xref: /linux/drivers/gpu/drm/amd/pm/powerplay/smumgr/vegam_smumgr.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38 
39 #include "smu7_dyn_defaults.h"
40 
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45 
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
48 
49 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
50 
51 #define VOLTAGE_VID_OFFSET_SCALE1   625
52 #define VOLTAGE_VID_OFFSET_SCALE2   100
53 #define POWERTUNE_DEFAULT_SET_MAX    1
54 #define VDDC_VDDCI_DELTA            200
55 #define MC_CG_ARB_FREQ_F1           0x0b
56 
57 #define STRAP_ASIC_RO_LSB    2168
58 #define STRAP_ASIC_RO_MSB    2175
59 
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
62 
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65 	/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
67 	{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68 	{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
70 };
71 
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73 			{VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
74 			{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75 			{VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
76 			{VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
77 			{VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
78 			{VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
79 			{VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
80 			{VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
81 
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
83 {
84 	struct vegam_smumgr *smu_data;
85 
86 	smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87 	if (smu_data == NULL)
88 		return -ENOMEM;
89 
90 	hwmgr->smu_backend = smu_data;
91 
92 	if (smu7_init(hwmgr)) {
93 		kfree(smu_data);
94 		return -EINVAL;
95 	}
96 
97 	return 0;
98 }
99 
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 {
102 	int result = 0;
103 
104 	/* Wait for smc boot up */
105 	/* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
106 
107 	/* Assert reset */
108 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109 					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110 
111 	result = smu7_upload_smu_firmware_image(hwmgr);
112 	if (result != 0)
113 		return result;
114 
115 	/* Clear status */
116 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
117 
118 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120 
121 	/* De-assert reset */
122 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124 
125 
126 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
127 
128 
129 	/* Call Test SMU message with 0x20000 offset to trigger SMU start */
130 	smu7_send_msg_to_smc_offset(hwmgr);
131 
132 	/* Wait done bit to be set */
133 	/* Check pass/failed indicator */
134 
135 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
136 
137 	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138 						SMU_STATUS, SMU_PASS))
139 		PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
140 
141 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
142 
143 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144 					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
145 
146 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
148 
149 	/* Wait for firmware to initialize */
150 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151 
152 	return result;
153 }
154 
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157 	int result = 0;
158 
159 	/* wait for smc boot up */
160 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
161 
162 	/* Clear firmware interrupt enable flag */
163 	/* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
164 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165 				ixFIRMWARE_FLAGS, 0);
166 
167 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168 					SMC_SYSCON_RESET_CNTL,
169 					rst_reg, 1);
170 
171 	result = smu7_upload_smu_firmware_image(hwmgr);
172 	if (result != 0)
173 		return result;
174 
175 	/* Set smc instruct start point at 0x0 */
176 	smu7_program_jump_on_start(hwmgr);
177 
178 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179 					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
180 
181 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
183 
184 	/* Wait for firmware to initialize */
185 
186 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187 					FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
188 
189 	return result;
190 }
191 
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
193 {
194 	int result = 0;
195 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
196 
197 	/* Only start SMC if SMC RAM is not running */
198 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199 		smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200 				CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201 		smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202 				hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
203 
204 		/* Check if SMU is running in protected mode */
205 		if (smu_data->protected_mode == 0)
206 			result = vegam_start_smu_in_non_protection_mode(hwmgr);
207 		else
208 			result = vegam_start_smu_in_protection_mode(hwmgr);
209 
210 		if (result != 0)
211 			PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
212 	}
213 
214 	/* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
215 	smu7_read_smc_sram_dword(hwmgr,
216 			SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217 			&(smu_data->smu7_data.soft_regs_start),
218 			0x40000);
219 
220 	result = smu7_request_smu_load_fw(hwmgr);
221 
222 	return result;
223 }
224 
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
226 {
227 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229 	uint32_t tmp;
230 	int result;
231 	bool error = false;
232 
233 	result = smu7_read_smc_sram_dword(hwmgr,
234 			SMU7_FIRMWARE_HEADER_LOCATION +
235 			offsetof(SMU75_Firmware_Header, DpmTable),
236 			&tmp, SMC_RAM_END);
237 
238 	if (0 == result)
239 		smu_data->smu7_data.dpm_table_start = tmp;
240 
241 	error |= (0 != result);
242 
243 	result = smu7_read_smc_sram_dword(hwmgr,
244 			SMU7_FIRMWARE_HEADER_LOCATION +
245 			offsetof(SMU75_Firmware_Header, SoftRegisters),
246 			&tmp, SMC_RAM_END);
247 
248 	if (!result) {
249 		data->soft_regs_start = tmp;
250 		smu_data->smu7_data.soft_regs_start = tmp;
251 	}
252 
253 	error |= (0 != result);
254 
255 	result = smu7_read_smc_sram_dword(hwmgr,
256 			SMU7_FIRMWARE_HEADER_LOCATION +
257 			offsetof(SMU75_Firmware_Header, mcRegisterTable),
258 			&tmp, SMC_RAM_END);
259 
260 	if (!result)
261 		smu_data->smu7_data.mc_reg_table_start = tmp;
262 
263 	result = smu7_read_smc_sram_dword(hwmgr,
264 			SMU7_FIRMWARE_HEADER_LOCATION +
265 			offsetof(SMU75_Firmware_Header, FanTable),
266 			&tmp, SMC_RAM_END);
267 
268 	if (!result)
269 		smu_data->smu7_data.fan_table_start = tmp;
270 
271 	error |= (0 != result);
272 
273 	result = smu7_read_smc_sram_dword(hwmgr,
274 			SMU7_FIRMWARE_HEADER_LOCATION +
275 			offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276 			&tmp, SMC_RAM_END);
277 
278 	if (!result)
279 		smu_data->smu7_data.arb_table_start = tmp;
280 
281 	error |= (0 != result);
282 
283 	result = smu7_read_smc_sram_dword(hwmgr,
284 			SMU7_FIRMWARE_HEADER_LOCATION +
285 			offsetof(SMU75_Firmware_Header, Version),
286 			&tmp, SMC_RAM_END);
287 
288 	if (!result)
289 		hwmgr->microcode_version_info.SMC = tmp;
290 
291 	error |= (0 != result);
292 
293 	return error ? -1 : 0;
294 }
295 
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
297 {
298 	return 1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON);
300 }
301 
302 static uint32_t vegam_get_mac_definition(uint32_t value)
303 {
304 	switch (value) {
305 	case SMU_MAX_LEVELS_GRAPHICS:
306 		return SMU75_MAX_LEVELS_GRAPHICS;
307 	case SMU_MAX_LEVELS_MEMORY:
308 		return SMU75_MAX_LEVELS_MEMORY;
309 	case SMU_MAX_LEVELS_LINK:
310 		return SMU75_MAX_LEVELS_LINK;
311 	case SMU_MAX_ENTRIES_SMIO:
312 		return SMU75_MAX_ENTRIES_SMIO;
313 	case SMU_MAX_LEVELS_VDDC:
314 		return SMU75_MAX_LEVELS_VDDC;
315 	case SMU_MAX_LEVELS_VDDGFX:
316 		return SMU75_MAX_LEVELS_VDDGFX;
317 	case SMU_MAX_LEVELS_VDDCI:
318 		return SMU75_MAX_LEVELS_VDDCI;
319 	case SMU_MAX_LEVELS_MVDD:
320 		return SMU75_MAX_LEVELS_MVDD;
321 	case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
322 		return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
323 				SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
324 	}
325 
326 	pr_warn("can't get the mac of %x\n", value);
327 	return 0;
328 }
329 
330 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
331 {
332 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
333 	uint32_t mm_boot_level_offset, mm_boot_level_value;
334 	struct phm_ppt_v1_information *table_info =
335 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
336 
337 	smu_data->smc_state_table.UvdBootLevel = 0;
338 	if (table_info->mm_dep_table->count > 0)
339 		smu_data->smc_state_table.UvdBootLevel =
340 				(uint8_t) (table_info->mm_dep_table->count - 1);
341 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
342 						UvdBootLevel);
343 	mm_boot_level_offset /= 4;
344 	mm_boot_level_offset *= 4;
345 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
346 			CGS_IND_REG__SMC, mm_boot_level_offset);
347 	mm_boot_level_value &= 0x00FFFFFF;
348 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
349 	cgs_write_ind_register(hwmgr->device,
350 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
351 
352 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
353 			PHM_PlatformCaps_UVDDPM) ||
354 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
355 			PHM_PlatformCaps_StablePState))
356 		smum_send_msg_to_smc_with_parameter(hwmgr,
357 				PPSMC_MSG_UVDDPM_SetEnabledMask,
358 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
359 				NULL);
360 	return 0;
361 }
362 
363 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
364 {
365 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
366 	uint32_t mm_boot_level_offset, mm_boot_level_value;
367 	struct phm_ppt_v1_information *table_info =
368 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
369 
370 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
371 					PHM_PlatformCaps_StablePState))
372 		smu_data->smc_state_table.VceBootLevel =
373 			(uint8_t) (table_info->mm_dep_table->count - 1);
