1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * TI SN65DSI83,84,85 driver 4 * 5 * Currently supported: 6 * - SN65DSI83 7 * = 1x Single-link DSI ~ 1x Single-link LVDS 8 * - Supported 9 * - Single-link LVDS mode tested 10 * - SN65DSI84 11 * = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS 12 * - Supported 13 * - Dual-link LVDS mode tested 14 * - 2x Single-link LVDS mode unsupported 15 * (should be easy to add by someone who has the HW) 16 * - SN65DSI85 17 * = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS 18 * - Unsupported 19 * (should be easy to add by someone who has the HW) 20 * 21 * Copyright (C) 2021 Marek Vasut <marex@denx.de> 22 * 23 * Based on previous work of: 24 * Valentin Raevsky <valentin@compulab.co.il> 25 * Philippe Schenker <philippe.schenker@toradex.com> 26 */ 27 28 #include <linux/bits.h> 29 #include <linux/clk.h> 30 #include <linux/gpio/consumer.h> 31 #include <linux/i2c.h> 32 #include <linux/media-bus-format.h> 33 #include <linux/module.h> 34 #include <linux/of.h> 35 #include <linux/of_graph.h> 36 #include <linux/regmap.h> 37 #include <linux/regulator/consumer.h> 38 #include <linux/timer.h> 39 #include <linux/workqueue.h> 40 41 #include <drm/drm_atomic_helper.h> 42 #include <drm/drm_bridge.h> 43 #include <drm/drm_drv.h> /* DRM_MODESET_LOCK_ALL_BEGIN() needs drm_drv_uses_atomic_modeset() */ 44 #include <drm/drm_mipi_dsi.h> 45 #include <drm/drm_of.h> 46 #include <drm/drm_print.h> 47 #include <drm/drm_probe_helper.h> 48 49 /* ID registers */ 50 #define REG_ID(n) (0x00 + (n)) 51 /* Reset and clock registers */ 52 #define REG_RC_RESET 0x09 53 #define REG_RC_RESET_SOFT_RESET BIT(0) 54 #define REG_RC_LVDS_PLL 0x0a 55 #define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7) 56 #define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1) 57 #define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0) 58 #define REG_RC_DSI_CLK 0x0b 59 #define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3) 60 #define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3) 61 #define REG_RC_PLL_EN 0x0d 62 #define REG_RC_PLL_EN_PLL_EN BIT(0) 63 /* DSI registers */ 64 #define REG_DSI_LANE 0x10 65 #define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */ 66 #define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */ 67 #define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */ 68 #define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5) 69 #define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3) 70 #define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1) 71 #define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0) 72 #define REG_DSI_EQ 0x11 73 #define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6) 74 #define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2) 75 #define REG_DSI_CLK 0x12 76 #define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff) 77 /* LVDS registers */ 78 #define REG_LVDS_FMT 0x18 79 #define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7) 80 #define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6) 81 #define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5) 82 #define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */ 83 #define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3) 84 #define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2) 85 #define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1) 86 #define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0) 87 #define REG_LVDS_VCOM 0x19 88 #define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6) 89 #define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4) 90 #define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2) 91 #define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3) 92 #define REG_LVDS_LANE 0x1a 93 #define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6) 94 #define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5) 95 #define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4) 96 #define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1) 97 #define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0) 98 #define REG_LVDS_CM 0x1b 99 #define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4) 100 #define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3) 101 /* Video registers */ 102 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20 103 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21 104 