1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved. 4 * Author: James.Qian.Wang <james.qian.wang@arm.com> 5 * 6 */ 7 8 #include <drm/drm_blend.h> 9 #include <drm/drm_print.h> 10 #include "d71_dev.h" 11 #include "malidp_io.h" 12 13 static u64 get_lpu_event(struct d71_pipeline *d71_pipeline) 14 { 15 u32 __iomem *reg = d71_pipeline->lpu_addr; 16 u32 status, raw_status; 17 u64 evts = 0ULL; 18 19 raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS); 20 if (raw_status & LPU_IRQ_IBSY) 21 evts |= KOMEDA_EVENT_IBSY; 22 if (raw_status & LPU_IRQ_EOW) 23 evts |= KOMEDA_EVENT_EOW; 24 if (raw_status & LPU_IRQ_OVR) 25 evts |= KOMEDA_EVENT_OVR; 26 27 if (raw_status & (LPU_IRQ_ERR | LPU_IRQ_IBSY | LPU_IRQ_OVR)) { 28 u32 restore = 0, tbu_status; 29 /* Check error of LPU status */ 30 status = malidp_read32(reg, BLK_STATUS); 31 if (status & LPU_STATUS_AXIE) { 32 restore |= LPU_STATUS_AXIE; 33 evts |= KOMEDA_ERR_AXIE; 34 } 35 if (status & LPU_STATUS_ACE0) { 36 restore |= LPU_STATUS_ACE0; 37 evts |= KOMEDA_ERR_ACE0; 38 } 39 if (status & LPU_STATUS_ACE1) { 40 restore |= LPU_STATUS_ACE1; 41 evts |= KOMEDA_ERR_ACE1; 42 } 43 if (status & LPU_STATUS_ACE2) { 44 restore |= LPU_STATUS_ACE2; 45 evts |= KOMEDA_ERR_ACE2; 46 } 47 if (status & LPU_STATUS_ACE3) { 48 restore |= LPU_STATUS_ACE3; 49 evts |= KOMEDA_ERR_ACE3; 50 } 51 if (status & LPU_STATUS_FEMPTY) { 52 restore |= LPU_STATUS_FEMPTY; 53 evts |= KOMEDA_EVENT_EMPTY; 54 } 55 if (status & LPU_STATUS_FFULL) { 56 restore |= LPU_STATUS_FFULL; 57 evts |= KOMEDA_EVENT_FULL; 58 } 59 60 if (restore != 0) 61 malidp_write32_mask(reg, BLK_STATUS, restore, 0); 62 63 restore = 0; 64 /* Check errors of TBU status */ 65 tbu_status = malidp_read32(reg, LPU_TBU_STATUS); 66 if (tbu_status & LPU_TBU_STATUS_TCF) { 67 restore |= LPU_TBU_STATUS_TCF; 68 evts |= KOMEDA_ERR_TCF; 69 } 70 if (tbu_status & LPU_TBU_STATUS_TTNG) { 71 restore |= LPU_TBU_STATUS_TTNG; 72 evts |= KOMEDA_ERR_TTNG; 73 } 74 if (tbu_status & LPU_TBU_STATUS_TITR) { 75 restore |= LPU_TBU_STATUS_TITR; 76 evts |= KOMEDA_ERR_TITR; 77 } 78 if (tbu_status & LPU_TBU_STATUS_TEMR) { 79 restore |= LPU_TBU_STATUS_TEMR; 80 evts |= KOMEDA_ERR_TEMR; 81 } 82 if (tbu_status & LPU_TBU_STATUS_TTF) { 83 restore |= LPU_TBU_STATUS_TTF; 84 evts |= KOMEDA_ERR_TTF; 85 } 86 if (restore != 0) 87 malidp_write32_mask(reg, LPU_TBU_STATUS, restore, 0); 88 } 89 90 malidp_write32(reg, BLK_IRQ_CLEAR, raw_status); 91 return evts; 92 } 93 94 static u64 get_cu_event(struct d71_pipeline *d71_pipeline) 95 { 96 u32 __iomem *reg = d71_pipeline->cu_addr; 97 u32 status, raw_status; 98 u64 evts = 0ULL; 99 100 raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS); 101 if (raw_status & CU_IRQ_OVR) 102 evts |= KOMEDA_EVENT_OVR; 103 104 if (raw_status & (CU_IRQ_ERR | CU_IRQ_OVR)) { 105 status = malidp_read32(reg, BLK_STATUS) & 0x7FFFFFFF; 106 if (status & CU_STATUS_CPE) 107 evts |= KOMEDA_ERR_CPE; 108 if (status & CU_STATUS_ZME) 109 evts |= KOMEDA_ERR_ZME; 110 if (status & CU_STATUS_CFGE) 111 evts |= KOMEDA_ERR_CFGE; 112 