 1642 * GPIO Controller 1643 */ 1644 #if defined(CONFIG_OF_GPIO) 1645 1646 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip, 1647 const struct of_phandle_args *gpiospec, 1648 u32 *flags) 1649 { 1650 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells)) 1651 return -EINVAL; 1652 1653 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1) 1654 return -EINVAL; 1655 1656 if (flags) 1657 *flags = gpiospec->args[1]; 1658 1659 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET; 1660 } 1661 1662 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip, 1663 unsigned int offset) 1664 { 1665 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1666 1667 /* 1668 * We already have to keep track of the direction because we use 1669 * that to figure out whether we've powered the device. We can 1670 * just return that rather than (maybe) powering up the device 1671 * to ask its direction. 1672 */ 1673 return test_bit(offset, pdata->gchip_output) ? 1674 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1675 } 1676 1677 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset) 1678 { 1679 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1680 unsigned int val; 1681 int ret; 1682 1683 /* 1684 * When the pin is an input we don't forcibly keep the bridge 1685 * powered--we just power it on to read the pin. NOTE: part of 1686 * the reason this works is that the bridge defaults (when 1687 * powered back on) to all 4 GPIOs being configured as GPIO input. 1688 * Also note that if something else is keeping the chip powered the 1689 * pm_runtime functions are lightweight increments of a refcount. 1690 */ 1691 pm_runtime_get_sync(pdata->dev); 1692 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val); 1693 pm_runtime_put_autosuspend(pdata->dev); 1694 1695 if (ret) 1696 return ret; 1697 1698 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset)); 1699 } 1700 1701 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset, 1702 int val) 1703 { 1704 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1705 int ret; 1706 1707 if (!test_bit(offset, pdata->gchip_output)) { 1708 dev_err(pdata->dev, "Ignoring GPIO set while input\n"); 1709 return; 1710 } 1711 1712 val &= 1; 1713 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG, 1714 BIT(SN_GPIO_OUTPUT_SHIFT + offset), 1715 val << (SN_GPIO_OUTPUT_SHIFT + offset)); 1716 if (ret) 1717 dev_warn(pdata->dev, 1718 "Failed to set bridge GPIO %u: %d\n", offset, ret); 1719 } 1720 1721 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip, 1722 unsigned int offset) 1723 { 1724 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1725 int shift = offset * 2; 1726 int ret; 1727 1728 if (!test_and_clear_bit(offset, pdata->gchip_output)) 1729 return 0; 1730 1731 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1732 SN_GPIO_MUX_MASK << shift, 1733 SN_GPIO_MUX_INPUT << shift); 1734 if (ret) { 1735 set_bit(offset, pdata->gchip_output); 1736 return ret; 1737 } 1738 1739 /* 1740 * NOTE: if nobody else is powering the device this may fully power 1741 * it off and when it comes back it will have lost all state, but 1742 * that's OK because the default is input and we're now an input. 1743 */ 1744 pm_runtime_put_autosuspend(pdata->dev); 1745 1746 return 0; 1747 } 1748 1749 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip, 1750 unsigned int offset, int val) 1751 { 1752 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1753 int shift = offset * 2; 1754 int ret; 1755 1756 if (test_and_set_bit(offset, pdata->gchip_output)) 1757 return 0; 1758 1759 pm_runtime_get_sync(pdata->dev); 1760 1761 /* Set value first to avoid glitching */ 1762 ti_sn_bridge_gpio_set(chip, offset, val); 1763 1764 /* Set direction */ 1765 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, 1766 SN_GPIO_MUX_MASK << shift, 1767 SN_GPIO_MUX_OUTPUT << shift); 1768 if (ret) { 1769 clear_bit(offset, pdata->gchip_output); 1770 pm_runtime_put_autosuspend(pdata->dev); 1771 } 1772 1773 return ret; 1774 } 1775 1776 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset) 1777 { 1778 