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24 105 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25 106 #define REG_VID_CHA_SYNC_DELAY_LOW 0x28 107 #define REG_VID_CHA_SYNC_DELAY_HIGH 0x29 108 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c 109 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d 110 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30 111 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31 112 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34 113 #define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36 114 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38 115 #define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a 116 #define REG_VID_CHA_TEST_PATTERN 0x3c 117 /* IRQ registers */ 118 #define REG_IRQ_GLOBAL 0xe0 119 #define REG_IRQ_GLOBAL_IRQ_EN BIT(0) 120 #define REG_IRQ_EN 0xe1 121 #define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7) 122 #define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6) 123 #define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5) 124 #define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4) 125 #define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3) 126 #define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2) 127 #define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0) 128 #define REG_IRQ_STAT 0xe5 129 #define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7) 130 #define REG_IRQ_STAT_CHA_CRC_ERR BIT(6) 131 #define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5) 132 #define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4) 133 #define REG_IRQ_STAT_CHA_LLP_ERR BIT(3) 134 #define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2) 135 #define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0) 136 137 enum sn65dsi83_channel { 138 CHANNEL_A, 139 CHANNEL_B 140 }; 141 142 enum sn65dsi83_lvds_term { 143 OHM_100, 144 OHM_200 145 }; 146 147 enum sn65dsi83_model { 148 MODEL_SN65DSI83, 149 MODEL_SN65DSI84, 150 }; 151 152 struct sn65dsi83 { 153 struct drm_bridge bridge; 154 struct device *dev; 155 struct regmap *regmap; 156 struct mipi_dsi_device *dsi; 157 struct drm_bridge *panel_bridge; 158 struct gpio_desc *enable_gpio; 159 struct regulator *vcc; 160 bool lvds_dual_link; 161 bool lvds_dual_link_even_odd_swap; 162 int lvds_vod_swing_conf[2]; 163 int lvds_term_conf[2]; 164 int irq; 165 struct delayed_work monitor_work; 166 struct work_struct reset_work; 167 }; 168 169 static const struct regmap_range sn65dsi83_readable_ranges[] = { 170 regmap_reg_range(REG_ID(0), REG_ID(8)), 171 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK), 172 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), 173 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), 174 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), 175 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 176 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), 177 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 178 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), 179 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, 180 REG_VID_CHA_SYNC_DELAY_HIGH), 181 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 182 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), 183 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 184 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), 185 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, 186 REG_VID_CHA_HORIZONTAL_BACK_PORCH), 187 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, 188 REG_VID_CHA_VERTICAL_BACK_PORCH), 189 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 190 REG_VID_CHA_HORIZONTAL_FRONT_PORCH), 191 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, 192 REG_VID_CHA_VERTICAL_FRONT_PORCH), 193 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), 194 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), 195 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 196 }; 197 198 static const struct regmap_access_table sn65dsi83_readable_table = { 199 .yes_ranges = sn65dsi83_readable_ranges, 200 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges), 201 }; 202 203 static const struct regmap_range sn65dsi83_writeable_ranges[] = { 204 regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK), 205 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), 206 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), 207 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), 