if (status) 113 malidp_write32_mask(reg, BLK_STATUS, status, 0); 114 } 115 116 malidp_write32(reg, BLK_IRQ_CLEAR, raw_status); 117 118 return evts; 119 } 120 121 static u64 get_dou_event(struct d71_pipeline *d71_pipeline) 122 { 123 u32 __iomem *reg = d71_pipeline->dou_addr; 124 u32 status, raw_status; 125 u64 evts = 0ULL; 126 127 raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS); 128 if (raw_status & DOU_IRQ_PL0) 129 evts |= KOMEDA_EVENT_VSYNC; 130 if (raw_status & DOU_IRQ_UND) 131 evts |= KOMEDA_EVENT_URUN; 132 133 if (raw_status & (DOU_IRQ_ERR | DOU_IRQ_UND)) { 134 u32 restore = 0; 135 136 status = malidp_read32(reg, BLK_STATUS); 137 if (status & DOU_STATUS_DRIFTTO) { 138 restore |= DOU_STATUS_DRIFTTO; 139 evts |= KOMEDA_ERR_DRIFTTO; 140 } 141 if (status & DOU_STATUS_FRAMETO) { 142 restore |= DOU_STATUS_FRAMETO; 143 evts |= KOMEDA_ERR_FRAMETO; 144 } 145 if (status & DOU_STATUS_TETO) { 146 restore |= DOU_STATUS_TETO; 147 evts |= KOMEDA_ERR_TETO; 148 } 149 if (status & DOU_STATUS_CSCE) { 150 restore |= DOU_STATUS_CSCE; 151 evts |= KOMEDA_ERR_CSCE; 152 } 153 154 if (restore != 0) 155 malidp_write32_mask(reg, BLK_STATUS, restore, 0); 156 } 157 158 malidp_write32(reg, BLK_IRQ_CLEAR, raw_status); 159 return evts; 160 } 161 162 static u64 get_pipeline_event(struct d71_pipeline *d71_pipeline, u32 gcu_status) 163 { 164 u32 evts = 0ULL; 165 166 if (gcu_status & (GLB_IRQ_STATUS_LPU0 | GLB_IRQ_STATUS_LPU1)) 167 evts |= get_lpu_event(d71_pipeline); 168 169 if (gcu_status & (GLB_IRQ_STATUS_CU0 | GLB_IRQ_STATUS_CU1)) 170 evts |= get_cu_event(d71_pipeline); 171 172 if (gcu_status & (GLB_IRQ_STATUS_DOU0 | GLB_IRQ_STATUS_DOU1)) 173 evts |= get_dou_event(d71_pipeline); 174 175 return evts; 176 } 177 178 static irqreturn_t 179 d71_irq_handler(struct komeda_dev *mdev, struct komeda_events *evts) 180 { 181 struct d71_dev *d71 = mdev->chip_data; 182 u32 status, gcu_status, raw_status; 183 184 gcu_status = malidp_read32(d71->gcu_addr, GLB_IRQ_STATUS); 185 186 if (gcu_status & GLB_IRQ_STATUS_GCU) { 187 raw_status = malidp_read32(d71->gcu_addr, BLK_IRQ_RAW_STATUS); 188 if (raw_status & GCU_IRQ_CVAL0) 189 evts->pipes[0] |= KOMEDA_EVENT_FLIP; 190 if (raw_status & GCU_IRQ_CVAL1) 191 evts->pipes[1] |= KOMEDA_EVENT_FLIP; 192 if (raw_status & GCU_IRQ_ERR) { 193 status = malidp_read32(d71->gcu_addr, BLK_STATUS); 194 if (status & GCU_STATUS_MERR) { 195 evts->global |= KOMEDA_ERR_MERR; 196 malidp_write32_mask(d71->gcu_addr, BLK_STATUS, 197 GCU_STATUS_MERR, 0); 198 } 199 } 200 201 malidp_write32(d71->gcu_addr, BLK_IRQ_CLEAR, raw_status); 202 } 203 204 if (gcu_status & GLB_IRQ_STATUS_PIPE0) 205 evts->pipes[0] |= get_pipeline_event(d71->pipes[0], gcu_status); 206 207 if (gcu_status & GLB_IRQ_STATUS_PIPE1) 208 evts->pipes[1] |= get_pipeline_event(d71->pipes[1], gcu_status); 209 210 return IRQ_RETVAL(gcu_status); 211 } 212 213 #define ENABLED_GCU_IRQS (GCU_IRQ_CVAL0 | GCU_IRQ_CVAL1 | \ 214 GCU_IRQ_MODE | GCU_IRQ_ERR) 215 #define ENABLED_LPU_IRQS (LPU_IRQ_IBSY | LPU_IRQ_ERR | LPU_IRQ_EOW) 