xref: /linux/drivers/gpu/drm/amd/pm/powerplay/smumgr/tonga_smumgr.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/gfp.h>
29 
30 #include "smumgr.h"
31 #include "tonga_smumgr.h"
32 #include "smu_ucode_xfer_vi.h"
33 #include "tonga_ppsmc.h"
34 #include "smu/smu_7_1_2_d.h"
35 #include "smu/smu_7_1_2_sh_mask.h"
36 #include "cgs_common.h"
37 #include "smu7_smumgr.h"
38 
39 #include "smu7_dyn_defaults.h"
40 
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "ppatomctrl.h"
44 
45 #include "atombios.h"
46 
47 #include "pppcielanes.h"
48 #include "pp_endian.h"
49 
50 #include "gmc/gmc_8_1_d.h"
51 #include "gmc/gmc_8_1_sh_mask.h"
52 
53 #include "bif/bif_5_0_d.h"
54 #include "bif/bif_5_0_sh_mask.h"
55 
56 #include "dce/dce_10_0_d.h"
57 #include "dce/dce_10_0_sh_mask.h"
58 
59 #define POWERTUNE_DEFAULT_SET_MAX    1
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 #define VDDC_VDDCI_DELTA            200
62 
63 
64 static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65 /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,  TDC_MAWt,
66  * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,        BAPM_TEMP_GRADIENT
67  */
68 	{1,               0xF,             0xFD,                0x19,
69 	 5,               45,                 0,              0xB0000,
70 	 {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
71 		0xC9, 0xC9, 0x2F, 0x4D, 0x61},
72 	 {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
73 		0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
74 	},
75 };
76 
77 /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
78 static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
79 	{600, 1050, 3, 0},
80 	{600, 1050, 6, 1}
81 };
82 
83 /* [FF, SS] type, [] 4 voltage ranges,
84  * and [Floor Freq, Boundary Freq, VID min , VID max]
85  */
86 static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
87 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
88 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
89 };
90 
91 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
92 static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
93 	{0, 1, 3, 2, 4, 5},
94 	{0, 2, 4, 5, 6, 5}
95 };
96 
97 static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr)
98 {
99 	int result;
100 
101 	/* Assert reset */
102 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
103 		SMC_SYSCON_RESET_CNTL, rst_reg, 1);
104 
105 	result = smu7_upload_smu_firmware_image(hwmgr);
106 	if (result)
107 		return result;
108 
109 	/* Clear status */
110 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
111 		ixSMU_STATUS, 0);
112 
113 	/* Enable clock */
114 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
115 		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
116 
117 	/* De-assert reset */
118 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 		SMC_SYSCON_RESET_CNTL, rst_reg, 0);
120 
121 	/* Set SMU Auto Start */
122 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 		SMU_INPUT_DATA, AUTO_START, 1);
124 
125 	/* Clear firmware interrupt enable flag */
126 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
127 		ixFIRMWARE_FLAGS, 0);
128 
129 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
130 		RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
131 
132 	/**
133 	 * Call Test SMU message with 0x20000 offset to trigger SMU start
134 	 */
135 	smu7_send_msg_to_smc_offset(hwmgr);
136 
137 	/* Wait for done bit to be set */
138 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
139 		SMU_STATUS, SMU_DONE, 0);
140 
141 	/* Check pass/failed indicator */
142 	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
143 				CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
144 		pr_err("SMU Firmware start failed\n");
145 		return -EINVAL;
146 	}
147 
148 	/* Wait for firmware to initialize */
149 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
150 		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151 
152 	return 0;
153 }
154 
155 static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157 	int result = 0;
158 
159 	/* wait for smc boot up */
160 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
161 		RCU_UC_EVENTS, boot_seq_done, 0);
162 
163 	/*Clear firmware interrupt enable flag*/
164 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165 		ixFIRMWARE_FLAGS, 0);
166 
167 
168 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
169 		SMC_SYSCON_RESET_CNTL, rst_reg, 1);
170 
171 	result = smu7_upload_smu_firmware_image(hwmgr);
172 
173 	if (result != 0)
174 		return result;
175 
176 	/* Set smc instruct start point at 0x0 */
177 	smu7_program_jump_on_start(hwmgr);
178 
179 
180 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
181 		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
182 
183 	/*De-assert reset*/
184 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 		SMC_SYSCON_RESET_CNTL, rst_reg, 0);
186 
187 	/* Wait for firmware to initialize */
188 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
189 		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
190 
191 	return result;
192 }
193 
194 static int tonga_start_smu(struct pp_hwmgr *hwmgr)
195 {
196 	struct tonga_smumgr *priv = hwmgr->smu_backend;
197 	int result;
198 
199 	/* Only start SMC if SMC RAM is not running */
200 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
201 		/*Check if SMU is running in protected mode*/
202 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
203 					SMU_FIRMWARE, SMU_MODE)) {
204 			result = tonga_start_in_non_protection_mode(hwmgr);
205 			if (result)
206 				return result;
207 		} else {
208 			result = tonga_start_in_protection_mode(hwmgr);
209 			if (result)
210 				return result;
211 		}
212 	}
213 
214 	/* Setup SoftRegsStart here to visit the register UcodeLoadStatus
215 	 * to check fw loading state
216 	 */
217 	smu7_read_smc_sram_dword(hwmgr,
218 			SMU72_FIRMWARE_HEADER_LOCATION +
219 			offsetof(SMU72_Firmware_Header, SoftRegisters),
220 			&(priv->smu7_data.soft_regs_start), 0x40000);
221 
222 	result = smu7_request_smu_load_fw(hwmgr);
223 
224 	return result;
225 }
226 
227 static int tonga_smu_init(struct pp_hwmgr *hwmgr)
228 {
229 	struct tonga_smumgr *tonga_priv = NULL;
230 
231 	tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
232 	if (tonga_priv == NULL)
233 		return -ENOMEM;
234 
235 	hwmgr->smu_backend = tonga_priv;
236 
237 	if (smu7_init(hwmgr)) {
238 		kfree(tonga_priv);
239 		return -EINVAL;
240 	}
241 
242 	return 0;
243 }
244 
245 
246 static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
247 	phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
248 	uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
249 {
250 	uint32_t i = 0;
251 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
252 	struct phm_ppt_v1_information *pptable_info =
253 			   (struct phm_ppt_v1_information *)(hwmgr->pptable);
254 
255 	/* clock - voltage dependency table is empty table */
256 	if (allowed_clock_voltage_table->count == 0)
257 		return -EINVAL;
258 
259 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
260 		/* find first sclk bigger than request */
261 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
262 			voltage->VddGfx = phm_get_voltage_index(
263 					pptable_info->vddgfx_lookup_table,
264 				allowed_clock_voltage_table->entries[i].vddgfx);
265 			voltage->Vddc = phm_get_voltage_index(
266 						pptable_info->vddc_lookup_table,
267 				  allowed_clock_voltage_table->entries[i].vddc);
268 
269 			if (allowed_clock_voltage_table->entries[i].vddci)
270 				voltage->Vddci =
271 					phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
272 			else
273 				voltage->Vddci =
274 					phm_get_voltage_id(&data->vddci_voltage_table,
275 						allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
276 
277 
278 			if (allowed_clock_voltage_table->entries[i].mvdd)
279 				*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
280 
281 			voltage->Phases = 1;
282 			return 0;
283 		}
284 	}
285 
286 	/* sclk is bigger than max sclk in the dependence table */
287 	voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
288 		allowed_clock_voltage_table->entries[i-1].vddgfx);
289 	voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
290 		allowed_clock_voltage_table->entries[i-1].vddc);
291 
292 	if (allowed_clock_voltage_table->entries[i-1].vddci)
293 		voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
294 			allowed_clock_voltage_table->entries[i-1].vddci);
295 
296 	if (allowed_clock_voltage_table->entries[i-1].mvdd)
297 		*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
298 
299 	return 0;
300 }
301 
302 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
303 			SMU72_Discrete_DpmTable *table)
304 {
305 	unsigned int count;
306 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
307 
308 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
309 		table->VddcLevelCount = data->vddc_voltage_table.count;
310 		for (count = 0; count < table->VddcLevelCount; count++) {
311 			table->VddcTable[count] =
312 				PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
313 		}
314 		CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
315 	}
316 	return 0;
317 }
318 
319 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
320 			SMU72_Discrete_DpmTable *table)
321 {
322 	unsigned int count;
323 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
324 
325 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
326 		table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
327 		for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
328 			table->VddGfxTable[count] =
329 				PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
330 		}
331 		CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
332 	}
333 	return 0;
334 }
335 
336 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
337 			SMU72_Discrete_DpmTable *table)
338 {
339 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
340 	uint32_t count;
341 
342 	table->VddciLevelCount = data->vddci_voltage_table.count;
343 	for (count = 0; count < table->VddciLevelCount; count++) {
344 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
345 			table->VddciTable[count] =
346 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
347 		} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
348 			table->SmioTable1.Pattern[count].Voltage =
349 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
350 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
351 			table->SmioTable1.Pattern[count].Smio =
352 				(uint8_t) count;
353 			table->Smio[count] |=
354 				data->vddci_voltage_table.entries[count].smio_low;
355 			table->VddciTable[count] =
356 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
357 		}
358 	}
359 
360 	table->SmioMask1 = data->vddci_voltage_table.mask_low;
361 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
362 
363 	return 0;
364 }
365 
366 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
367 			SMU72_Discrete_DpmTable *table)
368 {
369 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
370 	uint32_t count;
371 
372 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
373 		table->MvddLevelCount = data->mvdd_voltage_table.count;
374 		for (count = 0; count < table->MvddLevelCount; count++) {
375 			table->SmioTable2.Pattern[count].Voltage =
376 				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
377 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
378 			table->SmioTable2.Pattern[count].Smio =
379 				(uint8_t) count;
380 			table->Smio[count] |=
381 				data->mvdd_voltage_table.entries[count].smio_low;
382 		}
383 		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
384 
385 		CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
386 	}
387 
388 	return 0;
389 }
390 
391 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
392 			SMU72_Discrete_DpmTable *table)
393 {
394 	uint32_t count;
395 	uint8_t index = 0;
396 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
397 	struct phm_ppt_v1_information *pptable_info =
398 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
399 	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
400 					   pptable_info->vddgfx_lookup_table;
401 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
402 						pptable_info->vddc_lookup_table;
403 
404 	/* table is already swapped, so in order to use the value from it
405 	 * we need to swap it back.