374 	else
375 		smu_data->smc_state_table.VceBootLevel = 0;
376 
377 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
378 					offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
379 	mm_boot_level_offset /= 4;
380 	mm_boot_level_offset *= 4;
381 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
382 			CGS_IND_REG__SMC, mm_boot_level_offset);
383 	mm_boot_level_value &= 0xFF00FFFF;
384 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
385 	cgs_write_ind_register(hwmgr->device,
386 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
387 
388 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
389 		smum_send_msg_to_smc_with_parameter(hwmgr,
390 				PPSMC_MSG_VCEDPM_SetEnabledMask,
391 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
392 				NULL);
393 	return 0;
394 }
395 
396 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
397 {
398 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
399 	struct phm_ppt_v1_information *table_info =
400 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
401 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
402 	int max_entry, i;
403 
404 	max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
405 						SMU75_MAX_LEVELS_LINK :
406 						pcie_table->count;
407 	/* Setup BIF_SCLK levels */
408 	for (i = 0; i < max_entry; i++)
409 		smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
410 	return 0;
411 }
412 
413 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
414 {
415 	switch (type) {
416 	case SMU_UVD_TABLE:
417 		vegam_update_uvd_smc_table(hwmgr);
418 		break;
419 	case SMU_VCE_TABLE:
420 		vegam_update_vce_smc_table(hwmgr);
421 		break;
422 	case SMU_BIF_TABLE:
423 		vegam_update_bif_smc_table(hwmgr);
424 		break;
425 	default:
426 		break;
427 	}
428 	return 0;
429 }
430 
431 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
432 {
433 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
434 	struct  phm_ppt_v1_information *table_info =
435 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
436 
437 	if (table_info &&
438 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
439 			table_info->cac_dtp_table->usPowerTuneDataSetID)
440 		smu_data->power_tune_defaults =
441 				&vegam_power_tune_data_set_array
442 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
443 	else
444 		smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
445 
446 }
447 
448 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
449 			SMU75_Discrete_DpmTable *table)
450 {
451 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
452 	uint32_t count, level;
453 
454 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
455 		count = data->mvdd_voltage_table.count;
456 		if (count > SMU_MAX_SMIO_LEVELS)
457 			count = SMU_MAX_SMIO_LEVELS;
458 		for (level = 0; level < count; level++) {
459 			table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
460 					data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
461 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
462 			table->SmioTable2.Pattern[level].Smio =
463 				(uint8_t) level;
464 			table->Smio[level] |=
465 				data->mvdd_voltage_table.entries[level].smio_low;
466 		}
467 		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
468 
469 		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
470 	}
471 
472 	return 0;
473 }
474 
475 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
476 					struct SMU75_Discrete_DpmTable *table)
477 {
478 	uint32_t count, level;
479 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
480 
481 	count = data->vddci_voltage_table.count;
482 
483 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
484 		if (count > SMU_MAX_SMIO_LEVELS)
485 			count = SMU_MAX_SMIO_LEVELS;
486 		for (level = 0; level < count; ++level) {
487 			table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
488 					data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
489 			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
490 
491 			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
492 		}
493 	}
494 
495 	table->SmioMask1 = data->vddci_voltage_table.mask_low;
496 
497 	return 0;
498 }
499 
500 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
501 		struct SMU75_Discrete_DpmTable *table)
502 {
503 	uint32_t count;
504 	uint8_t index;
505 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
506 	struct phm_ppt_v1_information *table_info =
507 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
508 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
509 			table_info->vddc_lookup_table;
510 	/* tables is already swapped, so in order to use the value from it,
511 	 * we need to swap it back.
512 	 * We are populating vddc CAC data to BapmVddc table
513 	 * in split and merged mode
514 	 */
515 	for (count = 0; count < lookup_table->count; count++) {
516 		index = phm_get_voltage_index(lookup_table,
517 				data->vddc_voltage_table.entries[count].value);
518 		table->BapmVddcVidLoSidd[count] =
519 				convert_to_vid(lookup_table->entries[index].us_cac_low);
520 		table->BapmVddcVidHiSidd[count] =
521 				convert_to_vid(lookup_table->entries[index].us_cac_mid);
522 		table->BapmVddcVidHiSidd2[count] =
523 				convert_to_vid(lookup_table->entries[index].us_cac_high);
524 	}
525 
526 	return 0;
527 }
528 
529 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
530 		struct SMU75_Discrete_DpmTable *table)
531 {
532 	vegam_populate_smc_vddci_table(hwmgr, table);
533 	vegam_populate_smc_mvdd_table(hwmgr, table);
534 	vegam_populate_cac_table(hwmgr, table);
535 
536 	return 0;
537 }
538 
539 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
540 		struct SMU75_Discrete_Ulv *state)
541 {
542 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
543 	struct phm_ppt_v1_information *table_info =
544 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
545 
546 	state->CcPwrDynRm = 0;
547 	state->CcPwrDynRm1 = 0;
548 
549 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
550 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
551 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
552 
553 	state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
554 
555 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
556 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
557 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
558 
559 	return 0;
560 }
561 
562 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
563 		struct SMU75_Discrete_DpmTable *table)
564 {
565 	return vegam_populate_ulv_level(hwmgr, &table->Ulv);
566 }
567 
568 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
569 		struct SMU75_Discrete_DpmTable *table)
570 {
571 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
572 	struct vegam_smumgr *smu_data =
573 			(struct vegam_smumgr *)(hwmgr->smu_backend);
574 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
575 	int i;
576 
577 	/* Index (dpm_table->pcie_speed_table.count)
578 	 * is reserved for PCIE boot level. */
579 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
580 		table->LinkLevel[i].PcieGenSpeed  =
581 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
582 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
583 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
584 		table->LinkLevel[i].EnabledForActivity = 1;
585 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
586 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
587 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
588 	}
589 
590 	smu_data->smc_state_table.LinkLevelCount =
591 			(uint8_t)dpm_table->pcie_speed_table.count;
592 
593 /* To Do move to hwmgr */
594 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
595 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
596 
597 	return 0;
598 }
599 
600 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
601 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
602 		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
603 {
604 	uint32_t i;
605 	uint16_t vddci;
606 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
607 
608 	*voltage = *mvdd = 0;
609 
610 	/* clock - voltage dependency table is empty table */
611 	if (dep_table->count == 0)
612 		return -EINVAL;
613 
614 	for (i = 0; i < dep_table->count; i++) {
615 		/* find first sclk bigger than request */
616 		if (dep_table->entries[i].clk >= clock) {
617 			*voltage |= (dep_table->entries[i].vddc *
618 					VOLTAGE_SCALE) << VDDC_SHIFT;
619 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
620 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
621 						VOLTAGE_SCALE) << VDDCI_SHIFT;
622 			else if (dep_table->entries[i].vddci)
623 				*voltage |= (dep_table->entries[i].vddci *
624 						VOLTAGE_SCALE) << VDDCI_SHIFT;
625 			else {
626 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
627 						(dep_table->entries[i].vddc -
628 								(uint16_t)VDDC_VDDCI_DELTA));
629 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
630 			}
631 
632 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
633 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
634 					VOLTAGE_SCALE;
635 			else if (dep_table->entries[i].mvdd)
636 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
637 					VOLTAGE_SCALE;
638 
639 			*voltage |= 1 << PHASES_SHIFT;
640 			return 0;
641 		}
642 	}
643 
644 	/* sclk is bigger than max sclk in the dependence table */
645 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
646 
647 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
648 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
649 				VOLTAGE_SCALE) << VDDCI_SHIFT;
650 	else if (dep_table->entries[i - 1].vddci)
651 		*voltage |= (dep_table->entries[i - 1].vddci *
652 				VOLTAGE_SCALE) << VDDC_SHIFT;
653 	else {
654 		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
655 				(dep_table->entries[i - 1].vddc -
656 						(uint16_t)VDDC_VDDCI_DELTA));
657 
658 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
659 	}
660 
661 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
662 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
663 	else if (dep_table->entries[i].mvdd)
664 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
665 
666 	return 0;
667 }
668 
669 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
670 				   SMU75_Discrete_DpmTable  *table)
671 {
672 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
673 	uint32_t i, ref_clk;