208 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 209 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), 210 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 211 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), 212 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, 213 REG_VID_CHA_SYNC_DELAY_HIGH), 214 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 215 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), 216 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 217 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), 218 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, 219 REG_VID_CHA_HORIZONTAL_BACK_PORCH), 220 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, 221 REG_VID_CHA_VERTICAL_BACK_PORCH), 222 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 223 REG_VID_CHA_HORIZONTAL_FRONT_PORCH), 224 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, 225 REG_VID_CHA_VERTICAL_FRONT_PORCH), 226 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), 227 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), 228 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 229 }; 230 231 static const struct regmap_access_table sn65dsi83_writeable_table = { 232 .yes_ranges = sn65dsi83_writeable_ranges, 233 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges), 234 }; 235 236 static const struct regmap_range sn65dsi83_volatile_ranges[] = { 237 regmap_reg_range(REG_RC_RESET, REG_RC_RESET), 238 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL), 239 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 240 }; 241 242 static const struct regmap_access_table sn65dsi83_volatile_table = { 243 .yes_ranges = sn65dsi83_volatile_ranges, 244 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges), 245 }; 246 247 static const struct regmap_config sn65dsi83_regmap_config = { 248 .reg_bits = 8, 249 .val_bits = 8, 250 .rd_table = &sn65dsi83_readable_table, 251 .wr_table = &sn65dsi83_writeable_table, 252 .volatile_table = &sn65dsi83_volatile_table, 253 .cache_type = REGCACHE_MAPLE, 254 .max_register = REG_IRQ_STAT, 255 }; 256 257 static const int lvds_vod_swing_data_table[2][4][2] = { 258 { /* 100 Ohm */ 259 { 180000, 313000 }, 260 { 215000, 372000 }, 261 { 250000, 430000 }, 262 { 290000, 488000 }, 263 }, 264 { /* 200 Ohm */ 265 { 150000, 261000 }, 266 { 200000, 346000 }, 267 { 250000, 428000 }, 268 { 300000, 511000 }, 269 }, 270 }; 271 272 static const int lvds_vod_swing_clock_table[2][4][2] = { 273 { /* 100 Ohm */ 274 { 140000, 244000 }, 275 { 168000, 290000 }, 276 { 195000, 335000 }, 277 { 226000, 381000 }, 278 }, 279 { /* 200 Ohm */ 280 { 117000, 204000 }, 281 { 156000, 270000 }, 282 { 195000, 334000 }, 283 { 234000, 399000 }, 284 }, 285 }; 286 287 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge) 288 { 289 return container_of(bridge, struct sn65dsi83, bridge); 290 } 291 292 static int sn65dsi83_attach(struct drm_bridge *bridge, 293 enum drm_bridge_attach_flags flags) 294 { 295 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 296 297 return drm_bridge_attach(bridge->encoder, ctx->panel_bridge, 298 &ctx->bridge, flags); 299 } 300 301 static void sn65dsi83_detach(struct drm_bridge *bridge) 302 { 303 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 304 305 if (!ctx->dsi) 306 return; 307 308 ctx->dsi = NULL; 309 } 310 311 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx, 312 const struct drm_display_mode *mode) 313 { 314 /* 315 * The encoding of the LVDS_CLK_RANGE is as follows: 316 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz 317 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz 318 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz 319 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz 320 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz 321 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz 322 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that 323 * the ends of the ranges are clamped to the supported range. Since 324 * sn65dsi83_mode_valid() already filters the valid modes and limits 325 * the clock to 25..154 MHz, the range calculation can be simplified 326 * as follows: 327 */ 328 int mode_clock = mode->clock; 329 330 if (ctx->lvds_dual_link) 331 mode_clock /= 2; 332 333 return (mode_clock - 12500) / 25000; 334 } 335 336 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx, 337 const struct drm_display_mode *mode) 338 { 339 /* 340 * The encoding of the CHA_DSI_CLK_RANGE is as follows: 341 * 0x00 through 0x07 - Reserved 342 * 0x08 - 40 <= DSI_CLK < 45 MHz 343 * 0x09 - 45 <= DSI_CLK < 50 MHz 344 * ... 