xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi83.c (revision fe7fad476ec8153a8b8767a08114e3e4a58a837e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TI SN65DSI83,84,85 driver
4  *
5  * Currently supported:
6  * - SN65DSI83
7  *   = 1x Single-link DSI ~ 1x Single-link LVDS
8  *   - Supported
9  *   - Single-link LVDS mode tested
10  * - SN65DSI84
11  *   = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
12  *   - Supported
13  *   - Dual-link LVDS mode tested
14  *   - 2x Single-link LVDS mode unsupported
15  *     (should be easy to add by someone who has the HW)
16  * - SN65DSI85
17  *   = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
18  *   - Unsupported
19  *     (should be easy to add by someone who has the HW)
20  *
21  * Copyright (C) 2021 Marek Vasut <marex@denx.de>
22  *
23  * Based on previous work of:
24  * Valentin Raevsky <valentin@compulab.co.il>
25  * Philippe Schenker <philippe.schenker@toradex.com>
26  */
27 
28 #include <linux/bits.h>
29 #include <linux/clk.h>
30 #include <linux/gpio/consumer.h>
31 #include <linux/i2c.h>
32 #include <linux/media-bus-format.h>
33 #include <linux/module.h>
34 #include <linux/of.h>
35 #include <linux/of_graph.h>
36 #include <linux/regmap.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/timer.h>
39 #include <linux/workqueue.h>
40 
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_bridge.h>
43 #include <drm/drm_drv.h> /* DRM_MODESET_LOCK_ALL_BEGIN() needs drm_drv_uses_atomic_modeset() */
44 #include <drm/drm_mipi_dsi.h>
45 #include <drm/drm_of.h>
46 #include <drm/drm_print.h>
47 #include <drm/drm_probe_helper.h>
48 
49 /* ID registers */
50 #define REG_ID(n)				(0x00 + (n))
51 /* Reset and clock registers */
52 #define REG_RC_RESET				0x09
53 #define  REG_RC_RESET_SOFT_RESET		BIT(0)
54 #define REG_RC_LVDS_PLL				0x0a
55 #define  REG_RC_LVDS_PLL_PLL_EN_STAT		BIT(7)
56 #define  REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n)	(((n) & 0x7) << 1)
57 #define  REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY	BIT(0)
58 #define REG_RC_DSI_CLK				0x0b
59 #define  REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n)	(((n) & 0x1f) << 3)
60 #define  REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n)	((n) & 0x3)
61 #define REG_RC_PLL_EN				0x0d
62 #define  REG_RC_PLL_EN_PLL_EN			BIT(0)
63 /* DSI registers */
64 #define REG_DSI_LANE				0x10
65 #define  REG_DSI_LANE_LEFT_RIGHT_PIXELS		BIT(7)	/* DSI85-only */
66 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL	0	/* DSI85-only */
67 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE	BIT(6)	/* DSI85-only */
68 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE	BIT(5)
69 #define  REG_DSI_LANE_CHA_DSI_LANES(n)		(((n) & 0x3) << 3)
70 #define  REG_DSI_LANE_CHB_DSI_LANES(n)		(((n) & 0x3) << 1)
71 #define  REG_DSI_LANE_SOT_ERR_TOL_DIS		BIT(0)
72 #define REG_DSI_EQ				0x11
73 #define  REG_DSI_EQ_CHA_DSI_DATA_EQ(n)		(((n) & 0x3) << 6)
74 #define  REG_DSI_EQ_CHA_DSI_CLK_EQ(n)		(((n) & 0x3) << 2)
75 #define REG_DSI_CLK				0x12
76 #define  REG_DSI_CLK_CHA_DSI_CLK_RANGE(n)	((n) & 0xff)
77 /* LVDS registers */
78 #define REG_LVDS_FMT				0x18
79 #define  REG_LVDS_FMT_DE_NEG_POLARITY		BIT(7)
80 #define  REG_LVDS_FMT_HS_NEG_POLARITY		BIT(6)
81 #define  REG_LVDS_FMT_VS_NEG_POLARITY		BIT(5)
82 #define  REG_LVDS_FMT_LVDS_LINK_CFG		BIT(4)	/* 0:AB 1:A-only */
83 #define  REG_LVDS_FMT_CHA_24BPP_MODE		BIT(3)
84 #define  REG_LVDS_FMT_CHB_24BPP_MODE		BIT(2)
85 #define  REG_LVDS_FMT_CHA_24BPP_FORMAT1		BIT(1)
86 #define  REG_LVDS_FMT_CHB_24BPP_FORMAT1		BIT(0)
87 #define REG_LVDS_VCOM				0x19
88 #define  REG_LVDS_VCOM_CHA_LVDS_VOCM		BIT(6)
89 #define  REG_LVDS_VCOM_CHB_LVDS_VOCM		BIT(4)
90 #define  REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n)	(((n) & 0x3) << 2)
91 #define  REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n)	((n) & 0x3)
92 #define REG_LVDS_LANE				0x1a
93 #define  REG_LVDS_LANE_EVEN_ODD_SWAP		BIT(6)
94 #define  REG_LVDS_LANE_CHA_REVERSE_LVDS		BIT(5)
95 #define  REG_LVDS_LANE_CHB_REVERSE_LVDS		BIT(4)
96 #define  REG_LVDS_LANE_CHA_LVDS_TERM		BIT(1)
97 #define  REG_LVDS_LANE_CHB_LVDS_TERM		BIT(0)
98 #define REG_LVDS_CM				0x1b
99 #define  REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n)	(((n) & 0x3) << 4)
100 #define  REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n)	((n) & 0x3)
101 /* Video registers */
102 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW	0x20
103 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH	0x21
104 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW	0x24
105 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH	0x25
106 #define REG_VID_CHA_SYNC_DELAY_LOW		0x28