406 	 */
407 	uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
408 	uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
409 
410 	for (count = 0; count < vddc_level_count; count++) {
411 		/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
412 		index = phm_get_voltage_index(vddc_lookup_table,
413 			data->vddc_voltage_table.entries[count].value);
414 		table->BapmVddcVidLoSidd[count] =
415 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
416 		table->BapmVddcVidHiSidd[count] =
417 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
418 		table->BapmVddcVidHiSidd2[count] =
419 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
420 	}
421 
422 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
423 		/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
424 		for (count = 0; count < vddgfx_level_count; count++) {
425 			index = phm_get_voltage_index(vddgfx_lookup_table,
426 				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
427 			table->BapmVddGfxVidHiSidd2[count] =
428 				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
429 		}
430 	} else {
431 		for (count = 0; count < vddc_level_count; count++) {
432 			index = phm_get_voltage_index(vddc_lookup_table,
433 				data->vddc_voltage_table.entries[count].value);
434 			table->BapmVddGfxVidLoSidd[count] =
435 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
436 			table->BapmVddGfxVidHiSidd[count] =
437 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
438 			table->BapmVddGfxVidHiSidd2[count] =
439 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
440 		}
441 	}
442 
443 	return 0;
444 }
445 
446 static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
447 	SMU72_Discrete_DpmTable *table)
448 {
449 	int result;
450 
451 	result = tonga_populate_smc_vddc_table(hwmgr, table);
452 	PP_ASSERT_WITH_CODE(!result,
453 			"can not populate VDDC voltage table to SMC",
454 			return -EINVAL);
455 
456 	result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
457 	PP_ASSERT_WITH_CODE(!result,
458 			"can not populate VDDCI voltage table to SMC",
459 			return -EINVAL);
460 
461 	result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
462 	PP_ASSERT_WITH_CODE(!result,
463 			"can not populate VDDGFX voltage table to SMC",
464 			return -EINVAL);
465 
466 	result = tonga_populate_smc_mvdd_table(hwmgr, table);
467 	PP_ASSERT_WITH_CODE(!result,
468 			"can not populate MVDD voltage table to SMC",
469 			return -EINVAL);
470 
471 	result = tonga_populate_cac_tables(hwmgr, table);
472 	PP_ASSERT_WITH_CODE(!result,
473 			"can not populate CAC voltage tables to SMC",
474 			return -EINVAL);
475 
476 	return 0;
477 }
478 
479 static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
480 		struct SMU72_Discrete_Ulv *state)
481 {
482 	struct phm_ppt_v1_information *table_info =
483 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
484 
485 	state->CcPwrDynRm = 0;
486 	state->CcPwrDynRm1 = 0;
487 
488 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
489 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
490 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
491 
492 	state->VddcPhase = 1;
493 
494 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
495 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
496 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
497 
498 	return 0;
499 }
500 
501 static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
502 		struct SMU72_Discrete_DpmTable *table)
503 {
504 	return tonga_populate_ulv_level(hwmgr, &table->Ulv);
505 }
506 
507 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
508 {
509 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
510 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
511 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
512 	uint32_t i;
513 
514 	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
515 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
516 		table->LinkLevel[i].PcieGenSpeed  =
517 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
518 		table->LinkLevel[i].PcieLaneCount =
519 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
520 		table->LinkLevel[i].EnabledForActivity =
521 			1;
522 		table->LinkLevel[i].SPC =
523 			(uint8_t)(data->pcie_spc_cap & 0xff);
524 		table->LinkLevel[i].DownThreshold =
525 			PP_HOST_TO_SMC_UL(5);
526 		table->LinkLevel[i].UpThreshold =
527 			PP_HOST_TO_SMC_UL(30);
528 	}
529 
530 	smu_data->smc_state_table.LinkLevelCount =
531 		(uint8_t)dpm_table->pcie_speed_table.count;
532 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
533 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
534 
535 	return 0;
536 }
537 
538 static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
539 		uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
540 {
541 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542 	pp_atomctrl_clock_dividers_vi dividers;
543 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
544 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
545 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
546 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
547 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
548 	uint32_t    reference_clock;
549 	uint32_t reference_divider;
550 	uint32_t fbdiv;
551 	int result;
552 
553 	/* get the engine clock dividers for this clock value*/
554 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
555 
556 	PP_ASSERT_WITH_CODE(result == 0,
557 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
558 
559 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
560 	reference_clock = atomctrl_get_reference_clock(hwmgr);
561 
562 	reference_divider = 1 + dividers.uc_pll_ref_div;
563 
564 	/* low 14 bits is fraction and high 12 bits is divider*/
565 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
566 
567 	/* SPLL_FUNC_CNTL setup*/
568 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
569 		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
570 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
571 		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
572 
573 	/* SPLL_FUNC_CNTL_3 setup*/
574 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
575 		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
576 
577 	/* set to use fractional accumulation*/
578 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
579 		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
580 
581 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
582 			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
583 		pp_atomctrl_internal_ss_info ss_info;
584 
585 		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
586 		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
587 			/*
588 			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
589 			* ss_info.speed_spectrum_rate -- in unit of khz
590 			*/
591 			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
592 			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
593 
594 			/* clkv = 2 * D * fbdiv / NS */
595 			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
596 
597 			cg_spll_spread_spectrum =
598 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
599 			cg_spll_spread_spectrum =
600 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
601 			cg_spll_spread_spectrum_2 =
602 				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
603 		}
604 	}
605 
606 	sclk->SclkFrequency        = engine_clock;
607 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
608 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
609 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
610 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
611 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
612 
613 	return 0;
614 }
615 
616 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
617 						uint32_t engine_clock,
618 				SMU72_Discrete_GraphicsLevel *graphic_level)
619 {
620 	int result;
621 	uint32_t mvdd;
622 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623 	struct phm_ppt_v1_information *pptable_info =
624 			    (struct phm_ppt_v1_information *)(hwmgr->pptable);
625 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
626 
627 	result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
628 
629 	if (hwmgr->od_enabled)
630 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
631 	else
632 		vdd_dep_table = pptable_info->vdd_dep_on_sclk;
633 
634 	/* populate graphics levels*/
635 	result = tonga_get_dependency_volt_by_clk(hwmgr,
636 		vdd_dep_table, engine_clock,
637 		&graphic_level->MinVoltage, &mvdd);
638 	PP_ASSERT_WITH_CODE((!result),
639 		"can not find VDDC voltage value for VDDC "
640 		"engine clock dependency table", return result);
641 
642 	/* SCLK frequency in units of 10KHz*/
643 	graphic_level->SclkFrequency = engine_clock;
644 	/* Indicates maximum activity level for this performance level. 50% for now*/
645 	graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
646 
647 	graphic_level->CcPwrDynRm = 0;
648 	graphic_level->CcPwrDynRm1 = 0;
649 	/* this level can be used if activity is high enough.*/
650 	graphic_level->EnabledForActivity = 0;
651 	/* this level can be used for throttling.*/
652 	graphic_level->EnabledForThrottle = 1;
653 	graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
654 	graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
655 	graphic_level->VoltageDownHyst = 0;
656 	graphic_level->PowerThrottle = 0;
657 
658 	data->display_timing.min_clock_in_sr =
659 			hwmgr->display_config->min_core_set_clock_in_sr;
660 
661 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
662 			PHM_PlatformCaps_SclkDeepSleep))
663 		graphic_level->DeepSleepDivId =
664 				smu7_get_sleep_divider_id_from_clock(engine_clock,
665 						data->display_timing.min_clock_in_sr);
666 
667 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
668 	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
669 
670 	if (!result) {
671 		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
672 		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
673 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
674 		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
675 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
676 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
677 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
678 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
679 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
680 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
681 	}
682 
683 	return result;
684 }
685 
686 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
687 {
688 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
689 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
690 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
691 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
692 	struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
693 	uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
694 	uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
695 				offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
696 
697 	uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
698 						SMU72_MAX_LEVELS_GRAPHICS;
699 
700 	SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
701 
702 	uint32_t i, max_entry;
703 	uint8_t highest_pcie_level_enabled = 0;
704 	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
705 	uint8_t count = 0;
706 	int result = 0;
707 
708 	memset(levels, 0x00, level_array_size);
709 
710 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
711 		result = tonga_populate_single_graphic_level(hwmgr,
712 					dpm_table->sclk_table.dpm_levels[i].value,
713 					&(smu_data->smc_state_table.GraphicsLevel[i]));
714 		if (result != 0)
715 			return result;
716 
717 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
718 		if (i > 1)
719 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
720 	}
721 
722 	/* Only enable level 0 for now. */
723 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
724 
725 	/* set highest level watermark to high */
726 	if (dpm_table->sclk_table.count > 1)
727 		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
728 			PPSMC_DISPLAY_WATERMARK_HIGH;
729 
730 	smu_data->smc_state_table.GraphicsDpmLevelCount =
731 		(uint8_t)dpm_table->sclk_table.count;
732 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
733 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
734 
735 	if (pcie_table != NULL) {
736 		PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
737 			"There must be 1 or more PCIE levels defined in PPTable.",
738 			return -EINVAL);
739 		max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
740 		for (i = 0; i < dpm_table->sclk_table.count; i++) {
741 			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
742 				(uint8_t) ((i < max_entry) ? i : max_entry);
743 		}
744 	} else {
745 		if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
746 			pr_err("Pcie Dpm Enablemask is 0 !");
747 
748 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
749 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
750 					(1<<(highest_pcie_level_enabled+1))) != 0)) {
751 			highest_pcie_level_enabled++;
752 		}
753 
754 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
755 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
756 					(1<<lowest_pcie_level_enabled)) == 0)) {
757 			lowest_pcie_level_enabled++;
758 		}
759 
760 		while ((count < highest_pcie_level_enabled) &&
761 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
762 					(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
763 			count++;
764 		}
765 		mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
766 			(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
767 
768 
769 		/* set pcieDpmLevel to highest_pcie_level_enabled*/
770 		for (i = 2; i < dpm_table->sclk_table.count; i++)
771 			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
772 
773 		/* set pcieDpmLevel to lowest_pcie_level_enabled*/
774 		smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
775 
776 		/* set pcieDpmLevel to mid_pcie_level_enabled*/
777 		smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
778 	}
779 	/* level count will send to smc once at init smc table and never change*/
780 	result = smu7_copy_bytes_to_smc(hwmgr, level_array_address,
781 				(uint8_t *)levels, (uint32_t)level_array_size,
782 								SMC_RAM_END);
783 
784 	return result;
785 }
786 
787 static int tonga_calculate_mclk_params(
788 		struct pp_hwmgr *hwmgr,
789 		uint32_t memory_clock,
790 		SMU72_Discrete_MemoryLevel *mclk,
791 		bool strobe_mode,
792 		bool dllStateOn
793 		)
794 {
795 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
796 
797 	uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
798 	uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
799 	uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
800 	uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
801 	uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
802 	uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
803 	uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
804 	uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
805 	uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
806 
807 	pp_atomctrl_memory_clock_param mpll_param;
808 	int result;
809 
810 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
811 				memory_clock, &mpll_param, strobe_mode);
812 	PP_ASSERT_WITH_CODE(
813 			!result,
814 			"Error retrieving Memory Clock Parameters from VBIOS.",
815 			return result);
816 
817 	/* MPLL_FUNC_CNTL setup*/
818 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
819 					mpll_param.bw_ctrl);
820 
821 	/* MPLL_FUNC_CNTL_1 setup*/
822 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
823 					MPLL_FUNC_CNTL_1, CLKF,
824 					mpll_param.mpll_fb_divider.cl_kf);
825 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
826 					MPLL_FUNC_CNTL_1, CLKFRAC,
827 					mpll_param.mpll_fb_divider.clk_frac);
828 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
829 						MPLL_FUNC_CNTL_1, VCO_MODE,
830 						mpll_param.vco_mode);
831 
832 	/* MPLL_AD_FUNC_CNTL setup*/
833 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
834 					MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
835 					mpll_param.mpll_post_divider);
836 
837 	if (data->is_memory_gddr5) {
838 		/* MPLL_DQ_FUNC_CNTL setup*/
839 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