345 * 0x63 - 495 <= DSI_CLK < 500 MHz 346 * 0x64 - 500 MHz 347 * 0x65 through 0xFF - Reserved 348 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz. 349 * The DSI clock are calculated as: 350 * DSI_CLK = mode clock * bpp / dsi_data_lanes / 2 351 * the 2 is there because the bus is DDR. 352 */ 353 return DIV_ROUND_UP(clamp((unsigned int)mode->clock * 354 mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) / 355 ctx->dsi->lanes / 2, 40000U, 500000U), 5000U); 356 } 357 358 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx) 359 { 360 /* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */ 361 unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format); 362 363 dsi_div /= ctx->dsi->lanes; 364 365 if (!ctx->lvds_dual_link) 366 dsi_div /= 2; 367 368 return dsi_div - 1; 369 } 370 371 static int sn65dsi83_reset_pipe(struct sn65dsi83 *sn65dsi83) 372 { 373 struct drm_device *dev = sn65dsi83->bridge.dev; 374 struct drm_modeset_acquire_ctx ctx; 375 int err; 376 377 /* 378 * Reset active outputs of the related CRTC. 379 * 380 * This way, drm core will reconfigure each components in the CRTC 381 * outputs path. In our case, this will force the previous component to 382 * go back in LP11 mode and so allow the reconfiguration of SN65DSI83 383 * bridge. 384 * 385 * Keep the lock during the whole operation to be atomic. 386 */ 387 388 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, err); 389 390 if (!sn65dsi83->bridge.encoder->crtc) { 391 /* 392 * No CRTC attached -> No CRTC active outputs to reset 393 * This can happen when the SN65DSI83 is reset. Simply do 394 * nothing without returning any errors. 395 */ 396 err = 0; 397 goto end; 398 } 399 400 dev_warn(sn65dsi83->dev, "reset the pipe\n"); 401 402 err = drm_atomic_helper_reset_crtc(sn65dsi83->bridge.encoder->crtc, &ctx); 403 404 end: 405 DRM_MODESET_LOCK_ALL_END(dev, ctx, err); 406 407 return err; 408 } 409 410 static void sn65dsi83_reset_work(struct work_struct *ws) 411 { 412 struct sn65dsi83 *ctx = container_of(ws, struct sn65dsi83, reset_work); 413 int ret; 414 415 /* Reset the pipe */ 416 ret = sn65dsi83_reset_pipe(ctx); 417 if (ret) { 418 dev_err(ctx->dev, "reset pipe failed %pe\n", ERR_PTR(ret)); 419 return; 420 } 421 if (ctx->irq) 422 enable_irq(ctx->irq); 423 } 424 425 static void sn65dsi83_handle_errors(struct sn65dsi83 *ctx) 426 { 427 unsigned int irq_stat; 428 int ret; 429 430 /* 431 * Schedule a reset in case of: 432 * - the bridge doesn't answer 433 * - the bridge signals an error 434 */ 435 436 ret = regmap_read(ctx->regmap, REG_IRQ_STAT, &irq_stat); 437 if (ret || irq_stat) { 438 /* 439 * IRQ acknowledged is not always possible (the bridge can be in 440 * a state where it doesn't answer anymore). To prevent an 441 * interrupt storm, disable interrupt. The interrupt will be 442 * after the reset. 443 */ 444 if (ctx->irq) 445 disable_irq_nosync(ctx->irq); 446 447 schedule_work(&ctx->reset_work); 448 } 449 } 450 451 static void sn65dsi83_monitor_work(struct work_struct *work) 452 { 453 struct sn65dsi83 *ctx = container_of(to_delayed_work(work), 454 struct sn65dsi83, monitor_work); 455 456 sn65dsi83_handle_errors(ctx); 457 458 schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000)); 459 } 460 461 static void sn65dsi83_monitor_start(struct sn65dsi83 *ctx) 462 { 463 schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000)); 464 } 465 466 static void sn65dsi83_monitor_stop(struct sn65dsi83 *ctx) 467 { 468 cancel_delayed_work_sync(&ctx->monitor_work); 469 } 470 471 static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge, 472 struct drm_atomic_state *state) 473 { 474 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 475 const struct drm_bridge_state *bridge_state; 476 const struct drm_crtc_state *crtc_state; 477 const struct drm_display_mode *mode; 478 struct drm_connector *connector; 479 struct drm_crtc *crtc; 480 bool lvds_format_24bpp; 481 bool lvds_format_jeida; 482 unsigned int pval; 483 __le16 le16val; 484 u16 val; 485 int ret; 486 487 ret = regulator_enable(ctx->vcc); 488 if (ret) { 489 dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret); 490 return; 491 } 492 493 /* Deassert reset */ 494 gpiod_set_value_cansleep(ctx->enable_gpio, 1); 495 usleep_range(10000, 11000); 496 497 /* Get the LVDS format from