xref: /linux/drivers/gpu/drm/arm/display/komeda/komeda_crtc.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 #include <linux/clk.h>
8 #include <linux/pm_runtime.h>
9 #include <linux/spinlock.h>
10 
11 #include <drm/drm_atomic.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_crtc_helper.h>
14 #include <drm/drm_plane_helper.h>
15 #include <drm/drm_print.h>
16 #include <drm/drm_vblank.h>
17 
18 #include "komeda_dev.h"
19 #include "komeda_kms.h"
20 
21 static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st)
22 {
23 	u64 pxlclk, aclk;
24 
25 	if (!kcrtc_st->base.active) {
26 		kcrtc_st->clock_ratio = 0;
27 		return;
28 	}
29 
30 	pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL;
31 	aclk = komeda_crtc_get_aclk(kcrtc_st);
32 
33 	kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk);
34 }
35 
36 /**
37  * komeda_crtc_atomic_check - build display output data flow
38  * @crtc: DRM crtc
39  * @state: the crtc state object
40  *
41  * crtc_atomic_check is the final check stage, so beside build a display data
42  * pipeline according to the crtc_state, but still needs to release or disable
43  * the unclaimed pipeline resources.
44  *
45  * RETURNS:
46  * Zero for success or -errno
47  */
48 static int
49 komeda_crtc_atomic_check(struct drm_crtc *crtc,
50 			 struct drm_crtc_state *state)
51 {
52 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
53 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(state);
54 	int err;
55 
56 	if (drm_atomic_crtc_needs_modeset(state))
57 		komeda_crtc_update_clock_ratio(kcrtc_st);
58 
59 	if (state->active) {
60 		err = komeda_build_display_data_flow(kcrtc, kcrtc_st);
61 		if (err)
62 			return err;
63 	}
64 
65 	/* release unclaimed pipeline resources */
66 	err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st);
67 	if (err)
68 		return err;
69 
70 	err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st);
71 	if (err)
72 		return err;
73 
74 	return 0;
75 }
76 
77 /* For active a crtc, mainly need two parts of preparation
78  * 1. adjust display operation mode.
79  * 2. enable needed clk
80  */
81 static int
82 komeda_crtc_prepare(struct komeda_crtc *kcrtc)
83 {
84 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
85 	struct komeda_pipeline *master = kcrtc->master;
86 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state);
87 	struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode;
88 	u32 new_mode;
89 	int err;
90 
91 	mutex_lock(&mdev->lock);
92 
93 	new_mode = mdev->dpmode | BIT(master->id);
94 	if (WARN_ON(new_mode == mdev->dpmode)) {
95 		err = 0;
96 		goto unlock;
97 	}
98 
99 	err = mdev->funcs->change_opmode(mdev, new_mode);
100 	if (err) {
101 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
102 			  mdev->dpmode, new_mode);
103 		goto unlock;
104 	}
105 
106 	mdev->dpmode = new_mode;
107 	/* Only need to enable aclk on single display mode, but no need to
108 	 * enable aclk it on dual display mode, since the dual mode always
109 	 * switch from single display mode, the aclk already enabled, no need
110 	 * to enable it again.
111 	 */
112 	if (new_mode != KOMEDA_MODE_DUAL_DISP) {
113 		err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st));
114 		if (err)
115 			DRM_ERROR("failed to set aclk.\n");
116 		err = clk_prepare_enable(mdev->aclk);
117 		if (err)
118 			DRM_ERROR("failed to enable aclk.\n");
119 	}
120 
121 	err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000);
122 	if (err)
123 		DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id);
124 	err = clk_prepare_enable(master->pxlclk);
125 	if (err)
126 		DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id);
127 
128 unlock:
129 	mutex_unlock(&mdev->lock);
130 
131 	return err;
132 }
133 
134 static int
135 komeda_crtc_unprepare(struct komeda_crtc *kcrtc)
136 {
137 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
138 	struct komeda_pipeline *master = kcrtc->master;
139 	u32 new_mode;
140 	int err;
141 
142 	mutex_lock(&mdev->lock);
143 
144 	new_mode = mdev->dpmode & (~BIT(master->id));
145 
146 	if (WARN_ON(new_mode == mdev->dpmode)) {
147 		err = 0;
148 		goto unlock;
149 	}
150 
151 	err = mdev->funcs->change_opmode(mdev, new_mode);
152 	if (err) {
153 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
154 			  mdev->dpmode, new_mode);
155 		goto unlock;
156 	}
157 
158 	mdev->dpmode = new_mode;
159 
160 	clk_disable_unprepare(master->pxlclk);
161 	if (new_mode == KOMEDA_MODE_INACTIVE)
162 		clk_disable_unprepare(mdev->aclk);
163 
164 unlock:
165 	mutex_unlock(&mdev->lock);
166 
167 	return err;
168 }
169 
170 void komeda_crtc_handle_event(struct komeda_crtc   *kcrtc,
171 			      struct komeda_events *evts)
172 {
173 	struct drm_crtc *crtc = &kcrtc->base;
174 	u32 events = evts->pipes[kcrtc->master->id];
175 
176 	if (events & KOMEDA_EVENT_VSYNC)
177 		drm_crtc_handle_vblank(crtc);
178 
179 	if (events & KOMEDA_EVENT_EOW) {
180 		struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
181 
182 		if (wb_conn)
183 			drm_writeback_signal_completion(&wb_conn->base, 0);
184 		else
185 			DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n",
186 				 drm_crtc_index(&kcrtc->base));
187 	}
188 	/* will handle it together with the write back support */
189 	if (events & KOMEDA_EVENT_EOW)
190 		DRM_DEBUG("EOW.\n");
191 
192 	if (events & KOMEDA_EVENT_FLIP) {
193 		unsigned long flags;
194 		struct drm_pending_vblank_event *event;
195 
196 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
197 		if (kcrtc->disable_done) {
198 			complete_all(kcrtc->disable_done);
199 			kcrtc->disable_done = NULL;
200 		} else if (crtc->state->event) {
201 			event = crtc->state->event;
202 			/*
203 			 * Consume event before notifying drm core that flip
204 			 * happened.