216 #define ENABLED_CU_IRQS (CU_IRQ_OVR | CU_IRQ_ERR) 217 #define ENABLED_DOU_IRQS (DOU_IRQ_UND | DOU_IRQ_ERR) 218 219 static int d71_enable_irq(struct komeda_dev *mdev) 220 { 221 struct d71_dev *d71 = mdev->chip_data; 222 struct d71_pipeline *pipe; 223 u32 i; 224 225 malidp_write32_mask(d71->gcu_addr, BLK_IRQ_MASK, 226 ENABLED_GCU_IRQS, ENABLED_GCU_IRQS); 227 for (i = 0; i < d71->num_pipelines; i++) { 228 pipe = d71->pipes[i]; 229 malidp_write32_mask(pipe->cu_addr, BLK_IRQ_MASK, 230 ENABLED_CU_IRQS, ENABLED_CU_IRQS); 231 malidp_write32_mask(pipe->lpu_addr, BLK_IRQ_MASK, 232 ENABLED_LPU_IRQS, ENABLED_LPU_IRQS); 233 malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK, 234 ENABLED_DOU_IRQS, ENABLED_DOU_IRQS); 235 } 236 return 0; 237 } 238 239 static int d71_disable_irq(struct komeda_dev *mdev) 240 { 241 struct d71_dev *d71 = mdev->chip_data; 242 struct d71_pipeline *pipe; 243 u32 i; 244 245 malidp_write32_mask(d71->gcu_addr, BLK_IRQ_MASK, ENABLED_GCU_IRQS, 0); 246 for (i = 0; i < d71->num_pipelines; i++) { 247 pipe = d71->pipes[i]; 248 malidp_write32_mask(pipe->cu_addr, BLK_IRQ_MASK, 249 ENABLED_CU_IRQS, 0); 250 malidp_write32_mask(pipe->lpu_addr, BLK_IRQ_MASK, 251 ENABLED_LPU_IRQS, 0); 252 malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK, 253 ENABLED_DOU_IRQS, 0); 254 } 255 return 0; 256 } 257 258 static void d71_on_off_vblank(struct komeda_dev *mdev, int master_pipe, bool on) 259 { 260 struct d71_dev *d71 = mdev->chip_data; 261 struct d71_pipeline *pipe = d71->pipes[master_pipe]; 262 263 malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK, 264 DOU_IRQ_PL0, on ? DOU_IRQ_PL0 : 0); 265 } 266 267 static int to_d71_opmode(int core_mode) 268 { 269 switch (core_mode) { 270 case KOMEDA_MODE_DISP0: 271 return DO0_ACTIVE_MODE; 272 case KOMEDA_MODE_DISP1: 273 return DO1_ACTIVE_MODE; 274 case KOMEDA_MODE_DUAL_DISP: 275 return DO01_ACTIVE_MODE; 276 case KOMEDA_MODE_INACTIVE: 277 return INACTIVE_MODE; 278 default: 279 WARN(1, "Unknown operation mode"); 280 return INACTIVE_MODE; 281 } 282 } 283 284 static int d71_change_opmode(struct komeda_dev *mdev, int new_mode) 285 { 286 struct d71_dev *d71 = mdev->chip_data; 287 u32 opmode = to_d71_opmode(new_mode); 288 int ret; 289 290 malidp_write32_mask(d71->gcu_addr, BLK_CONTROL, 0x7, opmode); 291 292 ret = dp_wait_cond(((malidp_read32(d71->gcu_addr, BLK_CONTROL) & 0x7) == opmode), 293 100, 1000, 10000); 294 295 return ret; 296 } 297 298 static void d71_flush(struct komeda_dev *mdev, 299 int master_pipe, u32 active_pipes) 300 { 301 struct d71_dev *d71 = mdev->chip_data; 302 u32 reg_offset = (master_pipe == 0) ? 303 GCU_CONFIG_VALID0 : GCU_CONFIG_VALID1; 304 305 malidp_write32(d71->gcu_addr, reg_offset, GCU_CONFIG_CVAL); 306 } 307 308 static int d71_reset(struct d71_dev *d71) 309 { 310 u32 __iomem *gcu = d71->gcu_addr; 311 int ret; 312 313 malidp_write32(gcu, BLK_CONTROL, GCU_CONTROL_SRST); 314 315 ret = dp_wait_cond(!