674 
675 	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
676 
677 	ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
678 
679 	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
680 		for (i = 0; i < NUM_SCLK_RANGE; i++) {
681 			table->SclkFcwRangeTable[i].vco_setting =
682 					range_table_from_vbios.entry[i].ucVco_setting;
683 			table->SclkFcwRangeTable[i].postdiv =
684 					range_table_from_vbios.entry[i].ucPostdiv;
685 			table->SclkFcwRangeTable[i].fcw_pcc =
686 					range_table_from_vbios.entry[i].usFcw_pcc;
687 
688 			table->SclkFcwRangeTable[i].fcw_trans_upper =
689 					range_table_from_vbios.entry[i].usFcw_trans_upper;
690 			table->SclkFcwRangeTable[i].fcw_trans_lower =
691 					range_table_from_vbios.entry[i].usRcw_trans_lower;
692 
693 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
694 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
695 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
696 		}
697 		return;
698 	}
699 
700 	for (i = 0; i < NUM_SCLK_RANGE; i++) {
701 		smu_data->range_table[i].trans_lower_frequency =
702 				(ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
703 		smu_data->range_table[i].trans_upper_frequency =
704 				(ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
705 
706 		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
707 		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
708 		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
709 
710 		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
711 		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
712 
713 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
714 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
715 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
716 	}
717 }
718 
719 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
720 		uint32_t clock, SMU_SclkSetting *sclk_setting)
721 {
722 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
723 	const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
724 	struct pp_atomctrl_clock_dividers_ai dividers;
725 	uint32_t ref_clock;
726 	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
727 	uint8_t i;
728 	int result;
729 	uint64_t temp;
730 
731 	sclk_setting->SclkFrequency = clock;
732 	/* get the engine clock dividers for this clock value */
733 	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
734 	if (result == 0) {
735 		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
736 		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
737 		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
738 		sclk_setting->PllRange = dividers.ucSclkPllRange;
739 		sclk_setting->Sclk_slew_rate = 0x400;
740 		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
741 		sclk_setting->Pcc_down_slew_rate = 0xffff;
742 		sclk_setting->SSc_En = dividers.ucSscEnable;
743 		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
744 		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
745 		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
746 		return result;
747 	}
748 
749 	ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
750 
751 	for (i = 0; i < NUM_SCLK_RANGE; i++) {
752 		if (clock > smu_data->range_table[i].trans_lower_frequency
753 		&& clock <= smu_data->range_table[i].trans_upper_frequency) {
754 			sclk_setting->PllRange = i;
755 			break;
756 		}
757 	}
758 
759 	sclk_setting->Fcw_int = (uint16_t)
760 			((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
761 					ref_clock);
762 	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
763 	temp <<= 0x10;
764 	do_div(temp, ref_clock);
765 	sclk_setting->Fcw_frac = temp & 0xffff;
766 
767 	pcc_target_percent = 10; /*  Hardcode 10% for now. */
768 	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
769 	sclk_setting->Pcc_fcw_int = (uint16_t)
770 			((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
771 					ref_clock);
772 
773 	ss_target_percent = 2; /*  Hardcode 2% for now. */
774 	sclk_setting->SSc_En = 0;
775 	if (ss_target_percent) {
776 		sclk_setting->SSc_En = 1;
777 		ss_target_freq = clock - (clock * ss_target_percent / 100);
778 		sclk_setting->Fcw1_int = (uint16_t)
779 				((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
780 						ref_clock);
781 		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
782 		temp <<= 0x10;
783 		do_div(temp, ref_clock);
784 		sclk_setting->Fcw1_frac = temp & 0xffff;
785 	}
786 
787 	return 0;
788 }
789 
790 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
791 		uint32_t clock_insr)
792 {
793 	uint8_t i;
794 	uint32_t temp;
795 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
796 
797 	PP_ASSERT_WITH_CODE((clock >= min),
798 			"Engine clock can't satisfy stutter requirement!",
799 			return 0);
800 	for (i = 31;  ; i--) {
801 		temp = clock / (i + 1);
802 
803 		if (temp >= min || i == 0)
804 			break;
805 	}
806 	return i;
807 }
808 
809 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
810 		uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
811 {
812 	int result;
813 	/* PP_Clocks minClocks; */
814 	uint32_t mvdd;
815 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
816 	struct phm_ppt_v1_information *table_info =
817 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
818 	SMU_SclkSetting curr_sclk_setting = { 0 };
819 
820 	result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
821 
822 	/* populate graphics levels */
823 	result = vegam_get_dependency_volt_by_clk(hwmgr,
824 			table_info->vdd_dep_on_sclk, clock,
825 			&level->MinVoltage, &mvdd);
826 
827 	PP_ASSERT_WITH_CODE((0 == result),
828 			"can not find VDDC voltage value for "
829 			"VDDC engine clock dependency table",
830 			return result);
831 	level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
832 
833 	level->CcPwrDynRm = 0;
834 	level->CcPwrDynRm1 = 0;
835 	level->EnabledForActivity = 0;
836 	level->EnabledForThrottle = 1;
837 	level->VoltageDownHyst = 0;
838 	level->PowerThrottle = 0;
839 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
840 
841 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
842 		level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
843 								hwmgr->display_config->min_core_set_clock_in_sr);
844 
845 	level->SclkSetting = curr_sclk_setting;
846 
847 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
848 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
849 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
850 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
851 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
852 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
853 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
854 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
855 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
856 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
857 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
858 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
859 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
860 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
861 	return 0;
862 }
863 
864 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
865 {
866 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
867 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
868 	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
869 	struct phm_ppt_v1_information *table_info =
870 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
871 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
872 	uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
873 	int result = 0;
874 	uint32_t array = smu_data->smu7_data.dpm_table_start +
875 			offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
876 	uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
877 			SMU75_MAX_LEVELS_GRAPHICS;
878 	struct SMU75_Discrete_GraphicsLevel *levels =
879 			smu_data->smc_state_table.GraphicsLevel;
880 	uint32_t i, max_entry;
881 	uint8_t hightest_pcie_level_enabled = 0,
882 		lowest_pcie_level_enabled = 0,
883 		mid_pcie_level_enabled = 0,
884 		count = 0;
885 
886 	vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
887 
888 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
889 
890 		result = vegam_populate_single_graphic_level(hwmgr,
891 				dpm_table->sclk_table.dpm_levels[i].value,
892 				&(smu_data->smc_state_table.GraphicsLevel[i]));
893 		if (result)
894 			return result;
895 
896 		levels[i].UpHyst = (uint8_t)
897 				(SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
898 		levels[i].DownHyst = (uint8_t)
899 				(SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
900 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
901 		if (i > 1)
902 			levels[i].DeepSleepDivId = 0;
903 	}
904 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
905 					PHM_PlatformCaps_SPLLShutdownSupport))
906 		smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
907 
908 	smu_data->smc_state_table.GraphicsDpmLevelCount =
909 			(uint8_t)dpm_table->sclk_table.count;
910 	hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
911 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
912 
913 	for (i = 0; i < dpm_table->sclk_table.count; i++)
914 		levels[i].EnabledForActivity =
915 				(hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
916 
917 	if (pcie_table != NULL) {
918 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
919 				"There must be 1 or more PCIE levels defined in PPTable.",
920 				return -EINVAL);
921 		max_entry = pcie_entry_cnt - 1;
922 		for (i = 0; i < dpm_table->sclk_table.count; i++)
923 			levels[i].pcieDpmLevel =
924 					(uint8_t) ((i < max_entry) ? i : max_entry);
925 	} else {
926 		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
927 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
928 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
929 			hightest_pcie_level_enabled++;
930 
931 		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
932 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
933 						(1 << lowest_pcie_level_enabled)) == 0))
934 			lowest_pcie_level_enabled++;
935 
936 		while ((count < hightest_pcie_level_enabled) &&
937 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
938 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
939 			count++;
940 
941 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
942 				hightest_pcie_level_enabled ?
