1 /* 2 * Copyright 2017 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include "linux/delay.h" 26 #include <linux/types.h> 27 #include <linux/pci.h> 28 29 #include "smumgr.h" 30 #include "pp_debug.h" 31 #include "ci_smumgr.h" 32 #include "ppsmc.h" 33 #include "smu7_hwmgr.h" 34 #include "hardwaremanager.h" 35 #include "ppatomctrl.h" 36 #include "cgs_common.h" 37 #include "atombios.h" 38 #include "pppcielanes.h" 39 #include "smu7_smumgr.h" 40 41 #include "smu/smu_7_0_1_d.h" 42 #include "smu/smu_7_0_1_sh_mask.h" 43 44 #include "dce/dce_8_0_d.h" 45 #include "dce/dce_8_0_sh_mask.h" 46 47 #include "bif/bif_4_1_d.h" 48 #include "bif/bif_4_1_sh_mask.h" 49 50 #include "gca/gfx_7_2_d.h" 51 #include "gca/gfx_7_2_sh_mask.h" 52 53 #include "gmc/gmc_7_1_d.h" 54 #include "gmc/gmc_7_1_sh_mask.h" 55 56 #include "processpptables.h" 57 58 #define MC_CG_ARB_FREQ_F0 0x0a 59 #define MC_CG_ARB_FREQ_F1 0x0b 60 #define MC_CG_ARB_FREQ_F2 0x0c 61 #define MC_CG_ARB_FREQ_F3 0x0d 62 63 #define SMC_RAM_END 0x40000 64 65 #define CISLAND_MINIMUM_ENGINE_CLOCK 800 66 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5 67 68 static const struct ci_pt_defaults defaults_hawaii_xt = { 69 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000, 70 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, 71 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } 72 }; 73 74 static const struct ci_pt_defaults defaults_hawaii_pro = { 75 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062, 76 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, 77 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } 78 }; 79 80 static const struct ci_pt_defaults defaults_bonaire_xt = { 81 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, 82 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, 83 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } 84 }; 85 86 87 static const struct ci_pt_defaults defaults_saturn_xt = { 88 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000, 89 { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D }, 90 { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 } 91 }; 92 93 94 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr, 95 uint32_t smc_addr, uint32_t limit) 96 { 97 if ((0 != (3 & smc_addr)) 98 || ((smc_addr + 3) >= limit)) { 99 pr_err("smc_addr invalid \n"); 100 return -EINVAL; 101 } 102 103 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr); 104 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); 105 return 0; 106 } 107 108 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address, 109 const uint8_t *src, uint32_t byte_count, uint32_t limit) 110 { 111 int result; 112 uint32_t data = 0; 113 uint32_t original_data; 114 uint32_t addr = 0; 115 uint32_t extra_shift; 116 117 if ((3 & smc_start_address) 118 || ((smc_start_address + byte_count) >= limit)) { 119 pr_err("smc_start_address invalid \n"); 120 return -EINVAL; 121 } 122 123 addr = smc_start_address; 124 125 while (byte_count >= 4) { 126 /* Bytes are written into the SMC address space with the MSB first. */ 127 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; 128 129 result = ci_set_smc_sram_address(hwmgr, addr, limit); 130 131 if (0 != result) 132 return result; 133 134 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); 135 136 src += 4; 137 byte_count -= 4; 138 addr += 4; 139 } 140 141 if (0 != byte_count) { 142 143 data = 0; 144 145 result = ci_set_smc_sram_address(hwmgr, addr, limit); 146 147 if (0 != result) 148 return result; 149 150 151 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); 152 153 extra_shift = 8 * (4 - byte_count); 154 155 while (byte_count > 0) { 156 /* Bytes are written into the SMC addres space with the MSB first. */ 157 data = (0x100 * data) + *src++; 158 byte_count--; 159 } 160 161 data <<= extra_shift; 162 163 data |= (original_data & ~((~0UL) << extra_shift)); 164 165 result = ci_set_smc_sram_address(hwmgr, addr, limit); 166 167 if (0 != result) 168 return result; 169 170 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); 171 } 172 173 return 0; 174 } 175 176 177 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr) 178 { 179 static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 }; 180 181 ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1); 182 183 return 0; 184 } 185 186 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr) 187 { 188 return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 189 CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable)) 190 && (0x20100 <= cgs_read_ind_register(hwmgr->device, 191 CGS_IND_REG__SMC, ixSMC_PC_C))); 192 } 193 194 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr, 195 uint32_t *value, uint32_t limit) 196 { 197 int result; 198 199 result = ci_set_smc_sram_address(hwmgr, smc_addr, limit); 200 201 if (result) 202 return result; 203 204 *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); 205 return 0; 206 } 207 208 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg) 209 { 210 struct amdgpu_device *adev = hwmgr->adev; 211 int ret; 212 213 cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0); 214 cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg); 215 216 PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0); 217 218 ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP); 219 220 if (ret != 1) 221 dev_info(adev->dev, 222 "failed to send message %x ret is %d\n", msg,ret); 223 224 return 0; 225 } 226 227 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr, 228 uint16_t msg, uint32_t parameter) 229 { 230 cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter); 231 return ci_send_msg_to_smc(hwmgr, msg); 232 } 233 234 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) 235 { 236 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 237 struct amdgpu_device *adev = hwmgr->adev; 238 uint32_t dev_id; 239 240 dev_id = adev->pdev->device; 241 242 switch (dev_id) { 243 case 0x67BA: 244 case 0x67B1: 245 smu_data->power_tune_defaults = &defaults_hawaii_pro; 246 break; 247 case 0x67B8: 248 case 0x66B0: 249 smu_data->power_tune_defaults = &defaults_hawaii_xt; 250 break; 251 case 0x6640: 252 case 0x6641: 253 case 0x6646: 254 case 0x6647: 255 smu_data->power_tune_defaults = &defaults_saturn_xt; 256 break; 257 case 0x6649: 258 case 0x6650: 259 case 0x6651: 260 case 0x6658: 261 case 0x665C: 262 case 0x665D: 263 case 0x67A0: 264 case 0x67A1: 265 case 0x67A2: 266 case 0x67A8: 267 case 0x67A9: 268 case 0x67AA: 269 case 0x67B9: 