(malidp_read32(gcu, BLK_CONTROL) & GCU_CONTROL_SRST), 316 100, 1000, 10000); 317 318 return ret; 319 } 320 321 void d71_read_block_header(u32 __iomem *reg, struct block_header *blk) 322 { 323 int i; 324 325 blk->block_info = malidp_read32(reg, BLK_BLOCK_INFO); 326 if (BLOCK_INFO_BLK_TYPE(blk->block_info) == D71_BLK_TYPE_RESERVED) 327 return; 328 329 blk->pipeline_info = malidp_read32(reg, BLK_PIPELINE_INFO); 330 331 /* get valid input and output ids */ 332 for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) 333 blk->input_ids[i] = malidp_read32(reg + i, BLK_VALID_INPUT_ID0); 334 for (i = 0; i < PIPELINE_INFO_N_OUTPUTS(blk->pipeline_info); i++) 335 blk->output_ids[i] = malidp_read32(reg + i, BLK_OUTPUT_ID0); 336 } 337 338 static void d71_cleanup(struct komeda_dev *mdev) 339 { 340 struct d71_dev *d71 = mdev->chip_data; 341 342 if (!d71) 343 return; 344 345 devm_kfree(mdev->dev, d71); 346 mdev->chip_data = NULL; 347 } 348 349 static int d71_enum_resources(struct komeda_dev *mdev) 350 { 351 struct d71_dev *d71; 352 struct komeda_pipeline *pipe; 353 struct block_header blk; 354 u32 __iomem *blk_base; 355 u32 i, value, offset; 356 int err; 357 358 d71 = devm_kzalloc(mdev->dev, sizeof(*d71), GFP_KERNEL); 359 if (!d71) 360 return -ENOMEM; 361 362 mdev->chip_data = d71; 363 d71->mdev = mdev; 364 d71->gcu_addr = mdev->reg_base; 365 d71->periph_addr = mdev->reg_base + (D71_BLOCK_OFFSET_PERIPH >> 2); 366 367 err = d71_reset(d71); 368 if (err) { 369 DRM_ERROR("Fail to reset d71 device.\n"); 370 goto err_cleanup; 371 } 372 373 /* probe GCU */ 374 value = malidp_read32(d71->gcu_addr, GLB_CORE_INFO); 375 d71->num_blocks = value & 0xFF; 376 d71->num_pipelines = (value >> 8) & 0x7; 377 378 if (d71->num_pipelines > D71_MAX_PIPELINE) { 379 DRM_ERROR("d71 supports %d pipelines, but got: %d.\n", 380 D71_MAX_PIPELINE, d71->num_pipelines); 381 err = -EINVAL; 382 goto err_cleanup; 383 } 384 385 /* Only the legacy HW has the periph block, the newer merges the periph 386 * into GCU 387 */ 388 value = malidp_read32(d71->periph_addr, BLK_BLOCK_INFO); 389 if (BLOCK_INFO_BLK_TYPE(value) != D71_BLK_TYPE_PERIPH) 390 d71->periph_addr = NULL; 391 392 if (d71->periph_addr) { 393 /* probe PERIPHERAL in legacy HW */ 394 value = malidp_read32(d71->periph_addr, PERIPH_CONFIGURATION_ID); 395 396 d71->max_line_size = value & PERIPH_MAX_LINE_SIZE ? 4096 : 2048; 397 d71->max_vsize = 4096; 398 d71->num_rich_layers = value & PERIPH_NUM_RICH_LAYERS ? 2 : 1; 399 d71->supports_dual_link = !!(value & PERIPH_SPLIT_EN); 400 d71->integrates_tbu = !!(value & PERIPH_TBU_EN); 401 } else { 402 value = malidp_read32(d71->gcu_addr, GCU_CONFIGURATION_ID0); 403 d71->max_line_size = GCU_MAX_LINE_SIZE(value); 404 d71->max_vsize = GCU_MAX_NUM_LINES(value); 405 406 value = malidp_read32(d71->gcu_addr, GCU_CONFIGURATION_ID1); 407 d71->num_rich_layers = GCU_NUM_RICH_LAYERS(value); 408 d71->supports_dual_link = GCU_DISPLAY_SPLIT_EN(value); 409 d71->integrates_tbu = GCU_DISPLAY_TBU_EN(value); 410 } 411 412 for (i = 0; i < d71->num_pipelines; i++) { 413 pipe = komeda_pipeline_add(mdev, sizeof(struct d71_pipeline), 414 &d71_pipeline_funcs); 415 if (IS_ERR(pipe)) { 416 err = PTR_ERR(pipe); 417 goto err_cleanup; 418 } 419 420 /* D71 HW doesn't update shadow registers when display output 421 * is turning off, so when we disable all pipeline components 422 * together with display output disable by one flush or one 423 * operation, the disable operation updated registers will not 424 * be flush to or valid in HW, which may leads problem. 