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1779 1780 if (offset == SN_PWM_GPIO_IDX) 1781 return ti_sn_pwm_pin_request(pdata); 1782 1783 return 0; 1784 } 1785 1786 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset) 1787 { 1788 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip); 1789 1790 /* We won't keep pm_runtime if we're input, so switch there on free */ 1791 ti_sn_bridge_gpio_direction_input(chip, offset); 1792 1793 if (offset == SN_PWM_GPIO_IDX) 1794 ti_sn_pwm_pin_release(pdata); 1795 } 1796 1797 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = { 1798 "GPIO1", "GPIO2", "GPIO3", "GPIO4" 1799 }; 1800 1801 static int ti_sn_gpio_probe(struct auxiliary_device *adev, 1802 const struct auxiliary_device_id *id) 1803 { 1804 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent); 1805 int ret; 1806 1807 /* Only init if someone is going to use us as a GPIO controller */ 1808 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller")) 1809 return 0; 1810 1811 pdata->gchip.label = dev_name(pdata->dev); 1812 pdata->gchip.parent = pdata->dev; 1813 pdata->gchip.owner = THIS_MODULE; 1814 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate; 1815 pdata->gchip.of_gpio_n_cells = 2; 1816 pdata->gchip.request = ti_sn_bridge_gpio_request; 1817 pdata->gchip.free = ti_sn_bridge_gpio_free; 1818 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction; 1819 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input; 1820 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output; 1821 pdata->gchip.get = ti_sn_bridge_gpio_get; 1822 pdata->gchip.set = ti_sn_bridge_gpio_set; 1823 pdata->gchip.can_sleep = true; 1824 pdata->gchip.names = ti_sn_bridge_gpio_names; 1825 pdata->gchip.ngpio = SN_NUM_GPIOS; 1826 pdata->gchip.base = -1; 1827 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata); 1828 if (ret) 1829 dev_err(pdata->dev, "can't add gpio chip\n"); 1830 1831 return ret; 1832 } 1833 1834 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = { 1835 { .name = "ti_sn65dsi86.gpio", }, 1836 {}, 1837 }; 1838 1839 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table); 1840 1841 static struct auxiliary_driver ti_sn_gpio_driver = { 1842 .name = "gpio", 1843 .probe = ti_sn_gpio_probe, 1844 .id_table = ti_sn_gpio_id_table, 1845 }; 1846 1847 static int __init ti_sn_gpio_register(void) 1848 { 1849 return auxiliary_driver_register(&ti_sn_gpio_driver); 1850 } 1851 1852 static void ti_sn_gpio_unregister(void) 1853 { 1854 auxiliary_driver_unregister(&ti_sn_gpio_driver); 1855 } 1856 1857 #else 1858 1859 static inline int ti_sn_gpio_register(void) { return 0; } 1860 static inline void ti_sn_gpio_unregister(void) {} 1861 1862 #endif 1863 1864 /* ----------------------------------------------------------------------------- 1865 * Probe & Remove 1866 */ 1867 1868 static void ti_sn65dsi86_runtime_disable(void *data) 1869 { 1870 pm_runtime_dont_use_autosuspend(data); 1871 pm_runtime_disable(data); 1872 } 1873 1874 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata) 1875 { 1876 unsigned int i; 1877 const char * const ti_sn_bridge_supply_names[] = { 1878 "vcca", "vcc", "vccio", "vpll", 1879 }; 1880 1881 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++) 1882 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i]; 1883 1884 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM, 1885 pdata->supplies); 1886 } 1887 1888 static int ti_sn65dsi86_probe(struct i2c_client *client) 1889 { 1890 struct device *dev = &client->dev; 1891 struct ti_sn65dsi86 *pdata; 1892 int ret; 1893 1894 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 1895 DRM_ERROR("device doesn't support I2C\n"); 1896 return -ENODEV; 1897 } 1898 1899 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL); 1900 if (!pdata) 1901 return -ENOMEM; 1902 dev_set_drvdata(dev, pdata); 1903 pdata->dev = dev; 1904 1905 mutex_init(&pdata->comms_mutex); 1906 1907 pdata->regmap = devm_regmap_init_i2c(client, 1908 &ti_sn65dsi86_regmap_config); 1909 if (IS_ERR(pdata->regmap)) 1910 return dev_err_probe(dev, PTR_ERR(pdata->regmap), 1911 "regmap