270 case 0x67BE: 271 default: 272 smu_data->power_tune_defaults = &defaults_bonaire_xt; 273 break; 274 } 275 } 276 277 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, 278 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, 279 uint32_t clock, uint32_t *vol) 280 { 281 uint32_t i = 0; 282 283 if (allowed_clock_voltage_table->count == 0) 284 return -EINVAL; 285 286 for (i = 0; i < allowed_clock_voltage_table->count; i++) { 287 if (allowed_clock_voltage_table->entries[i].clk >= clock) { 288 *vol = allowed_clock_voltage_table->entries[i].v; 289 return 0; 290 } 291 } 292 293 *vol = allowed_clock_voltage_table->entries[i - 1].v; 294 return 0; 295 } 296 297 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr, 298 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk) 299 { 300 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 301 struct pp_atomctrl_clock_dividers_vi dividers; 302 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 303 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 304 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 305 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 306 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 307 uint32_t ref_clock; 308 uint32_t ref_divider; 309 uint32_t fbdiv; 310 int result; 311 312 /* get the engine clock dividers for this clock value */ 313 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); 314 315 PP_ASSERT_WITH_CODE(result == 0, 316 "Error retrieving Engine Clock dividers from VBIOS.", 317 return result); 318 319 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ 320 ref_clock = atomctrl_get_reference_clock(hwmgr); 321 ref_divider = 1 + dividers.uc_pll_ref_div; 322 323 /* low 14 bits is fraction and high 12 bits is divider */ 324 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; 325 326 /* SPLL_FUNC_CNTL setup */ 327 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 328 SPLL_REF_DIV, dividers.uc_pll_ref_div); 329 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 330 SPLL_PDIV_A, dividers.uc_pll_post_div); 331 332 /* SPLL_FUNC_CNTL_3 setup*/ 333 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, 334 SPLL_FB_DIV, fbdiv); 335 336 /* set to use fractional accumulation*/ 337 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, 338 SPLL_DITHEN, 1); 339 340 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 341 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { 342 struct pp_atomctrl_internal_ss_info ss_info; 343 uint32_t vco_freq = clock * dividers.uc_pll_post_div; 344 345 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, 346 vco_freq, &ss_info)) { 347 uint32_t clk_s = ref_clock * 5 / 348 (ref_divider * ss_info.speed_spectrum_rate); 349 uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage * 350 fbdiv / (clk_s * 10000); 351 352 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, 353 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); 354 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, 355 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); 356 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, 357 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); 358 } 359 } 360 361 sclk->SclkFrequency = clock; 362 sclk->CgSpllFuncCntl3 = spll_func_cntl_3; 363 sclk->CgSpllFuncCntl4 = spll_func_cntl_4; 364 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; 365 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; 366 sclk->SclkDid = (uint8_t)dividers.pll_post_divider; 367 368 return 0; 369 } 370 371 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, 372 const struct phm_phase_shedding_limits_table *pl, 373 uint32_t sclk, uint32_t *p_shed) 374 { 375 unsigned int i; 376 377 /* use the minimum phase shedding */ 378 *p_shed = 1; 379 380 for (i = 0; i < pl->count; i++) { 381 if (sclk < pl->entries[i].Sclk) { 382 *p_shed = i; 383 break; 384 } 385 } 386 } 387 388 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock, 389 uint32_t clock_insr) 390 { 391 uint8_t i; 392 uint32_t temp; 393 uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK); 394 395 if (clock < min) { 396 pr_info("Engine clock can't satisfy stutter requirement!\n"); 397 return 0; 398 } 399 for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { 400 temp = clock >> i; 401 402 if (temp >= min || i == 0) 403 break; 404 } 405 return i; 406 } 407 408 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr, 409 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level) 410 { 411 int result; 412 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 413 414 415 result = ci_calculate_sclk_params(hwmgr, clock, level); 416 417 /* populate graphics levels */ 418 result = ci_get_dependency_volt_by_clk(hwmgr, 419 hwmgr->dyn_state.vddc_dependency_on_sclk, clock, 420 (uint32_t *)(&level->MinVddc)); 421 if (result) { 422 pr_err("vdd_dep_on_sclk table is NULL\n"); 423 return result; 424 } 425 426 level->SclkFrequency = clock; 427 level->MinVddcPhases = 1; 428 429 if (data->vddc_phase_shed_control) 430 ci_populate_phase_value_based_on_sclk(hwmgr, 431 hwmgr->dyn_state.vddc_phase_shed_limits_table, 432 clock, 433 &level->MinVddcPhases); 434 435 level->ActivityLevel = data->current_profile_setting.sclk_activity; 436 level->CcPwrDynRm = 0; 437 level->CcPwrDynRm1 = 0; 438 level->EnabledForActivity = 0; 439 /* this level can be used for throttling.*/ 440 level->EnabledForThrottle = 1; 441 level->UpH = data->current_profile_setting.sclk_up_hyst; 442 level->DownH = data->current_profile_setting.sclk_down_hyst; 443 level->VoltageDownH = 0; 444 level->PowerThrottle = 0; 445 446 447 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 448 PHM_PlatformCaps_SclkDeepSleep)) 449 level->DeepSleepDivId = 450 ci_get_sleep_divider_id_from_clock(clock, 451 CISLAND_MINIMUM_ENGINE_CLOCK); 452 453 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ 454 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 455 456 if (0 == result) { 457 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE); 458 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases); 459 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); 460 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); 461 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); 462 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); 463 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); 464 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); 465 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); 