1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * TI SN65DSI83,84,85 driver 4 * 5 * Currently supported: 6 * - SN65DSI83 7 * = 1x Single-link DSI ~ 1x Single-link LVDS 8 * - Supported 9 * - Single-link LVDS mode tested 10 * - SN65DSI84 11 * = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS 12 * - Supported 13 * - Dual-link LVDS mode tested 14 * - 2x Single-link LVDS mode unsupported 15 * (should be easy to add by someone who has the HW) 16 * - SN65DSI85 17 * = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS 18 * - Unsupported 19 * (should be easy to add by someone who has the HW) 20 * 21 * Copyright (C) 2021 Marek Vasut <marex@denx.de> 22 * 23 * Based on previous work of: 24 * Valentin Raevsky <valentin@compulab.co.il> 25 * Philippe Schenker <philippe.schenker@toradex.com> 26 */ 27 28 #include <linux/bits.h> 29 #include <linux/clk.h> 30 #include <linux/gpio/consumer.h> 31 #include <linux/i2c.h> 32 #include <linux/media-bus-format.h> 33 #include <linux/module.h> 34 #include <linux/of.h> 35 #include <linux/of_graph.h> 36 #include <linux/regmap.h> 37 #include <linux/regulator/consumer.h> 38 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_bridge.h> 41 #include <drm/drm_mipi_dsi.h> 42 #include <drm/drm_of.h> 43 #include <drm/drm_panel.h> 44 #include <drm/drm_print.h> 45 #include <drm/drm_probe_helper.h> 46 47 /* ID registers */ 48 #define REG_ID(n) (0x00 + (n)) 49 /* Reset and clock registers */ 50 #define REG_RC_RESET 0x09 51 #define REG_RC_RESET_SOFT_RESET BIT(0) 52 #define REG_RC_LVDS_PLL 0x0a 53 #define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7) 54 #define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1) 55 #define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0) 56 #define REG_RC_DSI_CLK 0x0b 57 #define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3) 58 #define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3) 59 #define REG_RC_PLL_EN 0x0d 60 #define REG_RC_PLL_EN_PLL_EN BIT(0) 61 /* DSI registers */ 62 #define REG_DSI_LANE 0x10 63 #define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */ 64 #define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */ 65 #define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */ 66 #define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5) 67 #define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3) 68 #define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1) 69 #define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0) 70 #define REG_DSI_EQ 0x11 71 #define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6) 72 #define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2) 73 #define REG_DSI_CLK 0x12 74 #define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff) 75 /* LVDS registers */ 76 #define REG_LVDS_FMT 0x18 77 #define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7) 78 #define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6) 79 #define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5) 80 #define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */ 81 #define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3) 82 #define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2) 83 #define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1) 84 #define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0) 85 #define REG_LVDS_VCOM 0x19 86 #define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6) 87 #define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4) 88 #define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2) 89 #define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3) 90 #define REG_LVDS_LANE 0x1a 91 #define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6) 92 #define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5) 93 #define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4) 94 #define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1) 95 #define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0) 96 #define REG_LVDS_CM 0x1b 97 #define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4) 98 #define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3) 99 /* Video registers */ 100 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20 101 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21 102 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24 103 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25 104 #define REG_VID_CHA_SYNC_DELAY_LOW 0x28 105 #define REG_VID_CHA_SYNC_DELAY_HIGH 0x29 106 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c 107 