107 #define REG_VID_CHA_SYNC_DELAY_HIGH		0x29
108 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW	0x2c
109 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH	0x2d
110 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW	0x30
111 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH	0x31
112 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH	0x34
113 #define REG_VID_CHA_VERTICAL_BACK_PORCH		0x36
114 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH	0x38
115 #define REG_VID_CHA_VERTICAL_FRONT_PORCH	0x3a
116 #define REG_VID_CHA_TEST_PATTERN		0x3c
117 /* IRQ registers */
118 #define REG_IRQ_GLOBAL				0xe0
119 #define  REG_IRQ_GLOBAL_IRQ_EN			BIT(0)
120 #define REG_IRQ_EN				0xe1
121 #define  REG_IRQ_EN_CHA_SYNCH_ERR_EN		BIT(7)
122 #define  REG_IRQ_EN_CHA_CRC_ERR_EN		BIT(6)
123 #define  REG_IRQ_EN_CHA_UNC_ECC_ERR_EN		BIT(5)
124 #define  REG_IRQ_EN_CHA_COR_ECC_ERR_EN		BIT(4)
125 #define  REG_IRQ_EN_CHA_LLP_ERR_EN		BIT(3)
126 #define  REG_IRQ_EN_CHA_SOT_BIT_ERR_EN		BIT(2)
127 #define  REG_IRQ_EN_CHA_PLL_UNLOCK_EN		BIT(0)
128 #define REG_IRQ_STAT				0xe5
129 #define  REG_IRQ_STAT_CHA_SYNCH_ERR		BIT(7)
130 #define  REG_IRQ_STAT_CHA_CRC_ERR		BIT(6)
131 #define  REG_IRQ_STAT_CHA_UNC_ECC_ERR		BIT(5)
132 #define  REG_IRQ_STAT_CHA_COR_ECC_ERR		BIT(4)
133 #define  REG_IRQ_STAT_CHA_LLP_ERR		BIT(3)
134 #define  REG_IRQ_STAT_CHA_SOT_BIT_ERR		BIT(2)
135 #define  REG_IRQ_STAT_CHA_PLL_UNLOCK		BIT(0)
136 
137 enum sn65dsi83_channel {
138 	CHANNEL_A,
139 	CHANNEL_B
140 };
141 
142 enum sn65dsi83_lvds_term {
143 	OHM_100,
144 	OHM_200
145 };
146 
147 enum sn65dsi83_model {
148 	MODEL_SN65DSI83,
149 	MODEL_SN65DSI84,
150 };
151 
152 struct sn65dsi83 {
153 	struct drm_bridge		bridge;
154 	struct device			*dev;
155 	struct regmap			*regmap;
156 	struct mipi_dsi_device		*dsi;
157 	struct drm_bridge		*panel_bridge;
158 	struct gpio_desc		*enable_gpio;
159 	struct regulator		*vcc;
160 	bool				lvds_dual_link;
161 	bool				lvds_dual_link_even_odd_swap;
162 	int				lvds_vod_swing_conf[2];
163 	int				lvds_term_conf[2];
164 	int				irq;
165 	struct delayed_work		monitor_work;
166 	struct work_struct		reset_work;
167 };
168 
169 static const struct regmap_range sn65dsi83_readable_ranges[] = {
170 	regmap_reg_range(REG_ID(0), REG_ID(8)),
171 	regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
172 	regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
173 	regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
174 	regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
175 	regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
176 			 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
177 	regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
178 			 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
179 	regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
180 			 REG_VID_CHA_SYNC_DELAY_HIGH),
181 	regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
182 			 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
183 	regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
184 			 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
185 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
186 			 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
187 	regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
188 			 REG_VID_CHA_VERTICAL_BACK_PORCH),
189 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
190 			 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
191 	regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
192 			 REG_VID_CHA_VERTICAL_FRONT_PORCH),
193 	regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
194 	regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
195 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
196 };
197 
198 static const struct regmap_access_table sn65dsi83_readable_table = {
199 	.yes_ranges = sn65dsi83_readable_ranges,
200 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
201 };
202 
203 static const struct regmap_range sn65dsi83_writeable_ranges[] = {
204 	regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
205 	regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
206 	regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
207 	regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
208 	regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
209 			 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
210 	regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
211 			 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
212 	regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
213 			 REG_VID_CHA_SYNC_DELAY_HIGH),
214 	regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