466 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); 467 } 468 469 return result; 470 } 471 472 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 473 { 474 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 475 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 476 struct smu7_dpm_table *dpm_table = &data->dpm_table; 477 int result = 0; 478 uint32_t array = smu_data->dpm_table_start + 479 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); 480 uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) * 481 SMU7_MAX_LEVELS_GRAPHICS; 482 struct SMU7_Discrete_GraphicsLevel *levels = 483 smu_data->smc_state_table.GraphicsLevel; 484 uint32_t i; 485 486 for (i = 0; i < dpm_table->sclk_table.count; i++) { 487 result = ci_populate_single_graphic_level(hwmgr, 488 dpm_table->sclk_table.dpm_levels[i].value, 489 &levels[i]); 490 if (result) 491 return result; 492 if (i > 1) 493 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; 494 if (i == (dpm_table->sclk_table.count - 1)) 495 smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark = 496 PPSMC_DISPLAY_WATERMARK_HIGH; 497 } 498 499 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; 500 501 smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count; 502 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 503 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); 504 505 result = ci_copy_bytes_to_smc(hwmgr, array, 506 (u8 *)levels, array_size, 507 SMC_RAM_END); 508 509 return result; 510 511 } 512 513 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr) 514 { 515 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 516 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; 517 518 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; 519 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; 520 smu_data->power_tune_table.SviLoadLineTrimVddC = 3; 521 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; 522 523 return 0; 524 } 525 526 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr) 527 { 528 uint16_t tdc_limit; 529 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 530 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; 531 532 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); 533 smu_data->power_tune_table.TDC_VDDC_PkgLimit = 534 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); 535 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = 536 defaults->tdc_vddc_throttle_release_limit_perc; 537 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; 538 539 return 0; 540 } 541 542 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 543 { 544 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 545 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; 546 uint32_t temp; 547 548 if (ci_read_smc_sram_dword(hwmgr, 549 fuse_table_offset + 550 offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl), 551 (uint32_t *)&temp, SMC_RAM_END)) 552 PP_ASSERT_WITH_CODE(false, 553 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", 554 return -EINVAL); 555 else 556 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; 557 558 return 0; 559 } 560 561 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 562 { 563 uint16_t tmp; 564 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 565 566 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) 567 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) 568 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity; 569 else 570 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; 571 572 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp); 573 574 return 0; 575 } 576 577 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) 578 { 579 int i; 580 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 581 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; 582 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; 583 uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2; 584 585 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, 586 "The CAC Leakage table does not exist!", return -EINVAL); 587 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, 588 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); 589 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, 590 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); 591 592 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { 593 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { 594 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); 595 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); 596 hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3); 597 } else { 598 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc); 599 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage); 600 } 601 } 602 603 return 0; 604 } 605 606 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr) 607 { 608 int i; 609 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 610 uint8_t *vid = smu_data->power_tune_table.VddCVid; 611 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 612 613 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, 614 "There should never be more than 8 entries for VddcVid!!!", 615 return -EINVAL); 616 617 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) 618 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); 619 620 return 0; 621 } 622 623 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr) 624 { 625 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 626 u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; 627 u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; 628 int i, min, max; 629 630 min = max = hi_vid[0]; 631 for (i = 0; i < 8; i++) { 632 if (0 != hi_vid[i]) { 633 if (min > hi_vid[i]) 634 min = hi_vid[i]; 635 if (max < hi_vid[i]) 636 max = hi_vid[i]; 637 } 638 639 if (0 != lo_vid[i]) { 640 if (min > lo_vid[i]) 641 min = lo_vid[i]; 642 if (max < lo_vid[i]) 643 max = lo_vid[i]; 644 } 645 } 646 647 if ((min == 0) || (max == 0)) 648 return -EINVAL; 649 smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max; 650 smu_data->power_tune_table.GnbLPMLMinVid = (u8)min; 651 652 return 0; 653 } 654 655 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) 656 { 657 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 658 uint16_t HiSidd; 659 uint16_t LoSidd; 660 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; 661 662 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); 663 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); 664 665 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = 666 CONVERT_FROM_HOST_TO_SMC_US(HiSidd); 667 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = 668 CONVERT_FROM_HOST_TO_SMC_US(LoSidd); 669 670 return 0; 671 } 672 673 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr) 674 { 675 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 676 uint32_t pm_fuse_table_offset; 677 int ret = 0; 678 679 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 680 PHM_PlatformCaps_PowerContainment)) { 681 if (ci_read_smc_sram_dword(hwmgr, 682 SMU7_FIRMWARE_HEADER_LOCATION + 683 offsetof(SMU7_Firmware_Header, PmFuseTable), 684 &pm_fuse_table_offset, SMC_RAM_END)) { 685 pr_err("Attempt to get pm_fuse_table_offset Failed!