840 						MPLL_DQ_FUNC_CNTL, YCLK_SEL,
841 						mpll_param.yclk_sel);
842 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
843 						MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
844 						mpll_param.mpll_post_divider);
845 	}
846 
847 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
848 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
849 		/*
850 		 ************************************
851 		 Fref = Reference Frequency
852 		 NF = Feedback divider ratio
853 		 NR = Reference divider ratio
854 		 Fnom = Nominal VCO output frequency = Fref * NF / NR
855 		 Fs = Spreading Rate
856 		 D = Percentage down-spread / 2
857 		 Fint = Reference input frequency to PFD = Fref / NR
858 		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
859 		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
860 		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
861 		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
862 		 *************************************
863 		 */
864 		pp_atomctrl_internal_ss_info ss_info;
865 		uint32_t freq_nom;
866 		uint32_t tmp;
867 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
868 
869 		/* for GDDR5 for all modes and DDR3 */
870 		if (1 == mpll_param.qdr)
871 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
872 		else
873 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
874 
875 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
876 		tmp = (freq_nom / reference_clock);
877 		tmp = tmp * tmp;
878 
879 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
880 			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
881 			/* ss.Info.speed_spectrum_rate -- in unit of khz */
882 			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
883 			/*     = reference_clock * 5 / speed_spectrum_rate */
884 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
885 
886 			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
887 			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
888 			uint32_t clkv =
889 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
890 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
891 
892 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
893 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
894 		}
895 	}
896 
897 	/* MCLK_PWRMGT_CNTL setup */
898 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
899 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
900 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
901 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
902 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
903 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
904 
905 	/* Save the result data to outpupt memory level structure */
906 	mclk->MclkFrequency   = memory_clock;
907 	mclk->MpllFuncCntl    = mpll_func_cntl;
908 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
909 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
910 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
911 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
912 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
913 	mclk->DllCntl         = dll_cntl;
914 	mclk->MpllSs1         = mpll_ss1;
915 	mclk->MpllSs2         = mpll_ss2;
916 
917 	return 0;
918 }
919 
920 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
921 		bool strobe_mode)
922 {
923 	uint8_t mc_para_index;
924 
925 	if (strobe_mode) {
926 		if (memory_clock < 12500)
927 			mc_para_index = 0x00;
928 		else if (memory_clock > 47500)
929 			mc_para_index = 0x0f;
930 		else
931 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
932 	} else {
933 		if (memory_clock < 65000)
934 			mc_para_index = 0x00;
935 		else if (memory_clock > 135000)
936 			mc_para_index = 0x0f;
937 		else
938 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
939 	}
940 
941 	return mc_para_index;
942 }
943 
944 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
945 {
946 	uint8_t mc_para_index;
947 
948 	if (memory_clock < 10000)
949 		mc_para_index = 0;
950 	else if (memory_clock >= 80000)
951 		mc_para_index = 0x0f;
952 	else
953 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
954 
955 	return mc_para_index;
956 }
957 
958 
959 static int tonga_populate_single_memory_level(
960 		struct pp_hwmgr *hwmgr,
961 		uint32_t memory_clock,
962 		SMU72_Discrete_MemoryLevel *memory_level
963 		)
964 {
965 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
966 	struct phm_ppt_v1_information *pptable_info =
967 			  (struct phm_ppt_v1_information *)(hwmgr->pptable);
968 	uint32_t mclk_edc_wr_enable_threshold = 40000;
969 	uint32_t mclk_stutter_mode_threshold = 30000;
970 	uint32_t mclk_edc_enable_threshold = 40000;
971 	uint32_t mclk_strobe_mode_threshold = 40000;
972 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
973 	int result = 0;
974 	bool dll_state_on;
975 	uint32_t mvdd = 0;
976 
977 	if (hwmgr->od_enabled)
978 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
979 	else
980 		vdd_dep_table = pptable_info->vdd_dep_on_mclk;
981 
982 	if (NULL != vdd_dep_table) {
983 		result = tonga_get_dependency_volt_by_clk(hwmgr,
984 				vdd_dep_table,
985 				memory_clock,
986 				&memory_level->MinVoltage, &mvdd);
987 		PP_ASSERT_WITH_CODE(
988 			!result,
989 			"can not find MinVddc voltage value from memory VDDC "
990 			"voltage dependency table",
991 			return result);
992 	}
993 
994 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
995 		memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
996 	else
997 		memory_level->MinMvdd = mvdd;
998 
999 	memory_level->EnabledForThrottle = 1;
1000 	memory_level->EnabledForActivity = 0;
1001 	memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1002 	memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1003 	memory_level->VoltageDownHyst = 0;
1004 
1005 	/* Indicates maximum activity level for this performance level.*/
1006 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1007 	memory_level->StutterEnable = 0;
1008 	memory_level->StrobeEnable = 0;
1009 	memory_level->EdcReadEnable = 0;
1010 	memory_level->EdcWriteEnable = 0;
1011 	memory_level->RttEnable = 0;
1012 
1013 	/* default set to low watermark. Highest level will be set to high later.*/
1014 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1015 
1016 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1017 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1018 
1019 	if ((mclk_stutter_mode_threshold != 0) &&
1020 	    (memory_clock <= mclk_stutter_mode_threshold) &&
1021 	    (!data->is_uvd_enabled)
1022 	    && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1023 	    && (data->display_timing.num_existing_displays <= 2)
1024 	    && (data->display_timing.num_existing_displays != 0))
1025 		memory_level->StutterEnable = 1;
1026 
1027 	/* decide strobe mode*/
1028 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1029 		(memory_clock <= mclk_strobe_mode_threshold);
1030 
1031 	/* decide EDC mode and memory clock ratio*/
1032 	if (data->is_memory_gddr5) {
1033 		memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
1034 					memory_level->StrobeEnable);
1035 
1036 		if ((mclk_edc_enable_threshold != 0) &&
1037 				(memory_clock > mclk_edc_enable_threshold)) {
1038 			memory_level->EdcReadEnable = 1;
1039 		}
1040 
1041 		if ((mclk_edc_wr_enable_threshold != 0) &&
1042 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1043 			memory_level->EdcWriteEnable = 1;
1044 		}
1045 
1046 		if (memory_level->StrobeEnable) {
1047 			if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
1048 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
1049 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1050 			} else {
1051 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1052 			}
1053 
1054 		} else {
1055 			dll_state_on = data->dll_default_on;
1056 		}
1057 	} else {
1058 		memory_level->StrobeRatio =
1059 			tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
1060 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1061 	}
1062 
1063 	result = tonga_calculate_mclk_params(hwmgr,
1064 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1065 
1066 	if (!result) {
1067 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
1068 		/* MCLK frequency in units of 10KHz*/
1069 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1070 		/* Indicates maximum activity level for this performance level.*/
1071 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1072 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1073 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1074 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1075 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1076 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1077 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1078 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1079 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1080 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1081 	}
1082 
1083 	return result;
1084 }
1085 
1086 static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1087 {
1088 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1089 	struct tonga_smumgr *smu_data =
1090 			(struct tonga_smumgr *)(hwmgr->smu_backend);
1091 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1092 	int result;
1093 
1094 	/* populate MCLK dpm table to SMU7 */
1095 	uint32_t level_array_address =
1096 				smu_data->smu7_data.dpm_table_start +
1097 				offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
1098 	uint32_t level_array_size =
1099 				sizeof(SMU72_Discrete_MemoryLevel) *
1100 				SMU72_MAX_LEVELS_MEMORY;
1101 	SMU72_Discrete_MemoryLevel *levels =
1102 				smu_data->smc_state_table.MemoryLevel;
1103 	uint32_t i;
1104 
1105 	memset(levels, 0x00, level_array_size);
1106 
1107 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1108 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1109 			"can not populate memory level as memory clock is zero",
1110 			return -EINVAL);
1111 		result = tonga_populate_single_memory_level(
1112 				hwmgr,
1113 				dpm_table->mclk_table.dpm_levels[i].value,
1114 				&(smu_data->smc_state_table.MemoryLevel[i]));
1115 		if (result)
1116 			return result;
1117 	}
1118 
1119 	/* Only enable level 0 for now.*/
1120 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1121 
1122 	/*
1123 	* in order to prevent MC activity from stutter mode to push DPM up.
1124 	* the UVD change complements this by putting the MCLK in a higher state
1125 	* by default such that we are not effected by up threshold or and MCLK DPM latency.
1126 	*/
1127 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1128 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1129 
1130 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1131 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1132 	/* set highest level watermark to high*/
1133 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1134 
1135 	/* level count will send to smc once at init smc table and never change*/
1136 	result = smu7_copy_bytes_to_smc(hwmgr,
1137 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1138 		SMC_RAM_END);
1139 
1140 	return result;
1141 }
1142 
1143 static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1144 				uint32_t mclk, SMIO_Pattern *smio_pattern)
1145 {
1146 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1147 	struct phm_ppt_v1_information *table_info =
1148 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1149 	uint32_t i = 0;
1150 
1151 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1152 		/* find mvdd value which clock is more than request */
1153 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1154 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1155 				/* Always round to higher voltage. */
1156 				smio_pattern->Voltage =
1157 				      data->mvdd_voltage_table.entries[i].value;
1158 				break;
1159 			}
1160 		}
1161 
1162 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1163 			"MVDD Voltage is outside the supported range.",
1164 			return -EINVAL);
1165 	} else {
1166 		return -EINVAL;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 
1173 static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1174 	SMU72_Discrete_DpmTable *table)
1175 {
1176 	int result = 0;
1177 	struct tonga_smumgr *smu_data =
1178 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1179 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1180 	struct pp_atomctrl_clock_dividers_vi dividers;
1181 
1182 	SMIO_Pattern voltage_level;
1183 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1184 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1185 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1186 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1187 
1188 	/* The ACPI state should not do DPM on DC (or ever).*/
1189 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1190 
1191 	table->ACPILevel.MinVoltage =
1192 			smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
1193 
1194 	/* assign zero for now*/
1195 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1196 
1197 	/* get the engine clock dividers for this clock value*/
1198 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1199 		table->ACPILevel.SclkFrequency,  &dividers);
1200 
1201 	PP_ASSERT_WITH_CODE(result == 0,
1202 		"Error retrieving Engine Clock dividers from VBIOS.",
1203 		return result);
1204 
1205 	/* divider ID for required SCLK*/
1206 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1207 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1208 	table->ACPILevel.DeepSleepDivId = 0;
1209 
1210 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1211 					SPLL_PWRON, 0);
1212 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1213 						SPLL_RESET, 1);
1214 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1215 						SCLK_MUX_SEL, 4);
1216 
1217 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1218 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1219 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1220 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1221 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1222 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1223 	table->ACPILevel.CcPwrDynRm = 0;
1224 	table->ACPILevel.CcPwrDynRm1 = 0;
1225 
1226 
1227 	/* For various features to be enabled/disabled while this level is active.*/
1228 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1229 	/* SCLK frequency in units of 10KHz*/
1230 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1231 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1232 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1233 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1234 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1235 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1236 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1237 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1238 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1239 
1240 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1241 	table->MemoryACPILevel.MinVoltage =
1242 			    smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
1243 
1244 	/*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
1245 
1246 	if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
1247 		table->MemoryACPILevel.MinMvdd =
1248 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1249 	else
1250 		table->MemoryACPILevel.MinMvdd = 0;
1251 
1252 	/* Force reset on DLL*/
1253 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1254 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1255 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1256 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1257 
1258 	/* Disable DLL in ACPIState*/
1259 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1260 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1261 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1262 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1263 
1264 	/* Enable DLL bypass signal*/
1265 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1266 		DLL_CNTL, MRDCK0_BYPASS, 0);
1267 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1268 		DLL_CNTL, MRDCK1_BYPASS, 0);
1269 
1270 	table->MemoryACPILevel.DllCntl            =
1271 		PP_HOST_TO_SMC_UL(dll_cntl);
1272 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1273 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1274 	table->MemoryACPILevel.MpllAdFuncCntl     =
