xref: /linux/drivers/gpu/drm/ast/ast_dp501.c (revision 87807f77a03d0271211b75f84b2a8b88f4e8e5d4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/delay.h>
4 #include <linux/firmware.h>
5 #include <linux/module.h>
6 
7 #include "ast_drv.h"
8 
9 MODULE_FIRMWARE("ast_dp501_fw.bin");
10 
11 static void ast_release_firmware(void *data)
12 {
13 	struct ast_device *ast = data;
14 
15 	release_firmware(ast->dp501_fw);
16 	ast->dp501_fw = NULL;
17 }
18 
19 static int ast_load_dp501_microcode(struct drm_device *dev)
20 {
21 	struct ast_device *ast = to_ast_device(dev);
22 	int ret;
23 
24 	ret = request_firmware(&ast->dp501_fw, "ast_dp501_fw.bin", dev->dev);
25 	if (ret)
26 		return ret;
27 
28 	return devm_add_action_or_reset(dev->dev, ast_release_firmware, ast);
29 }
30 
31 static void send_ack(struct ast_device *ast)
32 {
33 	u8 sendack;
34 	sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
35 	sendack |= 0x80;
36 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
37 }
38 
39 static void send_nack(struct ast_device *ast)
40 {
41 	u8 sendack;
42 	sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
43 	sendack &= ~0x80;
44 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
45 }
46 
47 static bool wait_ack(struct ast_device *ast)
48 {
49 	u8 waitack;
50 	u32 retry = 0;
51 	do {
52 		waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
53 		waitack &= 0x80;
54 		udelay(100);
55 	} while ((!waitack) && (retry++ < 1000));
56 
57 	if (retry < 1000)
58 		return true;
59 	else
60 		return false;
61 }
62 
63 static bool wait_nack(struct ast_device *ast)
64 {
65 	u8 waitack;
66 	u32 retry = 0;
67 	do {
68 		waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
69 		waitack &= 0x80;
70 		udelay(100);
71 	} while ((waitack) && (retry++ < 1000));
72 
73 	if (retry < 1000)
74 		return true;
75 	else
76 		return false;
77 }
78 
79 static void set_cmd_trigger(struct ast_device *ast)
80 {
81 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x40);
82 }
83 
84 static void clear_cmd_trigger(struct ast_device *ast)
85 {
86 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x00);
87 }
88 
89 #if 0
90 static bool wait_fw_ready(struct ast_device *ast)
91 {
92 	u8 waitready;
93 	u32 retry = 0;
94 	do {
95 		waitready = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
96 		waitready &= 0x40;
97 		udelay(100);
98 	} while ((!waitready) && (retry++ < 1000));
99 
100 	if (retry < 1000)
101 		return true;
102 	else
103 		return false;
104 }
105 #endif
106 
107 static bool ast_write_cmd(struct drm_device *dev, u8 data)
108 {
109 	struct ast_device *ast = to_ast_device(dev);
110 	int retry = 0;
111 	if (wait_nack(ast)) {
112 		send_nack(ast);
113 		ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
114 		send_ack(ast);
115 		set_cmd_trigger(ast);
116 		do {
117 			if (wait_ack(ast)) {
118 				clear_cmd_trigger(ast);
119 				send_nack(ast);
120 				return true;
121 			}
122 		} while (retry++ < 100);
123 	}
124 	clear_cmd_trigger(ast);
125 	send_nack(ast);
126 	return false;
127 }
128 
129 static bool ast_write_data(struct drm_device *dev, u8 data)
130 {
131 	struct ast_device *ast = to_ast_device(dev);
132 
133 	if (wait_nack(ast)) {
134 		send_nack(ast);
135 		ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
136 		send_ack(ast);
137 		if (wait_ack(ast)) {
138 			send_nack(ast);
139 			return true;
140 		}
141 	}
142 	send_nack(ast);
143 	return false;
144 }
145 
146 #if 0
147 static bool ast_read_data(struct drm_device *dev, u8 *data)
148 {
149 	struct ast_device *ast = to_ast_device(dev);
150 	u8 tmp;
151 
152 	*data = 0;
153 
154 	if (wait_ack(ast) == false)
155 		return false;
156 	tmp = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd3, 0xff);
157 	*data = tmp;
158 	if (wait_nack(ast) == false) {
159 		send_nack(ast);
160 		return false;
161 	}
162 	send_nack(ast);
163 	return true;
164 }
165 
166 static void clear_cmd(struct ast_device *ast)
167 {
168 	send_nack(ast);
169 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, 0x00);
170 }
171 #endif
172 