the bridge state. */ 498 bridge_state = drm_atomic_get_new_bridge_state(state, bridge); 499 500 switch (bridge_state->output_bus_cfg.format) { 501 case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: 502 lvds_format_24bpp = false; 503 lvds_format_jeida = true; 504 break; 505 case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: 506 lvds_format_24bpp = true; 507 lvds_format_jeida = true; 508 break; 509 case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: 510 lvds_format_24bpp = true; 511 lvds_format_jeida = false; 512 break; 513 default: 514 /* 515 * Some bridges still don't set the correct 516 * LVDS bus pixel format, use SPWG24 default 517 * format until those are fixed. 518 */ 519 lvds_format_24bpp = true; 520 lvds_format_jeida = false; 521 dev_warn(ctx->dev, 522 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n", 523 bridge_state->output_bus_cfg.format); 524 break; 525 } 526 527 /* 528 * Retrieve the CRTC adjusted mode. This requires a little dance to go 529 * from the bridge to the encoder, to the connector and to the CRTC. 530 */ 531 connector = drm_atomic_get_new_connector_for_encoder(state, 532 bridge->encoder); 533 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; 534 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 535 mode = &crtc_state->adjusted_mode; 536 537 /* Clear reset, disable PLL */ 538 regmap_write(ctx->regmap, REG_RC_RESET, 0x00); 539 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); 540 541 /* Reference clock derived from DSI link clock. */ 542 regmap_write(ctx->regmap, REG_RC_LVDS_PLL, 543 REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) | 544 REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY); 545 regmap_write(ctx->regmap, REG_DSI_CLK, 546 REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode))); 547 regmap_write(ctx->regmap, REG_RC_DSI_CLK, 548 REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx))); 549 550 /* Set number of DSI lanes and LVDS link config. */ 551 regmap_write(ctx->regmap, REG_DSI_LANE, 552 REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE | 553 REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) | 554 /* CHB is DSI85-only, set to default on DSI83/DSI84 */ 555 REG_DSI_LANE_CHB_DSI_LANES(3)); 556 /* No equalization. */ 557 regmap_write(ctx->regmap, REG_DSI_EQ, 0x00); 558 559 /* Set up sync signal polarity. */ 560 val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 561 REG_LVDS_FMT_HS_NEG_POLARITY : 0) | 562 (mode->flags & DRM_MODE_FLAG_NVSYNC ? 563 REG_LVDS_FMT_VS_NEG_POLARITY : 0); 564 val |= bridge_state->output_bus_cfg.flags & DRM_BUS_FLAG_DE_LOW ? 565 REG_LVDS_FMT_DE_NEG_POLARITY : 0; 566 567 /* Set up bits-per-pixel, 18bpp or 24bpp. */ 568 if (lvds_format_24bpp) { 569 val |= REG_LVDS_FMT_CHA_24BPP_MODE; 570 if (ctx->lvds_dual_link) 571 val |= REG_LVDS_FMT_CHB_24BPP_MODE; 572 } 573 574 /* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */ 575 if (lvds_format_jeida) { 576 val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1; 577 if (ctx->lvds_dual_link) 578 val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1; 579 } 580 581 /* Set up LVDS output config (DSI84,DSI85) */ 582 if (!ctx->lvds_dual_link) 583 val |= REG_LVDS_FMT_LVDS_LINK_CFG; 584 585 regmap_write(ctx->regmap, REG_LVDS_FMT, val); 586 regmap_write(ctx->regmap, REG_LVDS_VCOM, 587 REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_A]) | 588 REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_B])); 589 regmap_write(ctx->regmap, REG_LVDS_LANE, 590 (ctx->lvds_dual_link_even_odd_swap ? 591 REG_LVDS_LANE_EVEN_ODD_SWAP : 0) | 592 (ctx->lvds_term_conf[CHANNEL_A] ? 593 REG_LVDS_LANE_CHA_LVDS_TERM : 0) | 594 (ctx->lvds_term_conf[CHANNEL_B] ? 595 REG_LVDS_LANE_CHB_LVDS_TERM : 0)); 596 regmap_write(ctx->regmap, REG_LVDS_CM, 0x00); 597 598 le16val = cpu_to_le16(mode->hdisplay); 599 regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 600 &le16val, 2); 601 le16val = cpu_to_le16(mode->vdisplay); 602 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 603 &le16val, 2); 604 /* 32 + 1 pixel clock to ensure proper operation */ 605 le16val = cpu_to_le16(32 + 1); 606 regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2); 607 le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start); 608 regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 609 &le16val, 2); 610 le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start); 611 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 