1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include "pp_debug.h" 24 #include <linux/types.h> 25 #include <linux/kernel.h> 26 #include <linux/pci.h> 27 #include <linux/slab.h> 28 #include <linux/gfp.h> 29 30 #include "smumgr.h" 31 #include "tonga_smumgr.h" 32 #include "smu_ucode_xfer_vi.h" 33 #include "tonga_ppsmc.h" 34 #include "smu/smu_7_1_2_d.h" 35 #include "smu/smu_7_1_2_sh_mask.h" 36 #include "cgs_common.h" 37 #include "smu7_smumgr.h" 38 39 #include "smu7_dyn_defaults.h" 40 41 #include "smu7_hwmgr.h" 42 #include "hardwaremanager.h" 43 #include "ppatomctrl.h" 44 45 #include "atombios.h" 46 47 #include "pppcielanes.h" 48 #include "pp_endian.h" 49 50 #include "gmc/gmc_8_1_d.h" 51 #include "gmc/gmc_8_1_sh_mask.h" 52 53 #include "bif/bif_5_0_d.h" 54 #include "bif/bif_5_0_sh_mask.h" 55 56 #include "dce/dce_10_0_d.h" 57 #include "dce/dce_10_0_sh_mask.h" 58 59 #define POWERTUNE_DEFAULT_SET_MAX 1 60 #define MC_CG_ARB_FREQ_F1 0x0b 61 #define VDDC_VDDCI_DELTA 200 62 63 64 static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { 65 /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, 66 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT 67 */ 68 {1, 0xF, 0xFD, 0x19, 69 5, 45, 0, 0xB0000, 70 {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 71 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, 72 {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 73 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} 74 }, 75 }; 76 77 /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ 78 static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { 79 {600, 1050, 3, 0}, 80 {600, 1050, 6, 1} 81 }; 82 83 /* [FF, SS] type, [] 4 voltage ranges, 84 * and [Floor Freq, Boundary Freq, VID min , VID max] 85 */ 86 static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { 87 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, 88 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } 89 }; 90 91 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ 92 static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { 93 {0, 1, 3, 2, 4, 5}, 94 {0, 2, 4, 5, 6, 5} 95 }; 96 97 static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr) 98 { 99 int result; 100 101 /* Assert reset */ 102 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 103 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 104 105 result = smu7_upload_smu_firmware_image(hwmgr); 106 if (result) 107 return result; 108 109 /* Clear status */ 110 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 111 ixSMU_STATUS, 0); 112 113 /* Enable clock */ 114 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 115 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 116 117 /* De-assert reset */ 118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 119 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 120 121 /* Set SMU Auto Start */ 122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 123 SMU_INPUT_DATA, AUTO_START, 1); 124 125 /* Clear firmware interrupt enable flag */ 126 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 127 ixFIRMWARE_FLAGS, 0); 128 129 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 130 RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); 131 132 /** 133 * Call Test SMU message with 0x20000 offset to trigger SMU start 134 */ 135 smu7_send_msg_to_smc_offset(hwmgr); 136 137 /* Wait for done bit to be set */ 138 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 139 SMU_STATUS, SMU_DONE, 0); 140 141 /* Check pass/failed indicator */ 142 if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 143 CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) { 144 pr_err("SMU Firmware start failed\n"); 145 return -EINVAL; 146 } 147 148 /* Wait for firmware to initialize */ 149 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 150 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 151 152 return 0; 153 } 154 155 static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr) 156 { 157 int result = 0; 158 159 /* wait for smc boot up */ 160 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 161 RCU_UC_EVENTS, boot_seq_done, 0); 162 163 /*Clear firmware interrupt enable flag*/ 164 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 165 ixFIRMWARE_FLAGS, 0); 166 167 168 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 169 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 170 171 result = smu7_upload_smu_firmware_image(hwmgr); 172 173 if (result != 0) 174 return result; 175 176 /* Set smc instruct start point at 0x0 */ 177 smu7_program_jump_on_start(hwmgr); 178 179 180 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 181 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 182 183 /*De-assert reset*/ 184 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 185 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 186 187 /* Wait for firmware to initialize */ 188 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 189 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 190 191 return result; 192 } 193 194 static int tonga_start_smu(struct pp_hwmgr *hwmgr) 195 { 196 struct tonga_smumgr *priv = hwmgr->smu_backend; 197 int result; 198 199 /* Only start SMC if SMC RAM is not running */ 200 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { 201 /*Check if SMU is running in protected mode*/ 202 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 203 SMU_FIRMWARE, SMU_MODE)) { 204 result = tonga_start_in_non_protection_mode(hwmgr); 205 if (result) 206 return result; 207 } else { 208 result = tonga_start_in_protection_mode(hwmgr); 209 if (result) 210 return result; 211 } 212 } 213 214 /* Setup SoftRegsStart here to visit the register UcodeLoadStatus 215 * to check fw loading state 216 */ 217 smu7_read_smc_sram_dword(hwmgr, 218 SMU72_FIRMWARE_HEADER_LOCATION + 219 offsetof(SMU72_Firmware_Header, SoftRegisters), 220 &(priv->smu7_data.soft_regs_start), 0x40000); 221 222 result = smu7_request_smu_load_fw(hwmgr); 223 224 return result; 225 } 226 227 static int tonga_smu_init(struct pp_hwmgr *hwmgr) 228 { 229 struct tonga_smumgr *tonga_priv; 230 231 tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL); 232 if (tonga_priv == NULL) 233 return -ENOMEM; 234 235 hwmgr->smu_backend = tonga_priv; 236 237 if (smu7_init(hwmgr)) { 238 kfree(tonga_priv); 239 return -EINVAL; 240 } 241 242 return 0; 243 } 244 245 246 static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, 247 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, 248 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) 249 { 250 uint32_t i = 0; 251 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 252 struct phm_ppt_v1_information *pptable_info = 253 (struct phm_ppt_v1_information *)(hwmgr->pptable); 254 255 /* clock - voltage dependency table is empty table */ 256 if (allowed_clock_voltage_table->count == 0) 257 return -EINVAL; 258 259 for (i = 0; i < allowed_clock_voltage_table->count; i++) { 260 /* find first sclk bigger than request */ 261 if (allowed_clock_voltage_table->entries[i].clk >= clock) { 262 voltage->VddGfx = phm_get_voltage_index( 263 pptable_info->vddgfx_lookup_table, 264 allowed_clock_voltage_table->entries[i].vddgfx); 265 voltage->Vddc = phm_get_voltage_index( 266 pptable_info->vddc_lookup_table, 267 allowed_clock_voltage_table->entries[i].vddc); 268 269 if (allowed_clock_voltage_table->entries[i].vddci) 270 voltage->Vddci = 271 phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); 272 else 273 voltage->Vddci = 274 phm_get_voltage_id(&data->vddci_voltage_table, 275 allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); 276 277 278 if (allowed_clock_voltage_table->entries[i].mvdd) 279 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; 280 281 voltage->Phases = 1; 282 return 0; 283 } 284 } 285 286 /* sclk is bigger than max sclk in the dependence table */ 287 voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 288 allowed_clock_voltage_table->entries[i-1].vddgfx); 289 voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, 290 allowed_clock_voltage_table->entries[i-1].vddc); 291 292 if (allowed_clock_voltage_table->entries[i-1].vddci) 293 voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, 294 allowed_clock_voltage_table->entries[i-1].vddci); 295 296 if (allowed_clock_voltage_table->entries[i-1].mvdd) 297 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; 298 299 return 0; 300 } 301 302 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, 303 SMU72_Discrete_DpmTable *table) 304 { 305 unsigned int count; 306 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 307 308 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 309 table->VddcLevelCount = data->vddc_voltage_table.count; 310 for (count = 0; count < table->VddcLevelCount; count++) { 311 table->VddcTable[count] = 312 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); 313 } 314 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); 315 } 316 return 0; 317 } 318 319 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, 320 SMU72_Discrete_DpmTable *table) 321 { 322 unsigned int count; 323 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 324 325 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 326 table->VddGfxLevelCount = data->vddgfx_voltage_table.count; 327 for (count = 0; count < data->vddgfx_voltage_table.count; count++) { 328 table->VddGfxTable[count] = 329 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); 330 } 331 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); 332 } 333 return 0; 334 } 335 336 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, 337 SMU72_Discrete_DpmTable *table) 338 { 339 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 340 uint32_t count; 341 342 table->VddciLevelCount = data->vddci_voltage_table.count; 343 for (count = 0; count < table->VddciLevelCount; count++) { 344 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 345 table->VddciTable[count] = 346 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 347 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 348 table->SmioTable1.Pattern[count].Voltage = 349 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 350 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ 351 table->SmioTable1.Pattern[count].Smio = 352 (uint8_t) count; 353 table->Smio[count] |= 354 data->vddci_voltage_table.entries[count].smio_low; 355 table->VddciTable[count] = 356 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 357 } 358 } 359 360 table->SmioMask1 = data->vddci_voltage_table.mask_low; 361 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); 362 363 return 0; 364 } 365 366 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, 367 SMU72_Discrete_DpmTable *table) 368 { 369 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 370 uint32_t count; 371 372 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 373 table->MvddLevelCount = data->mvdd_voltage_table.count; 374 for (count = 0; count < table->MvddLevelCount; count++) { 375 table->SmioTable2.Pattern[count].Voltage = 376 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); 377 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ 378 table->SmioTable2.Pattern[count].Smio = 379 (uint8_t) count; 380 table->Smio[count] |= 381 data->mvdd_voltage_table.entries[count].smio_low; 382 } 383 table->SmioMask2 = data->mvdd_voltage_table.mask_low; 384 385 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); 386 } 387 388 return 0; 389 } 390 391 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, 392 SMU72_Discrete_DpmTable *table) 393 { 394 uint32_t count; 395 uint8_t index = 0; 396 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 397 struct phm_ppt_v1_information *pptable_info = 398 (struct phm_ppt_v1_information *)(hwmgr->pptable); 399 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = 400 pptable_info->vddgfx_lookup_table; 401 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = 402 pptable_info->vddc_lookup_table; 403 404 /* table is already swapped, so in order to use the value from it 405 * we need to swap it back. 406 */ 407 uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); 408 uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); 409 410 for (count = 0; count < vddc_level_count; count++) { 411 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ 412 index = phm_get_voltage_index(vddc_lookup_table, 413 data->vddc_voltage_table.entries[count].value); 414 table->BapmVddcVidLoSidd[count] = 415 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); 416 table->BapmVddcVidHiSidd[count] = 417 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); 418 table->BapmVddcVidHiSidd2[count] = 419 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); 420 } 421 422 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 423 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ 424 for (count = 0; count < vddgfx_level_count; count++) { 425 index = phm_get_voltage_index(vddgfx_lookup_table, 426 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); 427 table->BapmVddGfxVidHiSidd2[count] = 428 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); 429 } 430 } else { 431 for (count = 0; count < vddc_level_count; count++) { 432 index = phm_get_voltage_index(vddc_lookup_table, 433 data->vddc_voltage_table.entries[count].value); 434 table->BapmVddGfxVidLoSidd[count] = 435 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); 436 table->BapmVddGfxVidHiSidd[count] = 437 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); 438 table->BapmVddGfxVidHiSidd2[count] = 439 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); 440 } 441 } 442 443 return 0; 444 } 445 446 static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, 447 SMU72_Discrete_DpmTable *table) 448 { 449 int result; 450 451 result = tonga_populate_smc_vddc_table(hwmgr, table); 452 PP_ASSERT_WITH_CODE(!result, 453 "can not populate VDDC voltage table to SMC", 454 return -EINVAL); 455 456 result = tonga_populate_smc_vdd_ci_table(hwmgr, table); 457 PP_ASSERT_WITH_CODE(!result, 458 "can not populate VDDCI voltage table to SMC", 459 return -EINVAL); 460 461 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); 