425 * To workaround this problem, introduce a two phase disable. 426 * Phase1: Disabling components with display is on to make sure 427 * the disable can be flushed to HW. 428 * Phase2: Only turn-off display output. 429 */ 430 value = KOMEDA_PIPELINE_IMPROCS | 431 BIT(KOMEDA_COMPONENT_TIMING_CTRLR); 432 433 pipe->standalone_disabled_comps = value; 434 435 d71->pipes[i] = to_d71_pipeline(pipe); 436 } 437 438 /* loop the register blks and probe. 439 * NOTE: d71->num_blocks includes reserved blocks. 440 * d71->num_blocks = GCU + valid blocks + reserved blocks 441 */ 442 i = 1; /* exclude GCU */ 443 offset = D71_BLOCK_SIZE; /* skip GCU */ 444 while (i < d71->num_blocks) { 445 blk_base = mdev->reg_base + (offset >> 2); 446 447 d71_read_block_header(blk_base, &blk); 448 if (BLOCK_INFO_BLK_TYPE(blk.block_info) != D71_BLK_TYPE_RESERVED) { 449 err = d71_probe_block(d71, &blk, blk_base); 450 if (err) 451 goto err_cleanup; 452 } 453 454 i++; 455 offset += D71_BLOCK_SIZE; 456 } 457 458 DRM_DEBUG("total %d (out of %d) blocks are found.\n", 459 i, d71->num_blocks); 460 461 return 0; 462 463 err_cleanup: 464 d71_cleanup(mdev); 465 return err; 466 } 467 468 #define __HW_ID(__group, __format) \ 469 ((((__group) & 0x7) << 3) | ((__format) & 0x7)) 470 471 #define RICH KOMEDA_FMT_RICH_LAYER 472 #define SIMPLE KOMEDA_FMT_SIMPLE_LAYER 473 #define RICH_SIMPLE (KOMEDA_FMT_RICH_LAYER | KOMEDA_FMT_SIMPLE_LAYER) 474 #define RICH_WB (KOMEDA_FMT_RICH_LAYER | KOMEDA_FMT_WB_LAYER) 475 #define RICH_SIMPLE_WB (RICH_SIMPLE | KOMEDA_FMT_WB_LAYER) 476 477 #define Rot_0 DRM_MODE_ROTATE_0 478 #define Flip_H_V (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y | Rot_0) 479 #define Rot_ALL_H_V (DRM_MODE_ROTATE_MASK | Flip_H_V) 480 481 #define LYT_NM BIT(AFBC_FORMAT_MOD_BLOCK_SIZE_16x16) 482 #define LYT_WB BIT(AFBC_FORMAT_MOD_BLOCK_SIZE_32x8) 483 #define LYT_NM_WB (LYT_NM | LYT_WB) 484 485 #define AFB_TH AFBC(_TILED | _SPARSE) 486 #define AFB_TH_SC_YTR AFBC(_TILED | _SC | _SPARSE | _YTR) 487 #define AFB_TH_SC_YTR_BS AFBC(_TILED | _SC | _SPARSE | _YTR | _SPLIT) 488 489 static struct komeda_format_caps d71_format_caps_table[] = { 490 /* HW_ID | fourcc | layer_types | rots | afbc_layouts | afbc_features */ 491 /* ABGR_2101010*/ 492 {__HW_ID(0, 0), DRM_FORMAT_ARGB2101010, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 493 {__HW_ID(0, 1), DRM_FORMAT_ABGR2101010, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 494 {__HW_ID(0, 1), DRM_FORMAT_ABGR2101010, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */ 495 {__HW_ID(0, 2), DRM_FORMAT_RGBA1010102, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 