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d 108 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30 109 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31 110 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34 111 #define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36 112 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38 113 #define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a 114 #define REG_VID_CHA_TEST_PATTERN 0x3c 115 /* IRQ registers */ 116 #define REG_IRQ_GLOBAL 0xe0 117 #define REG_IRQ_GLOBAL_IRQ_EN BIT(0) 118 #define REG_IRQ_EN 0xe1 119 #define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7) 120 #define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6) 121 #define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5) 122 #define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4) 123 #define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3) 124 #define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2) 125 #define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0) 126 #define REG_IRQ_STAT 0xe5 127 #define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7) 128 #define REG_IRQ_STAT_CHA_CRC_ERR BIT(6) 129 #define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5) 130 #define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4) 131 #define REG_IRQ_STAT_CHA_LLP_ERR BIT(3) 132 #define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2) 133 #define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0) 134 135 enum sn65dsi83_model { 136 MODEL_SN65DSI83, 137 MODEL_SN65DSI84, 138 }; 139 140 struct sn65dsi83 { 141 struct drm_bridge bridge; 142 struct device *dev; 143 struct regmap *regmap; 144 struct mipi_dsi_device *dsi; 145 struct drm_bridge *panel_bridge; 146 struct gpio_desc *enable_gpio; 147 struct regulator *vcc; 148 bool lvds_dual_link; 149 bool lvds_dual_link_even_odd_swap; 150 }; 151 152 static const struct regmap_range sn65dsi83_readable_ranges[] = { 153 regmap_reg_range(REG_ID(0), REG_ID(8)), 154 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK), 155 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), 156 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), 157 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), 158 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 159 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), 160 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 161 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), 162 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, 163 REG_VID_CHA_SYNC_DELAY_HIGH), 164 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 165 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), 166 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 167 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), 168 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, 169 REG_VID_CHA_HORIZONTAL_BACK_PORCH), 170 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, 171 REG_VID_CHA_VERTICAL_BACK_PORCH), 172 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 173 REG_VID_CHA_HORIZONTAL_FRONT_PORCH), 174 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, 175 REG_VID_CHA_VERTICAL_FRONT_PORCH), 176 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), 177 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), 178 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 179 }; 180 181 static const struct regmap_access_table sn65dsi83_readable_table = { 182 .yes_ranges = sn65dsi83_readable_ranges, 183 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges), 184 }; 185 186 static const struct regmap_range sn65dsi83_writeable_ranges[] = { 187 regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK), 188 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), 189 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), 190 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), 191 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 192 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), 193 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 194 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), 195 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, 196 REG_VID_CHA_SYNC_DELAY_HIGH), 197 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 198 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), 199 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 200 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), 201 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, 202 REG_VID_CHA_HORIZONTAL_BACK_PORCH), 203 