462 PP_ASSERT_WITH_CODE(!result, 463 "can not populate VDDGFX voltage table to SMC", 464 return -EINVAL); 465 466 result = tonga_populate_smc_mvdd_table(hwmgr, table); 467 PP_ASSERT_WITH_CODE(!result, 468 "can not populate MVDD voltage table to SMC", 469 return -EINVAL); 470 471 result = tonga_populate_cac_tables(hwmgr, table); 472 PP_ASSERT_WITH_CODE(!result, 473 "can not populate CAC voltage tables to SMC", 474 return -EINVAL); 475 476 return 0; 477 } 478 479 static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, 480 struct SMU72_Discrete_Ulv *state) 481 { 482 struct phm_ppt_v1_information *table_info = 483 (struct phm_ppt_v1_information *)(hwmgr->pptable); 484 485 state->CcPwrDynRm = 0; 486 state->CcPwrDynRm1 = 0; 487 488 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; 489 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * 490 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 491 492 state->VddcPhase = 1; 493 494 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); 495 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); 496 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); 497 498 return 0; 499 } 500 501 static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, 502 struct SMU72_Discrete_DpmTable *table) 503 { 504 return tonga_populate_ulv_level(hwmgr, &table->Ulv); 505 } 506 507 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) 508 { 509 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 510 struct smu7_dpm_table *dpm_table = &data->dpm_table; 511 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 512 uint32_t i; 513 514 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ 515 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { 516 table->LinkLevel[i].PcieGenSpeed = 517 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; 518 table->LinkLevel[i].PcieLaneCount = 519 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); 520 table->LinkLevel[i].EnabledForActivity = 521 1; 522 table->LinkLevel[i].SPC = 523 (uint8_t)(data->pcie_spc_cap & 0xff); 524 table->LinkLevel[i].DownThreshold = 525 PP_HOST_TO_SMC_UL(5); 526 table->LinkLevel[i].UpThreshold = 527 PP_HOST_TO_SMC_UL(30); 528 } 529 530 smu_data->smc_state_table.LinkLevelCount = 531 (uint8_t)dpm_table->pcie_speed_table.count; 532 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 533 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); 534 535 return 0; 536 } 537 538 static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, 539 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) 540 { 541 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 542 pp_atomctrl_clock_dividers_vi dividers; 543 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 544 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 545 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 546 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 547 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 548 uint32_t reference_clock; 549 uint32_t reference_divider; 550 uint32_t fbdiv; 551 int result; 552 553 /* get the engine clock dividers for this clock value*/ 554 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); 555 556 PP_ASSERT_WITH_CODE(result == 0, 557 "Error retrieving Engine Clock dividers from VBIOS.", return result); 558 559 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ 560 reference_clock = atomctrl_get_reference_clock(hwmgr); 561 562 reference_divider = 1 + dividers.uc_pll_ref_div; 563 564 /* low 14 bits is fraction and high 12 bits is divider*/ 565 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; 566 567 /* SPLL_FUNC_CNTL setup*/ 568 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 569 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); 570 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 571 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); 572 573 /* SPLL_FUNC_CNTL_3 setup*/ 574 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 575 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); 576 577 /* set to use fractional accumulation*/ 578 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 579 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); 580 581 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 582 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { 583 pp_atomctrl_internal_ss_info ss_info; 584 585 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; 586 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { 587 /* 588 * ss_info.speed_spectrum_percentage -- in unit of 0.01% 589 * ss_info.speed_spectrum_rate -- in unit of khz 590 */ 591 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ 592 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); 593 594 /* clkv = 2 * D * fbdiv / NS */ 595 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); 596 597 cg_spll_spread_spectrum = 598 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); 599 cg_spll_spread_spectrum = 600 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); 601 cg_spll_spread_spectrum_2 = 602 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); 603 } 604 } 605 606 sclk->SclkFrequency = engine_clock; 607 sclk->CgSpllFuncCntl3 = spll_func_cntl_3; 608 sclk->CgSpllFuncCntl4 = spll_func_cntl_4; 609 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; 610 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; 611 sclk->SclkDid = (uint8_t)dividers.pll_post_divider; 612 613 return 0; 614 } 615 616 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, 617 uint32_t engine_clock, 618 SMU72_Discrete_GraphicsLevel *graphic_level) 619 { 620 int result; 621 uint32_t mvdd; 622 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 623 struct phm_ppt_v1_information *pptable_info = 624 (struct phm_ppt_v1_information *)(hwmgr->pptable); 625 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 626 627 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); 628 629 if (hwmgr->od_enabled) 630 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; 631 else 632 vdd_dep_table = pptable_info->vdd_dep_on_sclk; 633 634 /* populate graphics levels*/ 635 result = tonga_get_dependency_volt_by_clk(hwmgr, 636 vdd_dep_table, engine_clock, 637 &graphic_level->MinVoltage, &mvdd); 638 PP_ASSERT_WITH_CODE((!result), 639 "can not find VDDC voltage value for VDDC " 640 "engine clock dependency table", return result); 641 642 /* SCLK frequency in units of 10KHz*/ 643 graphic_level->SclkFrequency = engine_clock; 644 /* Indicates maximum activity level for this performance level. 50% for now*/ 645 graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; 646 647 graphic_level->CcPwrDynRm = 0; 648 graphic_level->CcPwrDynRm1 = 0; 649 /* this level can be used if activity is high enough.*/ 650 graphic_level->EnabledForActivity = 0; 651 /* this level can be used for throttling.*/ 652 graphic_level->EnabledForThrottle = 1; 653 graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; 654 graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; 655 graphic_level->VoltageDownHyst = 0; 656 graphic_level->PowerThrottle = 0; 657 658 data->display_timing.min_clock_in_sr = 659 hwmgr->display_config->min_core_set_clock_in_sr; 660 661 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 662 PHM_PlatformCaps_SclkDeepSleep)) 663 graphic_level->DeepSleepDivId = 664 smu7_get_sleep_divider_id_from_clock(engine_clock, 665 data->display_timing.min_clock_in_sr); 666 667 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ 668 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 669 670 if (!result) { 671 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ 672 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ 673 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); 674 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); 675 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); 676 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); 677 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); 678 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); 679 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); 680 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); 681 } 682 683 return result; 684 } 685 686 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 687 { 688 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 689 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 690 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 691 struct smu7_dpm_table *dpm_table = &data->dpm_table; 692 struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; 693 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; 694 uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + 695 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); 696 697 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * 698 SMU72_MAX_LEVELS_GRAPHICS; 699 700 SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; 701 702 uint32_t i, max_entry; 703 uint8_t highest_pcie_level_enabled = 0; 704 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; 705 uint8_t count = 0; 706 int result = 0; 707 708 memset(levels, 0x00, level_array_size); 709 710 for (i = 0; i < dpm_table->sclk_table.count; i++) { 711 result = tonga_populate_single_graphic_level(hwmgr, 712 dpm_table->sclk_table.dpm_levels[i].value, 713 &(smu_data->smc_state_table.GraphicsLevel[i])); 714 if (result != 0) 715 return result; 716 717 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ 718 if (i > 1) 719 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; 720 } 721 722 /* Only enable level 0 for now. */ 723 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; 724 725 /* set highest level watermark to high */ 726 if (dpm_table->sclk_table.count > 1) 727 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = 728 PPSMC_DISPLAY_WATERMARK_HIGH; 729 730 smu_data->smc_state_table.GraphicsDpmLevelCount = 731 (uint8_t)dpm_table->sclk_table.count; 732 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 733 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); 734 735 if (pcie_table != NULL) { 736 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), 737 "There must be 1 or more PCIE levels defined in PPTable.", 738 return -EINVAL); 739 max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ 740 for (i = 0; i < dpm_table->sclk_table.count; i++) { 741 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = 742 (uint8_t) ((i < max_entry) ? i : max_entry); 743 } 744 } else { 745 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) 746 pr_err("Pcie Dpm Enablemask is 0 !"); 747 748 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 749 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 750 (1<<(highest_pcie_level_enabled+1))) != 0)) { 751 highest_pcie_level_enabled++; 752 } 753 754 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 755 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 756 (1<<lowest_pcie_level_enabled)) == 0)) { 757 lowest_pcie_level_enabled++; 758 } 759 760 while ((count < highest_pcie_level_enabled) && 761 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 762 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { 763 count++; 764 } 765 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? 766 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; 767 768 769 /* set pcieDpmLevel to highest_pcie_level_enabled*/ 770 for (i = 2; i < dpm_table->sclk_table.count; i++) 771 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; 772 773 /* set pcieDpmLevel to lowest_pcie_level_enabled*/ 774 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; 775 776 /* set pcieDpmLevel to mid_pcie_level_enabled*/ 777 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; 778 } 779 /* level count will send to smc once at init smc table and never change*/ 780 result = smu7_copy_bytes_to_smc(hwmgr, level_array_address, 781 (uint8_t *)levels, (uint32_t)level_array_size, 782 SMC_RAM_END); 783 784 return result; 785 } 786 787 static int tonga_calculate_mclk_params( 788 struct pp_hwmgr *hwmgr, 789 uint32_t memory_clock, 790 SMU72_Discrete_MemoryLevel *mclk, 791 bool strobe_mode, 792 bool dllStateOn 793 ) 794 { 795 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 796 797 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 798 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 799 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; 800 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; 801 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; 802 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; 803 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; 804 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; 805 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; 806 807 pp_atomctrl_memory_clock_param mpll_param; 808 int result; 809 810 result = atomctrl_get_memory_pll_dividers_si(hwmgr, 811 memory_clock, &mpll_param, strobe_mode); 812 PP_ASSERT_WITH_CODE( 813 !result, 814 "Error retrieving Memory Clock Parameters from VBIOS.", 815 return result); 816 817 /* MPLL_FUNC_CNTL setup*/ 818 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, 819 mpll_param.bw_ctrl); 820 821 /* MPLL_FUNC_CNTL_1 setup*/ 822 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 823 MPLL_FUNC_CNTL_1, CLKF, 824 mpll_param.mpll_fb_divider.cl_kf); 825 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 826 MPLL_FUNC_CNTL_1, CLKFRAC, 827 mpll_param.mpll_fb_divider.clk_frac); 828 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 829 MPLL_FUNC_CNTL_1, VCO_MODE, 830 mpll_param.vco_mode); 831 832 /* MPLL_AD_FUNC_CNTL setup*/ 833 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, 834 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, 835 mpll_param.mpll_post_divider); 836 837 if (data->is_memory_gddr5) { 838 /* MPLL_DQ_FUNC_CNTL setup*/ 839 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 840 MPLL_DQ_FUNC_CNTL, YCLK_SEL, 841 mpll_param.yclk_sel); 842 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 843 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, 844 mpll_param.mpll_post_divider); 845 } 846 847 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 848 