\n"); 686 return -EINVAL; 687 } 688 689 /* DW0 - DW3 */ 690 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr); 691 /* DW4 - DW5 */ 692 ret |= ci_populate_vddc_vid(hwmgr); 693 /* DW6 */ 694 ret |= ci_populate_svi_load_line(hwmgr); 695 /* DW7 */ 696 ret |= ci_populate_tdc_limit(hwmgr); 697 /* DW8 */ 698 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset); 699 700 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset); 701 702 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr); 703 704 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr); 705 if (ret) 706 return ret; 707 708 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, 709 (uint8_t *)&smu_data->power_tune_table, 710 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END); 711 } 712 return ret; 713 } 714 715 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) 716 { 717 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 718 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 719 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; 720 SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); 721 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; 722 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; 723 const uint16_t *def1, *def2; 724 int i, j, k; 725 726 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); 727 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); 728 729 dpm_table->DTETjOffset = 0; 730 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); 731 dpm_table->GpuTjHyst = 8; 732 733 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; 734 735 if (ppm) { 736 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; 737 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; 738 } else { 739 dpm_table->PPM_PkgPwrLimit = 0; 740 dpm_table->PPM_TemperatureLimit = 0; 741 } 742 743 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); 744 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); 745 746 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); 747 def1 = defaults->bapmti_r; 748 def2 = defaults->bapmti_rc; 749 750 for (i = 0; i < SMU7_DTE_ITERATIONS; i++) { 751 for (j = 0; j < SMU7_DTE_SOURCES; j++) { 752 for (k = 0; k < SMU7_DTE_SINKS; k++) { 753 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); 754 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); 755 def1++; 756 def2++; 757 } 758 } 759 } 760 761 return 0; 762 } 763 764 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, 765 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, 766 uint16_t *lo) 767 { 768 uint16_t v_index; 769 bool vol_found = false; 770 *hi = tab->value * VOLTAGE_SCALE; 771 *lo = tab->value * VOLTAGE_SCALE; 772 773 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, 774 "The SCLK/VDDC Dependency Table does not exist.\n", 775 return -EINVAL); 776 777 if (NULL == hwmgr->dyn_state.cac_leakage_table) { 778 pr_warn("CAC Leakage Table does not exist, using vddc.\n"); 779 return 0; 780 } 781 782 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { 783 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { 784 vol_found = true; 785 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { 786 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; 787 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); 788 } else { 789 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); 790 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; 791 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); 792 } 793 break; 794 } 795 } 796 797 if (!vol_found) { 798 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { 799 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { 800 vol_found = true; 801 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { 802 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; 803 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; 804 } else { 805 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); 806 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; 807 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); 808 } 809 break; 810 } 811 } 812 813 if (!vol_found) 814 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); 815 } 816 817 return 0; 818 } 819 820 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, 821 pp_atomctrl_voltage_table_entry *tab, 822 SMU7_Discrete_VoltageLevel *smc_voltage_tab) 823 { 824 int result; 825 826 result = ci_get_std_voltage_value_sidd(hwmgr, tab, 827 &smc_voltage_tab->StdVoltageHiSidd, 828 &smc_voltage_tab->StdVoltageLoSidd); 829 if (result) { 830 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; 831 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; 832 } 833 834 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); 835 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); 836 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd); 837 838 return 0; 839 } 840 841 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, 842 SMU7_Discrete_DpmTable *table) 843 { 844 unsigned int count; 845 int result; 846 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 847 848 table->VddcLevelCount = data->vddc_voltage_table.count; 849 for (count = 0; count < table->VddcLevelCount; count++) { 850 result = ci_populate_smc_voltage_table(hwmgr, 851 &(data->vddc_voltage_table.entries[count]), 852 &(table->VddcLevel[count])); 853 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); 854 855 /* GPIO voltage control */ 856 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { 857 table->VddcLevel[count].Smio = (uint8_t) count; 858 table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low; 859 table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low; 860 } else { 861 table->VddcLevel[count].Smio = 0; 862 } 863 } 864 865 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); 