1275 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1276 	table->MemoryACPILevel.MpllDqFuncCntl     =
1277 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1278 	table->MemoryACPILevel.MpllFuncCntl       =
1279 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1280 	table->MemoryACPILevel.MpllFuncCntl_1     =
1281 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1282 	table->MemoryACPILevel.MpllFuncCntl_2     =
1283 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1284 	table->MemoryACPILevel.MpllSs1            =
1285 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1286 	table->MemoryACPILevel.MpllSs2            =
1287 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1288 
1289 	table->MemoryACPILevel.EnabledForThrottle = 0;
1290 	table->MemoryACPILevel.EnabledForActivity = 0;
1291 	table->MemoryACPILevel.UpHyst = 0;
1292 	table->MemoryACPILevel.DownHyst = 100;
1293 	table->MemoryACPILevel.VoltageDownHyst = 0;
1294 	/* Indicates maximum activity level for this performance level.*/
1295 	table->MemoryACPILevel.ActivityLevel =
1296 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1297 
1298 	table->MemoryACPILevel.StutterEnable = 0;
1299 	table->MemoryACPILevel.StrobeEnable = 0;
1300 	table->MemoryACPILevel.EdcReadEnable = 0;
1301 	table->MemoryACPILevel.EdcWriteEnable = 0;
1302 	table->MemoryACPILevel.RttEnable = 0;
1303 
1304 	return result;
1305 }
1306 
1307 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1308 					SMU72_Discrete_DpmTable *table)
1309 {
1310 	int result = 0;
1311 
1312 	uint8_t count;
1313 	pp_atomctrl_clock_dividers_vi dividers;
1314 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1315 	struct phm_ppt_v1_information *pptable_info =
1316 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
1317 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1318 						pptable_info->mm_dep_table;
1319 
1320 	table->UvdLevelCount = (uint8_t) (mm_table->count);
1321 	table->UvdBootLevel = 0;
1322 
1323 	for (count = 0; count < table->UvdLevelCount; count++) {
1324 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1325 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1326 		table->UvdLevel[count].MinVoltage.Vddc =
1327 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1328 						mm_table->entries[count].vddc);
1329 		table->UvdLevel[count].MinVoltage.VddGfx =
1330 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1331 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1332 						mm_table->entries[count].vddgfx) : 0;
1333 		table->UvdLevel[count].MinVoltage.Vddci =
1334 			phm_get_voltage_id(&data->vddci_voltage_table,
1335 					     mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1336 		table->UvdLevel[count].MinVoltage.Phases = 1;
1337 
1338 		/* retrieve divider value for VBIOS */
1339 		result = atomctrl_get_dfs_pll_dividers_vi(
1340 					hwmgr,
1341 					table->UvdLevel[count].VclkFrequency,
1342 					&dividers);
1343 
1344 		PP_ASSERT_WITH_CODE((!result),
1345 				    "can not find divide id for Vclk clock",
1346 					return result);
1347 
1348 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1349 
1350 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1351 							  table->UvdLevel[count].DclkFrequency, &dividers);
1352 		PP_ASSERT_WITH_CODE((!result),
1353 				    "can not find divide id for Dclk clock",
1354 					return result);
1355 
1356 		table->UvdLevel[count].DclkDivider =
1357 					(uint8_t)dividers.pll_post_divider;
1358 
1359 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1360 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1361 	}
1362 
1363 	return result;
1364 
1365 }
1366 
1367 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1368 		SMU72_Discrete_DpmTable *table)
1369 {
1370 	int result = 0;
1371 
1372 	uint8_t count;
1373 	pp_atomctrl_clock_dividers_vi dividers;
1374 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1375 	struct phm_ppt_v1_information *pptable_info =
1376 			      (struct phm_ppt_v1_information *)(hwmgr->pptable);
1377 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1378 						     pptable_info->mm_dep_table;
1379 
1380 	table->VceLevelCount = (uint8_t) (mm_table->count);
1381 	table->VceBootLevel = 0;
1382 
1383 	for (count = 0; count < table->VceLevelCount; count++) {
1384 		table->VceLevel[count].Frequency =
1385 			mm_table->entries[count].eclk;
1386 		table->VceLevel[count].MinVoltage.Vddc =
1387 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1388 				mm_table->entries[count].vddc);
1389 		table->VceLevel[count].MinVoltage.VddGfx =
1390 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1391 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1392 				mm_table->entries[count].vddgfx) : 0;
1393 		table->VceLevel[count].MinVoltage.Vddci =
1394 			phm_get_voltage_id(&data->vddci_voltage_table,
1395 				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1396 		table->VceLevel[count].MinVoltage.Phases = 1;
1397 
1398 		/* retrieve divider value for VBIOS */
1399 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1400 					table->VceLevel[count].Frequency, &dividers);
1401 		PP_ASSERT_WITH_CODE((!result),
1402 				"can not find divide id for VCE engine clock",
1403 				return result);
1404 
1405 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1406 
1407 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1408 	}
1409 
1410 	return result;
1411 }
1412 
1413 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1414 		SMU72_Discrete_DpmTable *table)
1415 {
1416 	int result = 0;
1417 	uint8_t count;
1418 	pp_atomctrl_clock_dividers_vi dividers;
1419 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1420 	struct phm_ppt_v1_information *pptable_info =
1421 			     (struct phm_ppt_v1_information *)(hwmgr->pptable);
1422 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1423 						    pptable_info->mm_dep_table;
1424 
1425 	table->AcpLevelCount = (uint8_t) (mm_table->count);
1426 	table->AcpBootLevel = 0;
1427 
1428 	for (count = 0; count < table->AcpLevelCount; count++) {
1429 		table->AcpLevel[count].Frequency =
1430 			pptable_info->mm_dep_table->entries[count].aclk;
1431 		table->AcpLevel[count].MinVoltage.Vddc =
1432 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1433 			mm_table->entries[count].vddc);
1434 		table->AcpLevel[count].MinVoltage.VddGfx =
1435 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1436 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1437 				mm_table->entries[count].vddgfx) : 0;
1438 		table->AcpLevel[count].MinVoltage.Vddci =
1439 			phm_get_voltage_id(&data->vddci_voltage_table,
1440 				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1441 		table->AcpLevel[count].MinVoltage.Phases = 1;
1442 
1443 		/* retrieve divider value for VBIOS */
1444 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1445 			table->AcpLevel[count].Frequency, &dividers);
1446 		PP_ASSERT_WITH_CODE((!result),
1447 			"can not find divide id for engine clock", return result);
1448 
1449 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450 
1451 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1452 	}
1453 
1454 	return result;
1455 }
1456 
1457 static int tonga_populate_memory_timing_parameters(
1458 		struct pp_hwmgr *hwmgr,
1459 		uint32_t engine_clock,
1460 		uint32_t memory_clock,
1461 		struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1462 		)
1463 {
1464 	uint32_t dramTiming;
1465 	uint32_t dramTiming2;
1466 	uint32_t burstTime;
1467 	int result;
1468 
1469 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1470 				engine_clock, memory_clock);
1471 
1472 	PP_ASSERT_WITH_CODE(result == 0,
1473 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1474 
1475 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1476 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1477 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1478 
1479 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1480 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1481 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1482 
1483 	return 0;
1484 }
1485 
1486 static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1487 {
1488 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1489 	struct tonga_smumgr *smu_data =
1490 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1491 	int result = 0;
1492 	SMU72_Discrete_MCArbDramTimingTable  arb_regs;
1493 	uint32_t i, j;
1494 
1495 	memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1496 
1497 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1498 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1499 			result = tonga_populate_memory_timing_parameters
1500 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1501 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1502 				 &arb_regs.entries[i][j]);
1503 
1504 			if (result)
1505 				break;
1506 		}
1507 	}
1508 
1509 	if (!result) {
1510 		result = smu7_copy_bytes_to_smc(
1511 				hwmgr,
1512 				smu_data->smu7_data.arb_table_start,
1513 				(uint8_t *)&arb_regs,
1514 				sizeof(SMU72_Discrete_MCArbDramTimingTable),
1515 				SMC_RAM_END
1516 				);
1517 	}
1518 
1519 	return result;
1520 }
1521 
1522 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1523 			SMU72_Discrete_DpmTable *table)
1524 {
1525 	int result = 0;
1526 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527 	struct tonga_smumgr *smu_data =
1528 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1529 	table->GraphicsBootLevel = 0;
1530 	table->MemoryBootLevel = 0;
1531 
1532 	/* find boot level from dpm table*/
1533 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1534 	data->vbios_boot_state.sclk_bootup_value,
1535 	(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1536 
1537 	if (result != 0) {
1538 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1539 		pr_err("[powerplay] VBIOS did not find boot engine "
1540 				"clock value in dependency table. "
1541 				"Using Graphics DPM level 0 !");
1542 		result = 0;
1543 	}
1544 
1545 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1546 		data->vbios_boot_state.mclk_bootup_value,
1547 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1548 
1549 	if (result != 0) {
1550 		smu_data->smc_state_table.MemoryBootLevel = 0;
1551 		pr_err("[powerplay] VBIOS did not find boot "
1552 				"engine clock value in dependency table."
1553 				"Using Memory DPM level 0 !");
1554 		result = 0;
1555 	}
1556 
1557 	table->BootVoltage.Vddc =
1558 		phm_get_voltage_id(&(data->vddc_voltage_table),
1559 			data->vbios_boot_state.vddc_bootup_value);
1560 	table->BootVoltage.VddGfx =
1561 		phm_get_voltage_id(&(data->vddgfx_voltage_table),
1562 			data->vbios_boot_state.vddgfx_bootup_value);
1563 	table->BootVoltage.Vddci =
1564 		phm_get_voltage_id(&(data->vddci_voltage_table),
1565 			data->vbios_boot_state.vddci_bootup_value);
1566 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1567 
1568 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1569 
1570 	return result;
1571 }
1572 
1573 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1574 {
1575 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1576 			volt_with_cks, value;
1577 	uint16_t clock_freq_u16;
1578 	struct tonga_smumgr *smu_data =
1579 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1580 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1581 			volt_offset = 0;
1582 	struct phm_ppt_v1_information *table_info =
1583 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1584 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1585 			table_info->vdd_dep_on_sclk;
1586 	uint32_t hw_revision, dev_id;
1587 	struct amdgpu_device *adev = hwmgr->adev;
1588 
1589 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1590 
1591 	hw_revision = adev->pdev->revision;
1592 	dev_id = adev->pdev->device;
1593 
1594 	/* Read SMU_Eefuse to read and calculate RO and determine
1595 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1596 	 */
1597 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1598 			ixSMU_EFUSE_0 + (146 * 4));
1599 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1600 			ixSMU_EFUSE_0 + (148 * 4));
1601 	efuse &= 0xFF000000;
1602 	efuse = efuse >> 24;
1603 	efuse2 &= 0xF;
1604 
1605 	if (efuse2 == 1)
1606 		ro = (2300 - 1350) * efuse / 255 + 1350;
1607 	else
1608 		ro = (2500 - 1000) * efuse / 255 + 1000;
1609 
1610 	if (ro >= 1660)
1611 		type = 0;
1612 	else
1613 		type = 1;
1614 
1615 	/* Populate Stretch amount */
1616 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1617 
1618 
1619 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1620 	for (i = 0; i < sclk_table->count; i++) {
1621 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1622 				sclk_table->entries[i].cks_enable << i;
1623 		if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
1624 			volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
1625 				(sclk_table->entries[i].clk/100) / 10000) * 1000 /
1626 				(8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
1627 			volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
1628 				(sclk_table->entries[i].clk/100) / 100000) * 1000 /
1629 				(6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
1630 		} else {
1631 			volt_without_cks = (uint32_t)((14041 *
1632 				(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1633 				(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1634 			volt_with_cks = (uint32_t)((13946 *
1635 				(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1636 				(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1637 		}
1638 		if (volt_without_cks >= volt_with_cks)
1639 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1640 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1641 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1642 	}
1643 
1644 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1645 			STRETCH_ENABLE, 0x0);
1646 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1647 			masterReset, 0x1);
1648 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1649 			staticEnable, 0x1);
1650 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1651 			masterReset, 0x0);
1652 
1653 	/* Populate CKS Lookup Table */
1654 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1655 		stretch_amount2 = 0;
1656 	else if (stretch_amount == 3 || stretch_amount == 4)
1657 		stretch_amount2 = 1;
1658 	else {
1659 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1660 				PHM_PlatformCaps_ClockStretcher);
1661 		PP_ASSERT_WITH_CODE(false,
1662 				"Stretch Amount in PPTable not supported",
1663 				return -EINVAL);
1664 	}
1665 
1666 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1667 			ixPWR_CKS_CNTL);
1668 	value &= 0xFFC2FF87;
1669 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1670 			tonga_clock_stretcher_lookup_table[stretch_amount2][0];
1671 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1672 			tonga_clock_stretcher_lookup_table[stretch_amount2][1];
1673 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1674 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1675 			SclkFrequency) / 100);
1676 	if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
1677 			clock_freq_u16 &&
1678 	    tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
1679 			clock_freq_u16) {
1680 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1681 		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1682 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1683 		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1684 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1685 		value |= (tonga_clock_stretch_amount_conversion
1686 				[tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
1687 				 [stretch_amount]) << 3;
1688 	}
1689 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1690 			CKS_LOOKUPTableEntry[0].minFreq);
1691 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1692 			CKS_LOOKUPTableEntry[0].maxFreq);
1693 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1694 			tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1695 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1696 			(tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1697 
1698 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1699 			ixPWR_CKS_CNTL, value);
1700 
1701 	/* Populate DDT Lookup Table */
1702 	for (i = 0; i < 4; i++) {
1703 		/* Assign the minimum and maximum VID stored
1704 		 * in the last row of Clock Stretcher Voltage Table.