215 			 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
216 	regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
217 			 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
218 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
219 			 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
220 	regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
221 			 REG_VID_CHA_VERTICAL_BACK_PORCH),
222 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
223 			 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
224 	regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
225 			 REG_VID_CHA_VERTICAL_FRONT_PORCH),
226 	regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
227 	regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
228 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
229 };
230 
231 static const struct regmap_access_table sn65dsi83_writeable_table = {
232 	.yes_ranges = sn65dsi83_writeable_ranges,
233 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
234 };
235 
236 static const struct regmap_range sn65dsi83_volatile_ranges[] = {
237 	regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
238 	regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
239 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
240 };
241 
242 static const struct regmap_access_table sn65dsi83_volatile_table = {
243 	.yes_ranges = sn65dsi83_volatile_ranges,
244 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
245 };
246 
247 static const struct regmap_config sn65dsi83_regmap_config = {
248 	.reg_bits = 8,
249 	.val_bits = 8,
250 	.rd_table = &sn65dsi83_readable_table,
251 	.wr_table = &sn65dsi83_writeable_table,
252 	.volatile_table = &sn65dsi83_volatile_table,
253 	.cache_type = REGCACHE_MAPLE,
254 	.max_register = REG_IRQ_STAT,
255 };
256 
257 static const int lvds_vod_swing_data_table[2][4][2] = {
258 	{	/* 100 Ohm */
259 		{ 180000, 313000 },
260 		{ 215000, 372000 },
261 		{ 250000, 430000 },
262 		{ 290000, 488000 },
263 	},
264 	{	/* 200 Ohm */
265 		{ 150000, 261000 },
266 		{ 200000, 346000 },
267 		{ 250000, 428000 },
268 		{ 300000, 511000 },
269 	},
270 };
271 
272 static const int lvds_vod_swing_clock_table[2][4][2] = {
273 	{	/* 100 Ohm */
274 		{ 140000, 244000 },
275 		{ 168000, 290000 },
276 		{ 195000, 335000 },
277 		{ 226000, 381000 },
278 	},
279 	{	/* 200 Ohm */
280 		{ 117000, 204000 },
281 		{ 156000, 270000 },
282 		{ 195000, 334000 },
283 		{ 234000, 399000 },
284 	},
285 };
286 
287 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
288 {
289 	return container_of(bridge, struct sn65dsi83, bridge);
290 }
291 
292 static int sn65dsi83_attach(struct drm_bridge *bridge,
293 			    enum drm_bridge_attach_flags flags)
294 {
295 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
296 
297 	return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
298 				 &ctx->bridge, flags);
299 }
300 
301 static void sn65dsi83_detach(struct drm_bridge *bridge)
302 {
303 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
304 
305 	if (!ctx->dsi)
306 		return;
307 
308 	ctx->dsi = NULL;
309 }
310 
311 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
312 				   const struct drm_display_mode *mode)
313 {
314 	/*
315 	 * The encoding of the LVDS_CLK_RANGE is as follows:
316 	 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
317 	 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
318 	 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
319 	 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
320 	 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
321 	 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
322 	 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
323 	 * the ends of the ranges are clamped to the supported range. Since
324 	 * sn65dsi83_mode_valid() already filters the valid modes and limits
325 	 * the clock to 25..154 MHz, the range calculation can be simplified
326 	 * as follows:
327 	 */
328 	int mode_clock = mode->clock;
329 
330 	if (ctx->lvds_dual_link)
331 		mode_clock /= 2;
332 
333 	return (mode_clock - 12500) / 25000;
334 }
335 
336 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
337 				  const struct drm_display_mode *mode)
338 {
339 	/*
340 	 * The encoding of the CHA_DSI_CLK_RANGE is as follows:
341 	 * 0x00 through 0x07 - Reserved
342 	 * 0x08 - 40 <= DSI_CLK < 45 MHz
343 	 * 0x09 - 45 <= DSI_CLK < 50 MHz
344 	 * ...
345 	 * 0x63 - 495 <= DSI_CLK < 500 MHz
346 	 * 0x64 - 500 MHz
347 	 * 0x65 through 0xFF - Reserved
348 	 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
349 	 * The DSI clock are calculated as:
350 	 *  DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
351 	 * the 2 is there because the bus is DDR.