866 867 return 0; 868 } 869 870 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, 871 SMU7_Discrete_DpmTable *table) 872 { 873 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 874 uint32_t count; 875 int result; 876 877 table->VddciLevelCount = data->vddci_voltage_table.count; 878 879 for (count = 0; count < table->VddciLevelCount; count++) { 880 result = ci_populate_smc_voltage_table(hwmgr, 881 &(data->vddci_voltage_table.entries[count]), 882 &(table->VddciLevel[count])); 883 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL); 884 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 885 table->VddciLevel[count].Smio = (uint8_t) count; 886 table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low; 887 table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low; 888 } else { 889 table->VddciLevel[count].Smio = 0; 890 } 891 } 892 893 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); 894 895 return 0; 896 } 897 898 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, 899 SMU7_Discrete_DpmTable *table) 900 { 901 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 902 uint32_t count; 903 int result; 904 905 table->MvddLevelCount = data->mvdd_voltage_table.count; 906 907 for (count = 0; count < table->MvddLevelCount; count++) { 908 result = ci_populate_smc_voltage_table(hwmgr, 909 &(data->mvdd_voltage_table.entries[count]), 910 &table->MvddLevel[count]); 911 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL); 912 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 913 table->MvddLevel[count].Smio = (uint8_t) count; 914 table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low; 915 table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low; 916 } else { 917 table->MvddLevel[count].Smio = 0; 918 } 919 } 920 921 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); 922 923 return 0; 924 } 925 926 927 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, 928 SMU7_Discrete_DpmTable *table) 929 { 930 int result; 931 932 result = ci_populate_smc_vddc_table(hwmgr, table); 933 PP_ASSERT_WITH_CODE(0 == result, 934 "can not populate VDDC voltage table to SMC", return -EINVAL); 935 936 result = ci_populate_smc_vdd_ci_table(hwmgr, table); 937 PP_ASSERT_WITH_CODE(0 == result, 938 "can not populate VDDCI voltage table to SMC", return -EINVAL); 939 940 result = ci_populate_smc_mvdd_table(hwmgr, table); 941 PP_ASSERT_WITH_CODE(0 == result, 942 "can not populate MVDD voltage table to SMC", return -EINVAL); 943 944 return 0; 945 } 946 947 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr, 948 struct SMU7_Discrete_Ulv *state) 949 { 950 uint32_t voltage_response_time, ulv_voltage; 951 int result; 952 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 953 954 state->CcPwrDynRm = 0; 955 state->CcPwrDynRm1 = 0; 956 957 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); 958 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); 959 960 if (ulv_voltage == 0) { 961 data->ulv_supported = false; 962 return 0; 963 } 964 965 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { 966 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ 967 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) 968 state->VddcOffset = 0; 969 else 970 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ 971 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); 972 } else { 973 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ 974 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) 975 state->VddcOffsetVid = 0; 976 else /* used in SVI2 Mode */ 977 state->VddcOffsetVid = (uint8_t)( 978 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) 979 * VOLTAGE_VID_OFFSET_SCALE2 980 / VOLTAGE_VID_OFFSET_SCALE1); 981 } 982 state->VddcPhase = 1; 983 984 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); 985 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); 986 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); 987 988 return 0; 989 } 990 991 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr, 992 SMU7_Discrete_Ulv *ulv_level) 993 { 994 return ci_populate_ulv_level(hwmgr, ulv_level); 995 } 996 997 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) 998 { 999 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1000 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1001 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1002 uint32_t i; 1003 1004 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/ 1005 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { 1006 table->LinkLevel[i].PcieGenSpeed = 1007 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; 1008 table->LinkLevel[i].PcieLaneCount = 1009 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); 1010 table->LinkLevel[i].EnabledForActivity = 1; 1011 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5); 1012 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30); 1013 } 1014 1015 smu_data->smc_state_table.LinkLevelCount = 1016 (uint8_t)dpm_table->pcie_speed_table.count; 1017 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 1018 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); 1019 1020 return 0; 1021 } 1022 1023 static int ci_calculate_mclk_params( 1024 struct pp_hwmgr *hwmgr, 1025 uint32_t memory_clock, 1026 SMU7_Discrete_MemoryLevel *mclk, 1027 bool strobe_mode, 1028 bool dllStateOn 1029 ) 1030 { 1031 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1032 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1033 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1034 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; 1035 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; 1036 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; 1037 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; 1038 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; 1039 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; 1040 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; 1041 1042 pp_atomctrl_memory_clock_param mpll_param; 1043 int result; 1044 1045 result = atomctrl_get_memory_pll_dividers_si(hwmgr, 1046 memory_clock, &mpll_param, strobe_mode); 1047 PP_ASSERT_WITH_CODE(0 == result, 1048 "Error retrieving Memory Clock Parameters from VBIOS.", return result); 1049 1050 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); 1051 1052 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1053 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); 1054 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1055 