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { 849 /* 850 ************************************ 851 Fref = Reference Frequency 852 NF = Feedback divider ratio 853 NR = Reference divider ratio 854 Fnom = Nominal VCO output frequency = Fref * NF / NR 855 Fs = Spreading Rate 856 D = Percentage down-spread / 2 857 Fint = Reference input frequency to PFD = Fref / NR 858 NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) 859 CLKS = NS - 1 = ISS_STEP_NUM[11:0] 860 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) 861 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] 862 ************************************* 863 */ 864 pp_atomctrl_internal_ss_info ss_info; 865 uint32_t freq_nom; 866 uint32_t tmp; 867 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); 868 869 /* for GDDR5 for all modes and DDR3 */ 870 if (1 == mpll_param.qdr) 871 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); 872 else 873 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); 874 875 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ 876 tmp = (freq_nom / reference_clock); 877 tmp = tmp * tmp; 878 879 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { 880 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ 881 /* ss.Info.speed_spectrum_rate -- in unit of khz */ 882 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ 883 /* = reference_clock * 5 / speed_spectrum_rate */ 884 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; 885 886 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ 887 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ 888 uint32_t clkv = 889 (uint32_t)((((131 * ss_info.speed_spectrum_percentage * 890 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); 891 892 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); 893 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); 894 } 895 } 896 897 /* MCLK_PWRMGT_CNTL setup */ 898 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 899 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); 900 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 901 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); 902 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 903 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); 904 905 /* Save the result data to outpupt memory level structure */ 906 mclk->MclkFrequency = memory_clock; 907 mclk->MpllFuncCntl = mpll_func_cntl; 908 mclk->MpllFuncCntl_1 = mpll_func_cntl_1; 909 mclk->MpllFuncCntl_2 = mpll_func_cntl_2; 910 mclk->MpllAdFuncCntl = mpll_ad_func_cntl; 911 mclk->MpllDqFuncCntl = mpll_dq_func_cntl; 912 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; 913 mclk->DllCntl = dll_cntl; 914 mclk->MpllSs1 = mpll_ss1; 915 mclk->MpllSs2 = mpll_ss2; 916 917 return 0; 918 } 919 920 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, 921 bool strobe_mode) 922 { 923 uint8_t mc_para_index; 924 925 if (strobe_mode) { 926 if (memory_clock < 12500) 927 mc_para_index = 0x00; 928 else if (memory_clock > 47500) 929 mc_para_index = 0x0f; 930 else 931 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); 932 } else { 933 if (memory_clock < 65000) 934 mc_para_index = 0x00; 935 else if (memory_clock > 135000) 936 mc_para_index = 0x0f; 937 else 938 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); 939 } 940 941 return mc_para_index; 942 } 943 944 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) 945 { 946 uint8_t mc_para_index; 947 948 if (memory_clock < 10000) 949 mc_para_index = 0; 950 else if (memory_clock >= 80000) 951 mc_para_index = 0x0f; 952 else 953 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); 954 955 return mc_para_index; 956 } 957 958 959 static int tonga_populate_single_memory_level( 960 struct pp_hwmgr *hwmgr, 961 uint32_t memory_clock, 962 SMU72_Discrete_MemoryLevel *memory_level 963 ) 964 { 965 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 966 struct phm_ppt_v1_information *pptable_info = 967 (struct phm_ppt_v1_information *)(hwmgr->pptable); 968 uint32_t mclk_edc_wr_enable_threshold = 40000; 969 uint32_t mclk_stutter_mode_threshold = 30000; 970 uint32_t mclk_edc_enable_threshold = 40000; 971 uint32_t mclk_strobe_mode_threshold = 40000; 972 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 973 int result = 0; 974 bool dll_state_on; 975 uint32_t mvdd = 0; 976 977 if (hwmgr->od_enabled) 978 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; 979 else 980 vdd_dep_table = pptable_info->vdd_dep_on_mclk; 981 982 if (NULL != vdd_dep_table) { 983 result = tonga_get_dependency_volt_by_clk(hwmgr, 984 vdd_dep_table, 985 memory_clock, 986 &memory_level->MinVoltage, &mvdd); 987 PP_ASSERT_WITH_CODE( 988 !result, 989 "can not find MinVddc voltage value from memory VDDC " 990 "voltage dependency table", 991 return result); 992 } 993 994 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) 995 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; 996 else 997 memory_level->MinMvdd = mvdd; 998 999 memory_level->EnabledForThrottle = 1; 1000 memory_level->EnabledForActivity = 0; 1001 memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; 1002 memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; 1003 memory_level->VoltageDownHyst = 0; 1004 1005 /* Indicates maximum activity level for this performance level.*/ 1006 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; 1007 memory_level->StutterEnable = 0; 1008 memory_level->StrobeEnable = 0; 1009 memory_level->EdcReadEnable = 0; 1010 memory_level->EdcWriteEnable = 0; 1011 memory_level->RttEnable = 0; 1012 1013 /* default set to low watermark. Highest level will be set to high later.*/ 1014 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1015 1016 data->display_timing.num_existing_displays = hwmgr->display_config->num_display; 1017 data->display_timing.vrefresh = hwmgr->display_config->vrefresh; 1018 1019 if ((mclk_stutter_mode_threshold != 0) && 1020 (memory_clock <= mclk_stutter_mode_threshold) && 1021 (!data->is_uvd_enabled) 1022 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) 1023 && (data->display_timing.num_existing_displays <= 2) 1024 && (data->display_timing.num_existing_displays != 0)) 1025 memory_level->StutterEnable = 1; 1026 1027 /* decide strobe mode*/ 1028 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && 1029 (memory_clock <= mclk_strobe_mode_threshold); 1030 1031 /* decide EDC mode and memory clock ratio*/ 1032 if (data->is_memory_gddr5) { 1033 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, 1034 memory_level->StrobeEnable); 1035 1036 if ((mclk_edc_enable_threshold != 0) && 1037 (memory_clock > mclk_edc_enable_threshold)) { 1038 memory_level->EdcReadEnable = 1; 1039 } 1040 1041 if ((mclk_edc_wr_enable_threshold != 0) && 1042 (memory_clock > mclk_edc_wr_enable_threshold)) { 1043 memory_level->EdcWriteEnable = 1; 1044 } 1045 1046 if (memory_level->StrobeEnable) { 1047 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= 1048 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { 1049 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1050 } else { 1051 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; 1052 } 1053 1054 } else { 1055 dll_state_on = data->dll_default_on; 1056 } 1057 } else { 1058 memory_level->StrobeRatio = 1059 tonga_get_ddr3_mclk_frequency_ratio(memory_clock); 1060 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1061 } 1062 1063 result = tonga_calculate_mclk_params(hwmgr, 1064 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); 1065 1066 if (!result) { 1067 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); 1068 /* MCLK frequency in units of 10KHz*/ 1069 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); 1070 /* Indicates maximum activity level for this performance level.*/ 1071 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); 1072 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); 1073 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); 1074 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); 1075 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); 1076 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); 1077 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); 1078 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); 1079 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); 1080 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); 1081 } 1082 1083 return result; 1084 } 1085 1086 static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1087 { 1088 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1089 struct tonga_smumgr *smu_data = 1090 (struct tonga_smumgr *)(hwmgr->smu_backend); 1091 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1092 int result; 1093 1094 /* populate MCLK dpm table to SMU7 */ 1095 uint32_t level_array_address = 1096 smu_data->smu7_data.dpm_table_start + 1097 offsetof(SMU72_Discrete_DpmTable, MemoryLevel); 1098 uint32_t level_array_size = 1099 sizeof(SMU72_Discrete_MemoryLevel) * 1100 SMU72_MAX_LEVELS_MEMORY; 1101 SMU72_Discrete_MemoryLevel *levels = 1102 smu_data->smc_state_table.MemoryLevel; 1103 uint32_t i; 1104 1105 memset(levels, 0x00, level_array_size); 1106 1107 for (i = 0; i < dpm_table->mclk_table.count; i++) { 1108 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), 1109 "can not populate memory level as memory clock is zero", 1110 return -EINVAL); 1111 result = tonga_populate_single_memory_level( 1112 hwmgr, 1113 dpm_table->mclk_table.dpm_levels[i].value, 1114 &(smu_data->smc_state_table.MemoryLevel[i])); 1115 if (result) 1116 return result; 1117 } 1118 1119 /* Only enable level 0 for now.*/ 1120 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; 1121 1122 /* 1123 * in order to prevent MC activity from stutter mode to push DPM up. 1124 * the UVD change complements this by putting the MCLK in a higher state 1125 * by default such that we are not effected by up threshold or and MCLK DPM latency. 1126 */ 1127 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; 1128 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); 1129 1130 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; 1131 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); 1132 /* set highest level watermark to high*/ 1133 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; 1134 1135 /* level count will send to smc once at init smc table and never change*/ 1136 result = smu7_copy_bytes_to_smc(hwmgr, 1137 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, 1138 SMC_RAM_END); 1139 1140 return result; 1141 } 1142 1143 static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, 1144 uint32_t mclk, SMIO_Pattern *smio_pattern) 1145 { 1146 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1147 struct phm_ppt_v1_information *table_info = 1148 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1149 uint32_t i = 0; 1150 1151 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { 1152 /* find mvdd value which clock is more than request */ 1153 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { 1154 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { 1155 /* Always round to higher voltage. */ 1156 smio_pattern->Voltage = 1157 data->mvdd_voltage_table.entries[i].value; 1158 break; 1159 } 1160 } 1161 1162 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, 1163 "MVDD Voltage is outside the supported range.", 1164 return -EINVAL); 1165 } else { 1166 return -EINVAL; 1167 } 1168 1169 return 0; 1170 } 1171 1172 1173 static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, 1174 SMU72_Discrete_DpmTable *table) 1175 { 1176 int result = 0; 1177 struct tonga_smumgr *smu_data = 1178 (struct tonga_smumgr *)(hwmgr->smu_backend); 1179 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1180 struct pp_atomctrl_clock_dividers_vi dividers; 1181 1182 SMIO_Pattern voltage_level; 1183 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 1184 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; 1185 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1186 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1187 1188 /* The ACPI state should not do DPM on DC (or ever).*/ 1189 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; 1190 1191 table->ACPILevel.MinVoltage = 1192 smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; 1193 1194 /* assign zero for now*/ 1195 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); 1196 1197 /* get the engine clock dividers for this clock value*/ 1198 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, 1199 table->ACPILevel.SclkFrequency, ÷rs); 1200 1201 PP_ASSERT_WITH_CODE(result == 0, 1202 "Error retrieving Engine Clock dividers from VBIOS.", 1203 return result); 1204 1205 /* divider ID for required SCLK*/ 1206 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; 1207 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1208 table->ACPILevel.DeepSleepDivId = 0; 1209 1210 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1211 SPLL_PWRON, 0); 1212 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1213 SPLL_RESET, 1); 1214 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, 1215 SCLK_MUX_SEL, 4); 1216 1217 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; 1218 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; 1219 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 1220 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 1221 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 1222 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 1223 table->ACPILevel.CcPwrDynRm = 0; 1224 table->ACPILevel.CcPwrDynRm1 = 0; 1225 1226 1227 /* For various features to be enabled/disabled while this level is active.