i2c init failed\n"); 1912 1913 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable", 1914 GPIOD_OUT_LOW); 1915 if (IS_ERR(pdata->enable_gpio)) 1916 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio), 1917 "failed to get enable gpio from DT\n"); 1918 1919 ret = ti_sn65dsi86_parse_regulators(pdata); 1920 if (ret) 1921 return dev_err_probe(dev, ret, "failed to parse regulators\n"); 1922 1923 pdata->refclk = devm_clk_get_optional(dev, "refclk"); 1924 if (IS_ERR(pdata->refclk)) 1925 return dev_err_probe(dev, PTR_ERR(pdata->refclk), 1926 "failed to get reference clock\n"); 1927 1928 pm_runtime_enable(dev); 1929 pm_runtime_set_autosuspend_delay(pdata->dev, 500); 1930 pm_runtime_use_autosuspend(pdata->dev); 1931 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev); 1932 if (ret) 1933 return ret; 1934 1935 ti_sn65dsi86_debugfs_init(pdata); 1936 1937 /* 1938 * Break ourselves up into a collection of aux devices. The only real 1939 * motiviation here is to solve the chicken-and-egg problem of probe 1940 * ordering. The bridge wants the panel to be there when it probes. 1941 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards) 1942 * when it probes. The panel and maybe backlight might want the DDC 1943 * bus or the pwm_chip. Having sub-devices allows the some sub devices 1944 * to finish probing even if others return -EPROBE_DEFER and gets us 1945 * around the problems. 1946 */ 1947 1948 if (IS_ENABLED(CONFIG_OF_GPIO)) { 1949 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio"); 1950 if (ret) 1951 return ret; 1952 } 1953 1954 if (IS_ENABLED(CONFIG_PWM)) { 1955 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm"); 1956 if (ret) 1957 return ret; 1958 } 1959 1960 /* 1961 * NOTE: At the end of the AUX channel probe we'll add the aux device 1962 * for the bridge. This is because the bridge can't be used until the 1963 * AUX channel is there and this is a very simple solution to the 1964 * dependency problem. 1965 */ 1966 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux"); 1967 } 1968 1969 static struct i2c_device_id ti_sn65dsi86_id[] = { 1970 { "ti,sn65dsi86", 0}, 1971 {}, 1972 }; 1973 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id); 1974 1975 static const struct of_device_id ti_sn65dsi86_match_table[] = { 1976 {.compatible = "ti,sn65dsi86"}, 1977 {}, 1978 }; 1979 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table); 1980 1981 static struct i2c_driver ti_sn65dsi86_driver = { 1982 .driver = { 1983 .name = "ti_sn65dsi86", 1984 .of_match_table = ti_sn65dsi86_match_table, 1985 .pm = &ti_sn65dsi86_pm_ops, 1986 }, 1987 .probe = ti_sn65dsi86_probe, 1988 .id_table = ti_sn65dsi86_id, 1989 }; 1990 1991 static int __init ti_sn65dsi86_init(void) 1992 { 1993 int ret; 1994 1995 ret = i2c_add_driver(&ti_sn65dsi86_driver); 1996 if (ret) 1997 return ret; 1998 1999 ret = ti_sn_gpio_register(); 2000 if (ret) 2001 goto err_main_was_registered; 2002 2003 ret = ti_sn_pwm_register(); 2004 if (ret) 2005 goto err_gpio_was_registered; 2006 2007 ret = auxiliary_driver_register(&ti_sn_aux_driver); 2008 if (ret) 2009 goto err_pwm_was_registered; 2010 2011 ret = auxiliary_driver_register(&ti_sn_bridge_driver); 2012 if (ret) 2013 goto err_aux_was_registered; 2014 2015 return 0; 2016 2017 err_aux_was_registered: 2018 auxiliary_driver_unregister(&ti_sn_aux_driver); 2019 err_pwm_was_registered: 2020 ti_sn_pwm_unregister(); 2021 err_gpio_was_registered: 2022 ti_sn_gpio_unregister(); 2023 err_main_was_registered: 2024 i2c_del_driver(&ti_sn65dsi86_driver); 2025 2026 return ret; 2027 } 2028 module_init(ti_sn65dsi86_init); 2029 2030 static void __exit ti_sn65dsi86_exit(void) 2031 { 2032 auxiliary_driver_unregister(&ti_sn_bridge_driver); 2033 auxiliary_driver_unregister(&ti_sn_aux_driver); 2034 ti_sn_pwm_unregister(); 2035 ti_sn_gpio_unregister(); 2036 i2c_del_driver(&ti_sn65dsi86_driver); 2037 } 2038 module_exit(ti_sn65dsi86_exit); 2039 2040 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>"); 2041 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver"); 2042 MODULE_LICENSE("GPL v2"); 2043