205 			 */
206 			crtc->state->event = NULL;
207 			drm_crtc_send_vblank_event(crtc, event);
208 		} else {
209 			DRM_WARN("CRTC[%d]: FLIP happen but no pending commit.\n",
210 				 drm_crtc_index(&kcrtc->base));
211 		}
212 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
213 	}
214 }
215 
216 static void
217 komeda_crtc_do_flush(struct drm_crtc *crtc,
218 		     struct drm_crtc_state *old)
219 {
220 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
221 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state);
222 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
223 	struct komeda_pipeline *master = kcrtc->master;
224 	struct komeda_pipeline *slave = kcrtc->slave;
225 	struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
226 	struct drm_connector_state *conn_st;
227 
228 	DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n",
229 			 drm_crtc_index(crtc),
230 			 kcrtc_st->active_pipes, kcrtc_st->affected_pipes);
231 
232 	/* step 1: update the pipeline/component state to HW */
233 	if (has_bit(master->id, kcrtc_st->affected_pipes))
234 		komeda_pipeline_update(master, old->state);
235 
236 	if (slave && has_bit(slave->id, kcrtc_st->affected_pipes))
237 		komeda_pipeline_update(slave, old->state);
238 
239 	conn_st = wb_conn ? wb_conn->base.base.state : NULL;
240 	if (conn_st && conn_st->writeback_job)
241 		drm_writeback_queue_job(&wb_conn->base, conn_st);
242 
243 	/* step 2: notify the HW to kickoff the update */
244 	mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes);
245 }
246 
247 static void
248 komeda_crtc_atomic_enable(struct drm_crtc *crtc,
249 			  struct drm_crtc_state *old)
250 {
251 	komeda_crtc_prepare(to_kcrtc(crtc));
252 	drm_crtc_vblank_on(crtc);
253 	komeda_crtc_do_flush(crtc, old);
254 }
255 
256 static void
257 komeda_crtc_atomic_disable(struct drm_crtc *crtc,
258 			   struct drm_crtc_state *old)
259 {
260 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
261 	struct komeda_crtc_state *old_st = to_kcrtc_st(old);
262 	struct komeda_dev *mdev = crtc->dev->dev_private;
263 	struct komeda_pipeline *master = kcrtc->master;
264 	struct komeda_pipeline *slave  = kcrtc->slave;
265 	struct completion *disable_done = &crtc->state->commit->flip_done;
266 	struct completion temp;
267 	int timeout;
268 
269 	DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x.\n",
270 			 drm_crtc_index(crtc),
271 			 old_st->active_pipes, old_st->affected_pipes);
272 
273 	if (slave && has_bit(slave->id, old_st->active_pipes))
274 		komeda_pipeline_disable(slave, old->state);
275 
276 	if (has_bit(master->id, old_st->active_pipes))
277 		komeda_pipeline_disable(master, old->state);
278 
279 	/* crtc_disable has two scenarios according to the state->active switch.
280 	 * 1. active -> inactive
281 	 *    this commit is a disable commit. and the commit will be finished
282 	 *    or done after the disable operation. on this case we can directly
283 	 *    use the crtc->state->event to tracking the HW disable operation.
284 	 * 2. active -> active
285 	 *    the crtc->commit is not for disable, but a modeset operation when
286 	 *    crtc is active, such commit actually has been completed by 3
287 	 *    DRM operations:
288 	 *    crtc_disable, update_planes(crtc_flush), crtc_enable
289 	 *    so on this case the crtc->commit is for the whole process.