*/ 1228 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); 1229 /* SCLK frequency in units of 10KHz*/ 1230 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); 1231 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); 1232 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); 1233 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); 1234 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); 1235 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); 1236 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); 1237 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); 1238 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); 1239 1240 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ 1241 table->MemoryACPILevel.MinVoltage = 1242 smu_data->smc_state_table.MemoryLevel[0].MinVoltage; 1243 1244 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ 1245 1246 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) 1247 table->MemoryACPILevel.MinMvdd = 1248 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); 1249 else 1250 table->MemoryACPILevel.MinMvdd = 0; 1251 1252 /* Force reset on DLL*/ 1253 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1254 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); 1255 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1256 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); 1257 1258 /* Disable DLL in ACPIState*/ 1259 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1260 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); 1261 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1262 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); 1263 1264 /* Enable DLL bypass signal*/ 1265 dll_cntl = PHM_SET_FIELD(dll_cntl, 1266 DLL_CNTL, MRDCK0_BYPASS, 0); 1267 dll_cntl = PHM_SET_FIELD(dll_cntl, 1268 DLL_CNTL, MRDCK1_BYPASS, 0); 1269 1270 table->MemoryACPILevel.DllCntl = 1271 PP_HOST_TO_SMC_UL(dll_cntl); 1272 table->MemoryACPILevel.MclkPwrmgtCntl = 1273 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); 1274 table->MemoryACPILevel.MpllAdFuncCntl = 1275 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); 1276 table->MemoryACPILevel.MpllDqFuncCntl = 1277 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); 1278 table->MemoryACPILevel.MpllFuncCntl = 1279 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); 1280 table->MemoryACPILevel.MpllFuncCntl_1 = 1281 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); 1282 table->MemoryACPILevel.MpllFuncCntl_2 = 1283 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); 1284 table->MemoryACPILevel.MpllSs1 = 1285 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); 1286 table->MemoryACPILevel.MpllSs2 = 1287 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); 1288 1289 table->MemoryACPILevel.EnabledForThrottle = 0; 1290 table->MemoryACPILevel.EnabledForActivity = 0; 1291 table->MemoryACPILevel.UpHyst = 0; 1292 table->MemoryACPILevel.DownHyst = 100; 1293 table->MemoryACPILevel.VoltageDownHyst = 0; 1294 /* Indicates maximum activity level for this performance level.*/ 1295 table->MemoryACPILevel.ActivityLevel = 1296 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); 1297 1298 table->MemoryACPILevel.StutterEnable = 0; 1299 table->MemoryACPILevel.StrobeEnable = 0; 1300 table->MemoryACPILevel.EdcReadEnable = 0; 1301 table->MemoryACPILevel.EdcWriteEnable = 0; 1302 table->MemoryACPILevel.RttEnable = 0; 1303 1304 return result; 1305 } 1306 1307 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, 1308 SMU72_Discrete_DpmTable *table) 1309 { 1310 int result = 0; 1311 1312 uint8_t count; 1313 pp_atomctrl_clock_dividers_vi dividers; 1314 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1315 struct phm_ppt_v1_information *pptable_info = 1316 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1317 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1318 pptable_info->mm_dep_table; 1319 1320 table->UvdLevelCount = (uint8_t) (mm_table->count); 1321 table->UvdBootLevel = 0; 1322 1323 for (count = 0; count < table->UvdLevelCount; count++) { 1324 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; 1325 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; 1326 table->UvdLevel[count].MinVoltage.Vddc = 1327 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1328 mm_table->entries[count].vddc); 1329 table->UvdLevel[count].MinVoltage.VddGfx = 1330 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1331 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1332 mm_table->entries[count].vddgfx) : 0; 1333 table->UvdLevel[count].MinVoltage.Vddci = 1334 phm_get_voltage_id(&data->vddci_voltage_table, 1335 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1336 table->UvdLevel[count].MinVoltage.Phases = 1; 1337 1338 /* retrieve divider value for VBIOS */ 1339 result = atomctrl_get_dfs_pll_dividers_vi( 1340 hwmgr, 1341 table->UvdLevel[count].VclkFrequency, 1342 ÷rs); 1343 1344 PP_ASSERT_WITH_CODE((!result), 1345 "can not find divide id for Vclk clock", 1346 return result); 1347 1348 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; 1349 1350 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1351 table->UvdLevel[count].DclkFrequency, ÷rs); 1352 PP_ASSERT_WITH_CODE((!result), 1353 "can not find divide id for Dclk clock", 1354 return result); 1355 1356 table->UvdLevel[count].DclkDivider = 1357 (uint8_t)dividers.pll_post_divider; 1358 1359 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); 1360 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); 1361 } 1362 1363 return result; 1364 1365 } 1366 1367 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, 1368 SMU72_Discrete_DpmTable *table) 1369 { 1370 int result = 0; 1371 1372 uint8_t count; 1373 pp_atomctrl_clock_dividers_vi dividers; 1374 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1375 struct phm_ppt_v1_information *pptable_info = 1376 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1377 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1378 pptable_info->mm_dep_table; 1379 1380 table->VceLevelCount = (uint8_t) (mm_table->count); 1381 table->VceBootLevel = 0; 1382 1383 for (count = 0; count < table->VceLevelCount; count++) { 1384 table->VceLevel[count].Frequency = 1385 mm_table->entries[count].eclk; 1386 table->VceLevel[count].MinVoltage.Vddc = 1387 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1388 mm_table->entries[count].vddc); 1389 table->VceLevel[count].MinVoltage.VddGfx = 1390 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1391 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1392 mm_table->entries[count].vddgfx) : 0; 1393 table->VceLevel[count].MinVoltage.Vddci = 1394 phm_get_voltage_id(&data->vddci_voltage_table, 1395 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1396 table->VceLevel[count].MinVoltage.Phases = 1; 1397 1398 /* retrieve divider value for VBIOS */ 1399 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1400 table->VceLevel[count].Frequency, ÷rs); 1401 PP_ASSERT_WITH_CODE((!result), 1402 "can not find divide id for VCE engine clock", 1403 return result); 1404 1405 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1406 1407 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); 1408 } 1409 1410 return result; 1411 } 1412 1413 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, 1414 SMU72_Discrete_DpmTable *table) 1415 { 1416 int result = 0; 1417 uint8_t count; 1418 pp_atomctrl_clock_dividers_vi dividers; 1419 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1420 struct phm_ppt_v1_information *pptable_info = 1421 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1422 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1423 pptable_info->mm_dep_table; 1424 1425 table->AcpLevelCount = (uint8_t) (mm_table->count); 1426 table->AcpBootLevel = 0; 1427 1428 for (count = 0; count < table->AcpLevelCount; count++) { 1429 table->AcpLevel[count].Frequency = 1430 pptable_info->mm_dep_table->entries[count].aclk; 1431 table->AcpLevel[count].MinVoltage.Vddc = 1432 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1433 mm_table->entries[count].vddc); 1434 table->AcpLevel[count].MinVoltage.VddGfx = 1435 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1436 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1437 mm_table->entries[count].vddgfx) : 0; 1438 table->AcpLevel[count].MinVoltage.Vddci = 1439 phm_get_voltage_id(&data->vddci_voltage_table, 1440 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1441 table->AcpLevel[count].MinVoltage.Phases = 1; 1442 1443 /* retrieve divider value for VBIOS */ 1444 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1445 table->AcpLevel[count].Frequency, ÷rs); 1446 PP_ASSERT_WITH_CODE((!result), 1447 "can not find divide id for engine clock", return result); 1448 1449 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1450 1451 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); 1452 } 1453 1454 return result; 1455 } 1456 1457 static int tonga_populate_memory_timing_parameters( 1458 struct pp_hwmgr *hwmgr, 1459 uint32_t engine_clock, 1460 uint32_t memory_clock, 1461 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs 1462 ) 1463 { 1464 uint32_t dramTiming; 1465 uint32_t dramTiming2; 1466 uint32_t burstTime; 1467 int result; 1468 1469 result = atomctrl_set_engine_dram_timings_rv770(hwmgr, 1470 engine_clock, memory_clock); 1471 1472 PP_ASSERT_WITH_CODE(result == 0, 1473 "Error calling VBIOS to set DRAM_TIMING.", return result); 1474 1475 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 1476 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 1477 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 1478 1479 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); 1480 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); 1481 arb_regs->McArbBurstTime = (uint8_t)burstTime; 1482 1483 return 0; 1484 } 1485 1486 static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) 1487 { 1488 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1489 struct tonga_smumgr *smu_data = 1490 (struct tonga_smumgr *)(hwmgr->smu_backend); 1491 int result = 0; 1492 SMU72_Discrete_MCArbDramTimingTable arb_regs; 1493 uint32_t i, j; 1494 1495 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); 1496 1497 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1498 for (j = 0; j < data->dpm_table.mclk_table.count; j++) { 1499 result = tonga_populate_memory_timing_parameters 1500 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, 1501 data->dpm_table.mclk_table.dpm_levels[j].value, 1502 &arb_regs.entries[i][j]); 1503 1504 if (result) 1505 break; 1506 } 1507 } 1508 1509 if (!result) { 1510 result = smu7_copy_bytes_to_smc( 1511 hwmgr, 1512 smu_data->smu7_data.arb_table_start, 1513 (uint8_t *)&arb_regs, 1514 sizeof(SMU72_Discrete_MCArbDramTimingTable), 1515 SMC_RAM_END 1516 ); 1517 } 1518 1519 return result; 1520 } 1521 1522 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, 1523 SMU72_Discrete_DpmTable *table) 1524 { 1525 int result = 0; 1526 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1527 struct tonga_smumgr *smu_data = 1528 (struct tonga_smumgr *)(hwmgr->smu_backend); 1529 table->GraphicsBootLevel = 0; 1530 table->MemoryBootLevel = 0; 1531 1532 /* find boot level from dpm table*/ 1533 result = phm_find_boot_level(&(data->dpm_table.sclk_table), 1534 data->vbios_boot_state.sclk_bootup_value, 1535 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); 1536 1537 if (result != 0) { 1538 smu_data->smc_state_table.GraphicsBootLevel = 0; 1539 pr_err("[powerplay] VBIOS did not find boot engine " 1540 "clock value in dependency table. " 1541 "Using Graphics DPM level 0 !"); 1542 result = 0; 1543 } 1544 1545 result = phm_find_boot_level(&(data->dpm_table.mclk_table), 1546 data->vbios_boot_state.mclk_bootup_value, 1547 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); 1548 1549 if (result != 0) { 1550 smu_data->smc_state_table.MemoryBootLevel = 0; 1551 pr_err("[powerplay] VBIOS did not find boot " 1552 "engine clock value in dependency table." 1553 "Using Memory DPM level 0 !"); 1554 result = 0; 1555 } 1556 1557 table->BootVoltage.Vddc = 1558 phm_get_voltage_id(&(data->vddc_voltage_table), 1559 data->vbios_boot_state.vddc_bootup_value); 1560 table->BootVoltage.VddGfx = 1561 phm_get_voltage_id(&(data->vddgfx_voltage_table), 1562 data->vbios_boot_state.vddgfx_bootup_value); 1563 table->BootVoltage.Vddci = 1564 phm_get_voltage_id(&(data->vddci_voltage_table), 1565 data->vbios_boot_state.vddci_bootup_value); 1566 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; 1567 1568 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); 1569 1570 return result; 1571 } 1572 1573 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) 1574 { 1575 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, 1576 volt_with_cks, value; 1577 uint16_t clock_freq_u16; 1578 struct tonga_smumgr *smu_data = 1579 (struct tonga_smumgr *)(hwmgr->smu_backend); 1580 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, 1581 volt_offset = 0; 1582 struct phm_ppt_v1_information *table_info = 1583 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1584 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 1585 table_info->vdd_dep_on_sclk; 1586 uint32_t hw_revision, dev_id; 1587 struct amdgpu_device *adev = hwmgr->adev; 1588 1589 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; 1590 1591 hw_revision = adev->pdev->revision; 1592 dev_id = adev->pdev->device; 1593 1594 /* Read SMU_Eefuse to read and calculate RO and determine 1595 * if the part is SS or FF. if RO >= 1660MHz, part is FF. 1596 */ 1597 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1598 ixSMU_EFUSE_0 + (146 * 4)); 1599 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1600 ixSMU_EFUSE_0 + (148 * 4)); 1601 efuse &= 0xFF000000; 1602 efuse = efuse >> 24; 1603 efuse2 &= 0xF; 1604 1605 if (efuse2 == 1) 1606 ro = (2300 - 1350) * efuse / 255 + 1350; 1607 else 1608 ro = (2500 - 1000) * efuse / 255 + 1000; 1609 1610 if (ro >= 1660) 1611 type = 0; 1612 else 1613 type = 1; 1614 1615 /* Populate Stretch amount */ 1616 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; 1617 1618 1619 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ 1620 for (i = 0; i < sclk_table->count; i++) { 1621 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= 1622 sclk_table->entries[i].cks_enable << i; 1623 if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { 1624 volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * 1625 (sclk_table->entries[i].clk/100) / 10000) * 1000 / 1626 (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); 1627 volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * 1628 (sclk_table->entries[i].clk/100) / 100000) * 1000 / 1629 (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); 1630 } else { 1631 volt_without_cks = (uint32_t)((14041 * 1632 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / 1633 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); 1634 volt_with_cks = (uint32_t)((13946 * 1635 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / 1636 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); 1637 } 1638 if (volt_without_cks >= volt_with_cks) 1639 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + 1640 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); 1641 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; 1642 } 1643 1644 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1645 STRETCH_ENABLE, 0x0); 1646 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1647 masterReset, 0x1); 1648 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1649 staticEnable, 0x1); 1650 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1651 masterReset, 0x0); 1652 1653 /* Populate CKS Lookup Table */ 1654 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) 1655 stretch_amount2 = 0; 1656 else if (stretch_amount == 3 || stretch_amount == 4) 1657 stretch_amount2 = 1; 1658 else { 1659 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1660 PHM_PlatformCaps_ClockStretcher); 1661 PP_ASSERT_WITH_CODE(false, 1662 "Stretch Amount in PPTable not supported", 1663 return -EINVAL); 1664 } 1665 1666 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1667 ixPWR_CKS_CNTL); 1668 value &= 0xFFC2FF87; 1669 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = 1670 tonga_clock_stretcher_lookup_table[stretch_amount2][0]; 1671 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = 1672 tonga_clock_stretcher_lookup_table[stretch_amount2][1]; 1673 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. 