1705 		 */
1706 		smu_data->smc_state_table.ClockStretcherDataTable.
1707 		ClockStretcherDataTableEntry[i].minVID =
1708 				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
1709 		smu_data->smc_state_table.ClockStretcherDataTable.
1710 		ClockStretcherDataTableEntry[i].maxVID =
1711 				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
1712 		/* Loop through each SCLK and check the frequency
1713 		 * to see if it lies within the frequency for clock stretcher.
1714 		 */
1715 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1716 			cks_setting = 0;
1717 			clock_freq = PP_SMC_TO_HOST_UL(
1718 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1719 			/* Check the allowed frequency against the sclk level[j].
1720 			 *  Sclk's endianness has already been converted,
1721 			 *  and it's in 10Khz unit,
1722 			 *  as opposed to Data table, which is in Mhz unit.
1723 			 */
1724 			if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
1725 				cks_setting |= 0x2;
1726 				if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
1727 					cks_setting |= 0x1;
1728 			}
1729 			smu_data->smc_state_table.ClockStretcherDataTable.
1730 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1731 		}
1732 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1733 				ClockStretcherDataTable.
1734 				ClockStretcherDataTableEntry[i].setting);
1735 	}
1736 
1737 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738 					ixPWR_CKS_CNTL);
1739 	value &= 0xFFFFFFFE;
1740 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1741 					ixPWR_CKS_CNTL, value);
1742 
1743 	return 0;
1744 }
1745 
1746 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1747 			SMU72_Discrete_DpmTable *table)
1748 {
1749 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1750 	uint16_t config;
1751 
1752 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1753 		/*  Splitted mode */
1754 		config = VR_SVI2_PLANE_1;
1755 		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1756 
1757 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1758 			config = VR_SVI2_PLANE_2;
1759 			table->VRConfig |= config;
1760 		} else {
1761 			pr_err("VDDC and VDDGFX should "
1762 				"be both on SVI2 control in splitted mode !\n");
1763 		}
1764 	} else {
1765 		/* Merged mode  */
1766 		config = VR_MERGED_WITH_VDDC;
1767 		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1768 
1769 		/* Set Vddc Voltage Controller  */
1770 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1771 			config = VR_SVI2_PLANE_1;
1772 			table->VRConfig |= config;
1773 		} else {
1774 			pr_err("VDDC should be on "
1775 					"SVI2 control in merged mode !\n");
1776 		}
1777 	}
1778 
1779 	/* Set Vddci Voltage Controller  */
1780 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1781 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1782 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1783 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1784 		config = VR_SMIO_PATTERN_1;
1785 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1786 	}
1787 
1788 	/* Set Mvdd Voltage Controller */
1789 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1790 		config = VR_SMIO_PATTERN_2;
1791 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
1798 {
1799 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1800 	uint32_t tmp;
1801 	int result;
1802 
1803 	/*
1804 	* This is a read-modify-write on the first byte of the ARB table.
1805 	* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
1806 	* is the field 'current'.
1807 	* This solution is ugly, but we never write the whole table only
1808 	* individual fields in it.
1809 	* In reality this field should not be in that structure
1810 	* but in a soft register.
1811 	*/
1812 	result = smu7_read_smc_sram_dword(hwmgr,
1813 				smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1814 
1815 	if (result != 0)
1816 		return result;
1817 
1818 	tmp &= 0x00FFFFFF;
1819 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1820 
1821 	return smu7_write_smc_sram_dword(hwmgr,
1822 			smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1823 }
1824 
1825 
1826 static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1827 {
1828 	struct tonga_smumgr *smu_data =
1829 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1830 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1831 	SMU72_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1832 	struct phm_ppt_v1_information *table_info =
1833 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1834 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1835 	int  i, j, k;
1836 	const uint16_t *pdef1, *pdef2;
1837 
1838 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
1839 			(uint16_t)(cac_dtp_table->usTDP * 256));
1840 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
1841 			(uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1842 
1843 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1844 			"Target Operating Temp is out of Range !",
1845 			);
1846 
1847 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
1848 	dpm_table->GpuTjHyst = 8;
1849 
1850 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1851 
1852 	dpm_table->BAPM_TEMP_GRADIENT =
1853 				PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1854 	pdef1 = defaults->bapmti_r;
1855 	pdef2 = defaults->bapmti_rc;
1856 
1857 	for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
1858 		for (j = 0; j < SMU72_DTE_SOURCES; j++) {
1859 			for (k = 0; k < SMU72_DTE_SINKS; k++) {
1860 				dpm_table->BAPMTI_R[i][j][k] =
1861 						PP_HOST_TO_SMC_US(*pdef1);
1862 				dpm_table->BAPMTI_RC[i][j][k] =
1863 						PP_HOST_TO_SMC_US(*pdef2);
1864 				pdef1++;
1865 				pdef2++;
1866 			}
1867 		}
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1874 {
1875 	struct tonga_smumgr *smu_data =
1876 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1877 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1878 
1879 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
1880 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
1881 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1882 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1883 
1884 	return 0;
1885 }
1886 
1887 static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1888 {
1889 	uint16_t tdc_limit;
1890 	struct tonga_smumgr *smu_data =
1891 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1892 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1893 	struct phm_ppt_v1_information *table_info =
1894 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1895 
1896 	/* TDC number of fraction bits are changed from 8 to 7
1897 	 * for Fiji as requested by SMC team
1898 	 */
1899 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
1900 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1901 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1902 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1903 			defaults->tdc_vddc_throttle_release_limit_perc;
1904 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
1905 
1906 	return 0;
1907 }
1908 
1909 static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1910 {
1911 	struct tonga_smumgr *smu_data =
1912 			(struct tonga_smumgr *)(hwmgr->smu_backend);
1913 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1914 	uint32_t temp;
1915 
1916 	if (smu7_read_smc_sram_dword(hwmgr,
1917 			fuse_table_offset +
1918 			offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
1919 			(uint32_t *)&temp, SMC_RAM_END))
1920 		PP_ASSERT_WITH_CODE(false,
1921 				"Attempt to read PmFuses.DW6 "
1922 				"(SviLoadLineEn) from SMC Failed !",
1923 				return -EINVAL);
1924 	else
1925 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
1926 
1927 	return 0;
1928 }
1929 
1930 static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1931 {
1932 	int i;
1933 	struct tonga_smumgr *smu_data =
1934 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1935 
1936 	/* Currently not used. Set all to zero. */
1937 	for (i = 0; i < 16; i++)
1938 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1939 
1940 	return 0;
1941 }
1942 
1943 static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1944 {
1945 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1946 
1947 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
1948 			usFanOutputSensitivity & (1 << 15)) ||
1949 		(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
1950 		hwmgr->thermal_controller.advanceFanControlParameters.
1951 		usFanOutputSensitivity = hwmgr->thermal_controller.
1952 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
1953 
1954 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
1955 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
1956 					advanceFanControlParameters.usFanOutputSensitivity);
1957 	return 0;
1958 }
1959 
1960 static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1961 {
1962 	int i;
1963 	struct tonga_smumgr *smu_data =
1964 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1965 
1966 	/* Currently not used. Set all to zero. */
1967 	for (i = 0; i < 16; i++)
1968 		smu_data->power_tune_table.GnbLPML[i] = 0;
1969 
1970 	return 0;
1971 }
1972 
1973 static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1974 {
1975 	struct tonga_smumgr *smu_data =
1976 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1977 	struct phm_ppt_v1_information *table_info =
1978 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1979 	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1980 	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1981 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1982 
1983 	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1984 	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1985 
1986 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1987 			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1988 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1989 			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1990 
1991 	return 0;
1992 }
1993 
1994 static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1995 {
1996 	struct tonga_smumgr *smu_data =
1997 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1998 	uint32_t pm_fuse_table_offset;
1999 
2000 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2001 			PHM_PlatformCaps_PowerContainment)) {
2002 		if (smu7_read_smc_sram_dword(hwmgr,
2003 				SMU72_FIRMWARE_HEADER_LOCATION +
2004 				offsetof(SMU72_Firmware_Header, PmFuseTable),
2005 				&pm_fuse_table_offset, SMC_RAM_END))
2006 			PP_ASSERT_WITH_CODE(false,
2007 				"Attempt to get pm_fuse_table_offset Failed !",
2008 				return -EINVAL);
2009 
2010 		/* DW6 */
2011 		if (tonga_populate_svi_load_line(hwmgr))
2012 			PP_ASSERT_WITH_CODE(false,
2013 				"Attempt to populate SviLoadLine Failed !",
2014 				return -EINVAL);
2015 		/* DW7 */
2016 		if (tonga_populate_tdc_limit(hwmgr))
2017 			PP_ASSERT_WITH_CODE(false,
2018 					"Attempt to populate TDCLimit Failed !",
2019 					return -EINVAL);
2020 		/* DW8 */
2021 		if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
2022 			PP_ASSERT_WITH_CODE(false,
2023 				"Attempt to populate TdcWaterfallCtl Failed !",
2024 				return -EINVAL);
2025 
2026 		/* DW9-DW12 */
2027 		if (tonga_populate_temperature_scaler(hwmgr) != 0)
2028 			PP_ASSERT_WITH_CODE(false,
2029 				"Attempt to populate LPMLTemperatureScaler Failed !",
2030 				return -EINVAL);
2031 
2032 		/* DW13-DW14 */
2033 		if (tonga_populate_fuzzy_fan(hwmgr))
2034 			PP_ASSERT_WITH_CODE(false,
2035 				"Attempt to populate Fuzzy Fan "
2036 				"Control parameters Failed !",
2037 				return -EINVAL);
2038 
2039 		/* DW15-DW18 */
2040 		if (tonga_populate_gnb_lpml(hwmgr))
2041 			PP_ASSERT_WITH_CODE(false,
2042 				"Attempt to populate GnbLPML Failed !",
2043 				return -EINVAL);
2044 
2045 		/* DW20 */
2046 		if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
2047 			PP_ASSERT_WITH_CODE(
2048 				false,
2049 				"Attempt to populate BapmVddCBaseLeakage "
2050 				"Hi and Lo Sidd Failed !",
2051 				return -EINVAL);
2052 
2053 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
2054 				(uint8_t *)&smu_data->power_tune_table,
2055 				sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
2056 			PP_ASSERT_WITH_CODE(false,
2057 					"Attempt to download PmFuseTable Failed !",
2058 					return -EINVAL);
2059 	}
2060 	return 0;
2061 }
2062 
2063 static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
2064 				 SMU72_Discrete_MCRegisters *mc_reg_table)
2065 {
2066 	const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend;
2067 
2068 	uint32_t i, j;
2069 
2070 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
2071 		if (smu_data->mc_reg_table.validflag & 1<<j) {
2072 			PP_ASSERT_WITH_CODE(
2073 				i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
2074 				"Index of mc_reg_table->address[] array "
2075 				"out of boundary",
2076 				return -EINVAL);
2077 			mc_reg_table->address[i].s0 =
2078 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
2079 			mc_reg_table->address[i].s1 =
2080 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
2081 			i++;
2082 		}
2083 	}
2084 
2085 	mc_reg_table->last = (uint8_t)i;
2086 
2087 	return 0;
2088 }
2089 
2090 /*convert register values from driver to SMC format */
2091 static void tonga_convert_mc_registers(
2092 	const struct tonga_mc_reg_entry *entry,
2093 	SMU72_Discrete_MCRegisterSet *data,
2094 	uint32_t num_entries, uint32_t valid_flag)
2095 {
2096 	uint32_t i, j;
2097 
2098 	for (i = 0, j = 0; j < num_entries; j++) {
2099 		if (valid_flag & 1<<j) {
2100 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
2101 			i++;
2102 		}
2103 	}
2104 }
2105 
2106 static int tonga_convert_mc_reg_table_entry_to_smc(
2107 		struct pp_hwmgr *hwmgr,
2108 		const uint32_t memory_clock,
2109 		SMU72_Discrete_MCRegisterSet *mc_reg_table_data
2110 		)
2111 {
2112 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2113 	uint32_t i = 0;
2114 