496 {__HW_ID(0, 3), DRM_FORMAT_BGRA1010102, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 497 /* ABGR_8888*/ 498 {__HW_ID(1, 0), DRM_FORMAT_ARGB8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 499 {__HW_ID(1, 1), DRM_FORMAT_ABGR8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 500 {__HW_ID(1, 1), DRM_FORMAT_ABGR8888, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */ 501 {__HW_ID(1, 2), DRM_FORMAT_RGBA8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 502 {__HW_ID(1, 3), DRM_FORMAT_BGRA8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 503 /* XBGB_8888 */ 504 {__HW_ID(2, 0), DRM_FORMAT_XRGB8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 505 {__HW_ID(2, 1), DRM_FORMAT_XBGR8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 506 {__HW_ID(2, 2), DRM_FORMAT_RGBX8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 507 {__HW_ID(2, 3), DRM_FORMAT_BGRX8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0}, 508 /* BGR_888 */ /* none-afbc RGB888 doesn't support rotation and flip */ 509 {__HW_ID(3, 0), DRM_FORMAT_RGB888, RICH_SIMPLE_WB, Rot_0, 0, 0}, 510 {__HW_ID(3, 1), DRM_FORMAT_BGR888, RICH_SIMPLE_WB, Rot_0, 0, 0}, 511 {__HW_ID(3, 1), DRM_FORMAT_BGR888, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */ 512 /* BGR 16bpp */ 513 {__HW_ID(4, 0), DRM_FORMAT_RGBA5551, RICH_SIMPLE, Flip_H_V, 0, 0}, 514 {__HW_ID(4, 1), DRM_FORMAT_ABGR1555, RICH_SIMPLE, Flip_H_V, 0, 0}, 515 {__HW_ID(4, 1), DRM_FORMAT_ABGR1555, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR}, /* afbc */ 516 {__HW_ID(4, 2), DRM_FORMAT_RGB565, RICH_SIMPLE, Flip_H_V, 0, 0}, 517 {__HW_ID(4, 3), DRM_FORMAT_BGR565, RICH_SIMPLE, Flip_H_V, 0, 0}, 518 {__HW_ID(4, 3), DRM_FORMAT_BGR565, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR}, /* afbc */ 519 {__HW_ID(4, 4), DRM_FORMAT_R8, SIMPLE, Rot_0, 0, 0}, 520 /* YUV 444/422/420 8bit */ 521 {__HW_ID(5, 1), DRM_FORMAT_YUYV, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH}, /* afbc */ 522 {__HW_ID(5, 2), DRM_FORMAT_YUYV, RICH, Flip_H_V, 0, 0}, 523 {__HW_ID(5, 3), DRM_FORMAT_UYVY, RICH, Flip_H_V, 0, 0}, 524 {__HW_ID(5, 6), DRM_FORMAT_NV12, RICH_WB, Flip_H_V, 0, 0}, 525 {__HW_ID(5, 6), DRM_FORMAT_YUV420_8BIT, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH}, /* afbc */ 526 {__HW_ID(5, 7), DRM_FORMAT_YUV420, RICH, Flip_H_V, 0, 0}, 527 /* YUV 10bit*/ 528 {__HW_ID(6, 6), DRM_FORMAT_X0L2, RICH, Flip_H_V, 0, 0}, 529 {__HW_ID(6, 7), DRM_FORMAT_P010, RICH, Flip_H_V, 0, 0}, 530 {__HW_ID(6, 7), DRM_FORMAT_YUV420_10BIT, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH}, 531 }; 532 533 static bool d71_format_mod_supported(const struct komeda_format_caps *caps, 534 u32 layer_type, u64 modifier, u32 rot) 535 { 536 uint64_t layout = modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK; 537 538 if ((layout == AFBC_FORMAT_MOD_BLOCK_SIZE_32x8) && 539 drm_rotation_90_or_270(rot)) { 540 DRM_DEBUG_ATOMIC("D71 doesn't support ROT90 for WB-AFBC.