612 &le16val, 2); 613 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH, 614 mode->htotal - mode->hsync_end); 615 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH, 616 mode->vtotal - mode->vsync_end); 617 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 618 mode->hsync_start - mode->hdisplay); 619 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH, 620 mode->vsync_start - mode->vdisplay); 621 regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00); 622 623 /* Enable PLL */ 624 regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN); 625 usleep_range(3000, 4000); 626 ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval, 627 pval & REG_RC_LVDS_PLL_PLL_EN_STAT, 628 1000, 100000); 629 if (ret) { 630 dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret); 631 /* On failure, disable PLL again and exit. */ 632 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); 633 return; 634 } 635 636 /* Trigger reset after CSR register update. */ 637 regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET); 638 639 /* Wait for 10ms after soft reset as specified in datasheet */ 640 usleep_range(10000, 12000); 641 } 642 643 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge, 644 struct drm_atomic_state *state) 645 { 646 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 647 unsigned int pval; 648 649 /* Clear all errors that got asserted during initialization. */ 650 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); 651 regmap_write(ctx->regmap, REG_IRQ_STAT, pval); 652 653 /* Wait for 1ms and check for errors in status register */ 654 usleep_range(1000, 1100); 655 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); 656 if (pval) 657 dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval); 658 659 if (ctx->irq) { 660 /* Enable irq to detect errors */ 661 regmap_write(ctx->regmap, REG_IRQ_GLOBAL, REG_IRQ_GLOBAL_IRQ_EN); 662 regmap_write(ctx->regmap, REG_IRQ_EN, 0xff); 663 } else { 664 /* Use the polling task */ 665 sn65dsi83_monitor_start(ctx); 666 } 667 } 668 669 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge, 670 struct drm_atomic_state *state) 671 { 672 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 673 int ret; 674 675 if (ctx->irq) { 676 /* Disable irq */ 677 regmap_write(ctx->regmap, REG_IRQ_EN, 0x0); 678 regmap_write(ctx->regmap, REG_IRQ_GLOBAL, 0x0); 679 } else { 680 /* Stop the polling task */ 681 sn65dsi83_monitor_stop(ctx); 682 } 683 684 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ 685 gpiod_set_value_cansleep(ctx->enable_gpio, 0); 686 usleep_range(10000, 11000); 687 688 ret = regulator_disable(ctx->vcc); 689 if (ret) 690 dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret); 691 692 regcache_mark_dirty(ctx->regmap); 693 } 694 695 static enum drm_mode_status 696 sn65dsi83_mode_valid(struct drm_bridge *bridge, 697 const struct drm_display_info *info, 698 const struct drm_display_mode *mode) 699 { 700 /* LVDS output clock range 25..154 MHz */ 701 if (mode->clock < 25000) 702 return MODE_CLOCK_LOW; 703 if (mode->clock > 154000) 704 return MODE_CLOCK_HIGH; 705 706 return MODE_OK; 707 } 708 709 #define MAX_INPUT_SEL_FORMATS 1 710 711 static u32 * 712 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge, 713 struct drm_bridge_state *bridge_state, 714 struct drm_crtc_state *crtc_state, 715 struct drm_connector_state *conn_state, 716 u32 output_fmt, 717 unsigned int *num_input_fmts) 718 { 719 u32 *input_fmts; 720 721 *num_input_fmts = 0; 722 723 input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts), 724 GFP_KERNEL); 725 if (!input_fmts) 726 return NULL; 727 728 /* This is the DSI-end bus format */ 729 input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24; 730 *num_input_fmts = 1; 731 732 return input_fmts; 733 } 734 735 static const struct drm_bridge_funcs sn65dsi83_funcs = { 736 .attach = sn65dsi83_attach, 737 .detach = sn65dsi83_detach, 738 .atomic_enable = sn65dsi83_atomic_enable, 739 .atomic_pre_enable = sn65dsi83_atomic_pre_enable, 740 .atomic_disable = sn65dsi83_atomic_disable, 741 .mode_valid = sn65dsi83_mode_valid, 742 743 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 744 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 745 .atomic_reset = drm_atomic_helper_bridge_reset, 746 .atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts, 747 }; 748 749 static int sn65dsi83_select_lvds_vod_swing(struct device *dev, 750 u32 