352 	 */
353 	return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
354 			    mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
355 			    ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
356 }
357 
358 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
359 {
360 	/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
361 	unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
362 
363 	dsi_div /= ctx->dsi->lanes;
364 
365 	if (!ctx->lvds_dual_link)
366 		dsi_div /= 2;
367 
368 	return dsi_div - 1;
369 }
370 
371 static int sn65dsi83_reset_pipe(struct sn65dsi83 *sn65dsi83)
372 {
373 	struct drm_device *dev = sn65dsi83->bridge.dev;
374 	struct drm_modeset_acquire_ctx ctx;
375 	int err;
376 
377 	/*
378 	 * Reset active outputs of the related CRTC.
379 	 *
380 	 * This way, drm core will reconfigure each components in the CRTC
381 	 * outputs path. In our case, this will force the previous component to
382 	 * go back in LP11 mode and so allow the reconfiguration of SN65DSI83
383 	 * bridge.
384 	 *
385 	 * Keep the lock during the whole operation to be atomic.
386 	 */
387 
388 	DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, err);
389 
390 	if (!sn65dsi83->bridge.encoder->crtc) {
391 		/*
392 		 * No CRTC attached -> No CRTC active outputs to reset
393 		 * This can happen when the SN65DSI83 is reset. Simply do
394 		 * nothing without returning any errors.
395 		 */
396 		err = 0;
397 		goto end;
398 	}
399 
400 	dev_warn(sn65dsi83->dev, "reset the pipe\n");
401 
402 	err = drm_atomic_helper_reset_crtc(sn65dsi83->bridge.encoder->crtc, &ctx);
403 
404 end:
405 	DRM_MODESET_LOCK_ALL_END(dev, ctx, err);
406 
407 	return err;
408 }
409 
410 static void sn65dsi83_reset_work(struct work_struct *ws)
411 {
412 	struct sn65dsi83 *ctx = container_of(ws, struct sn65dsi83, reset_work);
413 	int ret;
414 
415 	/* Reset the pipe */
416 	ret = sn65dsi83_reset_pipe(ctx);
417 	if (ret) {
418 		dev_err(ctx->dev, "reset pipe failed %pe\n", ERR_PTR(ret));
419 		return;
420 	}
421 	if (ctx->irq)
422 		enable_irq(ctx->irq);
423 }
424 
425 static void sn65dsi83_handle_errors(struct sn65dsi83 *ctx)
426 {
427 	unsigned int irq_stat;
428 	int ret;
429 
430 	/*
431 	 * Schedule a reset in case of:
432 	 *  - the bridge doesn't answer
433 	 *  - the bridge signals an error
434 	 */
435 
436 	ret = regmap_read(ctx->regmap, REG_IRQ_STAT, &irq_stat);
437 	if (ret || irq_stat) {
438 		/*
439 		 * IRQ acknowledged is not always possible (the bridge can be in
440 		 * a state where it doesn't answer anymore). To prevent an
441 		 * interrupt storm, disable interrupt. The interrupt will be
442 		 * after the reset.
443 		 */
444 		if (ctx->irq)
445 			disable_irq_nosync(ctx->irq);
446 
447 		schedule_work(&ctx->reset_work);
448 	}
449 }
450 
451 static void sn65dsi83_monitor_work(struct work_struct *work)
452 {
453 	struct sn65dsi83 *ctx = container_of(to_delayed_work(work),
454 					     struct sn65dsi83, monitor_work);
455 
456 	sn65dsi83_handle_errors(ctx);
457 
458 	schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000));
459 }
460 
461 static void sn65dsi83_monitor_start(struct sn65dsi83 *ctx)
462 {
463 	schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000));
464 }
465 
466 static void sn65dsi83_monitor_stop(struct sn65dsi83 *ctx)
467 {
468 	cancel_delayed_work_sync(&ctx->monitor_work);
469 }
470 
471 static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
472 					struct drm_atomic_state *state)
473 {
474 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
475 	const struct drm_bridge_state *bridge_state;
476 	const struct drm_crtc_state *crtc_state;
477 	const struct drm_display_mode *mode;
478 	struct drm_connector *connector;
479 	struct drm_crtc *crtc;
480 	bool lvds_format_24bpp;
481 	bool lvds_format_jeida;
482 	unsigned int pval;
483 	__le16 le16val;
484 	u16 val;
485 	int ret;
486 
487 	ret = regulator_enable(ctx->vcc);
488 	if (ret) {
489 		dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
490 		return;
491 	}
492 
493 	/* Deassert reset */
494 	gpiod_set_value_cansleep(ctx->enable_gpio, 1);
495 	usleep_range(10000, 11000);
496 
497 	/* Get the LVDS format from the bridge state. */
498 	bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
499 
500 	switch (bridge_state->output_bus_cfg.format) {
501 	case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
502 		lvds_format_24bpp = false;
503 		lvds_format_jeida = true;
504 		break;
505 	case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
506 		lvds_format_24bpp = true;
507 		lvds_format_jeida = true;
508 		break;
509 	case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
510 		lvds_format_24bpp = true;
511 		lvds_format_jeida = false;
512 		break;
513 	default:
514 		/*
515 		 * Some bridges still don't set the correct
516 		 * LVDS bus pixel format, use SPWG24 default
517 		 * format until those are fixed.