1674 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. 1675 SclkFrequency) / 100); 1676 if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < 1677 clock_freq_u16 && 1678 tonga_clock_stretcher_lookup_table[stretch_amount2][1] > 1679 clock_freq_u16) { 1680 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ 1681 value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; 1682 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ 1683 value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; 1684 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ 1685 value |= (tonga_clock_stretch_amount_conversion 1686 [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] 1687 [stretch_amount]) << 3; 1688 } 1689 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1690 CKS_LOOKUPTableEntry[0].minFreq); 1691 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1692 CKS_LOOKUPTableEntry[0].maxFreq); 1693 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = 1694 tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; 1695 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= 1696 (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; 1697 1698 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1699 ixPWR_CKS_CNTL, value); 1700 1701 /* Populate DDT Lookup Table */ 1702 for (i = 0; i < 4; i++) { 1703 /* Assign the minimum and maximum VID stored 1704 * in the last row of Clock Stretcher Voltage Table. 1705 */ 1706 smu_data->smc_state_table.ClockStretcherDataTable. 1707 ClockStretcherDataTableEntry[i].minVID = 1708 (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; 1709 smu_data->smc_state_table.ClockStretcherDataTable. 1710 ClockStretcherDataTableEntry[i].maxVID = 1711 (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; 1712 /* Loop through each SCLK and check the frequency 1713 * to see if it lies within the frequency for clock stretcher. 1714 */ 1715 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { 1716 cks_setting = 0; 1717 clock_freq = PP_SMC_TO_HOST_UL( 1718 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); 1719 /* Check the allowed frequency against the sclk level[j]. 1720 * Sclk's endianness has already been converted, 1721 * and it's in 10Khz unit, 1722 * as opposed to Data table, which is in Mhz unit. 1723 */ 1724 if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { 1725 cks_setting |= 0x2; 1726 if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) 1727 cks_setting |= 0x1; 1728 } 1729 smu_data->smc_state_table.ClockStretcherDataTable. 1730 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); 1731 } 1732 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. 1733 ClockStretcherDataTable. 1734 ClockStretcherDataTableEntry[i].setting); 1735 } 1736 1737 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1738 ixPWR_CKS_CNTL); 1739 value &= 0xFFFFFFFE; 1740 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1741 ixPWR_CKS_CNTL, value); 1742 1743 return 0; 1744 } 1745 1746 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, 1747 SMU72_Discrete_DpmTable *table) 1748 { 1749 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1750 uint16_t config; 1751 1752 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 1753 /* Splitted mode */ 1754 config = VR_SVI2_PLANE_1; 1755 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); 1756 1757 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1758 config = VR_SVI2_PLANE_2; 1759 table->VRConfig |= config; 1760 } else { 1761 pr_err("VDDC and VDDGFX should " 1762 "be both on SVI2 control in splitted mode !\n"); 1763 } 1764 } else { 1765 /* Merged mode */ 1766 config = VR_MERGED_WITH_VDDC; 1767 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); 1768 1769 /* Set Vddc Voltage Controller */ 1770 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1771 config = VR_SVI2_PLANE_1; 1772 table->VRConfig |= config; 1773 } else { 1774 pr_err("VDDC should be on " 1775 "SVI2 control in merged mode !\n"); 1776 } 1777 } 1778 1779 /* Set Vddci Voltage Controller */ 1780 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 1781 config = VR_SVI2_PLANE_2; /* only in merged mode */ 1782 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1783 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 1784 config = VR_SMIO_PATTERN_1; 1785 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1786 } 1787 1788 /* Set Mvdd Voltage Controller */ 1789 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 1790 config = VR_SMIO_PATTERN_2; 1791 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); 1792 } 1793 1794 return 0; 1795 } 1796 1797 static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) 1798 { 1799 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 1800 uint32_t tmp; 1801 int result; 1802 1803 /* 1804 * This is a read-modify-write on the first byte of the ARB table. 1805 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure 1806 * is the field 'current'. 1807 * This solution is ugly, but we never write the whole table only 1808 * individual fields in it. 1809 * In reality this field should not be in that structure 1810 * but in a soft register. 1811 */ 1812 result = smu7_read_smc_sram_dword(hwmgr, 1813 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); 1814 1815 if (result != 0) 1816 return result; 1817 1818 tmp &= 0x00FFFFFF; 1819 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; 1820 1821 return smu7_write_smc_sram_dword(hwmgr, 1822 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); 1823 } 1824 1825 1826 static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) 1827 { 1828 struct tonga_smumgr *smu_data = 1829 (struct tonga_smumgr *)(hwmgr->smu_backend); 1830 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1831 SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); 1832 struct phm_ppt_v1_information *table_info = 1833 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1834 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; 1835 int i, j, k; 1836 const uint16_t *pdef1, *pdef2; 1837 1838 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( 1839 (uint16_t)(cac_dtp_table->usTDP * 256)); 1840 dpm_table->TargetTdp = PP_HOST_TO_SMC_US( 1841 (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); 1842 1843 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, 1844 "Target Operating Temp is out of Range !", 1845 ); 1846 1847 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); 1848 dpm_table->GpuTjHyst = 8; 1849 1850 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; 1851 1852 dpm_table->BAPM_TEMP_GRADIENT = 1853 PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); 1854 pdef1 = defaults->bapmti_r; 1855 pdef2 = defaults->bapmti_rc; 1856 1857 for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { 1858 for (j = 0; j < SMU72_DTE_SOURCES; j++) { 1859 for (k = 0; k < SMU72_DTE_SINKS; k++) { 1860 dpm_table->BAPMTI_R[i][j][k] = 1861 PP_HOST_TO_SMC_US(*pdef1); 1862 dpm_table->BAPMTI_RC[i][j][k] = 1863 PP_HOST_TO_SMC_US(*pdef2); 1864 pdef1++; 1865 pdef2++; 1866 } 1867 } 1868 } 1869 1870 return 0; 1871 } 1872 1873 static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) 1874 { 1875 struct tonga_smumgr *smu_data = 1876 (struct tonga_smumgr *)(hwmgr->smu_backend); 1877 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1878 1879 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; 1880 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; 1881 smu_data->power_tune_table.SviLoadLineTrimVddC = 3; 1882 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; 1883 1884 return 0; 1885 } 1886 1887 static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) 1888 { 1889 uint16_t tdc_limit; 1890 struct tonga_smumgr *smu_data = 1891 (struct tonga_smumgr *)(hwmgr->smu_backend); 1892 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1893 struct phm_ppt_v1_information *table_info = 1894 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1895 1896 /* TDC number of fraction bits are changed from 8 to 7 1897 * for Fiji as requested by SMC team 1898 */ 1899 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); 1900 smu_data->power_tune_table.TDC_VDDC_PkgLimit = 1901 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); 1902 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = 1903 defaults->tdc_vddc_throttle_release_limit_perc; 1904 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; 1905 1906 return 0; 1907 } 1908 1909 static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 1910 { 1911 struct tonga_smumgr *smu_data = 1912 (struct tonga_smumgr *)(hwmgr->smu_backend); 1913 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1914 uint32_t temp; 1915 1916 if (smu7_read_smc_sram_dword(hwmgr, 1917 fuse_table_offset + 1918 offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), 1919 (uint32_t *)&temp, SMC_RAM_END)) 1920 PP_ASSERT_WITH_CODE(false, 1921 "Attempt to read PmFuses.DW6 " 1922 "(SviLoadLineEn) from SMC Failed !", 1923 return -EINVAL); 1924 else 1925 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; 1926 1927 return 0; 1928 } 1929 1930 static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) 1931 { 1932 int i; 1933 struct tonga_smumgr *smu_data = 1934 (struct tonga_smumgr *)(hwmgr->smu_backend); 1935 1936 /* Currently not used. Set all to zero. */ 1937 for (i = 0; i < 16; i++) 1938 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; 1939 1940 return 0; 1941 } 1942 1943 static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) 1944 { 1945 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 1946 1947 if ((hwmgr->thermal_controller.advanceFanControlParameters. 1948 usFanOutputSensitivity & (1 << 15)) || 1949 (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) 1950 hwmgr->thermal_controller.advanceFanControlParameters. 1951 usFanOutputSensitivity = hwmgr->thermal_controller. 1952 advanceFanControlParameters.usDefaultFanOutputSensitivity; 1953 1954 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = 1955 PP_HOST_TO_SMC_US(hwmgr->thermal_controller. 1956 advanceFanControlParameters.usFanOutputSensitivity); 1957 return 0; 1958 } 1959 1960 static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) 1961 { 1962 int i; 1963 struct tonga_smumgr *smu_data = 1964 (struct tonga_smumgr *)(hwmgr->smu_backend); 1965 1966 /* Currently not used. Set all to zero. */ 1967 for (i = 0; i < 16; i++) 1968 smu_data->power_tune_table.GnbLPML[i] = 0; 1969 1970 return 0; 1971 } 1972 1973 static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) 1974 { 1975 struct tonga_smumgr *smu_data = 1976 (struct tonga_smumgr *)(hwmgr->smu_backend); 1977 struct phm_ppt_v1_information *table_info = 1978 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1979 uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; 1980 uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; 1981 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; 1982 1983 hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); 1984 lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); 1985 1986 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = 1987 CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); 1988 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = 1989 CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); 1990 1991 return 0; 1992 } 1993 1994 static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) 1995 { 1996 struct tonga_smumgr *smu_data = 1997 (struct tonga_smumgr *)(hwmgr->smu_backend); 1998 uint32_t pm_fuse_table_offset; 1999 2000 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2001 PHM_PlatformCaps_PowerContainment)) { 2002 if (smu7_read_smc_sram_dword(hwmgr, 2003 SMU72_FIRMWARE_HEADER_LOCATION + 2004 offsetof(SMU72_Firmware_Header, PmFuseTable), 2005 &pm_fuse_table_offset, SMC_RAM_END)) 2006 PP_ASSERT_WITH_CODE(false, 2007 "Attempt to get pm_fuse_table_offset Failed !", 2008 return -EINVAL); 2009 2010 /* DW6 */ 2011 if (tonga_populate_svi_load_line(hwmgr)) 2012 PP_ASSERT_WITH_CODE(false, 2013 "Attempt to populate SviLoadLine Failed !", 2014 return -EINVAL); 2015 /* DW7 */ 2016 if (tonga_populate_tdc_limit(hwmgr)) 2017 PP_ASSERT_WITH_CODE(false, 2018 "Attempt to populate TDCLimit Failed !", 2019 return -EINVAL); 2020 /* DW8 */ 2021 if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) 2022 