lvds_vod_swing_data[2], u32 lvds_vod_swing_clk[2], u8 lvds_term) 751 { 752 int i; 753 754 for (i = 0; i <= 3; i++) { 755 if (lvds_vod_swing_data_table[lvds_term][i][0] >= lvds_vod_swing_data[0] && 756 lvds_vod_swing_data_table[lvds_term][i][1] <= lvds_vod_swing_data[1] && 757 lvds_vod_swing_clock_table[lvds_term][i][0] >= lvds_vod_swing_clk[0] && 758 lvds_vod_swing_clock_table[lvds_term][i][1] <= lvds_vod_swing_clk[1]) 759 return i; 760 } 761 762 dev_err(dev, "failed to find appropriate LVDS_VOD_SWING configuration\n"); 763 return -EINVAL; 764 } 765 766 static int sn65dsi83_parse_lvds_endpoint(struct sn65dsi83 *ctx, int channel) 767 { 768 struct device *dev = ctx->dev; 769 struct device_node *endpoint; 770 int endpoint_reg; 771 /* Set so the property can be freely selected if not defined */ 772 u32 lvds_vod_swing_data[2] = { 0, 1000000 }; 773 u32 lvds_vod_swing_clk[2] = { 0, 1000000 }; 774 /* Set default near end terminataion to 200 Ohm */ 775 u32 lvds_term = 200; 776 int lvds_vod_swing_conf; 777 int ret = 0; 778 int ret_data; 779 int ret_clock; 780 781 if (channel == CHANNEL_A) 782 endpoint_reg = 2; 783 else 784 endpoint_reg = 3; 785 786 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, endpoint_reg, -1); 787 788 of_property_read_u32(endpoint, "ti,lvds-termination-ohms", &lvds_term); 789 if (lvds_term == 100) 790 ctx->lvds_term_conf[channel] = OHM_100; 791 else if (lvds_term == 200) 792 ctx->lvds_term_conf[channel] = OHM_200; 793 else { 794 ret = -EINVAL; 795 goto exit; 796 } 797 798 ret_data = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-data-microvolt", 799 lvds_vod_swing_data, ARRAY_SIZE(lvds_vod_swing_data)); 800 if (ret_data != 0 && ret_data != -EINVAL) { 801 ret = ret_data; 802 goto exit; 803 } 804 805 ret_clock = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-clock-microvolt", 806 lvds_vod_swing_clk, ARRAY_SIZE(lvds_vod_swing_clk)); 807 if (ret_clock != 0 && ret_clock != -EINVAL) { 808 ret = ret_clock; 809 goto exit; 810 } 811 812 /* Use default value if both properties are NOT defined. */ 813 if (ret_data == -EINVAL && ret_clock == -EINVAL) 814 lvds_vod_swing_conf = 0x1; 815 816 /* Use lookup table if any of the two properties is defined. */ 817 if (!ret_data || !ret_clock) { 818 lvds_vod_swing_conf = sn65dsi83_select_lvds_vod_swing(dev, lvds_vod_swing_data, 819 lvds_vod_swing_clk, ctx->lvds_term_conf[channel]); 820 if (lvds_vod_swing_conf < 0) { 821 ret = lvds_vod_swing_conf; 822 goto exit; 823 } 824 } 825 826 ctx->lvds_vod_swing_conf[channel] = lvds_vod_swing_conf; 827 ret = 0; 828 exit: 829 of_node_put(endpoint); 830 return ret; 831 } 832 833 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model) 834 { 835 struct drm_bridge *panel_bridge; 836 struct device *dev = ctx->dev; 837 int ret; 838 839 ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_A); 840 if (ret < 0) 841 return ret; 842 843 ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_B); 844 if (ret < 0) 845 return ret; 846 847 ctx->lvds_dual_link = false; 848 ctx->lvds_dual_link_even_odd_swap = false; 849 if (model != MODEL_SN65DSI83) { 850 struct device_node *port2, *port3; 851 int dual_link; 852 853 port2 = of_graph_get_port_by_id(dev->of_node, 2); 854 port3 = of_graph_get_port_by_id(dev->of_node, 3); 855 dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3); 856 of_node_put(port2); 857 of_node_put(port3); 858 859 if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) { 860 ctx->lvds_dual_link = true; 861 /* Odd pixels to LVDS Channel A, even pixels to B */ 862 ctx->lvds_dual_link_even_odd_swap = false; 863 } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) { 864 ctx->lvds_dual_link = true; 865 /* Even pixels to LVDS Channel A, odd pixels to B */ 866 ctx->lvds_dual_link_even_odd_swap = true; 867 } 868 } 869 870 panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0); 871 if (IS_ERR(panel_bridge)) 872 return dev_err_probe(dev, PTR_ERR(panel_bridge), "Failed to get panel bridge\n"); 873 874 ctx->panel_bridge = panel_bridge; 875 876 ctx->vcc = devm_regulator_get(dev, "vcc"); 877 if (IS_ERR(ctx->vcc)) 878 return dev_err_probe(dev, PTR_ERR(ctx->vcc), 879 "Failed to get supply 'vcc'\n"); 880 881 return 0; 882 } 883 884 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx) 885 { 886 struct device *dev = ctx->dev; 887 struct device_node *host_node; 888 struct device_node *endpoint; 889 struct mipi_dsi_device *dsi; 890 struct mipi_dsi_host *host; 891 const struct