290 	 *    we can not use it for tracing the disable, we need a temporary
291 	 *    flip_done for tracing the disable. and crtc->state->event for
292 	 *    the crtc_enable operation.
293 	 *    That's also the reason why skip modeset commit in
294 	 *    komeda_crtc_atomic_flush()
295 	 */
296 	if (crtc->state->active) {
297 		struct komeda_pipeline_state *pipe_st;
298 		/* clear the old active_comps to zero */
299 		pipe_st = komeda_pipeline_get_old_state(master, old->state);
300 		pipe_st->active_comps = 0;
301 
302 		init_completion(&temp);
303 		kcrtc->disable_done = &temp;
304 		disable_done = &temp;
305 	}
306 
307 	mdev->funcs->flush(mdev, master->id, 0);
308 
309 	/* wait the disable take affect.*/
310 	timeout = wait_for_completion_timeout(disable_done, HZ);
311 	if (timeout == 0) {
312 		DRM_ERROR("disable pipeline%d timeout.\n", kcrtc->master->id);
313 		if (crtc->state->active) {
314 			unsigned long flags;
315 
316 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
317 			kcrtc->disable_done = NULL;
318 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
319 		}
320 	}
321 
322 	drm_crtc_vblank_off(crtc);
323 	komeda_crtc_unprepare(kcrtc);
324 }
325 
326 static void
327 komeda_crtc_atomic_flush(struct drm_crtc *crtc,
328 			 struct drm_crtc_state *old)
329 {
330 	/* commit with modeset will be handled in enable/disable */
331 	if (drm_atomic_crtc_needs_modeset(crtc->state))
332 		return;
333 
334 	komeda_crtc_do_flush(crtc, old);
335 }
336 
337 /* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */
338 static unsigned long
339 komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc,
340 			  unsigned long pxlclk)
341 {
342 	/* Once dual-link one display pipeline drives two display outputs,
343 	 * the aclk needs run on the double rate of pxlclk
344 	 */
345 	if (kcrtc->master->dual_link)
346 		return pxlclk * 2;
347 	else
348 		return pxlclk;
349 }
350 
351 /* Get current aclk rate that specified by state */
352 unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st)
353 {
354 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
355 	struct komeda_dev *mdev = crtc->dev->dev_private;
356 	unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000;
357 	unsigned long min_aclk;
358 
359 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk);
360 
361 	return clk_round_rate(mdev->aclk, min_aclk);
362 }
363 
364 static enum drm_mode_status
365 komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m)
366 {
367 	struct komeda_dev *mdev = crtc->dev->dev_private;
368 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
369 	struct komeda_pipeline *master = kcrtc->master;
370 	unsigned long min_pxlclk, min_aclk;
371 
372 	if (m->flags & DRM_MODE_FLAG_INTERLACE)
373 		return MODE_NO_INTERLACE;
374 
375 	min_pxlclk = m->clock * 1000;
376 	if (master->dual_link)
377 		min_pxlclk /= 2;
378 
379 	if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) {
380 		DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk);
381 
382 		return MODE_NOCLOCK;
383 	}
384 
385 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk);
386 	if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) {
387 		DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n",
388 				 m->name, min_pxlclk);
389 
390 		return MODE_CLOCK_HIGH;
391 	}
392 
393 	return MODE_OK;
394 }
395 
396 static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc,
397 				   const struct drm_display_mode *m,
398 				   struct drm_display_mode *adjusted_mode)
399 {
400 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
401 	unsigned long clk_rate;
402 
403 	drm_mode_set_crtcinfo(adjusted_mode, 0);
404 	/* In dual link half the horizontal settings */
405 	if (kcrtc->master->dual_link) {
406 		adjusted_mode->crtc_clock /= 2;
407 		adjusted_mode->crtc_hdisplay /= 2;
408 		adjusted_mode->crtc_hsync_start /= 2;
409 		adjusted_mode->crtc_hsync_end /= 2;
410 		adjusted_mode->crtc_htotal /= 2;
411 	}
412 
413 	clk_rate = adjusted_mode->crtc_clock * 1000;
414 	/* crtc_clock will be used as the komeda output pixel clock */
415 	adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk,
416 						   clk_rate) / 1000;
417 
418 	return true;
419 }
420 
421 static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = {
422 	.atomic_check	= komeda_crtc_atomic_check,
423 	.atomic_flush	= komeda_crtc_atomic_flush,
424 	.atomic_enable	= komeda_crtc_atomic_enable,