2115 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
2116 		if (memory_clock <=
2117 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
2118 			break;
2119 		}
2120 	}
2121 
2122 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
2123 		--i;
2124 
2125 	tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
2126 				mc_reg_table_data, smu_data->mc_reg_table.last,
2127 				smu_data->mc_reg_table.validflag);
2128 
2129 	return 0;
2130 }
2131 
2132 static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
2133 		SMU72_Discrete_MCRegisters *mc_regs)
2134 {
2135 	int result = 0;
2136 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2137 	int res;
2138 	uint32_t i;
2139 
2140 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
2141 		res = tonga_convert_mc_reg_table_entry_to_smc(
2142 				hwmgr,
2143 				data->dpm_table.mclk_table.dpm_levels[i].value,
2144 				&mc_regs->data[i]
2145 				);
2146 
2147 		if (0 != res)
2148 			result = res;
2149 	}
2150 
2151 	return result;
2152 }
2153 
2154 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
2155 {
2156 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2157 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2158 	uint32_t address;
2159 	int32_t result;
2160 
2161 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
2162 		return 0;
2163 
2164 
2165 	memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
2166 
2167 	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
2168 
2169 	if (result != 0)
2170 		return result;
2171 
2172 
2173 	address = smu_data->smu7_data.mc_reg_table_start +
2174 			(uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
2175 
2176 	return  smu7_copy_bytes_to_smc(
2177 			hwmgr, address,
2178 			(uint8_t *)&smu_data->mc_regs.data[0],
2179 			sizeof(SMU72_Discrete_MCRegisterSet) *
2180 			data->dpm_table.mclk_table.count,
2181 			SMC_RAM_END);
2182 }
2183 
2184 static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
2185 {
2186 	int result;
2187 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2188 
2189 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
2190 	result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
2191 	PP_ASSERT_WITH_CODE(!result,
2192 		"Failed to initialize MCRegTable for the MC register addresses !",
2193 		return result;);
2194 
2195 	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
2196 	PP_ASSERT_WITH_CODE(!result,
2197 		"Failed to initialize MCRegTable for driver state !",
2198 		return result;);
2199 
2200 	return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
2201 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
2202 }
2203 
2204 static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
2205 {
2206 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2207 	struct  phm_ppt_v1_information *table_info =
2208 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
2209 
2210 	if (table_info &&
2211 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
2212 			table_info->cac_dtp_table->usPowerTuneDataSetID)
2213 		smu_data->power_tune_defaults =
2214 				&tonga_power_tune_data_set_array
2215 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
2216 	else
2217 		smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
2218 }
2219 
2220 static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2221 {
2222 	int result;
2223 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2224 	struct tonga_smumgr *smu_data =
2225 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2226 	SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
2227 	struct phm_ppt_v1_information *table_info =
2228 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2229 
2230 	uint8_t i;
2231 	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2232 
2233 
2234 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
2235 
2236 	tonga_initialize_power_tune_defaults(hwmgr);
2237 
2238 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
2239 		tonga_populate_smc_voltage_tables(hwmgr, table);
2240 
2241 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2242 			PHM_PlatformCaps_AutomaticDCTransition))
2243 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2244 
2245 
2246 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2247 			PHM_PlatformCaps_StepVddc))
2248 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2249 
2250 	if (data->is_memory_gddr5)
2251 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2252 
2253 	i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2254 
2255 	if (i == 1 || i == 0)
2256 		table->SystemFlags |= 0x40;
2257 
2258 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
2259 		result = tonga_populate_ulv_state(hwmgr, table);
2260 		PP_ASSERT_WITH_CODE(!result,
2261 			"Failed to initialize ULV state !",
2262 			return result;);
2263 
2264 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2265 			ixCG_ULV_PARAMETER, 0x40035);
2266 	}
2267 
2268 	result = tonga_populate_smc_link_level(hwmgr, table);
2269 	PP_ASSERT_WITH_CODE(!result,
2270 		"Failed to initialize Link Level !", return result);
2271 
2272 	result = tonga_populate_all_graphic_levels(hwmgr);
2273 	PP_ASSERT_WITH_CODE(!result,
2274 		"Failed to initialize Graphics Level !", return result);
2275 
2276 	result = tonga_populate_all_memory_levels(hwmgr);
2277 	PP_ASSERT_WITH_CODE(!result,
2278 		"Failed to initialize Memory Level !", return result);
2279 
2280 	result = tonga_populate_smc_acpi_level(hwmgr, table);
2281 	PP_ASSERT_WITH_CODE(!result,
2282 		"Failed to initialize ACPI Level !", return result);
2283 
2284 	result = tonga_populate_smc_vce_level(hwmgr, table);
2285 	PP_ASSERT_WITH_CODE(!result,
2286 		"Failed to initialize VCE Level !", return result);
2287 
2288 	result = tonga_populate_smc_acp_level(hwmgr, table);
2289 	PP_ASSERT_WITH_CODE(!result,
2290 		"Failed to initialize ACP Level !", return result);
2291 
2292 	/* Since only the initial state is completely set up at this
2293 	* point (the other states are just copies of the boot state) we only
2294 	* need to populate the  ARB settings for the initial state.
2295 	*/
2296 	result = tonga_program_memory_timing_parameters(hwmgr);
2297 	PP_ASSERT_WITH_CODE(!result,
2298 		"Failed to Write ARB settings for the initial state.",
2299 		return result;);
2300 
2301 	result = tonga_populate_smc_uvd_level(hwmgr, table);
2302 	PP_ASSERT_WITH_CODE(!result,
2303 		"Failed to initialize UVD Level !", return result);
2304 
2305 	result = tonga_populate_smc_boot_level(hwmgr, table);
2306 	PP_ASSERT_WITH_CODE(!result,
2307 		"Failed to initialize Boot Level !", return result);
2308 
2309 	tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
2310 	PP_ASSERT_WITH_CODE(!result,
2311 		"Failed to populate BAPM Parameters !", return result);
2312 
2313 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2314 			PHM_PlatformCaps_ClockStretcher)) {
2315 		result = tonga_populate_clock_stretcher_data_table(hwmgr);
2316 		PP_ASSERT_WITH_CODE(!result,
2317 			"Failed to populate Clock Stretcher Data Table !",
2318 			return result;);
2319 	}
2320 	table->GraphicsVoltageChangeEnable  = 1;
2321 	table->GraphicsThermThrottleEnable  = 1;
2322 	table->GraphicsInterval = 1;
2323 	table->VoltageInterval  = 1;
2324 	table->ThermalInterval  = 1;
2325 	table->TemperatureLimitHigh =
2326 		table_info->cac_dtp_table->usTargetOperatingTemp *
2327 		SMU7_Q88_FORMAT_CONVERSION_UNIT;
2328 	table->TemperatureLimitLow =
2329 		(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2330 		SMU7_Q88_FORMAT_CONVERSION_UNIT;
2331 	table->MemoryVoltageChangeEnable  = 1;
2332 	table->MemoryInterval  = 1;
2333 	table->VoltageResponseTime  = 0;
2334 	table->PhaseResponseTime  = 0;
2335 	table->MemoryThermThrottleEnable  = 1;
2336 
2337 	/*
2338 	* Cail reads current link status and reports it as cap (we cannot
2339 	* change this due to some previous issues we had)
2340 	* SMC drops the link status to lowest level after enabling
2341 	* DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
2342 	* but this time Cail reads current link status which was set to low by
2343 	* SMC and reports it as cap to powerplay
2344 	* To avoid it, we set PCIeBootLinkLevel to highest dpm level
2345 	*/
2346 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2347 			"There must be 1 or more PCIE levels defined in PPTable.",
2348 			return -EINVAL);
2349 
2350 	table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
2351 
2352 	table->PCIeGenInterval  = 1;
2353 
2354 	result = tonga_populate_vr_config(hwmgr, table);
2355 	PP_ASSERT_WITH_CODE(!result,
2356 		"Failed to populate VRConfig setting !", return result);
2357 	data->vr_config = table->VRConfig;
2358 	table->ThermGpio  = 17;
2359 	table->SclkStepSize = 0x4000;
2360 
2361 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
2362 						&gpio_pin_assignment)) {
2363 		table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2364 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2365 			PHM_PlatformCaps_RegulatorHot);
2366 	} else {
2367 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2368 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2369 			PHM_PlatformCaps_RegulatorHot);
2370 	}
2371 
2372 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2373 						&gpio_pin_assignment)) {
2374 		table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2375 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2376 			PHM_PlatformCaps_AutomaticDCTransition);
2377 	} else {
2378 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2379 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2380 			PHM_PlatformCaps_AutomaticDCTransition);
2381 	}
2382 
2383 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2384 		PHM_PlatformCaps_Falcon_QuickTransition);
2385 
2386 	if (0) {
2387 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2388 			PHM_PlatformCaps_AutomaticDCTransition);
2389 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2390 			PHM_PlatformCaps_Falcon_QuickTransition);
2391 	}
2392 
2393 	if (atomctrl_get_pp_assign_pin(hwmgr,
2394 			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
2395 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2396 			PHM_PlatformCaps_ThermalOutGPIO);
2397 
2398 		table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2399 
2400 		table->ThermOutPolarity =
2401 			(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2402 			(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
2403 
2404 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2405 
2406 		/* if required, combine VRHot/PCC with thermal out GPIO*/
2407 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408 			PHM_PlatformCaps_RegulatorHot) &&
2409 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2410 			PHM_PlatformCaps_CombinePCCWithThermalSignal)){
2411 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2412 		}
2413 	} else {
2414 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2415 			PHM_PlatformCaps_ThermalOutGPIO);
2416 
2417 		table->ThermOutGpio = 17;
2418 		table->ThermOutPolarity = 1;
2419 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2420 	}
2421 
2422 	for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
2423 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2424 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2425 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2426 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2427 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2428 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2429 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2430 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2431 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2432 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2433 
2434 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2435 	result = smu7_copy_bytes_to_smc(
2436 			hwmgr,
2437 			smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
2438 			(uint8_t *)&(table->SystemFlags),
2439 			sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
2440 			SMC_RAM_END);
2441 
2442 	PP_ASSERT_WITH_CODE(!result,
2443 		"Failed to upload dpm data to SMC memory !", return result;);
2444 
2445 	result = tonga_init_arb_table_index(hwmgr);
2446 	PP_ASSERT_WITH_CODE(!result,
2447 			"Failed to upload arb data to SMC memory !", return result);
2448 
2449 	tonga_populate_pm_fuses(hwmgr);
2450 	PP_ASSERT_WITH_CODE((!result),
2451 		"Failed to populate initialize pm fuses !", return result);
2452 
2453 	result = tonga_populate_initial_mc_reg_table(hwmgr);
2454 	PP_ASSERT_WITH_CODE((!result),
2455 		"Failed to populate initialize MC Reg table !", return result);
2456 
2457 	return 0;
2458 }
2459 
2460 static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2461 {
2462 	struct tonga_smumgr *smu_data =
2463 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2464 	SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2465 	uint32_t duty100;
2466 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2467 	uint16_t fdo_min, slope1, slope2;
2468 	uint32_t reference_clock;
2469 	int res;
2470 	uint64_t tmp64;
2471 
2472 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2473 					PHM_PlatformCaps_MicrocodeFanControl))
2474 		return 0;
2475 
2476 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2477 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2478 			PHM_PlatformCaps_MicrocodeFanControl);
2479 		return 0;
2480 	}
2481 
2482 	if (0 == smu_data->smu7_data.fan_table_start) {
2483 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2484 					PHM_PlatformCaps_MicrocodeFanControl);
2485 		return 0;
2486 	}
2487 
2488 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
2489 						CGS_IND_REG__SMC,
2490 						CG_FDO_CTRL1, FMAX_DUTY100);
2491 
2492 	if (0 == duty100) {
2493 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2494 				PHM_PlatformCaps_MicrocodeFanControl);
2495 		return 0;
2496 	}
2497 
2498 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2499 	do_div(tmp64, 10000);