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, 204 REG_VID_CHA_VERTICAL_BACK_PORCH), 205 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 206 REG_VID_CHA_HORIZONTAL_FRONT_PORCH), 207 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, 208 REG_VID_CHA_VERTICAL_FRONT_PORCH), 209 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), 210 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), 211 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 212 }; 213 214 static const struct regmap_access_table sn65dsi83_writeable_table = { 215 .yes_ranges = sn65dsi83_writeable_ranges, 216 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges), 217 }; 218 219 static const struct regmap_range sn65dsi83_volatile_ranges[] = { 220 regmap_reg_range(REG_RC_RESET, REG_RC_RESET), 221 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL), 222 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), 223 }; 224 225 static const struct regmap_access_table sn65dsi83_volatile_table = { 226 .yes_ranges = sn65dsi83_volatile_ranges, 227 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges), 228 }; 229 230 static const struct regmap_config sn65dsi83_regmap_config = { 231 .reg_bits = 8, 232 .val_bits = 8, 233 .rd_table = &sn65dsi83_readable_table, 234 .wr_table = &sn65dsi83_writeable_table, 235 .volatile_table = &sn65dsi83_volatile_table, 236 .cache_type = REGCACHE_MAPLE, 237 .max_register = REG_IRQ_STAT, 238 }; 239 240 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge) 241 { 242 return container_of(bridge, struct sn65dsi83, bridge); 243 } 244 245 static int sn65dsi83_attach(struct drm_bridge *bridge, 246 enum drm_bridge_attach_flags flags) 247 { 248 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 249 250 return drm_bridge_attach(bridge->encoder, ctx->panel_bridge, 251 &ctx->bridge, flags); 252 } 253 254 static void sn65dsi83_detach(struct drm_bridge *bridge) 255 { 256 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 257 258 if (!ctx->dsi) 259 return; 260 261 ctx->dsi = NULL; 262 } 263 264 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx, 265 const struct drm_display_mode *mode) 266 { 267 /* 268 * The encoding of the LVDS_CLK_RANGE is as follows: 269 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz 270 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz 271 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz 272 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz 273 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz 274 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz 275 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that 276 * the ends of the ranges are clamped to the supported range. Since 277 * sn65dsi83_mode_valid() already filters the valid modes and limits 278 * the clock to 25..154 MHz, the range calculation can be simplified 279 * as follows: 280 */ 281 int mode_clock = mode->clock; 282 283 if (ctx->lvds_dual_link) 284 mode_clock /= 2; 285 286 return (mode_clock - 12500) / 25000; 287 } 288 289 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx, 290 const struct drm_display_mode *mode) 291 { 292 /* 293 * The encoding of the CHA_DSI_CLK_RANGE is as follows: 294 * 0x00 through 0x07 - Reserved 295 * 0x08 - 40 <= DSI_CLK < 45 MHz 296 * 0x09 - 45 <= DSI_CLK < 50 MHz 297 * ... 298 * 0x63 - 495 <= DSI_CLK < 500 MHz 299 * 0x64 - 500 MHz 300 * 0x65 through 0xFF - Reserved 301 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz. 302 * The DSI clock are calculated as: 303 * DSI_CLK = mode clock * bpp / dsi_data_lanes / 2 304 * the 2 is there because the bus is DDR. 305 */ 306 return DIV_ROUND_UP(clamp((unsigned int)mode->clock * 307 mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) / 308 ctx->dsi->lanes / 2, 40000U, 500000U), 5000U); 309 } 310 311 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx) 312 { 313 /* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */ 314 unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format); 315 316 dsi_div /= ctx->dsi->lanes; 317 318 if (!ctx->lvds_dual_link) 319 dsi_div /= 2; 320 321 return dsi_div - 1; 322 } 323 324 static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge, 325 struct drm_bridge_state *old_bridge_state) 326 { 327 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 328 struct drm_atomic_state *state = old_bridge_state->base.state; 329 const struct drm_bridge_state *bridge_state; 330 const struct drm_crtc_state *crtc_state; 331 const struct drm_display_mode *mode; 332 struct drm_connector *connector; 333 struct drm_crtc *crtc; 334 bool lvds_format_24bpp; 335 bool lvds_format_jeida; 336 