518 		 */
519 		lvds_format_24bpp = true;
520 		lvds_format_jeida = false;
521 		dev_warn(ctx->dev,
522 			 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
523 			 bridge_state->output_bus_cfg.format);
524 		break;
525 	}
526 
527 	/*
528 	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
529 	 * from the bridge to the encoder, to the connector and to the CRTC.
530 	 */
531 	connector = drm_atomic_get_new_connector_for_encoder(state,
532 							     bridge->encoder);
533 	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
534 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
535 	mode = &crtc_state->adjusted_mode;
536 
537 	/* Clear reset, disable PLL */
538 	regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
539 	regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
540 
541 	/* Reference clock derived from DSI link clock. */
542 	regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
543 		     REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
544 		     REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
545 	regmap_write(ctx->regmap, REG_DSI_CLK,
546 		     REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
547 	regmap_write(ctx->regmap, REG_RC_DSI_CLK,
548 		     REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
549 
550 	/* Set number of DSI lanes and LVDS link config. */
551 	regmap_write(ctx->regmap, REG_DSI_LANE,
552 		     REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
553 		     REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
554 		     /* CHB is DSI85-only, set to default on DSI83/DSI84 */
555 		     REG_DSI_LANE_CHB_DSI_LANES(3));
556 	/* No equalization. */
557 	regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
558 
559 	/* Set up sync signal polarity. */
560 	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
561 	       REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
562 	      (mode->flags & DRM_MODE_FLAG_NVSYNC ?
563 	       REG_LVDS_FMT_VS_NEG_POLARITY : 0);
564 
565 	/* Set up bits-per-pixel, 18bpp or 24bpp. */
566 	if (lvds_format_24bpp) {
567 		val |= REG_LVDS_FMT_CHA_24BPP_MODE;
568 		if (ctx->lvds_dual_link)
569 			val |= REG_LVDS_FMT_CHB_24BPP_MODE;
570 	}
571 
572 	/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
573 	if (lvds_format_jeida) {
574 		val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
575 		if (ctx->lvds_dual_link)
576 			val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
577 	}
578 
579 	/* Set up LVDS output config (DSI84,DSI85) */
580 	if (!ctx->lvds_dual_link)
581 		val |= REG_LVDS_FMT_LVDS_LINK_CFG;
582 
583 	regmap_write(ctx->regmap, REG_LVDS_FMT, val);
584 	regmap_write(ctx->regmap, REG_LVDS_VCOM,
585 			REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_A]) |
586 			REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_B]));
587 	regmap_write(ctx->regmap, REG_LVDS_LANE,
588 		     (ctx->lvds_dual_link_even_odd_swap ?
589 		      REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
590 		     (ctx->lvds_term_conf[CHANNEL_A] ?
591 			  REG_LVDS_LANE_CHA_LVDS_TERM : 0) |
592 		     (ctx->lvds_term_conf[CHANNEL_B] ?