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); 1056 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1057 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); 1058 1059 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, 1060 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); 1061 1062 if (data->is_memory_gddr5) { 1063 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 1064 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); 1065 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 1066 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); 1067 } 1068 1069 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1070 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { 1071 pp_atomctrl_internal_ss_info ss_info; 1072 uint32_t freq_nom; 1073 uint32_t tmp; 1074 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); 1075 1076 /* for GDDR5 for all modes and DDR3 */ 1077 if (1 == mpll_param.qdr) 1078 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); 1079 else 1080 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); 1081 1082 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ 1083 tmp = (freq_nom / reference_clock); 1084 tmp = tmp * tmp; 1085 1086 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { 1087 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; 1088 uint32_t clkv = 1089 (uint32_t)((((131 * ss_info.speed_spectrum_percentage * 1090 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); 1091 1092 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); 1093 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); 1094 } 1095 } 1096 1097 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1098 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); 1099 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1100 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); 1101 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1102 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); 1103 1104 1105 mclk->MclkFrequency = memory_clock; 1106 mclk->MpllFuncCntl = mpll_func_cntl; 1107 mclk->MpllFuncCntl_1 = mpll_func_cntl_1; 1108 mclk->MpllFuncCntl_2 = mpll_func_cntl_2; 1109 mclk->MpllAdFuncCntl = mpll_ad_func_cntl; 1110 mclk->MpllDqFuncCntl = mpll_dq_func_cntl; 1111 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; 1112 mclk->DllCntl = dll_cntl; 1113 mclk->MpllSs1 = mpll_ss1; 1114 mclk->MpllSs2 = mpll_ss2; 1115 1116 return 0; 1117 } 1118 1119 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock, 1120 bool strobe_mode) 1121 { 1122 uint8_t mc_para_index; 1123 1124 if (strobe_mode) { 1125 if (memory_clock < 12500) 1126 mc_para_index = 0x00; 1127 else if (memory_clock > 47500) 1128 mc_para_index = 0x0f; 1129 else 1130 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); 1131 } else { 1132 if (memory_clock < 65000) 1133 mc_para_index = 0x00; 1134 else if (memory_clock > 135000) 1135 mc_para_index = 0x0f; 1136 else 1137 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); 1138 } 1139 1140 return mc_para_index; 1141 } 1142 1143 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) 1144 { 1145 uint8_t mc_para_index; 1146 1147 if (memory_clock < 10000) 1148 mc_para_index = 0; 1149 else if (memory_clock >= 80000) 1150 mc_para_index = 0x0f; 1151 else 1152 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); 1153 1154 return mc_para_index; 1155 } 1156 1157 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, 1158 uint32_t memory_clock, uint32_t *p_shed) 1159 { 1160 unsigned int i; 1161 1162 *p_shed = 1; 1163 1164 for (i = 0; i < pl->count; i++) { 1165 if (memory_clock < pl->entries[i].Mclk) { 1166 *p_shed = i; 1167 break; 1168 } 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int ci_populate_single_memory_level( 1175 struct pp_hwmgr *hwmgr, 1176 uint32_t memory_clock, 1177 SMU7_Discrete_MemoryLevel *memory_level 1178 ) 1179 { 1180 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1181 int result = 0; 1182 bool dll_state_on; 1183 uint32_t mclk_edc_wr_enable_threshold = 40000; 1184 uint32_t mclk_edc_enable_threshold = 40000; 1185 uint32_t mclk_strobe_mode_threshold = 40000; 1186 1187 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { 1188 result = ci_get_dependency_volt_by_clk(hwmgr, 1189 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); 1190 PP_ASSERT_WITH_CODE((0 == result), 1191 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); 1192 } 1193 1194 if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { 1195 result = ci_get_dependency_volt_by_clk(hwmgr, 1196 hwmgr->dyn_state.vddci_dependency_on_mclk, 1197 memory_clock, 1198 &memory_level->MinVddci); 1199 PP_ASSERT_WITH_CODE((0 == result), 1200 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); 1201 } 1202 1203 if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) { 1204 result = ci_get_dependency_volt_by_clk(hwmgr, 1205 hwmgr->dyn_state.mvdd_dependency_on_mclk, 1206 memory_clock, 1207 &memory_level->MinMvdd); 1208 PP_ASSERT_WITH_CODE((0 == result), 1209 "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result); 1210 } 1211 1212 memory_level->MinVddcPhases = 1; 1213 1214 if (data->vddc_phase_shed_control) { 1215 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, 1216 memory_clock, &memory_level->MinVddcPhases); 1217 } 1218 1219 memory_level->EnabledForThrottle = 1; 1220 memory_level->EnabledForActivity = 1; 1221 memory_level->UpH = data->current_profile_setting.mclk_up_hyst; 1222 memory_level->DownH = data->current_profile_setting.mclk_down_hyst; 1223 memory_level->VoltageDownH = 0; 1224 1225 /* Indicates maximum activity level for this performance level.*/ 1226 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; 1227 memory_level->StutterEnable = 0; 1228 memory_level->StrobeEnable = 0; 1229 memory_level->EdcReadEnable = 0; 1230 memory_level->EdcWriteEnable = 0; 1231 memory_level->RttEnable = 0; 1232 1233 /* default set to low watermark. Highest level will be set to high later.