PP_ASSERT_WITH_CODE(false, 2023 "Attempt to populate TdcWaterfallCtl Failed !", 2024 return -EINVAL); 2025 2026 /* DW9-DW12 */ 2027 if (tonga_populate_temperature_scaler(hwmgr) != 0) 2028 PP_ASSERT_WITH_CODE(false, 2029 "Attempt to populate LPMLTemperatureScaler Failed !", 2030 return -EINVAL); 2031 2032 /* DW13-DW14 */ 2033 if (tonga_populate_fuzzy_fan(hwmgr)) 2034 PP_ASSERT_WITH_CODE(false, 2035 "Attempt to populate Fuzzy Fan " 2036 "Control parameters Failed !", 2037 return -EINVAL); 2038 2039 /* DW15-DW18 */ 2040 if (tonga_populate_gnb_lpml(hwmgr)) 2041 PP_ASSERT_WITH_CODE(false, 2042 "Attempt to populate GnbLPML Failed !", 2043 return -EINVAL); 2044 2045 /* DW20 */ 2046 if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) 2047 PP_ASSERT_WITH_CODE( 2048 false, 2049 "Attempt to populate BapmVddCBaseLeakage " 2050 "Hi and Lo Sidd Failed !", 2051 return -EINVAL); 2052 2053 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, 2054 (uint8_t *)&smu_data->power_tune_table, 2055 sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) 2056 PP_ASSERT_WITH_CODE(false, 2057 "Attempt to download PmFuseTable Failed !", 2058 return -EINVAL); 2059 } 2060 return 0; 2061 } 2062 2063 static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, 2064 SMU72_Discrete_MCRegisters *mc_reg_table) 2065 { 2066 const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend; 2067 2068 uint32_t i, j; 2069 2070 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { 2071 if (smu_data->mc_reg_table.validflag & 1<<j) { 2072 PP_ASSERT_WITH_CODE( 2073 i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, 2074 "Index of mc_reg_table->address[] array " 2075 "out of boundary", 2076 return -EINVAL); 2077 mc_reg_table->address[i].s0 = 2078 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); 2079 mc_reg_table->address[i].s1 = 2080 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); 2081 i++; 2082 } 2083 } 2084 2085 mc_reg_table->last = (uint8_t)i; 2086 2087 return 0; 2088 } 2089 2090 /*convert register values from driver to SMC format */ 2091 static void tonga_convert_mc_registers( 2092 const struct tonga_mc_reg_entry *entry, 2093 SMU72_Discrete_MCRegisterSet *data, 2094 uint32_t num_entries, uint32_t valid_flag) 2095 { 2096 uint32_t i, j; 2097 2098 for (i = 0, j = 0; j < num_entries; j++) { 2099 if (valid_flag & 1<<j) { 2100 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); 2101 i++; 2102 } 2103 } 2104 } 2105 2106 static int tonga_convert_mc_reg_table_entry_to_smc( 2107 struct pp_hwmgr *hwmgr, 2108 const uint32_t memory_clock, 2109 SMU72_Discrete_MCRegisterSet *mc_reg_table_data 2110 ) 2111 { 2112 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2113 uint32_t i = 0; 2114 2115 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { 2116 if (memory_clock <= 2117 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { 2118 break; 2119 } 2120 } 2121 2122 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) 2123 --i; 2124 2125 tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], 2126 mc_reg_table_data, smu_data->mc_reg_table.last, 2127 smu_data->mc_reg_table.validflag); 2128 2129 return 0; 2130 } 2131 2132 static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, 2133 SMU72_Discrete_MCRegisters *mc_regs) 2134 { 2135 int result = 0; 2136 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2137 int res; 2138 uint32_t i; 2139 2140 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 2141 res = tonga_convert_mc_reg_table_entry_to_smc( 2142 hwmgr, 2143 data->dpm_table.mclk_table.dpm_levels[i].value, 2144 &mc_regs->data[i] 2145 ); 2146 2147 if (0 != res) 2148 result = res; 2149 } 2150 2151 return result; 2152 } 2153 2154 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) 2155 { 2156 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2157 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2158 uint32_t address; 2159 int32_t result; 2160 2161 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) 2162 return 0; 2163 2164 2165 memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); 2166 2167 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); 2168 2169 if (result != 0) 2170 return result; 2171 2172 2173 address = smu_data->smu7_data.mc_reg_table_start + 2174 (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); 2175 2176 return smu7_copy_bytes_to_smc( 2177 hwmgr, address, 2178 (uint8_t *)&smu_data->mc_regs.data[0], 2179 sizeof(SMU72_Discrete_MCRegisterSet) * 2180 data->dpm_table.mclk_table.count, 2181 SMC_RAM_END); 2182 } 2183 2184 static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) 2185 { 2186 int result; 2187 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2188 2189 memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); 2190 result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); 2191 PP_ASSERT_WITH_CODE(!result, 2192 "Failed to initialize MCRegTable for the MC register addresses !", 2193 return result;); 2194 2195 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); 2196 PP_ASSERT_WITH_CODE(!result, 2197 "Failed to initialize MCRegTable for driver state !", 2198 return result;); 2199 2200 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, 2201 (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); 2202 } 2203 2204 static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) 2205 { 2206 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2207 struct phm_ppt_v1_information *table_info = 2208 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2209 2210 if (table_info && 2211 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && 2212 table_info->cac_dtp_table->usPowerTuneDataSetID) 2213 smu_data->power_tune_defaults = 2214 &tonga_power_tune_data_set_array 2215 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; 2216 else 2217 smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; 2218 } 2219 2220 static int tonga_init_smc_table(struct pp_hwmgr *hwmgr) 2221 { 2222 int result; 2223 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2224 struct tonga_smumgr *smu_data = 2225 (struct tonga_smumgr *)(hwmgr->smu_backend); 2226 SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); 2227 struct phm_ppt_v1_information *table_info = 2228 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2229 2230 uint8_t i; 2231 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; 2232 2233 2234 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); 2235 2236 tonga_initialize_power_tune_defaults(hwmgr); 2237 2238 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) 2239 tonga_populate_smc_voltage_tables(hwmgr, table); 2240 2241 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2242 PHM_PlatformCaps_AutomaticDCTransition)) 2243 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; 2244 2245 2246 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2247 PHM_PlatformCaps_StepVddc)) 2248 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; 2249 2250 if (data->is_memory_gddr5) 2251 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; 2252 2253 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); 2254 2255 if (i == 1 || i == 0) 2256 table->SystemFlags |= 0x40; 2257 2258 if (data->ulv_supported && table_info->us_ulv_voltage_offset) { 2259 result = tonga_populate_ulv_state(hwmgr, table); 2260 PP_ASSERT_WITH_CODE(!result, 2261 "Failed to initialize ULV state !", 2262 return result;); 2263 2264 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 2265 ixCG_ULV_PARAMETER, 0x40035); 2266 } 2267 2268 result = tonga_populate_smc_link_level(hwmgr, table); 2269 PP_ASSERT_WITH_CODE(!result, 2270 "Failed to initialize Link Level !", return result); 2271 2272 result = tonga_populate_all_graphic_levels(hwmgr); 2273 PP_ASSERT_WITH_CODE(!result, 2274 "Failed to initialize Graphics Level !", return result); 2275 2276 result = tonga_populate_all_memory_levels(hwmgr); 2277 PP_ASSERT_WITH_CODE(!result, 2278 "Failed to initialize Memory Level !", return result); 2279 2280 result = tonga_populate_smc_acpi_level(hwmgr, table); 2281 PP_ASSERT_WITH_CODE(!result, 2282 "Failed to initialize ACPI Level !", return result); 2283 2284 result = tonga_populate_smc_vce_level(hwmgr, table); 2285 PP_ASSERT_WITH_CODE(!result, 2286 "Failed to initialize VCE Level !", return result); 2287 2288 result = tonga_populate_smc_acp_level(hwmgr, table); 2289 PP_ASSERT_WITH_CODE(!result, 2290 "Failed to initialize ACP Level !", return result); 2291 2292 /* Since only the initial state is completely set up at this 2293 * point (the other states are just copies of the boot state) we only 2294 * need to populate the ARB settings for the initial state. 2295 */ 2296 result = tonga_program_memory_timing_parameters(hwmgr); 2297 PP_ASSERT_WITH_CODE(!result, 2298 "Failed to Write ARB settings for the initial state.", 2299 return result;); 2300 2301 result = tonga_populate_smc_uvd_level(hwmgr, table); 2302 PP_ASSERT_WITH_CODE(!result, 2303 "Failed to initialize UVD Level !", return result); 2304 2305 result = tonga_populate_smc_boot_level(hwmgr, table); 2306 PP_ASSERT_WITH_CODE(!result, 2307 "Failed to initialize Boot Level !", return result); 2308 2309 tonga_populate_bapm_parameters_in_dpm_table(hwmgr); 2310 PP_ASSERT_WITH_CODE(!result, 2311 "Failed to populate BAPM Parameters !", return result); 2312 2313 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2314 PHM_PlatformCaps_ClockStretcher)) { 2315 result = tonga_populate_clock_stretcher_data_table(hwmgr); 2316 PP_ASSERT_WITH_CODE(!result, 2317 "Failed to populate Clock Stretcher Data Table !", 2318 return result;); 2319 } 2320 table->GraphicsVoltageChangeEnable = 1; 2321 table->GraphicsThermThrottleEnable = 1; 2322 table->GraphicsInterval = 1; 2323 table->VoltageInterval = 1; 2324 table->ThermalInterval = 1; 2325 table->TemperatureLimitHigh = 2326 table_info->cac_dtp_table->usTargetOperatingTemp * 2327 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2328 table->TemperatureLimitLow = 2329 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * 2330 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2331 table->MemoryVoltageChangeEnable = 1; 2332 table->MemoryInterval = 1; 2333 table->VoltageResponseTime = 0; 2334 table->PhaseResponseTime = 0; 2335 table->MemoryThermThrottleEnable = 1; 2336 2337 /* 2338 * Cail reads current link status and reports it as cap (we cannot 2339 * change this due to some previous issues we had) 2340 * SMC drops the link status to lowest level after enabling 2341 * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again 2342 * but this time Cail reads current link status which was set to low by 2343 * SMC and reports it as cap to powerplay 2344 * To avoid it, we set PCIeBootLinkLevel to highest dpm level 2345 */ 2346 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), 2347 "There must be 1 or more PCIE levels defined in PPTable.", 2348 return -EINVAL); 2349 2350 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); 2351 2352 table->PCIeGenInterval = 1; 2353 2354 result = tonga_populate_vr_config(hwmgr, table); 2355 PP_ASSERT_WITH_CODE(!result, 2356 "Failed to populate VRConfig setting !", return result); 2357 data->vr_config = table->VRConfig; 2358 table->ThermGpio = 17; 2359 table->SclkStepSize = 0x4000; 2360 2361 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, 2362 &gpio_pin_assignment)) { 2363 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2364 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2365 PHM_PlatformCaps_RegulatorHot); 2366 } else { 2367 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; 2368 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2369 PHM_PlatformCaps_RegulatorHot); 2370 } 2371 2372 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, 2373 &gpio_pin_assignment)) { 2374 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2375 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2376 PHM_PlatformCaps_AutomaticDCTransition); 2377 } else { 2378 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; 2379 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2380 PHM_PlatformCaps_AutomaticDCTransition); 2381 } 2382 2383 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2384 PHM_PlatformCaps_Falcon_QuickTransition); 2385 2386 if (0) { 2387 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2388 PHM_PlatformCaps_AutomaticDCTransition); 2389 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2390 PHM_PlatformCaps_Falcon_QuickTransition); 2391 } 2392 2393 if (atomctrl_get_pp_assign_pin(hwmgr, 2394 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { 2395 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2396 PHM_PlatformCaps_ThermalOutGPIO); 2397 2398 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2399 2400 table->ThermOutPolarity = 2401 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & 2402 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; 2403 2404 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; 2405 2406 /* if required, combine VRHot/PCC with thermal out GPIO*/ 2407 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2408 PHM_PlatformCaps_RegulatorHot) && 2409 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2410 PHM_PlatformCaps_CombinePCCWithThermalSignal)){ 2411 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; 2412 } 2413 } else { 2414 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2415 PHM_PlatformCaps_ThermalOutGPIO); 2416 2417 table->ThermOutGpio = 17; 2418 table->ThermOutPolarity = 1; 2419 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; 2420 } 2421 2422 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) 2423 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); 2424 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); 2425 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); 2426 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); 2427 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); 2428 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); 2429 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); 2430 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); 2431 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); 