593 			  REG_LVDS_LANE_CHB_LVDS_TERM : 0));
594 	regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
595 
596 	le16val = cpu_to_le16(mode->hdisplay);
597 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
598 			  &le16val, 2);
599 	le16val = cpu_to_le16(mode->vdisplay);
600 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
601 			  &le16val, 2);
602 	/* 32 + 1 pixel clock to ensure proper operation */
603 	le16val = cpu_to_le16(32 + 1);
604 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
605 	le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
606 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
607 			  &le16val, 2);
608 	le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
609 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
610 			  &le16val, 2);
611 	regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
612 		     mode->htotal - mode->hsync_end);
613 	regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
614 		     mode->vtotal - mode->vsync_end);
615 	regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
616 		     mode->hsync_start - mode->hdisplay);
617 	regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
618 		     mode->vsync_start - mode->vdisplay);
619 	regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
620 
621 	/* Enable PLL */
622 	regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
623 	usleep_range(3000, 4000);
624 	ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
625 				       pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
626 				       1000, 100000);
627 	if (ret) {
628 		dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
629 		/* On failure, disable PLL again and exit. */
630 		regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
631 		return;
632 	}
633 
634 	/* Trigger reset after CSR register update. */
635 	regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
636 
637 	/* Wait for 10ms after soft reset as specified in datasheet */
638 	usleep_range(10000, 12000);
639 }
640 
641 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
642 				    struct drm_atomic_state *state)
643 {
644 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
645 	unsigned int pval;
646 
647 	/* Clear all errors that got asserted during initialization. */
648 	regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
649 	regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
650 
651 	/* Wait for 1ms and check for errors in status register */
652 	usleep_range(1000, 1100);
653 	regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
654 	if (pval)
655 		dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
656 
657 	if (ctx->irq) {
658 		/* Enable irq to detect errors */
659 		regmap_write(ctx->regmap, REG_IRQ_GLOBAL, REG_IRQ_GLOBAL_IRQ_EN);
660 		regmap_write(ctx->regmap, REG_IRQ_EN, 0xff);
661 	} else {
662 		/* Use the polling task */
663 		sn65dsi83_monitor_start(ctx);
664 	}
665 }
666 
667 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
668 				     struct drm_atomic_state *state)
669 {
670 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
671 	int ret;
672 
673 	if (ctx->irq) {
674 		/* Disable irq */
675 		regmap_write(ctx->regmap, REG_IRQ_EN, 0x0);
676 		regmap_write(ctx->regmap, REG_IRQ_GLOBAL, 0x0);
677 	} else {
678 		/* Stop the polling task */
679 		sn65dsi83_monitor_stop(ctx);
680 	}
681 
682 	/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
683 	gpiod_set_value_cansleep(ctx->enable_gpio, 0);
684 	usleep_range(10000, 11000);
685 
686 	ret = regulator_disable(ctx->vcc);
687 	if (ret)
688 		dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
689 
690 	regcache_mark_dirty(ctx->regmap);
691 }
692 
693 static enum drm_mode_status
694 sn65dsi83_mode_valid(struct drm_bridge *bridge,
695 		     const struct drm_display_info *info,
696 		     const struct drm_display_mode *mode)
697 {
698 	/* LVDS output clock range 25..154 MHz */
699 	if (mode->clock < 25000)
700 		return MODE_CLOCK_LOW;
701 	if (mode->clock > 154000)
702 		return MODE_CLOCK_HIGH;
703 
704 	return MODE_OK;
705 }
706 
707 #define MAX_INPUT_SEL_FORMATS	1
708 
709 static u32 *
710 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
711 				    struct drm_bridge_state *bridge_state,
712 				    struct drm_crtc_state *crtc_state,
713 				    struct drm_connector_state *conn_state,
714 				    u32 output_fmt,
715 				    unsigned int *num_input_fmts)
716 {
717 	u32 *input_fmts;
718 
719 	*num_input_fmts = 0;
720 
721 	input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
722 			     GFP_KERNEL);
723 	if (!input_fmts)
724 		return NULL;
725 
726 	/* This is the DSI-end bus format */
727 	input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
728 	*num_input_fmts = 1;
729 
730 	return input_fmts;
731 }
732 
733 static const struct drm_bridge_funcs sn65dsi83_funcs = {
734 	.attach			= sn65dsi83_attach,