\n"); 541 return false; 542 } 543 544 return true; 545 } 546 547 static void d71_init_fmt_tbl(struct komeda_dev *mdev) 548 { 549 struct komeda_format_caps_table *table = &mdev->fmt_tbl; 550 551 table->format_caps = d71_format_caps_table; 552 table->format_mod_supported = d71_format_mod_supported; 553 table->n_formats = ARRAY_SIZE(d71_format_caps_table); 554 } 555 556 static int d71_connect_iommu(struct komeda_dev *mdev) 557 { 558 struct d71_dev *d71 = mdev->chip_data; 559 u32 __iomem *reg = d71->gcu_addr; 560 u32 check_bits = (d71->num_pipelines == 2) ? 561 GCU_STATUS_TCS0 | GCU_STATUS_TCS1 : GCU_STATUS_TCS0; 562 int i, ret; 563 564 if (!d71->integrates_tbu) 565 return -1; 566 567 malidp_write32_mask(reg, BLK_CONTROL, 0x7, TBU_CONNECT_MODE); 568 569 ret = dp_wait_cond(has_bits(check_bits, malidp_read32(reg, BLK_STATUS)), 570 100, 1000, 1000); 571 if (ret < 0) { 572 DRM_ERROR("timed out connecting to TCU!\n"); 573 malidp_write32_mask(reg, BLK_CONTROL, 0x7, INACTIVE_MODE); 574 return ret; 575 } 576 577 for (i = 0; i < d71->num_pipelines; i++) 578 malidp_write32_mask(d71->pipes[i]->lpu_addr, LPU_TBU_CONTROL, 579 LPU_TBU_CTRL_TLBPEN, LPU_TBU_CTRL_TLBPEN); 580 return 0; 581 } 582 583 static int d71_disconnect_iommu(struct komeda_dev *mdev) 584 { 585 struct d71_dev *d71 = mdev->chip_data; 586 u32 __iomem *reg = d71->gcu_addr; 587 u32 check_bits = (d71->num_pipelines == 2) ? 588 GCU_STATUS_TCS0 | GCU_STATUS_TCS1 : GCU_STATUS_TCS0; 589 int ret; 590 591 malidp_write32_mask(reg, BLK_CONTROL, 0x7, TBU_DISCONNECT_MODE); 592 593 ret = dp_wait_cond(((malidp_read32(reg, BLK_STATUS) & check_bits) == 0), 594 100, 1000, 1000); 595 if (ret < 0) { 596 DRM_ERROR("timed out disconnecting from TCU!\n"); 597 malidp_write32_mask(reg, BLK_CONTROL, 0x7, INACTIVE_MODE); 598 } 599 600 return ret; 601 } 602 603 static const struct komeda_dev_funcs d71_chip_funcs = { 604 .init_format_table = d71_init_fmt_tbl, 605 .enum_resources = d71_enum_resources, 606 .cleanup = d71_cleanup, 607 .irq_handler = d71_irq_handler, 608 .enable_irq = d71_enable_irq, 609 .disable_irq = d71_disable_irq, 610 .on_off_vblank = d71_on_off_vblank, 611 .change_opmode = d71_change_opmode, 612 .flush = d71_flush, 613 .connect_iommu = d71_connect_iommu, 614 .disconnect_iommu = d71_disconnect_iommu, 615 .dump_register = d71_dump, 616 }; 617 618 const struct komeda_dev_funcs * 619 d71_identify(u32 __iomem *reg_base, struct komeda_chip_info *chip) 620 { 621 const struct komeda_dev_funcs *funcs; 622 u32 product_id; 623 624 chip->core_id = malidp_read32(reg_base, GLB_CORE_ID); 625 626 product_id = MALIDP_CORE_ID_PRODUCT_ID(chip->core_id); 627 628 switch (product_id) { 629 case MALIDP_D71_PRODUCT_ID: 630 case MALIDP_D32_PRODUCT_ID: 631 funcs = &d71_chip_funcs; 632 break; 633 default: 634 DRM_ERROR("Unsupported product: 0x%x\n", product_id); 635 return NULL; 636 } 637 638 chip->arch_id = malidp_read32(reg_base, GLB_ARCH_ID); 639 chip->core_info = malidp_read32(reg_base, GLB_CORE_INFO); 640 chip->bus_width = D71_BUS_WIDTH_16_BYTES; 641 642 return funcs; 643 } 644