unsigned int pval; 337 __le16 le16val; 338 u16 val; 339 int ret; 340 341 ret = regulator_enable(ctx->vcc); 342 if (ret) { 343 dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret); 344 return; 345 } 346 347 /* Deassert reset */ 348 gpiod_set_value_cansleep(ctx->enable_gpio, 1); 349 usleep_range(10000, 11000); 350 351 /* Get the LVDS format from the bridge state. */ 352 bridge_state = drm_atomic_get_new_bridge_state(state, bridge); 353 354 switch (bridge_state->output_bus_cfg.format) { 355 case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: 356 lvds_format_24bpp = false; 357 lvds_format_jeida = true; 358 break; 359 case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: 360 lvds_format_24bpp = true; 361 lvds_format_jeida = true; 362 break; 363 case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: 364 lvds_format_24bpp = true; 365 lvds_format_jeida = false; 366 break; 367 default: 368 /* 369 * Some bridges still don't set the correct 370 * LVDS bus pixel format, use SPWG24 default 371 * format until those are fixed. 372 */ 373 lvds_format_24bpp = true; 374 lvds_format_jeida = false; 375 dev_warn(ctx->dev, 376 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n", 377 bridge_state->output_bus_cfg.format); 378 break; 379 } 380 381 /* 382 * Retrieve the CRTC adjusted mode. This requires a little dance to go 383 * from the bridge to the encoder, to the connector and to the CRTC. 384 */ 385 connector = drm_atomic_get_new_connector_for_encoder(state, 386 bridge->encoder); 387 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; 388 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 389 mode = &crtc_state->adjusted_mode; 390 391 /* Clear reset, disable PLL */ 392 regmap_write(ctx->regmap, REG_RC_RESET, 0x00); 393 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); 394 395 /* Reference clock derived from DSI link clock. */ 396 regmap_write(ctx->regmap, REG_RC_LVDS_PLL, 397 REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) | 398 REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY); 399 regmap_write(ctx->regmap, REG_DSI_CLK, 400 REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode))); 401 regmap_write(ctx->regmap, REG_RC_DSI_CLK, 402 REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx))); 403 404 /* Set number of DSI lanes and LVDS link config. */ 405 regmap_write(ctx->regmap, REG_DSI_LANE, 406 REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE | 407 REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) | 408 /* CHB is DSI85-only, set to default on DSI83/DSI84 */ 409 REG_DSI_LANE_CHB_DSI_LANES(3)); 410 /* No equalization. */ 411 regmap_write(ctx->regmap, REG_DSI_EQ, 0x00); 412 413 /* Set up sync signal polarity. */ 414 val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 415 REG_LVDS_FMT_HS_NEG_POLARITY : 0) | 416 (mode->flags & DRM_MODE_FLAG_NVSYNC ? 417 REG_LVDS_FMT_VS_NEG_POLARITY : 0); 418 419 /* Set up bits-per-pixel, 18bpp or 24bpp. */ 420 if (lvds_format_24bpp) { 421 val |= REG_LVDS_FMT_CHA_24BPP_MODE; 422 if (ctx->lvds_dual_link) 423 val |= REG_LVDS_FMT_CHB_24BPP_MODE; 424 } 425 426 /* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */ 427 if (lvds_format_jeida) { 428 val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1; 429 if (ctx->lvds_dual_link) 430 val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1; 431 } 432 433 /* Set up LVDS output config (DSI84,DSI85) */ 434 if (!ctx->lvds_dual_link) 435 val |= REG_LVDS_FMT_LVDS_LINK_CFG; 436 437 regmap_write(ctx->regmap, REG_LVDS_FMT, val); 438 regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05); 439 regmap_write(ctx->regmap, REG_LVDS_LANE, 440 (ctx->lvds_dual_link_even_odd_swap ? 441 REG_LVDS_LANE_EVEN_ODD_SWAP : 0) | 442 REG_LVDS_LANE_CHA_LVDS_TERM | 443 REG_LVDS_LANE_CHB_LVDS_TERM); 444 regmap_write(ctx->regmap, REG_LVDS_CM, 0x00); 445 446 le16val = cpu_to_le16(mode->hdisplay); 447 regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, 448 &le16val, 2); 449 le16val = cpu_to_le16(mode->vdisplay); 450 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, 451 &le16val, 2); 452 /* 32 + 1 pixel clock to ensure proper operation */ 453 le16val = cpu_to_le16(32 + 1); 454 regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2); 455 le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start); 456 regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, 457 &le16val, 2); 458 le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start); 459 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, 460 &le16val, 2); 461 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH, 