173 void ast_set_dp501_video_output(struct drm_device *dev, u8 mode)
174 {
175 	ast_write_cmd(dev, 0x40);
176 	ast_write_data(dev, mode);
177 
178 	msleep(10);
179 }
180 
181 static u32 get_fw_base(struct ast_device *ast)
182 {
183 	return ast_mindwm(ast, 0x1e6e2104) & 0x7fffffff;
184 }
185 
186 bool ast_backup_fw(struct drm_device *dev, u8 *addr, u32 size)
187 {
188 	struct ast_device *ast = to_ast_device(dev);
189 	u32 i, data;
190 	u32 boot_address;
191 
192 	if (ast->config_mode != ast_use_p2a)
193 		return false;
194 
195 	data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
196 	if (data) {
197 		boot_address = get_fw_base(ast);
198 		for (i = 0; i < size; i += 4)
199 			*(u32 *)(addr + i) = ast_mindwm(ast, boot_address + i);
200 		return true;
201 	}
202 	return false;
203 }
204 
205 static bool ast_launch_m68k(struct drm_device *dev)
206 {
207 	struct ast_device *ast = to_ast_device(dev);
208 	u32 i, data, len = 0;
209 	u32 boot_address;
210 	u8 *fw_addr = NULL;
211 	u8 jreg;
212 
213 	if (ast->config_mode != ast_use_p2a)
214 		return false;
215 
216 	data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
217 	if (!data) {
218 
219 		if (ast->dp501_fw_addr) {
220 			fw_addr = ast->dp501_fw_addr;
221 			len = 32*1024;
222 		} else {
223 			if (!ast->dp501_fw &&
224 			    ast_load_dp501_microcode(dev) < 0)
225 				return false;
226 
227 			fw_addr = (u8 *)ast->dp501_fw->data;
228 			len = ast->dp501_fw->size;
229 		}
230 		/* Get BootAddress */
231 		ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
232 		data = ast_mindwm(ast, 0x1e6e0004);
233 		switch (data & 0x03) {
234 		case 0:
235 			boot_address = 0x44000000;
236 			break;
237 		default:
238 		case 1:
239 			boot_address = 0x48000000;
240 			break;
241 		case 2:
242 			boot_address = 0x50000000;
243 			break;
244 		case 3:
245 			boot_address = 0x60000000;
246 			break;
247 		}
248 		boot_address -= 0x200000; /* -2MB */
249 
250 		/* copy image to buffer */
251 		for (i = 0; i < len; i += 4) {
252 			data = *(u32 *)(fw_addr + i);
253 			ast_moutdwm(ast, boot_address + i, data);
254 		}
255 
256 		/* Init SCU */
257 		ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
258 
259 		/* Launch FW */
260 		ast_moutdwm(ast, 0x1e6e2104, 0x80000000 + boot_address);
261 		ast_moutdwm(ast, 0x1e6e2100, 1);
262 
263 		/* Update Scratch */
264 		data = ast_mindwm(ast, 0x1e6e2040) & 0xfffff1ff;		/* D[11:9] = 100b: UEFI handling */
265 		data |= 0x800;
266 		ast_moutdwm(ast, 0x1e6e2040, data);
267 
268 		jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x99, 0xfc); /* D[1:0]: Reserved Video Buffer */
269 		jreg |= 0x02;
270 		ast_set_index_reg(ast, AST_IO_CRTC_PORT, 0x99, jreg);
271 	}
272 	return true;
273 }
274 
275 bool ast_dp501_read_edid(struct drm_device *dev, u8 *ediddata)
276 {
277 	struct ast_device *ast = to_ast_device(dev);
278 	u32 i, boot_address, offset, data;
279 	u32 *pEDIDidx;
280 
281 	if (ast->config_mode == ast_use_p2a) {
282 		boot_address = get_fw_base(ast);
283 
284 		/* validate FW version */
285 		offset = AST_DP501_GBL_VERSION;
286 		data = ast_mindwm(ast, boot_address + offset);
287 		if ((data & AST_DP501_FW_VERSION_MASK) != AST_DP501_FW_VERSION_1)
288 			return false;
289 
290 		/* validate PnP Monitor */
291 		offset = AST_DP501_PNPMONITOR;
292 		data = ast_mindwm(ast, boot_address + offset);
293 		if (!(data & AST_DP501_PNP_CONNECTED))
294 			return false;
295 
296 		/* Read EDID */
297 		offset = AST_DP501_EDID_DATA;
298 		for (i = 0; i < 128; i += 4) {
299 			data = ast_mindwm(ast, boot_address + offset + i);
300 			pEDIDidx = (u32 *)(ediddata + i);
301 			*pEDIDidx = data;
302 		}
303 	} else {
304 		if (!ast->dp501_fw_buf)
305 			return false;
306 
307 		/* dummy read */
308 		offset = 0x0000;
309 		data = readl(ast->dp501_fw_buf + offset);
310 
311 		/* validate FW version */
312 		offset = AST_DP501_GBL_VERSION;
313 		data = readl(ast->dp501_fw_buf + offset);
314 		if ((data & AST_DP501_FW_VERSION_MASK) != AST_DP501_FW_VERSION_1)
315 			return false;
316 