2500 	fdo_min = (uint16_t)tmp64;
2501 
2502 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2503 		   hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2504 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2505 		  hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2506 
2507 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2508 		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2509 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2510 		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2511 
2512 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2513 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2514 
2515 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2516 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2517 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2518 
2519 	fan_table.Slope1 = cpu_to_be16(slope1);
2520 	fan_table.Slope2 = cpu_to_be16(slope2);
2521 
2522 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2523 
2524 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2525 
2526 	fan_table.HystUp = cpu_to_be16(1);
2527 
2528 	fan_table.HystSlope = cpu_to_be16(1);
2529 
2530 	fan_table.TempRespLim = cpu_to_be16(5);
2531 
2532 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2533 
2534 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2535 
2536 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2537 
2538 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2539 
2540 	fan_table.FanControl_GL_Flag = 1;
2541 
2542 	res = smu7_copy_bytes_to_smc(hwmgr,
2543 					smu_data->smu7_data.fan_table_start,
2544 					(uint8_t *)&fan_table,
2545 					(uint32_t)sizeof(fan_table),
2546 					SMC_RAM_END);
2547 
2548 	return res;
2549 }
2550 
2551 
2552 static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2553 {
2554 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2555 
2556 	if (data->need_update_smu7_dpm_table &
2557 		(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK))
2558 		return tonga_program_memory_timing_parameters(hwmgr);
2559 
2560 	return 0;
2561 }
2562 
2563 static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2564 {
2565 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2566 	struct tonga_smumgr *smu_data =
2567 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2568 
2569 	int result = 0;
2570 	uint32_t low_sclk_interrupt_threshold = 0;
2571 
2572 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2573 			PHM_PlatformCaps_SclkThrottleLowNotification)
2574 		&& (data->low_sclk_interrupt_threshold != 0)) {
2575 		low_sclk_interrupt_threshold =
2576 				data->low_sclk_interrupt_threshold;
2577 
2578 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2579 
2580 		result = smu7_copy_bytes_to_smc(
2581 				hwmgr,
2582 				smu_data->smu7_data.dpm_table_start +
2583 				offsetof(SMU72_Discrete_DpmTable,
2584 					LowSclkInterruptThreshold),
2585 				(uint8_t *)&low_sclk_interrupt_threshold,
2586 				sizeof(uint32_t),
2587 				SMC_RAM_END);
2588 	}
2589 
2590 	result = tonga_update_and_upload_mc_reg_table(hwmgr);
2591 
2592 	PP_ASSERT_WITH_CODE((!result),
2593 				"Failed to upload MC reg table !",
2594 				return result);
2595 
2596 	result = tonga_program_mem_timing_parameters(hwmgr);
2597 	PP_ASSERT_WITH_CODE((result == 0),
2598 			"Failed to program memory timing parameters !",
2599 			);
2600 
2601 	return result;
2602 }
2603 
2604 static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
2605 {
2606 	switch (type) {
2607 	case SMU_SoftRegisters:
2608 		switch (member) {
2609 		case HandshakeDisables:
2610 			return offsetof(SMU72_SoftRegisters, HandshakeDisables);
2611 		case VoltageChangeTimeout:
2612 			return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
2613 		case AverageGraphicsActivity:
2614 			return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
2615 		case AverageMemoryActivity:
2616 			return offsetof(SMU72_SoftRegisters, AverageMemoryActivity);
2617 		case PreVBlankGap:
2618 			return offsetof(SMU72_SoftRegisters, PreVBlankGap);
2619 		case VBlankTimeout:
2620 			return offsetof(SMU72_SoftRegisters, VBlankTimeout);
2621 		case UcodeLoadStatus:
2622 			return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
2623 		case DRAM_LOG_ADDR_H:
2624 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H);
2625 		case DRAM_LOG_ADDR_L:
2626 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L);
2627 		case DRAM_LOG_PHY_ADDR_H:
2628 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2629 		case DRAM_LOG_PHY_ADDR_L:
2630 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2631 		case DRAM_LOG_BUFF_SIZE:
2632 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2633 		}
2634 		break;
2635 	case SMU_Discrete_DpmTable:
2636 		switch (member) {
2637 		case UvdBootLevel:
2638 			return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2639 		case VceBootLevel:
2640 			return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2641 		case LowSclkInterruptThreshold:
2642 			return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
2643 		}
2644 		break;
2645 	}
2646 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2647 	return 0;
2648 }
2649 
2650 static uint32_t tonga_get_mac_definition(uint32_t value)
2651 {
2652 	switch (value) {
2653 	case SMU_MAX_LEVELS_GRAPHICS:
2654 		return SMU72_MAX_LEVELS_GRAPHICS;
2655 	case SMU_MAX_LEVELS_MEMORY:
2656 		return SMU72_MAX_LEVELS_MEMORY;
2657 	case SMU_MAX_LEVELS_LINK:
2658 		return SMU72_MAX_LEVELS_LINK;
2659 	case SMU_MAX_ENTRIES_SMIO:
2660 		return SMU72_MAX_ENTRIES_SMIO;
2661 	case SMU_MAX_LEVELS_VDDC:
2662 		return SMU72_MAX_LEVELS_VDDC;
2663 	case SMU_MAX_LEVELS_VDDGFX:
2664 		return SMU72_MAX_LEVELS_VDDGFX;
2665 	case SMU_MAX_LEVELS_VDDCI:
2666 		return SMU72_MAX_LEVELS_VDDCI;
2667 	case SMU_MAX_LEVELS_MVDD:
2668 		return SMU72_MAX_LEVELS_MVDD;
2669 	}
2670 	pr_warn("can't get the mac value %x\n", value);
2671 
2672 	return 0;
2673 }
2674 
2675 static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2676 {
2677 	struct tonga_smumgr *smu_data =
2678 				(struct tonga_smumgr *)(hwmgr->smu_backend);
2679 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2680 	struct phm_ppt_v1_information *table_info =
2681 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2682 
2683 	smu_data->smc_state_table.UvdBootLevel = 0;
2684 	if (table_info->mm_dep_table->count > 0)
2685 		smu_data->smc_state_table.UvdBootLevel =
2686 				(uint8_t) (table_info->mm_dep_table->count - 1);
2687 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2688 				offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2689 	mm_boot_level_offset /= 4;
2690 	mm_boot_level_offset *= 4;
2691 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2692 			CGS_IND_REG__SMC, mm_boot_level_offset);
2693 	mm_boot_level_value &= 0x00FFFFFF;
2694 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2695 	cgs_write_ind_register(hwmgr->device,
2696 				CGS_IND_REG__SMC,
2697 				mm_boot_level_offset, mm_boot_level_value);
2698 
2699 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2700 			PHM_PlatformCaps_UVDDPM) ||
2701 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2702 			PHM_PlatformCaps_StablePState))
2703 		smum_send_msg_to_smc_with_parameter(hwmgr,
2704 				PPSMC_MSG_UVDDPM_SetEnabledMask,
2705 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2706 				NULL);
2707 	return 0;
2708 }
2709 
2710 static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2711 {
2712 	struct tonga_smumgr *smu_data =
2713 				(struct tonga_smumgr *)(hwmgr->smu_backend);
2714 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2715 	struct phm_ppt_v1_information *table_info =
2716 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2717 
2718 
2719 	smu_data->smc_state_table.VceBootLevel =
2720 		(uint8_t) (table_info->mm_dep_table->count - 1);
2721 
2722 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2723 					offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2724 	mm_boot_level_offset /= 4;
2725 	mm_boot_level_offset *= 4;
2726 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2727 			CGS_IND_REG__SMC, mm_boot_level_offset);
2728 	mm_boot_level_value &= 0xFF00FFFF;
2729 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2730 	cgs_write_ind_register(hwmgr->device,
2731 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2732 
2733 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2734 					PHM_PlatformCaps_StablePState))
2735 		smum_send_msg_to_smc_with_parameter(hwmgr,
2736 				PPSMC_MSG_VCEDPM_SetEnabledMask,
2737 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2738 				NULL);
2739 	return 0;
2740 }
2741 
2742 static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2743 {
2744 	switch (type) {
2745 	case SMU_UVD_TABLE:
2746 		tonga_update_uvd_smc_table(hwmgr);
2747 		break;
2748 	case SMU_VCE_TABLE:
2749 		tonga_update_vce_smc_table(hwmgr);
2750 		break;
2751 	default:
2752 		break;
2753 	}
2754 	return 0;
2755 }
2756 
2757 static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
2758 {
2759 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2760 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2761 
2762 	uint32_t tmp;
2763 	int result;
2764 	bool error = false;
2765 
2766 	result = smu7_read_smc_sram_dword(hwmgr,
2767 				SMU72_FIRMWARE_HEADER_LOCATION +
2768 				offsetof(SMU72_Firmware_Header, DpmTable),
2769 				&tmp, SMC_RAM_END);
2770 
2771 	if (!result)
2772 		smu_data->smu7_data.dpm_table_start = tmp;
2773 
2774 	error |= (result != 0);
2775 
2776 	result = smu7_read_smc_sram_dword(hwmgr,
2777 				SMU72_FIRMWARE_HEADER_LOCATION +
2778 				offsetof(SMU72_Firmware_Header, SoftRegisters),
2779 				&tmp, SMC_RAM_END);
2780 
2781 	if (!result) {
2782 		data->soft_regs_start = tmp;
2783 		smu_data->smu7_data.soft_regs_start = tmp;
2784 	}
2785 
2786 	error |= (result != 0);
2787 
2788 
2789 	result = smu7_read_smc_sram_dword(hwmgr,
2790 				SMU72_FIRMWARE_HEADER_LOCATION +
2791 				offsetof(SMU72_Firmware_Header, mcRegisterTable),
2792 				&tmp, SMC_RAM_END);
2793 
2794 	if (!result)
2795 		smu_data->smu7_data.mc_reg_table_start = tmp;
2796 
2797 	result = smu7_read_smc_sram_dword(hwmgr,
2798 				SMU72_FIRMWARE_HEADER_LOCATION +
2799 				offsetof(SMU72_Firmware_Header, FanTable),
2800 				&tmp, SMC_RAM_END);
2801 
2802 	if (!result)
2803 		smu_data->smu7_data.fan_table_start = tmp;
2804 
2805 	error |= (result != 0);
2806 
2807 	result = smu7_read_smc_sram_dword(hwmgr,
2808 				SMU72_FIRMWARE_HEADER_LOCATION +
2809 				offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
2810 				&tmp, SMC_RAM_END);
2811 
2812 	if (!result)
2813 		smu_data->smu7_data.arb_table_start = tmp;
2814 
2815 	error |= (result != 0);
2816 
2817 	result = smu7_read_smc_sram_dword(hwmgr,
2818 				SMU72_FIRMWARE_HEADER_LOCATION +
2819 				offsetof(SMU72_Firmware_Header, Version),
2820 				&tmp, SMC_RAM_END);
2821 
2822 	if (!result)
2823 		hwmgr->microcode_version_info.SMC = tmp;
2824 
2825 	error |= (result != 0);
2826 
2827 	return error ? 1 : 0;
2828 }
2829 
2830 /*---------------------------MC----------------------------*/
2831 
2832 static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2833 {
2834 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2835 }
2836 
2837 static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2838 {
2839 	bool result = true;
2840 
2841 	switch (in_reg) {
2842 	case  mmMC_SEQ_RAS_TIMING:
2843 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2844 		break;
2845 
2846 	case  mmMC_SEQ_DLL_STBY:
2847 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2848 		break;
2849 
2850 	case  mmMC_SEQ_G5PDX_CMD0:
2851 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2852 		break;
2853 
2854 	case  mmMC_SEQ_G5PDX_CMD1:
2855 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2856 		break;
2857 
2858 	case  mmMC_SEQ_G5PDX_CTRL:
2859 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2860 		break;
2861 
2862 	case mmMC_SEQ_CAS_TIMING:
2863 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2864 		break;
2865 
2866 	case mmMC_SEQ_MISC_TIMING:
2867 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2868 		break;
2869 
2870 	case mmMC_SEQ_MISC_TIMING2:
2871 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2872 		break;
2873 
2874 	case mmMC_SEQ_PMG_DVS_CMD:
2875 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2876 		break;
2877 
2878 	case mmMC_SEQ_PMG_DVS_CTL:
2879 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2880 		break;
2881 
2882 	case mmMC_SEQ_RD_CTL_D0:
2883 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2884 		break;
2885 
2886 	case mmMC_SEQ_RD_CTL_D1:
2887 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2888 		break;
2889 
2890 	case mmMC_SEQ_WR_CTL_D0:
2891 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2892 		break;
2893 
2894 	case mmMC_SEQ_WR_CTL_D1:
2895 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2896 		break;
2897 
2898 	case mmMC_PMG_CMD_EMRS:
2899 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2900 		break;
2901 
2902 	case mmMC_PMG_CMD_MRS:
2903 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2904 		break;
2905 
2906 	case mmMC_PMG_CMD_MRS1:
2907 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2908 		break;
2909 
2910 	case mmMC_SEQ_PMG_TIMING:
2911 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2912 		break;
2913 
2914 	case mmMC_PMG_CMD_MRS2:
2915 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2916 		break;
2917 
2918 	case mmMC_SEQ_WR_CTL_2:
2919 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2920 		break;
2921 
2922 	default:
2923 		result = false;
2924 		break;
2925 	}
2926 
2927 	return result;
2928 }
2929 
2930 static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
2931 {
2932 	uint32_t i;
2933 	uint16_t address;
2934 
2935 	for (i = 0; i < table->last; i++) {
2936 		table->mc_reg_address[i].s0 =
2937 			tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
2938 							&address) ?