*/ 1234 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1235 1236 data->display_timing.num_existing_displays = hwmgr->display_config->num_display; 1237 data->display_timing.vrefresh = hwmgr->display_config->vrefresh; 1238 1239 /* stutter mode not support on ci */ 1240 1241 /* decide strobe mode*/ 1242 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && 1243 (memory_clock <= mclk_strobe_mode_threshold); 1244 1245 /* decide EDC mode and memory clock ratio*/ 1246 if (data->is_memory_gddr5) { 1247 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock, 1248 memory_level->StrobeEnable); 1249 1250 if ((mclk_edc_enable_threshold != 0) && 1251 (memory_clock > mclk_edc_enable_threshold)) { 1252 memory_level->EdcReadEnable = 1; 1253 } 1254 1255 if ((mclk_edc_wr_enable_threshold != 0) && 1256 (memory_clock > mclk_edc_wr_enable_threshold)) { 1257 memory_level->EdcWriteEnable = 1; 1258 } 1259 1260 if (memory_level->StrobeEnable) { 1261 if (ci_get_mclk_frequency_ratio(memory_clock, 1) >= 1262 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) 1263 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1264 else 1265 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; 1266 } else 1267 dll_state_on = data->dll_default_on; 1268 } else { 1269 memory_level->StrobeRatio = 1270 ci_get_ddr3_mclk_frequency_ratio(memory_clock); 1271 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1272 } 1273 1274 result = ci_calculate_mclk_params(hwmgr, 1275 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); 1276 1277 if (0 == result) { 1278 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); 1279 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); 1280 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); 1281 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); 1282 /* MCLK frequency in units of 10KHz*/ 1283 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); 1284 /* Indicates maximum activity level for this performance level.*/ 1285 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); 1286 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); 1287 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); 1288 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); 1289 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); 1290 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); 1291 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); 1292 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); 1293 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); 1294 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); 1295 } 1296 1297 return result; 1298 } 1299 1300 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1301 { 1302 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1303 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1304 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1305 int result; 1306 struct amdgpu_device *adev = hwmgr->adev; 1307 uint32_t dev_id; 1308 1309 uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel); 1310 uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY; 1311 SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; 1312 uint32_t i; 1313 1314 memset(levels, 0x00, level_array_size); 1315 1316 for (i = 0; i < dpm_table->mclk_table.count; i++) { 1317 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), 1318 "can not populate memory level as memory clock is zero", return -EINVAL); 1319 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, 1320 &(smu_data->smc_state_table.MemoryLevel[i])); 1321 if (0 != result) 1322 return result; 1323 } 1324 1325 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; 1326 1327 dev_id = adev->pdev->device; 1328 1329 if ((dpm_table->mclk_table.count >= 2) 1330 && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) { 1331 smu_data->smc_state_table.MemoryLevel[1].MinVddci = 1332 smu_data->smc_state_table.MemoryLevel[0].MinVddci; 1333 smu_data->smc_state_table.MemoryLevel[1].MinMvdd = 1334 smu_data->smc_state_table.MemoryLevel[0].MinMvdd; 1335 } 1336 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; 1337 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); 1338 1339 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; 1340 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); 1341 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; 1342 1343 result = ci_copy_bytes_to_smc(hwmgr, 1344 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, 1345 SMC_RAM_END); 1346 1347 return result; 1348 } 1349 1350 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, 1351 SMU7_Discrete_VoltageLevel *voltage) 1352 { 1353 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1354 1355 uint32_t i = 0; 1356 1357 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { 1358 /* find mvdd value which clock is more than request */ 1359 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { 1360 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { 1361 /* Always round to higher voltage. */ 1362 voltage->Voltage = data->mvdd_voltage_table.entries[i].value; 1363 break; 1364 } 1365 } 1366 1367 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, 1368 "MVDD Voltage is outside the supported range.", return -EINVAL); 1369 1370 } else { 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, 1378 SMU7_Discrete_DpmTable *table) 1379 { 1380 int result = 0; 1381 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1382 struct pp_atomctrl_clock_dividers_vi dividers; 1383 1384 SMU7_Discrete_VoltageLevel voltage_level; 1385 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 1386 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; 1387 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1388 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1389 1390 1391 /* The ACPI state should not do DPM on DC (or ever).*/ 1392 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; 1393 1394 if (data->acpi_vddc) 1395 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); 1396 else 1397 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); 1398 1399 table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1; 1400 /* assign zero for now*/ 1401 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); 1402 1403 /* get the engine clock dividers for this clock value*/ 1404 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, 1405 table->ACPILevel.SclkFrequency, ÷rs); 1406 1407 PP_ASSERT_WITH_CODE(result == 0, 1408 "Error retrieving Engine Clock dividers from VBIOS.", return result); 1409 1410 /* divider ID for required SCLK*/ 1411 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; 1412 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1413 table->ACPILevel.DeepSleepDivId = 0; 1414 1415 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 1416 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); 1417 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 1418 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); 1419 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, 1420 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); 1421 1422 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; 1423 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; 1424 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 1425 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 1426 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 1427 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 1428 table->ACPILevel.CcPwrDynRm = 0; 1429 table->ACPILevel.CcPwrDynRm1 = 0; 1430 1431 /* For various features to be enabled/disabled while this level is active.