317 		/* validate PnP Monitor */
318 		offset = AST_DP501_PNPMONITOR;
319 		data = readl(ast->dp501_fw_buf + offset);
320 		if (!(data & AST_DP501_PNP_CONNECTED))
321 			return false;
322 
323 		/* Read EDID */
324 		offset = AST_DP501_EDID_DATA;
325 		for (i = 0; i < 128; i += 4) {
326 			data = readl(ast->dp501_fw_buf + offset + i);
327 			pEDIDidx = (u32 *)(ediddata + i);
328 			*pEDIDidx = data;
329 		}
330 	}
331 
332 	return true;
333 }
334 
335 static bool ast_init_dvo(struct drm_device *dev)
336 {
337 	struct ast_device *ast = to_ast_device(dev);
338 	u8 jreg;
339 	u32 data;
340 	ast_write32(ast, 0xf004, 0x1e6e0000);
341 	ast_write32(ast, 0xf000, 0x1);
342 	ast_write32(ast, 0x12000, 0x1688a8a8);
343 
344 	jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd0, 0xff);
345 	if (!(jreg & 0x80)) {
346 		/* Init SCU DVO Settings */
347 		data = ast_read32(ast, 0x12008);
348 		/* delay phase */
349 		data &= 0xfffff8ff;
350 		data |= 0x00000500;
351 		ast_write32(ast, 0x12008, data);
352 
353 		if (ast->chip == AST2300) {
354 			data = ast_read32(ast, 0x12084);
355 			/* multi-pins for DVO single-edge */
356 			data |= 0xfffe0000;
357 			ast_write32(ast, 0x12084, data);
358 
359 			data = ast_read32(ast, 0x12088);
360 			/* multi-pins for DVO single-edge */
361 			data |= 0x000fffff;
362 			ast_write32(ast, 0x12088, data);
363 
364 			data = ast_read32(ast, 0x12090);
365 			/* multi-pins for DVO single-edge */
366 			data &= 0xffffffcf;
367 			data |= 0x00000020;
368 			ast_write32(ast, 0x12090, data);
369 		} else { /* AST2400 */
370 			data = ast_read32(ast, 0x12088);
371 			/* multi-pins for DVO single-edge */
372 			data |= 0x30000000;
373 			ast_write32(ast, 0x12088, data);
374 
375 			data = ast_read32(ast, 0x1208c);
376 			/* multi-pins for DVO single-edge */
377 			data |= 0x000000cf;
378 			ast_write32(ast, 0x1208c, data);
379 
380 			data = ast_read32(ast, 0x120a4);
381 			/* multi-pins for DVO single-edge */
382 			data |= 0xffff0000;
383 			ast_write32(ast, 0x120a4, data);
384 
385 			data = ast_read32(ast, 0x120a8);
386 			/* multi-pins for DVO single-edge */
387 			data |= 0x0000000f;
388 			ast_write32(ast, 0x120a8, data);
389 
390 			data = ast_read32(ast, 0x12094);
391 			/* multi-pins for DVO single-edge */
392 			data |= 0x00000002;
393 			ast_write32(ast, 0x12094, data);
394 		}
395 	}
396 
397 	/* Force to DVO */
398 	data = ast_read32(ast, 0x1202c);
399 	data &= 0xfffbffff;
400 	ast_write32(ast, 0x1202c, data);
401 
402 	/* Init VGA DVO Settings */
403 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x80);
404 	return true;
405 }
406 
407 
408 static void ast_init_analog(struct drm_device *dev)
409 {
410 	struct ast_device *ast = to_ast_device(dev);
411 	u32 data;
412 
413 	/*
414 	 * Set DAC source to VGA mode in SCU2C via the P2A
415 	 * bridge. First configure the P2U to target the SCU
416 	 * in case it isn't at this stage.
417 	 */
418 	ast_write32(ast, 0xf004, 0x1e6e0000);
419 	ast_write32(ast, 0xf000, 0x1);
420 
421 	/* Then unlock the SCU with the magic password */
422 	ast_write32(ast, 0x12000, 0x1688a8a8);
423 	ast_write32(ast, 0x12000, 0x1688a8a8);
424 	ast_write32(ast, 0x12000, 0x1688a8a8);
425 
426 	/* Finally, clear bits [17:16] of SCU2c */
427 	data = ast_read32(ast, 0x1202c);
428 	data &= 0xfffcffff;
429 	ast_write32(ast, 0, data);
430 
431 	/* Disable DVO */
432 	ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x00);
433 }
434 
435 void ast_init_3rdtx(struct drm_device *dev)
436 {
437 	struct ast_device *ast = to_ast_device(dev);
438 	u8 jreg;
439 
440 	if (ast->chip == AST2300 || ast->chip == AST2400) {
441 		jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd1, 0xff);
442 		switch (jreg & 0x0e) {
443 		case 0x04:
444 			ast_init_dvo(dev);
445 			break;
446 		case 0x08:
447 			ast_launch_m68k(dev);
448 			break;
449 		case 0x0c:
450 			ast_init_dvo(dev);
451 			break;
452 		default:
453 			if (ast->tx_chip_types & BIT(AST_TX_SIL164))
454 				ast_init_dvo(dev);
455 			else
456 				ast_init_analog(dev);
457 		}
458 	}
459 }
460