2432 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); 2433 2434 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ 2435 result = smu7_copy_bytes_to_smc( 2436 hwmgr, 2437 smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), 2438 (uint8_t *)&(table->SystemFlags), 2439 sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), 2440 SMC_RAM_END); 2441 2442 PP_ASSERT_WITH_CODE(!result, 2443 "Failed to upload dpm data to SMC memory !", return result;); 2444 2445 result = tonga_init_arb_table_index(hwmgr); 2446 PP_ASSERT_WITH_CODE(!result, 2447 "Failed to upload arb data to SMC memory !", return result); 2448 2449 tonga_populate_pm_fuses(hwmgr); 2450 PP_ASSERT_WITH_CODE((!result), 2451 "Failed to populate initialize pm fuses !", return result); 2452 2453 result = tonga_populate_initial_mc_reg_table(hwmgr); 2454 PP_ASSERT_WITH_CODE((!result), 2455 "Failed to populate initialize MC Reg table !", return result); 2456 2457 return 0; 2458 } 2459 2460 static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) 2461 { 2462 struct tonga_smumgr *smu_data = 2463 (struct tonga_smumgr *)(hwmgr->smu_backend); 2464 SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; 2465 uint32_t duty100; 2466 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; 2467 uint16_t fdo_min, slope1, slope2; 2468 uint32_t reference_clock; 2469 int res; 2470 uint64_t tmp64; 2471 2472 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2473 PHM_PlatformCaps_MicrocodeFanControl)) 2474 return 0; 2475 2476 if (hwmgr->thermal_controller.fanInfo.bNoFan) { 2477 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2478 PHM_PlatformCaps_MicrocodeFanControl); 2479 return 0; 2480 } 2481 2482 if (0 == smu_data->smu7_data.fan_table_start) { 2483 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2484 PHM_PlatformCaps_MicrocodeFanControl); 2485 return 0; 2486 } 2487 2488 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 2489 CGS_IND_REG__SMC, 2490 CG_FDO_CTRL1, FMAX_DUTY100); 2491 2492 if (0 == duty100) { 2493 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2494 PHM_PlatformCaps_MicrocodeFanControl); 2495 return 0; 2496 } 2497 2498 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; 2499 do_div(tmp64, 10000); 2500 fdo_min = (uint16_t)tmp64; 2501 2502 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - 2503 hwmgr->thermal_controller.advanceFanControlParameters.usTMin; 2504 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - 2505 hwmgr->thermal_controller.advanceFanControlParameters.usTMed; 2506 2507 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - 2508 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; 2509 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - 2510 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; 2511 2512 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); 2513 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); 2514 2515 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); 2516 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); 2517 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); 2518 2519 fan_table.Slope1 = cpu_to_be16(slope1); 2520 fan_table.Slope2 = cpu_to_be16(slope2); 2521 2522 fan_table.FdoMin = cpu_to_be16(fdo_min); 2523 2524 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); 2525 2526 fan_table.HystUp = cpu_to_be16(1); 2527 2528 fan_table.HystSlope = cpu_to_be16(1); 2529 2530 fan_table.TempRespLim = cpu_to_be16(5); 2531 2532 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 2533 2534 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); 2535 2536 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); 2537 2538 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); 2539 2540 fan_table.FanControl_GL_Flag = 1; 2541 2542 res = smu7_copy_bytes_to_smc(hwmgr, 2543 smu_data->smu7_data.fan_table_start, 2544 (uint8_t *)&fan_table, 2545 (uint32_t)sizeof(fan_table), 2546 SMC_RAM_END); 2547 2548 return res; 2549 } 2550 2551 2552 static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) 2553 { 2554 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2555 2556 if (data->need_update_smu7_dpm_table & 2557 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK)) 2558 return tonga_program_memory_timing_parameters(hwmgr); 2559 2560 return 0; 2561 } 2562 2563 static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) 2564 { 2565 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2566 struct tonga_smumgr *smu_data = 2567 (struct tonga_smumgr *)(hwmgr->smu_backend); 2568 2569 int result = 0; 2570 uint32_t low_sclk_interrupt_threshold = 0; 2571 2572 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2573 PHM_PlatformCaps_SclkThrottleLowNotification) 2574 && (data->low_sclk_interrupt_threshold != 0)) { 2575 low_sclk_interrupt_threshold = 2576 data->low_sclk_interrupt_threshold; 2577 2578 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); 2579 2580 result = smu7_copy_bytes_to_smc( 2581 hwmgr, 2582 smu_data->smu7_data.dpm_table_start + 2583 offsetof(SMU72_Discrete_DpmTable, 2584 LowSclkInterruptThreshold), 2585 (uint8_t *)&low_sclk_interrupt_threshold, 2586 sizeof(uint32_t), 2587 SMC_RAM_END); 2588 } 2589 2590 result = tonga_update_and_upload_mc_reg_table(hwmgr); 2591 2592 PP_ASSERT_WITH_CODE((!result), 2593 "Failed to upload MC reg table !", 2594 return result); 2595 2596 result = tonga_program_mem_timing_parameters(hwmgr); 2597 PP_ASSERT_WITH_CODE((result == 0), 2598 "Failed to program memory timing parameters !", 2599 ); 2600 2601 return result; 2602 } 2603 2604 static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) 2605 { 2606 switch (type) { 2607 case SMU_SoftRegisters: 2608 switch (member) { 2609 case HandshakeDisables: 2610 return offsetof(SMU72_SoftRegisters, HandshakeDisables); 2611 case VoltageChangeTimeout: 2612 return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); 2613 case AverageGraphicsActivity: 2614 return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); 2615 case AverageMemoryActivity: 2616 return offsetof(SMU72_SoftRegisters, AverageMemoryActivity); 2617 case PreVBlankGap: 2618 return offsetof(SMU72_SoftRegisters, PreVBlankGap); 2619 case VBlankTimeout: 2620 return offsetof(SMU72_SoftRegisters, VBlankTimeout); 2621 case UcodeLoadStatus: 2622 return offsetof(SMU72_SoftRegisters, UcodeLoadStatus); 2623 case DRAM_LOG_ADDR_H: 2624 return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H); 2625 case DRAM_LOG_ADDR_L: 2626 return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L); 2627 case DRAM_LOG_PHY_ADDR_H: 2628 return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H); 2629 case DRAM_LOG_PHY_ADDR_L: 2630 return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L); 2631 case DRAM_LOG_BUFF_SIZE: 2632 return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE); 2633 } 2634 break; 2635 case SMU_Discrete_DpmTable: 2636 switch (member) { 2637 case UvdBootLevel: 2638 return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); 2639 case VceBootLevel: 2640 return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); 2641 case LowSclkInterruptThreshold: 2642 return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); 2643 } 2644 break; 2645 } 2646 pr_warn("can't get the offset of type %x member %x\n", type, member); 2647 return 0; 2648 } 2649 2650 static uint32_t tonga_get_mac_definition(uint32_t value) 2651 { 2652 switch (value) { 2653 case SMU_MAX_LEVELS_GRAPHICS: 2654 return SMU72_MAX_LEVELS_GRAPHICS; 2655 case SMU_MAX_LEVELS_MEMORY: 2656 return SMU72_MAX_LEVELS_MEMORY; 2657 case SMU_MAX_LEVELS_LINK: 2658 return SMU72_MAX_LEVELS_LINK; 2659 case SMU_MAX_ENTRIES_SMIO: 2660 return SMU72_MAX_ENTRIES_SMIO; 2661 case SMU_MAX_LEVELS_VDDC: 2662 return SMU72_MAX_LEVELS_VDDC; 2663 case SMU_MAX_LEVELS_VDDGFX: 2664 return SMU72_MAX_LEVELS_VDDGFX; 2665 case SMU_MAX_LEVELS_VDDCI: 2666 return SMU72_MAX_LEVELS_VDDCI; 2667 case SMU_MAX_LEVELS_MVDD: 2668 return SMU72_MAX_LEVELS_MVDD; 2669 } 2670 pr_warn("can't get the mac value %x\n", value); 2671 2672 return 0; 2673 } 2674 2675 static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) 2676 { 2677 struct tonga_smumgr *smu_data = 2678 (struct tonga_smumgr *)(hwmgr->smu_backend); 2679 uint32_t mm_boot_level_offset, mm_boot_level_value; 2680 struct phm_ppt_v1_information *table_info = 2681 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2682 2683 smu_data->smc_state_table.UvdBootLevel = 0; 2684 if (table_info->mm_dep_table->count > 0) 2685 smu_data->smc_state_table.UvdBootLevel = 2686 (uint8_t) (table_info->mm_dep_table->count - 1); 2687 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + 2688 offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); 2689 mm_boot_level_offset /= 4; 2690 mm_boot_level_offset *= 4; 2691 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2692 CGS_IND_REG__SMC, mm_boot_level_offset); 2693 mm_boot_level_value &= 0x00FFFFFF; 2694 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; 2695 cgs_write_ind_register(hwmgr->device, 2696 CGS_IND_REG__SMC, 2697 mm_boot_level_offset, mm_boot_level_value); 2698 2699 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2700 PHM_PlatformCaps_UVDDPM) || 2701 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2702 PHM_PlatformCaps_StablePState)) 2703 smum_send_msg_to_smc_with_parameter(hwmgr, 2704 PPSMC_MSG_UVDDPM_SetEnabledMask, 2705 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), 2706 NULL); 2707 return 0; 2708 } 2709 2710 static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) 2711 { 2712 struct tonga_smumgr *smu_data = 2713 (struct tonga_smumgr *)(hwmgr->smu_backend); 2714 uint32_t mm_boot_level_offset, mm_boot_level_value; 2715 struct phm_ppt_v1_information *table_info = 2716 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2717 2718 2719 smu_data->smc_state_table.VceBootLevel = 2720 (uint8_t) (table_info->mm_dep_table->count - 1); 2721 2722 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + 2723 offsetof(SMU72_Discrete_DpmTable, VceBootLevel); 2724 mm_boot_level_offset /= 4; 2725 mm_boot_level_offset *= 4; 2726 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2727 CGS_IND_REG__SMC, mm_boot_level_offset); 2728 mm_boot_level_value &= 0xFF00FFFF; 2729 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; 2730 cgs_write_ind_register(hwmgr->device, 2731 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); 2732 2733 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2734 PHM_PlatformCaps_StablePState)) 2735 smum_send_msg_to_smc_with_parameter(hwmgr, 2736 PPSMC_MSG_VCEDPM_SetEnabledMask, 2737 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, 2738 NULL); 2739 return 0; 2740 } 2741 2742 static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) 2743 { 2744 switch (type) { 2745 case SMU_UVD_TABLE: 2746 tonga_update_uvd_smc_table(hwmgr); 2747 break; 2748 case SMU_VCE_TABLE: 2749 tonga_update_vce_smc_table(hwmgr); 2750 break; 2751 default: 2752 break; 2753 } 2754 return 0; 2755 } 2756 2757 static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) 2758 { 2759 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2760 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2761 2762 uint32_t tmp; 2763 int result; 2764 bool error = false; 2765 2766 result = smu7_read_smc_sram_dword(hwmgr, 2767 SMU72_FIRMWARE_HEADER_LOCATION + 2768 offsetof(SMU72_Firmware_Header, DpmTable), 2769 &tmp, SMC_RAM_END); 2770 2771 if (!result) 2772 smu_data->smu7_data.dpm_table_start = tmp; 2773 2774 error |= (result != 0); 2775 2776 result = smu7_read_smc_sram_dword(hwmgr, 2777 SMU72_FIRMWARE_HEADER_LOCATION + 2778 offsetof(SMU72_Firmware_Header, SoftRegisters), 2779 &tmp, SMC_RAM_END); 2780 2781 if (!result) { 2782 data->soft_regs_start = tmp; 2783 smu_data->smu7_data.soft_regs_start = tmp; 2784 } 2785 2786 error |= (result != 0); 2787 2788 2789 result = smu7_read_smc_sram_dword(hwmgr, 2790 SMU72_FIRMWARE_HEADER_LOCATION + 2791 offsetof(SMU72_Firmware_Header, mcRegisterTable), 2792 &tmp, SMC_RAM_END); 2793 2794 if (!result) 2795 smu_data->smu7_data.mc_reg_table_start = tmp; 2796 2797 result = smu7_read_smc_sram_dword(hwmgr, 2798 SMU72_FIRMWARE_HEADER_LOCATION + 2799 offsetof(SMU72_Firmware_Header, FanTable), 2800 &tmp, SMC_RAM_END); 2801 2802 if (!result) 2803 smu_data->smu7_data.fan_table_start = tmp; 2804 2805 error |= (result != 0); 2806 2807 result = smu7_read_smc_sram_dword(hwmgr, 2808 SMU72_FIRMWARE_HEADER_LOCATION + 2809 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), 2810 &tmp, SMC_RAM_END); 2811 2812 if (!result) 2813 smu_data->smu7_data.arb_table_start = tmp; 2814 2815 error |= (result != 0); 2816 2817 result = smu7_read_smc_sram_dword(hwmgr, 2818 SMU72_FIRMWARE_HEADER_LOCATION + 2819 offsetof(SMU72_Firmware_Header, Version), 2820 &tmp, SMC_RAM_END); 2821 2822 if (!result) 2823 hwmgr->microcode_version_info.SMC = tmp; 2824 2825 error |= (result != 0); 2826 2827 return error ? 