462 mode->htotal - mode->hsync_end); 463 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH, 464 mode->vtotal - mode->vsync_end); 465 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH, 466 mode->hsync_start - mode->hdisplay); 467 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH, 468 mode->vsync_start - mode->vdisplay); 469 regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00); 470 471 /* Enable PLL */ 472 regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN); 473 usleep_range(3000, 4000); 474 ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval, 475 pval & REG_RC_LVDS_PLL_PLL_EN_STAT, 476 1000, 100000); 477 if (ret) { 478 dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret); 479 /* On failure, disable PLL again and exit. */ 480 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); 481 return; 482 } 483 484 /* Trigger reset after CSR register update. */ 485 regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET); 486 487 /* Wait for 10ms after soft reset as specified in datasheet */ 488 usleep_range(10000, 12000); 489 } 490 491 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge, 492 struct drm_bridge_state *old_bridge_state) 493 { 494 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 495 unsigned int pval; 496 497 /* Clear all errors that got asserted during initialization. */ 498 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); 499 regmap_write(ctx->regmap, REG_IRQ_STAT, pval); 500 501 /* Wait for 1ms and check for errors in status register */ 502 usleep_range(1000, 1100); 503 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); 504 if (pval) 505 dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval); 506 } 507 508 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge, 509 struct drm_bridge_state *old_bridge_state) 510 { 511 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); 512 int ret; 513 514 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ 515 gpiod_set_value_cansleep(ctx->enable_gpio, 0); 516 usleep_range(10000, 11000); 517 518 ret = regulator_disable(ctx->vcc); 519 if (ret) 520 dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret); 521 522 regcache_mark_dirty(ctx->regmap); 523 } 524 525 static enum drm_mode_status 526 sn65dsi83_mode_valid(struct drm_bridge *bridge, 527 const struct drm_display_info *info, 528 const struct drm_display_mode *mode) 529 { 530 /* LVDS output clock range 25..154 MHz */ 531 if (mode->clock < 25000) 532 return MODE_CLOCK_LOW; 533 if (mode->clock > 154000) 534 return MODE_CLOCK_HIGH; 535 536 return MODE_OK; 537 } 538 539 #define MAX_INPUT_SEL_FORMATS 1 540 541 static u32 * 542 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge, 543 struct drm_bridge_state *bridge_state, 544 struct drm_crtc_state *crtc_state, 545 struct drm_connector_state *conn_state, 546 u32 output_fmt, 547 unsigned int *num_input_fmts) 548 { 549 u32 *input_fmts; 550 551 *num_input_fmts = 0; 552 553 input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts), 554 GFP_KERNEL); 555 if (!input_fmts) 556 return NULL; 557 558 /* This is the DSI-end bus format */ 559 input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24; 560 *num_input_fmts = 1; 561 562 return input_fmts; 563 } 564 565 static const struct drm_bridge_funcs sn65dsi83_funcs = { 566 .attach = sn65dsi83_attach, 567 .detach = sn65dsi83_detach, 568 .atomic_enable = sn65dsi83_atomic_enable, 569 .atomic_pre_enable = sn65dsi83_atomic_pre_enable, 570 .atomic_disable = sn65dsi83_atomic_disable, 571 .mode_valid = sn65dsi83_mode_valid, 572 573 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 574 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 575 .atomic_reset = drm_atomic_helper_bridge_reset, 576 .atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts, 577 }; 578 579 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model) 580 { 581 struct drm_bridge *panel_bridge; 582 struct device *dev = ctx->dev; 583 584 ctx->lvds_dual_link = false; 585 ctx->lvds_dual_link_even_odd_swap = false; 586 if (model != MODEL_SN65DSI83) { 587 struct device_node *port2, *port3; 588 int dual_link; 589 590 port2 = of_graph_get_port_by_id(dev->of_node, 2); 591 port3 = of_graph_get_port_by_id(dev->of_node, 3); 592 dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3); 593 of_node_put(port2); 594 of_node_put(port3); 595 596 if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) { 597 ctx->lvds_dual_link = true; 598 /* Odd pixels to LVDS Channel A, even pixels to B */ 599 ctx->lvds_dual_link_even_odd_swap = false; 600 } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) { 