943 						(lowest_pcie_level_enabled + 1 + count) :
944 						hightest_pcie_level_enabled;
945 
946 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
947 		for (i = 2; i < dpm_table->sclk_table.count; i++)
948 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
949 
950 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
951 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
952 
953 		/* set pcieDpmLevel to mid_pcie_level_enabled */
954 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
955 	}
956 	/* level count will send to smc once at init smc table and never change */
957 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
958 			(uint32_t)array_size, SMC_RAM_END);
959 
960 	return result;
961 }
962 
963 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
964 		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
965 {
966 	struct pp_atomctrl_memory_clock_param_ai mpll_param;
967 
968 	PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
969 			clock, &mpll_param),
970 			"Failed to retrieve memory pll parameter.",
971 			return -EINVAL);
972 
973 	mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
974 	mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
975 	mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
976 	mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
977 
978 	return 0;
979 }
980 
981 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
982 		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
983 {
984 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
985 	struct phm_ppt_v1_information *table_info =
986 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
987 	int result = 0;
988 	uint32_t mclk_stutter_mode_threshold = 60000;
989 
990 
991 	if (table_info->vdd_dep_on_mclk) {
992 		result = vegam_get_dependency_volt_by_clk(hwmgr,
993 				table_info->vdd_dep_on_mclk, clock,
994 				&mem_level->MinVoltage, &mem_level->MinMvdd);
995 		PP_ASSERT_WITH_CODE(!result,
996 				"can not find MinVddc voltage value from memory "
997 				"VDDC voltage dependency table", return result);
998 	}
999 
1000 	result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1001 	PP_ASSERT_WITH_CODE(!result,
1002 			"Failed to calculate mclk params.",
1003 			return -EINVAL);
1004 
1005 	mem_level->EnabledForThrottle = 1;
1006 	mem_level->EnabledForActivity = 0;
1007 	mem_level->VoltageDownHyst = 0;
1008 	mem_level->ActivityLevel = (uint16_t)
1009 			(MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1010 	mem_level->StutterEnable = false;
1011 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1012 
1013 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1014 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1015 
1016 	if (mclk_stutter_mode_threshold &&
1017 		(clock <= mclk_stutter_mode_threshold) &&
1018 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1019 				STUTTER_ENABLE) & 0x1))
1020 		mem_level->StutterEnable = true;
1021 
1022 	if (!result) {
1023 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1024 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1025 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1026 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1027 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1028 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1029 	}
1030 
1031 	return result;
1032 }
1033 
1034 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1035 {
1036 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1037 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1038 	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1039 	int result;
1040 	/* populate MCLK dpm table to SMU7 */
1041 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1042 			offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1043 	uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1044 			SMU75_MAX_LEVELS_MEMORY;
1045 	struct SMU75_Discrete_MemoryLevel *levels =
1046 			smu_data->smc_state_table.MemoryLevel;
1047 	uint32_t i;
1048 
1049 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1050 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1051 				"can not populate memory level as memory clock is zero",
1052 				return -EINVAL);
1053 		result = vegam_populate_single_memory_level(hwmgr,
1054 				dpm_table->mclk_table.dpm_levels[i].value,
1055 				&levels[i]);
1056 
1057 		if (result)
1058 			return result;
1059 
1060 		levels[i].UpHyst = (uint8_t)
1061 				(MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1062 		levels[i].DownHyst = (uint8_t)
1063 				(MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1064 	}
1065 
1066 	smu_data->smc_state_table.MemoryDpmLevelCount =
1067 			(uint8_t)dpm_table->mclk_table.count;
1068 	hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1069 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1070 
1071 	for (i = 0; i < dpm_table->mclk_table.count; i++)
1072 		levels[i].EnabledForActivity =
1073 				(hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1074 
1075 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1076 			PPSMC_DISPLAY_WATERMARK_HIGH;
1077 
1078 	/* level count will send to smc once at init smc table and never change */
1079 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1080 			(uint32_t)array_size, SMC_RAM_END);
1081 
1082 	return result;
1083 }
1084 
1085 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1086 		uint32_t mclk, SMIO_Pattern *smio_pat)
1087 {
1088 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1089 	struct phm_ppt_v1_information *table_info =
1090 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1091 	uint32_t i = 0;
1092 
1093 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1094 		/* find mvdd value which clock is more than request */
1095 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1096 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1097 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1098 				break;
1099 			}
1100 		}
1101 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1102 				"MVDD Voltage is outside the supported range.",
1103 				return -EINVAL);
1104 	} else
1105 		return -EINVAL;
1106 
1107 	return 0;
1108 }
1109 
1110 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1111 		SMU75_Discrete_DpmTable *table)
1112 {
1113 	int result = 0;
1114 	uint32_t sclk_frequency;
1115 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1116 	struct phm_ppt_v1_information *table_info =
1117 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1118 	SMIO_Pattern vol_level;
1119 	uint32_t mvdd;
1120 
1121 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1122 
1123 	/* Get MinVoltage and Frequency from DPM0,
1124 	 * already converted to SMC_UL */
1125 	sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1126 	result = vegam_get_dependency_volt_by_clk(hwmgr,
1127 			table_info->vdd_dep_on_sclk,
1128 			sclk_frequency,
1129 			&table->ACPILevel.MinVoltage, &mvdd);
1130 	PP_ASSERT_WITH_CODE(!result,
1131 			"Cannot find ACPI VDDC voltage value "
1132 			"in Clock Dependency Table",
1133 			);
1134 
1135 	result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1136 			&(table->ACPILevel.SclkSetting));
1137 	PP_ASSERT_WITH_CODE(!result,
1138 			"Error retrieving Engine Clock dividers from VBIOS.",
1139 			return result);
1140 
1141 	table->ACPILevel.DeepSleepDivId = 0;
1142 	table->ACPILevel.CcPwrDynRm = 0;
1143 	table->ACPILevel.CcPwrDynRm1 = 0;
1144 
1145 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1146 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1147 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1148 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1149 
1150 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1151 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1152 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1153 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1154 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1155 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1156 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1157 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1158 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1159 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1160 
1161 
1162 	/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1163 	table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1164 	result = vegam_get_dependency_volt_by_clk(hwmgr,
1165 			table_info->vdd_dep_on_mclk,
1166 			table->MemoryACPILevel.MclkFrequency,
1167 			&table->MemoryACPILevel.MinVoltage, &mvdd);
1168 	PP_ASSERT_WITH_CODE((0 == result),
1169 			"Cannot find ACPI VDDCI voltage value "
1170 			"in Clock Dependency Table",
1171 			);
1172 
1173 	if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1174 		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1175 	else
1176 		table->MemoryACPILevel.MinMvdd = 0;
1177 
1178 	table->MemoryACPILevel.StutterEnable = false;
1179 
1180 	table->MemoryACPILevel.EnabledForThrottle = 0;
1181 	table->MemoryACPILevel.EnabledForActivity = 0;
1182 	table->MemoryACPILevel.UpHyst = 0;
1183 	table->MemoryACPILevel.DownHyst = 100;
1184 	table->MemoryACPILevel.VoltageDownHyst = 0;
1185 	table->MemoryACPILevel.ActivityLevel =
1186 		PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1187 
1188 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1189 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1190 
1191 	return result;
1192 }
1193 
1194 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1195 		SMU75_Discrete_DpmTable *table)
1196 {
1197 	int result = -EINVAL;
1198 	uint8_t count;
1199 	struct pp_atomctrl_clock_dividers_vi dividers;
1200 	struct phm_ppt_v1_information *table_info =
1201 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1202 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1203 			table_info->mm_dep_table;
1204 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1205 	uint32_t vddci;
1206 
1207 	table->VceLevelCount = (uint8_t)(mm_table->count);
1208 	table->VceBootLevel = 0;
1209 
1210 	for (count = 0; count < table->VceLevelCount; count++) {
1211 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1212 		table->VceLevel[count].MinVoltage = 0;