2939 							address :
2940 						 table->mc_reg_address[i].s1;
2941 	}
2942 	return 0;
2943 }
2944 
2945 static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2946 					struct tonga_mc_reg_table *ni_table)
2947 {
2948 	uint8_t i, j;
2949 
2950 	PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2951 		"Invalid VramInfo table.", return -EINVAL);
2952 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2953 		"Invalid VramInfo table.", return -EINVAL);
2954 
2955 	for (i = 0; i < table->last; i++)
2956 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2957 
2958 	ni_table->last = table->last;
2959 
2960 	for (i = 0; i < table->num_entries; i++) {
2961 		ni_table->mc_reg_table_entry[i].mclk_max =
2962 			table->mc_reg_table_entry[i].mclk_max;
2963 		for (j = 0; j < table->last; j++) {
2964 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2965 				table->mc_reg_table_entry[i].mc_data[j];
2966 		}
2967 	}
2968 
2969 	ni_table->num_entries = table->num_entries;
2970 
2971 	return 0;
2972 }
2973 
2974 static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2975 					struct tonga_mc_reg_table *table)
2976 {
2977 	uint8_t i, j, k;
2978 	uint32_t temp_reg;
2979 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2980 
2981 	for (i = 0, j = table->last; i < table->last; i++) {
2982 		PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2983 			"Invalid VramInfo table.", return -EINVAL);
2984 
2985 		switch (table->mc_reg_address[i].s1) {
2986 
2987 		case mmMC_SEQ_MISC1:
2988 			temp_reg = cgs_read_register(hwmgr->device,
2989 							mmMC_PMG_CMD_EMRS);
2990 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2991 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2992 			for (k = 0; k < table->num_entries; k++) {
2993 				table->mc_reg_table_entry[k].mc_data[j] =
2994 					((temp_reg & 0xffff0000)) |
2995 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2996 			}
2997 			j++;
2998 
2999 			PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3000 				"Invalid VramInfo table.", return -EINVAL);
3001 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3002 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3003 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3004 			for (k = 0; k < table->num_entries; k++) {
3005 				table->mc_reg_table_entry[k].mc_data[j] =
3006 					(temp_reg & 0xffff0000) |
3007 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3008 
3009 				if (!data->is_memory_gddr5)
3010 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3011 			}
3012 			j++;
3013 
3014 			if (!data->is_memory_gddr5) {
3015 				PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3016 					"Invalid VramInfo table.", return -EINVAL);
3017 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3018 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3019 				for (k = 0; k < table->num_entries; k++)
3020 					table->mc_reg_table_entry[k].mc_data[j] =
3021 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3022 				j++;
3023 			}
3024 
3025 			break;
3026 
3027 		case mmMC_SEQ_RESERVE_M:
3028 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3029 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3030 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3031 			for (k = 0; k < table->num_entries; k++) {
3032 				table->mc_reg_table_entry[k].mc_data[j] =
3033 					(temp_reg & 0xffff0000) |
3034 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3035 			}
3036 			j++;
3037 			break;
3038 
3039 		default:
3040 			break;
3041 		}
3042 
3043 	}
3044 
3045 	table->last = j;
3046 
3047 	return 0;
3048 }
3049 
3050 static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
3051 {
3052 	uint8_t i, j;
3053 
3054 	for (i = 0; i < table->last; i++) {
3055 		for (j = 1; j < table->num_entries; j++) {
3056 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3057 				table->mc_reg_table_entry[j].mc_data[i]) {
3058 				table->validflag |= (1<<i);
3059 				break;
3060 			}
3061 		}
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3068 {
3069 	int result;
3070 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
3071 	pp_atomctrl_mc_reg_table *table;
3072 	struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
3073 	uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3074 
3075 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3076 
3077 	if (table == NULL)
3078 		return -ENOMEM;
3079 
3080 	/* Program additional LP registers that are no longer programmed by VBIOS */
3081 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
3082 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
3083 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
3084 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
3085 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
3086 			cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
3087 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
3088 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
3089 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
3090 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
3091 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
3092 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
3093 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
3094 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
3095 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
3096 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
3097 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
3098 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
3099 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
3100 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
3101 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
3102 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
3103 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
3104 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
3105 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
3106 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
3107 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
3108 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
3109 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
3110 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
3111 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
3112 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
3113 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
3114 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
3115 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
3116 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
3117 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
3118 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
3119 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
3120 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
3121 
3122 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
3123 
3124 	if (!result)
3125 		result = tonga_copy_vbios_smc_reg_table(table, ni_table);
3126 
3127 	if (!result) {
3128 		tonga_set_s0_mc_reg_index(ni_table);
3129 		result = tonga_set_mc_special_registers(hwmgr, ni_table);
3130 	}
3131 
3132 	if (!result)
3133 		tonga_set_valid_flag(ni_table);
3134 
3135 	kfree(table);
3136 
3137 	return result;
3138 }
3139 
3140 static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
3141 {
3142 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
3143 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
3144 			? true : false;
3145 }
3146 
3147 static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr,
3148 				void *profile_setting)
3149 {
3150 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3151 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
3152 			(hwmgr->smu_backend);
3153 	struct profile_mode_setting *setting;
3154 	struct SMU72_Discrete_GraphicsLevel *levels =
3155 			smu_data->smc_state_table.GraphicsLevel;
3156 	uint32_t array = smu_data->smu7_data.dpm_table_start +
3157 			offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
3158 
3159 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
3160 			offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
3161 	struct SMU72_Discrete_MemoryLevel *mclk_levels =
3162 			smu_data->smc_state_table.MemoryLevel;
3163 	uint32_t i;
3164 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
3165 
3166 	if (profile_setting == NULL)
3167 		return -EINVAL;
3168 
3169 	setting = (struct profile_mode_setting *)profile_setting;
3170 
3171 	if (setting->bupdate_sclk) {
3172 		if (!data->sclk_dpm_key_disabled)
3173 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
3174 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
3175 			if (levels[i].ActivityLevel !=
3176 				cpu_to_be16(setting->sclk_activity)) {
3177 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
3178 
3179 				clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3180 						+ offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel);
3181 				offset = clk_activity_offset & ~0x3;
3182 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3183 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
3184 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3185 
3186 			}
3187 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
3188 				levels[i].DownHyst != setting->sclk_down_hyst) {
3189 				levels[i].UpHyst = setting->sclk_up_hyst;
3190 				levels[i].DownHyst = setting->sclk_down_hyst;
3191 				up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3192 						+ offsetof(SMU72_Discrete_GraphicsLevel, UpHyst);
3193 				down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3194 						+ offsetof(SMU72_Discrete_GraphicsLevel, DownHyst);
3195 				offset = up_hyst_offset & ~0x3;
3196 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3197 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
3198 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
3199 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3200 			}
3201 		}
3202 		if (!data->sclk_dpm_key_disabled)
3203 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
3204 	}
3205 
3206 	if (setting->bupdate_mclk) {
3207 		if (!data->mclk_dpm_key_disabled)
3208 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
3209 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
3210 			if (mclk_levels[i].ActivityLevel !=
3211 				cpu_to_be16(setting->mclk_activity)) {
3212 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
3213 
3214 				clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3215 						+ offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel);
3216 				offset = clk_activity_offset & ~0x3;
3217 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3218 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
3219 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3220 
3221 			}
3222 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
3223 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
3224 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
3225 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
3226 				up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3227 						+ offsetof(SMU72_Discrete_MemoryLevel, UpHyst);
3228 				down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3229 						+ offsetof(SMU72_Discrete_MemoryLevel, DownHyst);
3230 				offset = up_hyst_offset & ~0x3;
3231 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3232 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
3233 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
3234 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3235 			}
3236 		}
3237 		if (!data->mclk_dpm_key_disabled)
3238 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
3239 	}
3240 	return 0;
3241 }
3242 
3243 const struct pp_smumgr_func tonga_smu_funcs = {
3244 	.name = "tonga_smu",
3245 	.smu_init = &tonga_smu_init,
3246 	.smu_fini = &smu7_smu_fini,
3247 	.start_smu = &tonga_start_smu,
3248 	.check_fw_load_finish = &smu7_check_fw_load_finish,
3249 	.request_smu_load_fw = &smu7_request_smu_load_fw,
3250 	.request_smu_load_specific_fw = NULL,
3251 	.send_msg_to_smc = &smu7_send_msg_to_smc,
3252 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
3253 	.get_argument = smu7_get_argument,
3254 	.download_pptable_settings = NULL,
3255 	.upload_pptable_settings = NULL,
3256 	.update_smc_table = tonga_update_smc_table,
3257 	.get_offsetof = tonga_get_offsetof,
3258 	.process_firmware_header = tonga_process_firmware_header,
3259 	.init_smc_table = tonga_init_smc_table,
3260 	.update_sclk_threshold = tonga_update_sclk_threshold,
3261 	.thermal_setup_fan_table = tonga_thermal_setup_fan_table,
3262 	.populate_all_graphic_levels = tonga_populate_all_graphic_levels,
3263 	.populate_all_memory_levels = tonga_populate_all_memory_levels,
3264 	.get_mac_definition = tonga_get_mac_definition,
3265 	.initialize_mc_reg_table = tonga_initialize_mc_reg_table,
3266 	.is_dpm_running = tonga_is_dpm_running,
3267 	.update_dpm_settings = tonga_update_dpm_settings,
3268 };
3269