601 ctx->lvds_dual_link = true; 602 /* Even pixels to LVDS Channel A, odd pixels to B */ 603 ctx->lvds_dual_link_even_odd_swap = true; 604 } 605 } 606 607 panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0); 608 if (IS_ERR(panel_bridge)) 609 return PTR_ERR(panel_bridge); 610 611 ctx->panel_bridge = panel_bridge; 612 613 ctx->vcc = devm_regulator_get(dev, "vcc"); 614 if (IS_ERR(ctx->vcc)) 615 return dev_err_probe(dev, PTR_ERR(ctx->vcc), 616 "Failed to get supply 'vcc'\n"); 617 618 return 0; 619 } 620 621 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx) 622 { 623 struct device *dev = ctx->dev; 624 struct device_node *host_node; 625 struct device_node *endpoint; 626 struct mipi_dsi_device *dsi; 627 struct mipi_dsi_host *host; 628 const struct mipi_dsi_device_info info = { 629 .type = "sn65dsi83", 630 .channel = 0, 631 .node = NULL, 632 }; 633 int dsi_lanes, ret; 634 635 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1); 636 dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4); 637 host_node = of_graph_get_remote_port_parent(endpoint); 638 host = of_find_mipi_dsi_host_by_node(host_node); 639 of_node_put(host_node); 640 of_node_put(endpoint); 641 642 if (!host) 643 return -EPROBE_DEFER; 644 645 if (dsi_lanes < 0) 646 return dsi_lanes; 647 648 dsi = devm_mipi_dsi_device_register_full(dev, host, &info); 649 if (IS_ERR(dsi)) 650 return dev_err_probe(dev, PTR_ERR(dsi), 651 "failed to create dsi device\n"); 652 653 ctx->dsi = dsi; 654 655 dsi->lanes = dsi_lanes; 656 dsi->format = MIPI_DSI_FMT_RGB888; 657 dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | 658 MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP | 659 MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET; 660 661 ret = devm_mipi_dsi_attach(dev, dsi); 662 if (ret < 0) { 663 dev_err(dev, "failed to attach dsi to host: %d\n", ret); 664 return ret; 665 } 666 667 return 0; 668 } 669 670 static int sn65dsi83_probe(struct i2c_client *client) 671 { 672 const struct i2c_device_id *id = i2c_client_get_device_id(client); 673 struct device *dev = &client->dev; 674 enum sn65dsi83_model model; 675 struct sn65dsi83 *ctx; 676 int ret; 677 678 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); 679 if (!ctx) 680 return -ENOMEM; 681 682 ctx->dev = dev; 683 684 if (dev->of_node) { 685 model = (enum sn65dsi83_model)(uintptr_t) 686 of_device_get_match_data(dev); 687 } else { 688 model = id->driver_data; 689 } 690 691 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ 692 ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable", 693 GPIOD_OUT_LOW); 694 if (IS_ERR(ctx->enable_gpio)) 695 return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n"); 696 697 usleep_range(10000, 11000); 698 699 ret = sn65dsi83_parse_dt(ctx, model); 700 if (ret) 701 return ret; 702 703 ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config); 704 if (IS_ERR(ctx->regmap)) 705 return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n"); 706 707 dev_set_drvdata(dev, ctx); 708 i2c_set_clientdata(client, ctx); 709 710 ctx->bridge.funcs = &sn65dsi83_funcs; 711 ctx->bridge.of_node = dev->of_node; 712 ctx->bridge.pre_enable_prev_first = true; 713 drm_bridge_add(&ctx->bridge); 714 715 ret = sn65dsi83_host_attach(ctx); 716 if (ret) { 717 dev_err_probe(dev, ret, "failed to attach DSI host\n"); 718 goto err_remove_bridge; 719 } 720 721 return 0; 722 723 err_remove_bridge: 724 drm_bridge_remove(&ctx->bridge); 725 return ret; 726 } 727 728 static void sn65dsi83_remove(struct i2c_client *client) 729 { 730 struct sn65dsi83 *ctx = i2c_get_clientdata(client); 731 732 drm_bridge_remove(&ctx->bridge); 733 } 734 735 static struct i2c_device_id sn65dsi83_id[] = { 736 { "ti,sn65dsi83", MODEL_SN65DSI83 }, 737 { "ti,sn65dsi84", MODEL_SN65DSI84 }, 738 {}, 739 }; 740 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id); 741 742 static const struct of_device_id sn65dsi83_match_table[] = { 743 { .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 }, 744 { .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 }, 745 {}, 746 }; 747 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table); 748 749 static struct i2c_driver sn65dsi83_driver = { 750 .probe = sn65dsi83_probe, 751 .remove = sn65dsi83_remove, 752 .id_table = sn65dsi83_id, 753 .driver = { 754 .name = "sn65dsi83", 755 .of_match_table = sn65dsi83_match_table, 756 }, 757 }; 758 module_i2c_driver(sn65dsi83_driver); 759 760 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 761 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver"); 762 MODULE_LICENSE("GPL v2"); 763