1213 		table->VceLevel[count].MinVoltage |=
1214 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1215 
1216 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1217 			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1218 						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1219 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1220 			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1221 		else
1222 			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1223 
1224 
1225 		table->VceLevel[count].MinVoltage |=
1226 				(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1227 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1228 
1229 		/*retrieve divider value for VBIOS */
1230 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1231 				table->VceLevel[count].Frequency, &dividers);
1232 		PP_ASSERT_WITH_CODE((0 == result),
1233 				"can not find divide id for VCE engine clock",
1234 				return result);
1235 
1236 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1237 
1238 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1239 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1240 	}
1241 	return result;
1242 }
1243 
1244 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1245 		int32_t eng_clock, int32_t mem_clock,
1246 		SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1247 {
1248 	uint32_t dram_timing;
1249 	uint32_t dram_timing2;
1250 	uint32_t burst_time;
1251 	uint32_t rfsh_rate;
1252 	uint32_t misc3;
1253 
1254 	int result;
1255 
1256 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1257 			eng_clock, mem_clock);
1258 	PP_ASSERT_WITH_CODE(result == 0,
1259 			"Error calling VBIOS to set DRAM_TIMING.",
1260 			return result);
1261 
1262 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1263 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1264 	burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1265 	rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1266 	misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1267 
1268 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1269 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1270 	arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1271 	arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1272 	arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1273 
1274 	return 0;
1275 }
1276 
1277 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1278 {
1279 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1280 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1281 	struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1282 	uint32_t i, j;
1283 	int result = 0;
1284 
1285 	memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1286 
1287 	for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1288 		for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1289 			result = vegam_populate_memory_timing_parameters(hwmgr,
1290 					hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1291 					hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1292 					&arb_regs.entries[i][j]);
1293 			if (result)
1294 				return result;
1295 		}
1296 	}
1297 
1298 	result = smu7_copy_bytes_to_smc(
1299 			hwmgr,
1300 			smu_data->smu7_data.arb_table_start,
1301 			(uint8_t *)&arb_regs,
1302 			sizeof(SMU75_Discrete_MCArbDramTimingTable),
1303 			SMC_RAM_END);
1304 	return result;
1305 }
1306 
1307 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1308 		struct SMU75_Discrete_DpmTable *table)
1309 {
1310 	int result = -EINVAL;
1311 	uint8_t count;
1312 	struct pp_atomctrl_clock_dividers_vi dividers;
1313 	struct phm_ppt_v1_information *table_info =
1314 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1315 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1316 			table_info->mm_dep_table;
1317 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1318 	uint32_t vddci;
1319 
1320 	table->UvdLevelCount = (uint8_t)(mm_table->count);
1321 	table->UvdBootLevel = 0;
1322 
1323 	for (count = 0; count < table->UvdLevelCount; count++) {
1324 		table->UvdLevel[count].MinVoltage = 0;
1325 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1326 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1327 		table->UvdLevel[count].MinVoltage |=
1328 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1329 
1330 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1331 			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1332 						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1333 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1334 			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1335 		else
1336 			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1337 
1338 		table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1339 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1340 
1341 		/* retrieve divider value for VBIOS */
1342 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1343 				table->UvdLevel[count].VclkFrequency, &dividers);
1344 		PP_ASSERT_WITH_CODE((0 == result),
1345 				"can not find divide id for Vclk clock", return result);
1346 
1347 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1348 
1349 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1350 				table->UvdLevel[count].DclkFrequency, &dividers);
1351 		PP_ASSERT_WITH_CODE((0 == result),
1352 				"can not find divide id for Dclk clock", return result);
1353 
1354 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1355 
1356 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1357 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1358 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1359 	}
1360 
1361 	return result;
1362 }
1363 
1364 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1365 		struct SMU75_Discrete_DpmTable *table)
1366 {
1367 	int result = 0;
1368 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1369 
1370 	table->GraphicsBootLevel = 0;
1371 	table->MemoryBootLevel = 0;
1372 
1373 	/* find boot level from dpm table */
1374 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1375 			data->vbios_boot_state.sclk_bootup_value,
1376 			(uint32_t *)&(table->GraphicsBootLevel));
1377 	if (result)
1378 		return result;
1379 
1380 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1381 			data->vbios_boot_state.mclk_bootup_value,
1382 			(uint32_t *)&(table->MemoryBootLevel));
1383 
1384 	if (result)
1385 		return result;
1386 
1387 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1388 			VOLTAGE_SCALE;
1389 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1390 			VOLTAGE_SCALE;
1391 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1392 			VOLTAGE_SCALE;
1393 
1394 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1395 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1396 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1397 
1398 	return 0;
1399 }
1400 
1401 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1402 {
1403 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1404 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1405 	struct phm_ppt_v1_information *table_info =
1406 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1407 	uint8_t count, level;
1408 
1409 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1410 
1411 	for (level = 0; level < count; level++) {
1412 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1413 				hw_data->vbios_boot_state.sclk_bootup_value) {
1414 			smu_data->smc_state_table.GraphicsBootLevel = level;
1415 			break;
1416 		}
1417 	}
1418 
1419 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1420 	for (level = 0; level < count; level++) {
1421 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1422 				hw_data->vbios_boot_state.mclk_bootup_value) {
1423 			smu_data->smc_state_table.MemoryBootLevel = level;
1424 			break;
1425 		}
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1432 {
1433 	uint32_t tmp;
1434 	tmp = raw_setting * 4096 / 100;
1435 	return (uint16_t)tmp;
1436 }
1437 
1438 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1439 {
1440 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1441 
1442 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1443 	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1444 	struct phm_ppt_v1_information *table_info =
1445 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1446 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1447 	struct pp_advance_fan_control_parameters *fan_table =
1448 			&hwmgr->thermal_controller.advanceFanControlParameters;
1449 	int i, j, k;
1450 	const uint16_t *pdef1;
1451 	const uint16_t *pdef2;
1452 
1453 	table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1454 	table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1455 
1456 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1457 				"Target Operating Temp is out of Range!",
1458 				);
1459 
1460 	table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1461 			cac_dtp_table->usTargetOperatingTemp * 256);
1462 	table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1463 			cac_dtp_table->usTemperatureLimitHotspot * 256);
1464 	table->FanGainEdge = PP_HOST_TO_SMC_US(
1465 			scale_fan_gain_settings(fan_table->usFanGainEdge));
1466 	table->FanGainHotspot = PP_HOST_TO_SMC_US(
1467 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
1468 
1469 	pdef1 = defaults->BAPMTI_R;
1470 	pdef2 = defaults->BAPMTI_RC;
1471 
1472 	for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1473 		for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1474 			for (k = 0; k < SMU75_DTE_SINKS; k++) {
1475 				table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1476 				table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1477 				pdef1++;
1478 				pdef2++;
1479 			}
1480 		}
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1487 {
1488 	uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1489 	struct vegam_smumgr *smu_data =
1490 			(struct vegam_smumgr *)(hwmgr->smu_backend);
1491 
1492 	uint8_t i, stretch_amount, volt_offset = 0;
1493 	struct phm_ppt_v1_information *table_info =