425 	.atomic_disable	= komeda_crtc_atomic_disable,
426 	.mode_valid	= komeda_crtc_mode_valid,
427 	.mode_fixup	= komeda_crtc_mode_fixup,
428 };
429 
430 static void komeda_crtc_reset(struct drm_crtc *crtc)
431 {
432 	struct komeda_crtc_state *state;
433 
434 	if (crtc->state)
435 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
436 
437 	kfree(to_kcrtc_st(crtc->state));
438 	crtc->state = NULL;
439 
440 	state = kzalloc(sizeof(*state), GFP_KERNEL);
441 	if (state) {
442 		crtc->state = &state->base;
443 		crtc->state->crtc = crtc;
444 	}
445 }
446 
447 static struct drm_crtc_state *
448 komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
449 {
450 	struct komeda_crtc_state *old = to_kcrtc_st(crtc->state);
451 	struct komeda_crtc_state *new;
452 
453 	new = kzalloc(sizeof(*new), GFP_KERNEL);
454 	if (!new)
455 		return NULL;
456 
457 	__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
458 
459 	new->affected_pipes = old->active_pipes;
460 	new->clock_ratio = old->clock_ratio;
461 	new->max_slave_zorder = old->max_slave_zorder;
462 
463 	return &new->base;
464 }
465 
466 static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc,
467 					     struct drm_crtc_state *state)
468 {
469 	__drm_atomic_helper_crtc_destroy_state(state);
470 	kfree(to_kcrtc_st(state));
471 }
472 
473 static int komeda_crtc_vblank_enable(struct drm_crtc *crtc)
474 {
475 	struct komeda_dev *mdev = crtc->dev->dev_private;
476 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
477 
478 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true);
479 	return 0;
480 }
481 
482 static void komeda_crtc_vblank_disable(struct drm_crtc *crtc)
483 {
484 	struct komeda_dev *mdev = crtc->dev->dev_private;
485 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
486 
487 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false);
488 }
489 
490 static const struct drm_crtc_funcs komeda_crtc_funcs = {
491 	.gamma_set		= drm_atomic_helper_legacy_gamma_set,
492 	.destroy		= drm_crtc_cleanup,
493 	.set_config		= drm_atomic_helper_set_config,
494 	.page_flip		= drm_atomic_helper_page_flip,
495 	.reset			= komeda_crtc_reset,
496 	.atomic_duplicate_state	= komeda_crtc_atomic_duplicate_state,
497 	.atomic_destroy_state	= komeda_crtc_atomic_destroy_state,
498 	.enable_vblank		= komeda_crtc_vblank_enable,
499 	.disable_vblank		= komeda_crtc_vblank_disable,
500 };
501 
502 int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms,
503 			   struct komeda_dev *mdev)
504 {
505 	struct komeda_crtc *crtc;
506 	struct komeda_pipeline *master;
507 	char str[16];
508 	int i;
509 
510 	kms->n_crtcs = 0;
511 
512 	for (i = 0; i < mdev->n_pipelines; i++) {
513 		crtc = &kms->crtcs[kms->n_crtcs];
514 		master = mdev->pipelines[i];
515 
516 		crtc->master = master;
517 		crtc->slave  = komeda_pipeline_get_slave(master);
518 
519 		if (crtc->slave)
520 			sprintf(str, "pipe-%d", crtc->slave->id);
521 		else
522 			sprintf(str, "None");
523 
524 		DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n",
525 			 kms->n_crtcs, master->id, str);
526 
527 		kms->n_crtcs++;
528 	}
529 
530 	return 0;
531 }
532 
533 static struct drm_plane *
534 get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc)
535 {
536 	struct komeda_plane *kplane;
537 	struct drm_plane *plane;
538 
539 	drm_for_each_plane(plane, &kms->base) {
540 		if (plane->type != DRM_PLANE_TYPE_PRIMARY)
541 			continue;
542 
543 		kplane = to_kplane(plane);
544 		/* only master can be primary */
545 		if (kplane->layer->base.pipeline == crtc->master)
546 			return plane;
547 	}
548 
549 	return NULL;
550 }
551 
552 static int komeda_crtc_add(struct komeda_kms_dev *kms,
553 			   struct komeda_crtc *kcrtc)
554 {
555 	struct drm_crtc *crtc = &kcrtc->base;
556 	int err;
557 
558 	err = drm_crtc_init_with_planes(&kms->base, crtc,
559 					get_crtc_primary(kms, kcrtc), NULL,
560 					&komeda_crtc_funcs, NULL);
561 	if (err)
562 		return err;
563 
564 	drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs);
565 	drm_crtc_vblank_reset(crtc);
566 
567 	crtc->port = kcrtc->master->of_output_port;
568 
569 	return err;
570 }
571 
572 int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev)
573 {
574 	int i, err;
575 
576 	for (i = 0; i < kms->n_crtcs; i++) {
577 		err = komeda_crtc_add(kms, &kms->crtcs[i]);
578 		if (err)
579 			return err;
580 	}
581 
582 	return 0;
583 }
584