1 : 0; 2828 } 2829 2830 /*---------------------------MC----------------------------*/ 2831 2832 static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) 2833 { 2834 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); 2835 } 2836 2837 static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) 2838 { 2839 bool result = true; 2840 2841 switch (in_reg) { 2842 case mmMC_SEQ_RAS_TIMING: 2843 *out_reg = mmMC_SEQ_RAS_TIMING_LP; 2844 break; 2845 2846 case mmMC_SEQ_DLL_STBY: 2847 *out_reg = mmMC_SEQ_DLL_STBY_LP; 2848 break; 2849 2850 case mmMC_SEQ_G5PDX_CMD0: 2851 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; 2852 break; 2853 2854 case mmMC_SEQ_G5PDX_CMD1: 2855 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; 2856 break; 2857 2858 case mmMC_SEQ_G5PDX_CTRL: 2859 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; 2860 break; 2861 2862 case mmMC_SEQ_CAS_TIMING: 2863 *out_reg = mmMC_SEQ_CAS_TIMING_LP; 2864 break; 2865 2866 case mmMC_SEQ_MISC_TIMING: 2867 *out_reg = mmMC_SEQ_MISC_TIMING_LP; 2868 break; 2869 2870 case mmMC_SEQ_MISC_TIMING2: 2871 *out_reg = mmMC_SEQ_MISC_TIMING2_LP; 2872 break; 2873 2874 case mmMC_SEQ_PMG_DVS_CMD: 2875 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; 2876 break; 2877 2878 case mmMC_SEQ_PMG_DVS_CTL: 2879 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; 2880 break; 2881 2882 case mmMC_SEQ_RD_CTL_D0: 2883 *out_reg = mmMC_SEQ_RD_CTL_D0_LP; 2884 break; 2885 2886 case mmMC_SEQ_RD_CTL_D1: 2887 *out_reg = mmMC_SEQ_RD_CTL_D1_LP; 2888 break; 2889 2890 case mmMC_SEQ_WR_CTL_D0: 2891 *out_reg = mmMC_SEQ_WR_CTL_D0_LP; 2892 break; 2893 2894 case mmMC_SEQ_WR_CTL_D1: 2895 *out_reg = mmMC_SEQ_WR_CTL_D1_LP; 2896 break; 2897 2898 case mmMC_PMG_CMD_EMRS: 2899 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; 2900 break; 2901 2902 case mmMC_PMG_CMD_MRS: 2903 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; 2904 break; 2905 2906 case mmMC_PMG_CMD_MRS1: 2907 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; 2908 break; 2909 2910 case mmMC_SEQ_PMG_TIMING: 2911 *out_reg = mmMC_SEQ_PMG_TIMING_LP; 2912 break; 2913 2914 case mmMC_PMG_CMD_MRS2: 2915 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; 2916 break; 2917 2918 case mmMC_SEQ_WR_CTL_2: 2919 *out_reg = mmMC_SEQ_WR_CTL_2_LP; 2920 break; 2921 2922 default: 2923 result = false; 2924 break; 2925 } 2926 2927 return result; 2928 } 2929 2930 static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) 2931 { 2932 uint32_t i; 2933 uint16_t address; 2934 2935 for (i = 0; i < table->last; i++) { 2936 table->mc_reg_address[i].s0 = 2937 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, 2938 &address) ? 2939 address : 2940 table->mc_reg_address[i].s1; 2941 } 2942 return 0; 2943 } 2944 2945 static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, 2946 struct tonga_mc_reg_table *ni_table) 2947 { 2948 uint8_t i, j; 2949 2950 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2951 "Invalid VramInfo table.", return -EINVAL); 2952 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), 2953 "Invalid VramInfo table.", return -EINVAL); 2954 2955 for (i = 0; i < table->last; i++) 2956 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; 2957 2958 ni_table->last = table->last; 2959 2960 for (i = 0; i < table->num_entries; i++) { 2961 ni_table->mc_reg_table_entry[i].mclk_max = 2962 table->mc_reg_table_entry[i].mclk_max; 2963 for (j = 0; j < table->last; j++) { 2964 ni_table->mc_reg_table_entry[i].mc_data[j] = 2965 table->mc_reg_table_entry[i].mc_data[j]; 2966 } 2967 } 2968 2969 ni_table->num_entries = table->num_entries; 2970 2971 return 0; 2972 } 2973 2974 static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, 2975 struct tonga_mc_reg_table *table) 2976 { 2977 uint8_t i, j, k; 2978 uint32_t temp_reg; 2979 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2980 2981 for (i = 0, j = table->last; i < table->last; i++) { 2982 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2983 "Invalid VramInfo table.", return -EINVAL); 2984 2985 switch (table->mc_reg_address[i].s1) { 2986 2987 case mmMC_SEQ_MISC1: 2988 temp_reg = cgs_read_register(hwmgr->device, 2989 mmMC_PMG_CMD_EMRS); 2990 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; 2991 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; 2992 for (k = 0; k < table->num_entries; k++) { 2993 table->mc_reg_table_entry[k].mc_data[j] = 2994 ((temp_reg & 0xffff0000)) | 2995 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); 2996 } 2997 j++; 2998 2999 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 3000 "Invalid VramInfo table.", return -EINVAL); 3001 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); 3002 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; 3003 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; 3004 for (k = 0; k < table->num_entries; k++) { 3005 table->mc_reg_table_entry[k].mc_data[j] = 3006 (temp_reg & 0xffff0000) | 3007 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 3008 3009 if (!data->is_memory_gddr5) 3010 table->mc_reg_table_entry[k].mc_data[j] |= 0x100; 3011 } 3012 j++; 3013 3014 if (!data->is_memory_gddr5) { 3015 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 3016 "Invalid VramInfo table.", return -EINVAL); 3017 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; 3018 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; 3019 for (k = 0; k < table->num_entries; k++) 3020 table->mc_reg_table_entry[k].mc_data[j] = 3021 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; 3022 j++; 3023 } 3024 3025 break; 3026 3027 case mmMC_SEQ_RESERVE_M: 3028 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); 3029 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; 3030 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; 3031 for (k = 0; k < table->num_entries; k++) { 3032 table->mc_reg_table_entry[k].mc_data[j] = 3033 (temp_reg & 0xffff0000) | 3034 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 3035 } 3036 j++; 3037 break; 3038 3039 default: 3040 break; 3041 } 3042 3043 } 3044 3045 table->last = j; 3046 3047 return 0; 3048 } 3049 3050 static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) 3051 { 3052 uint8_t i, j; 3053 3054 for (i = 0; i < table->last; i++) { 3055 for (j = 1; j < table->num_entries; j++) { 3056 if (table->mc_reg_table_entry[j-1].mc_data[i] != 3057 table->mc_reg_table_entry[j].mc_data[i]) { 3058 table->validflag |= (1<<i); 3059 break; 3060 } 3061 } 3062 } 3063 3064 return 0; 3065 } 3066 3067 static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) 3068 { 3069 int result; 3070 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 3071 pp_atomctrl_mc_reg_table *table; 3072 struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; 3073 uint8_t module_index = tonga_get_memory_modile_index(hwmgr); 3074 3075 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); 3076 3077 if (table == NULL) 3078 return -ENOMEM; 3079 3080 /* Program additional LP registers that are no longer programmed by VBIOS */ 3081 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, 3082 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); 3083 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, 3084 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); 3085 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, 3086 cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); 3087 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, 3088 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); 3089 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, 3090 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); 3091 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, 3092 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); 3093 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, 3094 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); 3095 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, 3096 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); 3097 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, 3098 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); 3099 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, 3100 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); 3101 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, 3102 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); 3103 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, 3104 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); 3105 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, 3106 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); 3107 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, 3108 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); 3109 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, 3110 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); 3111 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, 3112 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); 3113 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, 3114 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); 3115 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, 3116 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); 3117 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, 3118 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); 3119 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, 3120 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); 3121 3122 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); 3123 3124 if (!result) 3125 result = tonga_copy_vbios_smc_reg_table(table, ni_table); 3126 3127 if (!result) { 3128 tonga_set_s0_mc_reg_index(ni_table); 3129 result = tonga_set_mc_special_registers(hwmgr, ni_table); 3130 } 3131 3132 if (!result) 3133 tonga_set_valid_flag(ni_table); 3134 3135 kfree(table); 3136 3137 return result; 3138 } 3139 3140 static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) 3141 { 3142 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, 3143 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) 3144 ? true : false; 3145 } 3146 3147 static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr, 3148 void *profile_setting) 3149 { 3150 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3151 struct tonga_smumgr *smu_data = (struct tonga_smumgr *) 3152 (hwmgr->smu_backend); 3153 struct profile_mode_setting *setting; 3154 struct SMU72_Discrete_GraphicsLevel *levels = 3155 smu_data->smc_state_table.GraphicsLevel; 3156 uint32_t array = smu_data->smu7_data.dpm_table_start + 3157 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); 3158 3159 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + 3160 offsetof(SMU72_Discrete_DpmTable, MemoryLevel); 3161 struct SMU72_Discrete_MemoryLevel *mclk_levels = 3162 smu_data->smc_state_table.MemoryLevel; 3163 uint32_t i; 3164 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; 3165 3166 if (profile_setting == NULL) 3167 return -EINVAL; 3168 3169 setting = (struct profile_mode_setting *)profile_setting; 3170 3171 if (setting->bupdate_sclk) { 3172 if (!data->sclk_dpm_key_disabled) 3173 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL); 3174 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { 3175 if (levels[i].ActivityLevel != 3176 cpu_to_be16(setting->sclk_activity)) { 3177 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); 3178 3179 clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3180 + offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel); 3181 offset = clk_activity_offset & ~0x3; 3182 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3183 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); 3184 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3185 3186 } 3187 if (levels[i].UpHyst != setting->sclk_up_hyst || 3188 levels[i].DownHyst != setting->sclk_down_hyst) { 3189 levels[i].UpHyst = setting->sclk_up_hyst; 3190 levels[i].DownHyst = setting->sclk_down_hyst; 3191 up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3192 + offsetof(SMU72_Discrete_GraphicsLevel, UpHyst); 3193 down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3194 + offsetof(SMU72_Discrete_GraphicsLevel, DownHyst); 3195 offset = up_hyst_offset & ~0x3; 3196 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3197 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); 3198 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); 3199 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3200 } 3201 } 3202 if (!data->sclk_dpm_key_disabled) 3203 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL); 3204 } 3205 3206 if (setting->bupdate_mclk) { 3207 if (!data->mclk_dpm_key_disabled) 3208 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL); 3209 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { 3210 if (mclk_levels[i].ActivityLevel != 3211 cpu_to_be16(setting->mclk_activity)) { 3212 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); 3213 3214 clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3215 + offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel); 3216 offset = clk_activity_offset & ~0x3; 3217 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3218 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); 3219 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3220 3221 } 3222 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || 3223 mclk_levels[i].DownHyst != setting->mclk_down_hyst) { 3224 mclk_levels[i].UpHyst = setting->mclk_up_hyst; 3225 mclk_levels[i].DownHyst = setting->mclk_down_hyst; 3226 up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3227 + offsetof(SMU72_Discrete_MemoryLevel, UpHyst); 3228 down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3229 + offsetof(SMU72_Discrete_MemoryLevel, DownHyst); 3230 offset = up_hyst_offset & ~0x3; 3231 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3232 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); 3233 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); 3234 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3235 } 3236 } 3237 if (!data->mclk_dpm_key_disabled) 3238 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL); 3239 } 3240 return 0; 3241 } 3242 3243 const struct pp_smumgr_func tonga_smu_funcs = { 3244 .name = "tonga_smu", 3245 .smu_init = &tonga_smu_init, 3246 .smu_fini = &smu7_smu_fini, 3247 .start_smu = &tonga_start_smu, 3248 .check_fw_load_finish = &smu7_check_fw_load_finish, 3249 .request_smu_load_fw = &smu7_request_smu_load_fw, 3250 .request_smu_load_specific_fw = NULL, 3251 .send_msg_to_smc = &smu7_send_msg_to_smc, 3252 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, 3253 .get_argument = smu7_get_argument, 3254 .download_pptable_settings = NULL, 3255 .upload_pptable_settings = NULL, 3256 .update_smc_table = tonga_update_smc_table, 3257 .get_offsetof = tonga_get_offsetof, 3258 .process_firmware_header = tonga_process_firmware_header, 3259 .init_smc_table = tonga_init_smc_table, 3260 .update_sclk_threshold = tonga_update_sclk_threshold, 3261 .thermal_setup_fan_table = tonga_thermal_setup_fan_table, 3262 .populate_all_graphic_levels = tonga_populate_all_graphic_levels, 3263 .populate_all_memory_levels = tonga_populate_all_memory_levels, 3264 .get_mac_definition = tonga_get_mac_definition, 3265 .initialize_mc_reg_table = tonga_initialize_mc_reg_table, 3266 .is_dpm_running = tonga_is_dpm_running, 3267 .update_dpm_settings = tonga_update_dpm_settings, 3268 }; 3269