1494 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1495 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1496 			table_info->vdd_dep_on_sclk;
1497 
1498 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1499 
1500 	atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1501 			&efuse);
1502 
1503 	min = 1200;
1504 	max = 2500;
1505 
1506 	ro = efuse * (max - min) / 255 + min;
1507 
1508 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1509 	for (i = 0; i < sclk_table->count; i++) {
1510 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1511 				sclk_table->entries[i].cks_enable << i;
1512 		volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1513 				136418 - (ro - 70) * 1000000) /
1514 				(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1515 		volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1516 				3232 - (ro - 65) * 1000000) /
1517 				(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1518 
1519 		if (volt_without_cks >= volt_with_cks)
1520 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1521 					sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1522 
1523 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1524 	}
1525 
1526 	smu_data->smc_state_table.LdoRefSel =
1527 			(table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1528 			table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1529 	/* Populate CKS Lookup Table */
1530 	if (!(stretch_amount == 1 || stretch_amount == 2 ||
1531 	      stretch_amount == 5 || stretch_amount == 3 ||
1532 	      stretch_amount == 4)) {
1533 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1534 				PHM_PlatformCaps_ClockStretcher);
1535 		PP_ASSERT_WITH_CODE(false,
1536 				"Stretch Amount in PPTable not supported\n",
1537 				return -EINVAL);
1538 	}
1539 
1540 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1541 	value &= 0xFFFFFFFE;
1542 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1543 
1544 	return 0;
1545 }
1546 
1547 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1548 {
1549 	uint32_t efuse;
1550 
1551 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1552 			ixSMU_EFUSE_0 + (49 * 4));
1553 	efuse &= 0x00000001;
1554 
1555 	if (efuse)
1556 		return true;
1557 
1558 	return false;
1559 }
1560 
1561 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1562 {
1563 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1564 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1565 
1566 	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1567 	int result = 0;
1568 	struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1569 	AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1570 	AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1571 	uint32_t tmp, i;
1572 
1573 	struct phm_ppt_v1_information *table_info =
1574 			(struct phm_ppt_v1_information *)hwmgr->pptable;
1575 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1576 			table_info->vdd_dep_on_sclk;
1577 
1578 	if (!hwmgr->avfs_supported)
1579 		return 0;
1580 
1581 	result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1582 
1583 	if (0 == result) {
1584 		table->BTCGB_VDROOP_TABLE[0].a0 =
1585 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1586 		table->BTCGB_VDROOP_TABLE[0].a1 =
1587 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1588 		table->BTCGB_VDROOP_TABLE[0].a2 =
1589 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1590 		table->BTCGB_VDROOP_TABLE[1].a0 =
1591 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1592 		table->BTCGB_VDROOP_TABLE[1].a1 =
1593 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1594 		table->BTCGB_VDROOP_TABLE[1].a2 =
1595 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1596 		table->AVFSGB_FUSE_TABLE[0].m1 =
1597 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1598 		table->AVFSGB_FUSE_TABLE[0].m2 =
1599 				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1600 		table->AVFSGB_FUSE_TABLE[0].b =
1601 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1602 		table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1603 		table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1604 		table->AVFSGB_FUSE_TABLE[1].m1 =
1605 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1606 		table->AVFSGB_FUSE_TABLE[1].m2 =
1607 				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1608 		table->AVFSGB_FUSE_TABLE[1].b =
1609 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1610 		table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1611 		table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1612 		table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1613 		AVFS_meanNsigma.Aconstant[0] =
1614 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1615 		AVFS_meanNsigma.Aconstant[1] =
1616 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1617 		AVFS_meanNsigma.Aconstant[2] =
1618 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1619 		AVFS_meanNsigma.DC_tol_sigma =
1620 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1621 		AVFS_meanNsigma.Platform_mean =
1622 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1623 		AVFS_meanNsigma.PSM_Age_CompFactor =
1624 				PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1625 		AVFS_meanNsigma.Platform_sigma =
1626 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1627 
1628 		for (i = 0; i < sclk_table->count; i++) {
1629 			AVFS_meanNsigma.Static_Voltage_Offset[i] =
1630 					(uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1631 			AVFS_SclkOffset.Sclk_Offset[i] =
1632 					PP_HOST_TO_SMC_US((uint16_t)
1633 							(sclk_table->entries[i].sclk_offset) / 100);
1634 		}
1635 
1636 		result = smu7_read_smc_sram_dword(hwmgr,
1637 				SMU7_FIRMWARE_HEADER_LOCATION +
1638 				offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1639 				&tmp, SMC_RAM_END);
1640 		smu7_copy_bytes_to_smc(hwmgr,
1641 					tmp,
1642 					(uint8_t *)&AVFS_meanNsigma,
1643 					sizeof(AVFS_meanNsigma_t),
1644 					SMC_RAM_END);
1645 
1646 		result = smu7_read_smc_sram_dword(hwmgr,
1647 				SMU7_FIRMWARE_HEADER_LOCATION +
1648 				offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1649 				&tmp, SMC_RAM_END);
1650 		smu7_copy_bytes_to_smc(hwmgr,
1651 					tmp,
1652 					(uint8_t *)&AVFS_SclkOffset,
1653 					sizeof(AVFS_Sclk_Offset_t),
1654 					SMC_RAM_END);
1655 
1656 		data->avfs_vdroop_override_setting =
1657 				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1658 				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1659 				(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1660 				(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1661 		data->apply_avfs_cks_off_voltage =
1662 				avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1;
1663 	}
1664 	return result;
1665 }
1666 
1667 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1668 		struct SMU75_Discrete_DpmTable *table)
1669 {
1670 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1671 	struct vegam_smumgr *smu_data =
1672 			(struct vegam_smumgr *)(hwmgr->smu_backend);
1673 	uint16_t config;
1674 
1675 	config = VR_MERGED_WITH_VDDC;
1676 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1677 
1678 	/* Set Vddc Voltage Controller */
1679 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1680 		config = VR_SVI2_PLANE_1;
1681 		table->VRConfig |= config;
1682 	} else {
1683 		PP_ASSERT_WITH_CODE(false,
1684 				"VDDC should be on SVI2 control in merged mode!",
1685 				);
1686 	}
1687 	/* Set Vddci Voltage Controller */
1688 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1689 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1690 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1691 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1692 		config = VR_SMIO_PATTERN_1;
1693 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1694 	} else {
1695 		config = VR_STATIC_VOLTAGE;
1696 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1697 	}
1698 	/* Set Mvdd Voltage Controller */
1699 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1700 		if (config != VR_SVI2_PLANE_2) {
1701 			config = VR_SVI2_PLANE_2;
1702 			table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1703 			cgs_write_ind_register(hwmgr->device,
1704 					CGS_IND_REG__SMC,
1705 					smu_data->smu7_data.soft_regs_start +
1706 					offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1707 					0x1);
1708 		} else {
1709 			PP_ASSERT_WITH_CODE(false,
1710 					"SVI2 Plane 2 is already taken, set MVDD as Static",);
1711 			config = VR_STATIC_VOLTAGE;
1712 			table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1713 		}
1714 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1715 		config = VR_SMIO_PATTERN_2;
1716 		table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1717 		cgs_write_ind_register(hwmgr->device,
1718 				CGS_IND_REG__SMC,
1719 				smu_data->smu7_data.soft_regs_start +
1720 				offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1721 				0x1);
1722 	} else {
1723 		config = VR_STATIC_VOLTAGE;
1724 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1731 {
1732 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1733 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1734 
1735 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1736 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1737 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1738 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1739 
1740 	return 0;
1741 }
1742 
1743 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1744 {
1745 	uint16_t tdc_limit;
1746 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1747 	struct phm_ppt_v1_information *table_info =
1748 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1749 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1750 
1751 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1752 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1753 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1754 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1755 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1756 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1757 
1758 	return 0;
1759 }
1760 
1761 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1762 {