mipi_dsi_device_info info = { 892 .type = "sn65dsi83", 893 .channel = 0, 894 .node = NULL, 895 }; 896 int dsi_lanes, ret; 897 898 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1); 899 dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4); 900 host_node = of_graph_get_remote_port_parent(endpoint); 901 host = of_find_mipi_dsi_host_by_node(host_node); 902 of_node_put(host_node); 903 of_node_put(endpoint); 904 905 if (!host) 906 return -EPROBE_DEFER; 907 908 if (dsi_lanes < 0) 909 return dsi_lanes; 910 911 dsi = devm_mipi_dsi_device_register_full(dev, host, &info); 912 if (IS_ERR(dsi)) 913 return dev_err_probe(dev, PTR_ERR(dsi), 914 "failed to create dsi device\n"); 915 916 ctx->dsi = dsi; 917 918 dsi->lanes = dsi_lanes; 919 dsi->format = MIPI_DSI_FMT_RGB888; 920 dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | 921 MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP | 922 MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET; 923 924 ret = devm_mipi_dsi_attach(dev, dsi); 925 if (ret < 0) { 926 dev_err(dev, "failed to attach dsi to host: %d\n", ret); 927 return ret; 928 } 929 930 return 0; 931 } 932 933 static irqreturn_t sn65dsi83_irq(int irq, void *data) 934 { 935 struct sn65dsi83 *ctx = data; 936 937 sn65dsi83_handle_errors(ctx); 938 return IRQ_HANDLED; 939 } 940 941 static int sn65dsi83_probe(struct i2c_client *client) 942 { 943 const struct i2c_device_id *id = i2c_client_get_device_id(client); 944 struct device *dev = &client->dev; 945 enum sn65dsi83_model model; 946 struct sn65dsi83 *ctx; 947 int ret; 948 949 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); 950 if (!ctx) 951 return -ENOMEM; 952 953 ctx->dev = dev; 954 INIT_WORK(&ctx->reset_work, sn65dsi83_reset_work); 955 INIT_DELAYED_WORK(&ctx->monitor_work, sn65dsi83_monitor_work); 956 957 if (dev->of_node) { 958 model = (enum sn65dsi83_model)(uintptr_t) 959 of_device_get_match_data(dev); 960 } else { 961 model = id->driver_data; 962 } 963 964 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ 965 ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable", 966 GPIOD_OUT_LOW); 967 if (IS_ERR(ctx->enable_gpio)) 968 return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n"); 969 970 usleep_range(10000, 11000); 971 972 ret = sn65dsi83_parse_dt(ctx, model); 973 if (ret) 974 return ret; 975 976 ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config); 977 if (IS_ERR(ctx->regmap)) 978 return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n"); 979 980 if (client->irq) { 981 ctx->irq = client->irq; 982 ret = devm_request_threaded_irq(ctx->dev, ctx->irq, NULL, sn65dsi83_irq, 983 IRQF_ONESHOT, dev_name(ctx->dev), ctx); 984 if (ret) 985 return dev_err_probe(dev, ret, "failed to request irq\n"); 986 } 987 988 dev_set_drvdata(dev, ctx); 989 i2c_set_clientdata(client, ctx); 990 991 ctx->bridge.funcs = &sn65dsi83_funcs; 992 ctx->bridge.of_node = dev->of_node; 993 ctx->bridge.pre_enable_prev_first = true; 994 ctx->bridge.type = DRM_MODE_CONNECTOR_LVDS; 995 drm_bridge_add(&ctx->bridge); 996 997 ret = sn65dsi83_host_attach(ctx); 998 if (ret) { 999 dev_err_probe(dev, ret, "failed to attach DSI host\n"); 1000 goto err_remove_bridge; 1001 } 1002 1003 return 0; 1004 1005 err_remove_bridge: 1006 drm_bridge_remove(&ctx->bridge); 1007 return ret; 1008 } 1009 1010 static void sn65dsi83_remove(struct i2c_client *client) 1011 { 1012 struct sn65dsi83 *ctx = i2c_get_clientdata(client); 1013 1014 drm_bridge_remove(&ctx->bridge); 1015 } 1016 1017 static const struct i2c_device_id sn65dsi83_id[] = { 1018 { "ti,sn65dsi83", MODEL_SN65DSI83 }, 1019 { "ti,sn65dsi84", MODEL_SN65DSI84 }, 1020 {}, 1021 }; 1022 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id); 1023 1024 static const struct of_device_id sn65dsi83_match_table[] = { 1025 { .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 }, 1026 { .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 }, 1027 {}, 1028 }; 1029 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table); 1030 1031 static struct i2c_driver sn65dsi83_driver = { 1032 .probe = sn65dsi83_probe, 1033 .remove = sn65dsi83_remove, 1034 .id_table = sn65dsi83_id, 1035 .driver = { 1036 .name = "sn65dsi83", 1037 .of_match_table = sn65dsi83_match_table, 1038 }, 1039 }; 1040 module_i2c_driver(sn65dsi83_driver); 1041 1042 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 1043 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver"); 1044 MODULE_LICENSE("GPL v2"); 1045