735 	.detach			= sn65dsi83_detach,
736 	.atomic_enable		= sn65dsi83_atomic_enable,
737 	.atomic_pre_enable	= sn65dsi83_atomic_pre_enable,
738 	.atomic_disable		= sn65dsi83_atomic_disable,
739 	.mode_valid		= sn65dsi83_mode_valid,
740 
741 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
742 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
743 	.atomic_reset = drm_atomic_helper_bridge_reset,
744 	.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
745 };
746 
747 static int sn65dsi83_select_lvds_vod_swing(struct device *dev,
748 	u32 lvds_vod_swing_data[2], u32 lvds_vod_swing_clk[2], u8 lvds_term)
749 {
750 	int i;
751 
752 	for (i = 0; i <= 3; i++) {
753 		if (lvds_vod_swing_data_table[lvds_term][i][0]  >= lvds_vod_swing_data[0] &&
754 		    lvds_vod_swing_data_table[lvds_term][i][1]  <= lvds_vod_swing_data[1] &&
755 		    lvds_vod_swing_clock_table[lvds_term][i][0] >= lvds_vod_swing_clk[0] &&
756 		    lvds_vod_swing_clock_table[lvds_term][i][1] <= lvds_vod_swing_clk[1])
757 			return i;
758 	}
759 
760 	dev_err(dev, "failed to find appropriate LVDS_VOD_SWING configuration\n");
761 	return -EINVAL;
762 }
763 
764 static int sn65dsi83_parse_lvds_endpoint(struct sn65dsi83 *ctx, int channel)
765 {
766 	struct device *dev = ctx->dev;
767 	struct device_node *endpoint;
768 	int endpoint_reg;
769 	/* Set so the property can be freely selected if not defined */
770 	u32 lvds_vod_swing_data[2] = { 0, 1000000 };
771 	u32 lvds_vod_swing_clk[2] = { 0, 1000000 };
772 	/* Set default near end terminataion to 200 Ohm */
773 	u32 lvds_term = 200;
774 	int lvds_vod_swing_conf;
775 	int ret = 0;
776 	int ret_data;
777 	int ret_clock;
778 
779 	if (channel == CHANNEL_A)
780 		endpoint_reg = 2;
781 	else
782 		endpoint_reg = 3;
783 
784 	endpoint = of_graph_get_endpoint_by_regs(dev->of_node, endpoint_reg, -1);
785 
786 	of_property_read_u32(endpoint, "ti,lvds-termination-ohms", &lvds_term);
787 	if (lvds_term == 100)
788 		ctx->lvds_term_conf[channel] = OHM_100;
789 	else if (lvds_term == 200)
790 		ctx->lvds_term_conf[channel] = OHM_200;
791 	else {
792 		ret = -EINVAL;
793 		goto exit;
794 	}
795 
796 	ret_data = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-data-microvolt",
797 					lvds_vod_swing_data, ARRAY_SIZE(lvds_vod_swing_data));
798 	if (ret_data != 0 && ret_data != -EINVAL) {
799 		ret = ret_data;
800 		goto exit;
801 	}
802 
803 	ret_clock = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-clock-microvolt",
804 					lvds_vod_swing_clk, ARRAY_SIZE(lvds_vod_swing_clk));
805 	if (ret_clock != 0 && ret_clock != -EINVAL) {
806 		ret = ret_clock;
807 		goto exit;
808 	}
809 
810 	/* Use default value if both properties are NOT defined. */
811 	if (ret_data == -EINVAL && ret_clock == -EINVAL)
812 		lvds_vod_swing_conf = 0x1;
813 
814 	/* Use lookup table if any of the two properties is defined. */
815 	if (!ret_data || !ret_clock) {
816 		lvds_vod_swing_conf = sn65dsi83_select_lvds_vod_swing(dev, lvds_vod_swing_data,
817 						lvds_vod_swing_clk, ctx->lvds_term_conf[channel]);
818 		if (lvds_vod_swing_conf < 0) {
819 			ret = lvds_vod_swing_conf;
820 			goto exit;
821 		}
822 	}
823 
824 	ctx->lvds_vod_swing_conf[channel] = lvds_vod_swing_conf;
825 	ret = 0;
826 exit:
827 	of_node_put(endpoint);
828 	return ret;
829 }
830 
831 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
832 {
833 	struct drm_bridge *panel_bridge;
834 	struct device *dev = ctx->dev;
835 	int ret;
836 
837 	ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_A);
838 	if (ret < 0)
839 		return ret;
840 
841 	ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_B);
842 	if (ret < 0)
843 		return ret;
844 
845 	ctx->lvds_dual_link = false;
846 	ctx->lvds_dual_link_even_odd_swap = false;
847 	if (model != MODEL_SN65DSI83) {
848 		struct device_node *port2, *port3;
849 		int dual_link;
850 
851 		port2 = of_graph_get_port_by_id(dev->of_node, 2);
852 		port3 = of_graph_get_port_by_id(dev->of_node, 3);
853 		dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
854 		of_node_put(port2);
855 		of_node_put(port3);
856 
857 		if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
858 			ctx->lvds_dual_link = true;
859 			/* Odd pixels to LVDS Channel A, even pixels to B */
860 			ctx->lvds_dual_link_even_odd_swap = false;
861 		} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
862 			ctx->lvds_dual_link = true;
863 			/* Even pixels to LVDS Channel A, odd pixels to B */
864 			ctx->lvds_dual_link_even_odd_swap = true;
865 		}
866 	}
867 
868 	panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
869 	if (IS_ERR(panel_bridge))
870 		return dev_err_probe(dev, PTR_ERR(panel_bridge), "Failed to get panel bridge\n");
871 
872 	ctx->panel_bridge = panel_bridge;
873 
874 	ctx->vcc = devm_regulator_get(dev, "vcc");
875 	if (IS_ERR(ctx->vcc))
876 		return dev_err_probe(dev, PTR_ERR(ctx->vcc),