1763 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1764 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1765 	uint32_t temp;
1766 
1767 	if (smu7_read_smc_sram_dword(hwmgr,
1768 			fuse_table_offset +
1769 			offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1770 			(uint32_t *)&temp, SMC_RAM_END))
1771 		PP_ASSERT_WITH_CODE(false,
1772 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1773 				return -EINVAL);
1774 	else {
1775 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1776 		smu_data->power_tune_table.LPMLTemperatureMin =
1777 				(uint8_t)((temp >> 16) & 0xff);
1778 		smu_data->power_tune_table.LPMLTemperatureMax =
1779 				(uint8_t)((temp >> 8) & 0xff);
1780 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1781 	}
1782 	return 0;
1783 }
1784 
1785 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1786 {
1787 	int i;
1788 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1789 
1790 	/* Currently not used. Set all to zero. */
1791 	for (i = 0; i < 16; i++)
1792 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1793 
1794 	return 0;
1795 }
1796 
1797 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1798 {
1799 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1800 
1801 /* TO DO move to hwmgr */
1802 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1803 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1804 		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1805 			hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1806 
1807 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1808 				hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1809 	return 0;
1810 }
1811 
1812 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1813 {
1814 	int i;
1815 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1816 
1817 	/* Currently not used. Set all to zero. */
1818 	for (i = 0; i < 16; i++)
1819 		smu_data->power_tune_table.GnbLPML[i] = 0;
1820 
1821 	return 0;
1822 }
1823 
1824 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1825 {
1826 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1827 	struct phm_ppt_v1_information *table_info =
1828 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1829 	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1830 	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1831 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1832 
1833 	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1834 	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1835 
1836 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1837 			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1838 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1839 			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1840 
1841 	return 0;
1842 }
1843 
1844 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1845 {
1846 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1847 	uint32_t pm_fuse_table_offset;
1848 
1849 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1850 			PHM_PlatformCaps_PowerContainment)) {
1851 		if (smu7_read_smc_sram_dword(hwmgr,
1852 				SMU7_FIRMWARE_HEADER_LOCATION +
1853 				offsetof(SMU75_Firmware_Header, PmFuseTable),
1854 				&pm_fuse_table_offset, SMC_RAM_END))
1855 			PP_ASSERT_WITH_CODE(false,
1856 					"Attempt to get pm_fuse_table_offset Failed!",
1857 					return -EINVAL);
1858 
1859 		if (vegam_populate_svi_load_line(hwmgr))
1860 			PP_ASSERT_WITH_CODE(false,
1861 					"Attempt to populate SviLoadLine Failed!",
1862 					return -EINVAL);
1863 
1864 		if (vegam_populate_tdc_limit(hwmgr))
1865 			PP_ASSERT_WITH_CODE(false,
1866 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
1867 
1868 		if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1869 			PP_ASSERT_WITH_CODE(false,
1870 					"Attempt to populate TdcWaterfallCtl, "
1871 					"LPMLTemperature Min and Max Failed!",
1872 					return -EINVAL);
1873 
1874 		if (0 != vegam_populate_temperature_scaler(hwmgr))
1875 			PP_ASSERT_WITH_CODE(false,
1876 					"Attempt to populate LPMLTemperatureScaler Failed!",
1877 					return -EINVAL);
1878 
1879 		if (vegam_populate_fuzzy_fan(hwmgr))
1880 			PP_ASSERT_WITH_CODE(false,
1881 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
1882 					return -EINVAL);
1883 
1884 		if (vegam_populate_gnb_lpml(hwmgr))
1885 			PP_ASSERT_WITH_CODE(false,
1886 					"Attempt to populate GnbLPML Failed!",
1887 					return -EINVAL);
1888 
1889 		if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1890 			PP_ASSERT_WITH_CODE(false,
1891 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1892 					"Sidd Failed!", return -EINVAL);
1893 
1894 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1895 				(uint8_t *)&smu_data->power_tune_table,
1896 				(sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1897 				SMC_RAM_END))
1898 			PP_ASSERT_WITH_CODE(false,
1899 					"Attempt to download PmFuseTable Failed!",
1900 					return -EINVAL);
1901 	}
1902 	return 0;
1903 }
1904 
1905 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1906 {
1907 	struct amdgpu_device *adev = hwmgr->adev;
1908 
1909 	smum_send_msg_to_smc_with_parameter(hwmgr,
1910 					    PPSMC_MSG_EnableModeSwitchRLCNotification,
1911 					    adev->gfx.cu_info.number,
1912 					    NULL);
1913 
1914 	return 0;
1915 }
1916 
1917 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1918 {
1919 	int result;
1920 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1921 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1922 
1923 	struct phm_ppt_v1_information *table_info =
1924 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1925 	struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1926 	uint8_t i;
1927 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1928 	struct phm_ppt_v1_gpio_table *gpio_table =
1929 			(struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1930 	pp_atomctrl_clock_dividers_vi dividers;
1931 
1932 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1933 			PHM_PlatformCaps_AutomaticDCTransition);
1934 
1935 	vegam_initialize_power_tune_defaults(hwmgr);
1936 
1937 	if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1938 		vegam_populate_smc_voltage_tables(hwmgr, table);
1939 
1940 	table->SystemFlags = 0;
1941 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1942 			PHM_PlatformCaps_AutomaticDCTransition))
1943 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1944 
1945 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1946 			PHM_PlatformCaps_StepVddc))
1947 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1948 
1949 	if (hw_data->is_memory_gddr5)
1950 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1951 
1952 	if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1953 		result = vegam_populate_ulv_state(hwmgr, table);
1954 		PP_ASSERT_WITH_CODE(!result,
1955 				"Failed to initialize ULV state!", return result);
1956 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1957 				ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1958 	}
1959 
1960 	result = vegam_populate_smc_link_level(hwmgr, table);
1961 	PP_ASSERT_WITH_CODE(!result,
1962 			"Failed to initialize Link Level!", return result);
1963 
1964 	result = vegam_populate_all_graphic_levels(hwmgr);
1965 	PP_ASSERT_WITH_CODE(!result,
1966 			"Failed to initialize Graphics Level!", return result);
1967 
1968 	result = vegam_populate_all_memory_levels(hwmgr);
1969 	PP_ASSERT_WITH_CODE(!result,
1970 			"Failed to initialize Memory Level!", return result);
1971 
1972 	result = vegam_populate_smc_acpi_level(hwmgr, table);
1973 	PP_ASSERT_WITH_CODE(!result,
1974 			"Failed to initialize ACPI Level!", return result);
1975 
1976 	result = vegam_populate_smc_vce_level(hwmgr, table);
1977 	PP_ASSERT_WITH_CODE(!result,
1978 			"Failed to initialize VCE Level!", return result);
1979 
1980 	/* Since only the initial state is completely set up at this point
1981 	 * (the other states are just copies of the boot state) we only
1982 	 * need to populate the  ARB settings for the initial state.
1983 	 */
1984 	result = vegam_program_memory_timing_parameters(hwmgr);
1985 	PP_ASSERT_WITH_CODE(!result,
1986 			"Failed to Write ARB settings for the initial state.", return result);
1987 
1988 	result = vegam_populate_smc_uvd_level(hwmgr, table);
1989 	PP_ASSERT_WITH_CODE(!result,
1990 			"Failed to initialize UVD Level!", return result);
1991 
1992 	result = vegam_populate_smc_boot_level(hwmgr, table);
1993 	PP_ASSERT_WITH_CODE(!result,
1994 			"Failed to initialize Boot Level!", return result);
1995 
1996 	result = vegam_populate_smc_initial_state(hwmgr);
1997 	PP_ASSERT_WITH_CODE(!result,
1998 			"Failed to initialize Boot State!", return result);
1999 
2000 	result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2001 	PP_ASSERT_WITH_CODE(!result,
2002 			"Failed to populate BAPM Parameters!", return result);
2003 
2004 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2005 			PHM_PlatformCaps_ClockStretcher)) {
2006 		result = vegam_populate_clock_stretcher_data_table(hwmgr);
2007 		PP_ASSERT_WITH_CODE(!result,
2008 				"Failed to populate Clock Stretcher Data Table!",
2009 				return result);
2010 	}
2011 
2012 	result = vegam_populate_avfs_parameters(hwmgr);
2013 	PP_ASSERT_WITH_CODE(!result,
2014 			"Failed to populate AVFS Parameters!", return result;);
2015 
2016 	table->CurrSclkPllRange = 0xff;
2017 	table->GraphicsVoltageChangeEnable  = 1;
2018 	table->GraphicsThermThrottleEnable  = 1;
2019 	table->GraphicsInterval = 1;
2020 	table->VoltageInterval  = 1;
2021 	table->ThermalInterval  = 1;
2022 	table->TemperatureLimitHigh =
2023 			table_info->cac_dtp_table->usTargetOperatingTemp *
2024 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2025 	table->TemperatureLimitLow  =
2026 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2027 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2028 	table->MemoryVoltageChangeEnable = 1;
2029 	table->MemoryInterval = 1;
2030 	table->VoltageResponseTime = 0;
2031 	table->PhaseResponseTime = 0;
2032 	table->MemoryThermThrottleEnable = 1;
2033 
2034 	PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2035 			"There must be 1 or more PCIE levels defined in PPTable.",
2036 			return -EINVAL);
2037 	table->PCIeBootLinkLevel =
2038 			hw_data->dpm_table.pcie_speed_table.count;
2039 	table->PCIeGenInterval = 1;
2040 	table->VRConfig = 0;
2041 
2042 	result = vegam_populate_vr_config(hwmgr, table);
2043 	PP_ASSERT_WITH_CODE(!result,
2044 			"Failed to populate VRConfig setting!", return result);
2045 
2046 	table->ThermGpio = 17;
2047 	table->SclkStepSize = 0x4000;
2048 
2049 	if (atomctrl_get_pp_assign_pin(hwmgr,
2050 			VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2051 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2052 		if (gpio_table)
2053 			table->VRHotLevel =
2054 					table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2055 	} else {
2056 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2057 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2058 				PHM_PlatformCaps_RegulatorHot);
2059 	}
2060 
2061 	if (atomctrl_get_pp_assign_pin(hwmgr,
2062 			PP_AC_DC_SWITCH_GPIO_PINID,	&gpio_pin)) {
2063 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2064 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2065 				PHM_PlatformCaps_AutomaticDCTransition) &&
2066 				!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme, NULL))
2067 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2068 					PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2069 	} else {
2070 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2071 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2072 				PHM_PlatformCaps_AutomaticDCTransition);
2073 	}
2074 
2075 	/* Thermal Output GPIO */
2076 	if (atomctrl_get_pp_assign_pin(hwmgr,
2077 			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2078 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2079 
2080 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2081 		 * since VBIOS will program this register to set 'inactive state',
2082 		 * driver can then determine 'active state' from this and
2083 		 * program SMU with correct polarity
2084 		 */
2085 		table->ThermOutPolarity =
2086 				(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2087 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2088 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2089 
2090 		/* if required, combine VRHot/PCC with thermal out GPIO */
2091 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2092 				PHM_PlatformCaps_RegulatorHot) &&
2093 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094 				PHM_PlatformCaps_CombinePCCWithThermalSignal))
2095 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2096 	} else {
2097 		table->ThermOutGpio = 17;
2098 		table->ThermOutPolarity = 1;
2099 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2100 	}
2101 
2102 	/* Populate BIF_SCLK levels into SMC DPM table */
2103 	for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2104 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2105 				smu_data->bif_sclk_table[i], &dividers);
2106 		PP_ASSERT_WITH_CODE(!result,
2107 				"Can not find DFS divide id for Sclk",
2108 				return result);
2109 
2110 		if (i == 0)
2111 			table->Ulv.BifSclkDfs =
2112 					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2113 		else
2114 			table->LinkLevel[i - 1].BifSclkDfs =
2115 					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2116 	}
2117 
2118 	for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2119 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2120 
2121 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2122 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2123 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2124 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2125 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2126 	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2127 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2128 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2129 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2130 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2131 
2132 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2133 	result = smu7_copy_bytes_to_smc(hwmgr,
2134 			smu_data->smu7_data.dpm_table_start +
2135 			offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2136 			(uint8_t *)&(table->SystemFlags),
2137 			sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2138 			SMC_RAM_END);
2139 	PP_ASSERT_WITH_CODE(!result,
2140 			"Failed to upload dpm data to SMC memory!", return result);
2141 
2142 	result = vegam_populate_pm_fuses(hwmgr);
2143 	PP_ASSERT_WITH_CODE(!result,
2144 			"Failed to  populate PM fuses to SMC memory!", return result);
2145 
2146 	result = vegam_enable_reconfig_cus(hwmgr);
2147 	PP_ASSERT_WITH_CODE(!result,
2148 			"Failed to enable reconfigurable CUs!", return result);
2149 
2150 	return 0;
2151 }
2152 
2153 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2154 {
2155 	switch (type) {
2156 	case SMU_SoftRegisters:
2157 		switch (member) {
2158 		case HandshakeDisables:
2159 			return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2160 		case VoltageChangeTimeout:
2161 			return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2162 		case AverageGraphicsActivity:
2163 			return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2164 		case AverageMemoryActivity:
2165 			return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2166 		case PreVBlankGap:
2167 			return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2168 		case VBlankTimeout:
2169 			return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2170 		case UcodeLoadStatus:
2171 			return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2172 		case DRAM_LOG_ADDR_H:
2173 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2174 		case DRAM_LOG_ADDR_L:
2175 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2176 		case DRAM_LOG_PHY_ADDR_H:
2177 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2178 		case DRAM_LOG_PHY_ADDR_L:
2179 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2180 		case DRAM_LOG_BUFF_SIZE:
2181 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2182 		}
2183 		break;
2184 	case SMU_Discrete_DpmTable:
2185 		switch (member) {
2186 		case UvdBootLevel:
2187 			return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2188 		case VceBootLevel:
2189 			return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2190 		case LowSclkInterruptThreshold:
2191 			return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2192 		}
2193 		break;
2194 	}
2195 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2196 	return 0;
2197 }
2198 
2199 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2200 {
2201 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2202 
2203 	if (data->need_update_smu7_dpm_table &
2204 		(DPMTABLE_OD_UPDATE_SCLK +
2205 		DPMTABLE_UPDATE_SCLK +
2206 		DPMTABLE_UPDATE_MCLK))
2207 		return vegam_program_memory_timing_parameters(hwmgr);
2208 
2209 	return 0;
2210 }
2211 
2212 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2213 {
2214 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2215 	struct vegam_smumgr *smu_data =
2216 			(struct vegam_smumgr *)(hwmgr->smu_backend);
2217 	int result = 0;
2218 	uint32_t low_sclk_interrupt_threshold = 0;
2219 
2220 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2221 			PHM_PlatformCaps_SclkThrottleLowNotification)
2222 	    && (data->low_sclk_interrupt_threshold != 0)) {
2223 		low_sclk_interrupt_threshold =
2224 				data->low_sclk_interrupt_threshold;
2225 
2226 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2227 
2228 		result = smu7_copy_bytes_to_smc(
2229 				hwmgr,
2230 				smu_data->smu7_data.dpm_table_start +
2231 				offsetof(SMU75_Discrete_DpmTable,
2232 					LowSclkInterruptThreshold),
2233 				(uint8_t *)&low_sclk_interrupt_threshold,
2234 				sizeof(uint32_t),
2235 				SMC_RAM_END);
2236 	}
2237 	PP_ASSERT_WITH_CODE((result == 0),
2238 			"Failed to update SCLK threshold!", return result);
2239 
2240 	result = vegam_program_mem_timing_parameters(hwmgr);
2241 	PP_ASSERT_WITH_CODE((result == 0),
2242 			"Failed to program memory timing parameters!",
2243 			);
2244 
2245 	return result;
2246 }
2247 
2248 static int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2249 {
2250 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2251 	int ret;
2252 
2253 	if (!hwmgr->avfs_supported)
2254 		return 0;
2255 
2256 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2257 	if (!ret) {
2258 		if (data->apply_avfs_cks_off_voltage)
2259 			ret = smum_send_msg_to_smc(hwmgr,
2260 					PPSMC_MSG_ApplyAvfsCksOffVoltage,
2261 					NULL);
2262 	}
2263 
2264 	return ret;
2265 }
2266 
2267 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2268 {
2269 	PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2270 			"VBIOS fan info is not correct!",
2271 			);
2272 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2273 			PHM_PlatformCaps_MicrocodeFanControl);
2274 	return 0;
2275 }
2276 
2277 const struct pp_smumgr_func vegam_smu_funcs = {
2278 	.name = "vegam_smu",
2279 	.smu_init = vegam_smu_init,
2280 	.smu_fini = smu7_smu_fini,
2281 	.start_smu = vegam_start_smu,
2282 	.check_fw_load_finish = smu7_check_fw_load_finish,
2283 	.request_smu_load_fw = smu7_reload_firmware,
2284 	.request_smu_load_specific_fw = NULL,
2285 	.send_msg_to_smc = smu7_send_msg_to_smc,
2286 	.send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2287 	.get_argument = smu7_get_argument,
2288 	.process_firmware_header = vegam_process_firmware_header,
2289 	.is_dpm_running = vegam_is_dpm_running,
2290 	.get_mac_definition = vegam_get_mac_definition,
2291 	.update_smc_table = vegam_update_smc_table,
2292 	.init_smc_table = vegam_init_smc_table,
2293 	.get_offsetof = vegam_get_offsetof,
2294 	.populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2295 	.populate_all_memory_levels = vegam_populate_all_memory_levels,
2296 	.update_sclk_threshold = vegam_update_sclk_threshold,
2297 	.is_hw_avfs_present = vegam_is_hw_avfs_present,
2298 	.thermal_avfs_enable = vegam_thermal_avfs_enable,
2299 	.thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2300 };
2301