877 				     "Failed to get supply 'vcc'\n");
878 
879 	return 0;
880 }
881 
882 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
883 {
884 	struct device *dev = ctx->dev;
885 	struct device_node *host_node;
886 	struct device_node *endpoint;
887 	struct mipi_dsi_device *dsi;
888 	struct mipi_dsi_host *host;
889 	const struct mipi_dsi_device_info info = {
890 		.type = "sn65dsi83",
891 		.channel = 0,
892 		.node = NULL,
893 	};
894 	int dsi_lanes, ret;
895 
896 	endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
897 	dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
898 	host_node = of_graph_get_remote_port_parent(endpoint);
899 	host = of_find_mipi_dsi_host_by_node(host_node);
900 	of_node_put(host_node);
901 	of_node_put(endpoint);
902 
903 	if (!host)
904 		return -EPROBE_DEFER;
905 
906 	if (dsi_lanes < 0)
907 		return dsi_lanes;
908 
909 	dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
910 	if (IS_ERR(dsi))
911 		return dev_err_probe(dev, PTR_ERR(dsi),
912 				     "failed to create dsi device\n");
913 
914 	ctx->dsi = dsi;
915 
916 	dsi->lanes = dsi_lanes;
917 	dsi->format = MIPI_DSI_FMT_RGB888;
918 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
919 			  MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
920 			  MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
921 
922 	ret = devm_mipi_dsi_attach(dev, dsi);
923 	if (ret < 0) {
924 		dev_err(dev, "failed to attach dsi to host: %d\n", ret);
925 		return ret;
926 	}
927 
928 	return 0;
929 }
930 
931 static irqreturn_t sn65dsi83_irq(int irq, void *data)
932 {
933 	struct sn65dsi83 *ctx = data;
934 
935 	sn65dsi83_handle_errors(ctx);
936 	return IRQ_HANDLED;
937 }
938 
939 static int sn65dsi83_probe(struct i2c_client *client)
940 {
941 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
942 	struct device *dev = &client->dev;
943 	enum sn65dsi83_model model;
944 	struct sn65dsi83 *ctx;
945 	int ret;
946 
947 	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
948 	if (!ctx)
949 		return -ENOMEM;
950 
951 	ctx->dev = dev;
952 	INIT_WORK(&ctx->reset_work, sn65dsi83_reset_work);
953 	INIT_DELAYED_WORK(&ctx->monitor_work, sn65dsi83_monitor_work);
954 
955 	if (dev->of_node) {
956 		model = (enum sn65dsi83_model)(uintptr_t)
957 			of_device_get_match_data(dev);
958 	} else {
959 		model = id->driver_data;
960 	}
961 
962 	/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
963 	ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
964 						   GPIOD_OUT_LOW);
965 	if (IS_ERR(ctx->enable_gpio))
966 		return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
967 
968 	usleep_range(10000, 11000);
969 
970 	ret = sn65dsi83_parse_dt(ctx, model);
971 	if (ret)
972 		return ret;
973 
974 	ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
975 	if (IS_ERR(ctx->regmap))
976 		return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
977 
978 	if (client->irq) {
979 		ctx->irq = client->irq;
980 		ret = devm_request_threaded_irq(ctx->dev, ctx->irq, NULL, sn65dsi83_irq,
981 						IRQF_ONESHOT, dev_name(ctx->dev), ctx);
982 		if (ret)
983 			return dev_err_probe(dev, ret, "failed to request irq\n");
984 	}
985 
986 	dev_set_drvdata(dev, ctx);
987 	i2c_set_clientdata(client, ctx);
988 
989 	ctx->bridge.funcs = &sn65dsi83_funcs;
990 	ctx->bridge.of_node = dev->of_node;
991 	ctx->bridge.pre_enable_prev_first = true;
992 	ctx->bridge.type = DRM_MODE_CONNECTOR_LVDS;
993 	drm_bridge_add(&ctx->bridge);
994 
995 	ret = sn65dsi83_host_attach(ctx);
996 	if (ret) {
997 		dev_err_probe(dev, ret, "failed to attach DSI host\n");
998 		goto err_remove_bridge;
999 	}
1000 
1001 	return 0;
1002 
1003 err_remove_bridge:
1004 	drm_bridge_remove(&ctx->bridge);
1005 	return ret;
1006 }
1007 
1008 static void sn65dsi83_remove(struct i2c_client *client)
1009 {
1010 	struct sn65dsi83 *ctx = i2c_get_clientdata(client);
1011 
1012 	drm_bridge_remove(&ctx->bridge);
1013 }
1014 
1015 static const struct i2c_device_id sn65dsi83_id[] = {
1016 	{ "ti,sn65dsi83", MODEL_SN65DSI83 },
1017 	{ "ti,sn65dsi84", MODEL_SN65DSI84 },
1018 	{},
1019 };
1020 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
1021 
1022 static const struct of_device_id sn65dsi83_match_table[] = {
1023 	{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
1024 	{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
1025 	{},
1026 };
1027 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
1028 
1029 static struct i2c_driver sn65dsi83_driver = {
1030 	.probe = sn65dsi83_probe,
1031 	.remove = sn65dsi83_remove,
1032 	.id_table = sn65dsi83_id,
1033 	.driver = {
1034 		.name = "sn65dsi83",
1035 		.of_match_table = sn65dsi83_match_table,
1036 	},
1037 };
1038 module_i2c_driver(sn65dsi83_driver);
1039 
1040 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1041 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
1042 MODULE_LICENSE("GPL v2");
1043