*/ 1432 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); 1433 /* SCLK frequency in units of 10KHz*/ 1434 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); 1435 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); 1436 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); 1437 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); 1438 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); 1439 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); 1440 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); 1441 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); 1442 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); 1443 1444 1445 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ 1446 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; 1447 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; 1448 1449 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) 1450 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; 1451 else { 1452 if (data->acpi_vddci != 0) 1453 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); 1454 else 1455 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); 1456 } 1457 1458 if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level)) 1459 table->MemoryACPILevel.MinMvdd = 1460 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); 1461 else 1462 table->MemoryACPILevel.MinMvdd = 0; 1463 1464 /* Force reset on DLL*/ 1465 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1466 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); 1467 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1468 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); 1469 1470 /* Disable DLL in ACPIState*/ 1471 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1472 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); 1473 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1474 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); 1475 1476 /* Enable DLL bypass signal*/ 1477 dll_cntl = PHM_SET_FIELD(dll_cntl, 1478 DLL_CNTL, MRDCK0_BYPASS, 0); 1479 dll_cntl = PHM_SET_FIELD(dll_cntl, 1480 DLL_CNTL, MRDCK1_BYPASS, 0); 1481 1482 table->MemoryACPILevel.DllCntl = 1483 PP_HOST_TO_SMC_UL(dll_cntl); 1484 table->MemoryACPILevel.MclkPwrmgtCntl = 1485 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); 1486 table->MemoryACPILevel.MpllAdFuncCntl = 1487 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); 1488 table->MemoryACPILevel.MpllDqFuncCntl = 1489 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); 1490 table->MemoryACPILevel.MpllFuncCntl = 1491 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); 1492 table->MemoryACPILevel.MpllFuncCntl_1 = 1493 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); 1494 table->MemoryACPILevel.MpllFuncCntl_2 = 1495 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); 1496 table->MemoryACPILevel.MpllSs1 = 1497 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); 1498 table->MemoryACPILevel.MpllSs2 = 1499 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); 1500 1501 table->MemoryACPILevel.EnabledForThrottle = 0; 1502 table->MemoryACPILevel.EnabledForActivity = 0; 1503 table->MemoryACPILevel.UpH = 0; 1504 table->MemoryACPILevel.DownH = 100; 1505 table->MemoryACPILevel.VoltageDownH = 0; 1506 /* Indicates maximum activity level for this performance level.*/ 1507 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); 1508 1509 table->MemoryACPILevel.StutterEnable = 0; 1510 table->MemoryACPILevel.StrobeEnable = 0; 1511 table->MemoryACPILevel.EdcReadEnable = 0; 1512 table->MemoryACPILevel.EdcWriteEnable = 0; 1513 table->MemoryACPILevel.RttEnable = 0; 1514 1515 return result; 1516 } 1517 1518 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, 1519 SMU7_Discrete_DpmTable *table) 1520 { 1521 int result = 0; 1522 uint8_t count; 1523 struct pp_atomctrl_clock_dividers_vi dividers; 1524 struct phm_uvd_clock_voltage_dependency_table *uvd_table = 1525 hwmgr->dyn_state.uvd_clock_voltage_dependency_table; 1526 1527 table->UvdLevelCount = (uint8_t)(uvd_table->count); 1528 1529 for (count = 0; count < table->UvdLevelCount; count++) { 1530 table->UvdLevel[count].VclkFrequency = 1531 uvd_table->entries[count].vclk; 1532 table->UvdLevel[count].DclkFrequency = 1533 uvd_table->entries[count].dclk; 1534 table->UvdLevel[count].MinVddc = 1535 uvd_table->entries[count].v * VOLTAGE_SCALE; 1536 table->UvdLevel[count].MinVddcPhases = 1; 1537 1538 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1539 table->UvdLevel[count].VclkFrequency, ÷rs); 1540 PP_ASSERT_WITH_CODE((0 == result), 1541 "can not find divide id for Vclk clock", return result); 1542 1543 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; 1544 1545 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1546 table->UvdLevel[count].DclkFrequency, ÷rs); 1547 PP_ASSERT_WITH_CODE((0 == result), 1548 "can not find divide id for Dclk clock", return result); 1549 1550 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; 1551 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); 1552 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); 1553 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc); 1554 } 1555 1556 return result; 1557 } 1558 1559 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr, 1560 SMU7_Discrete_DpmTable *table) 1561 { 1562 int result = -EINVAL; 1563 uint8_t count; 1564 struct pp_atomctrl_clock_dividers_vi dividers; 1565 struct phm_vce_clock_voltage_dependency_table *vce_table = 1566 hwmgr->dyn_state.vce_clock_voltage_dependency_table; 1567 1568 table->VceLevelCount = (uint8_t)(vce_table->count); 1569 table->VceBootLevel = 0; 1570 1571 for (count = 0; count < table->VceLevelCount; count++) { 1572 table->VceLevel[count].Frequency = vce_table->entries[count].evclk; 1573 table->VceLevel[count].MinVoltage = 1574 vce_table->entries[count].v * VOLTAGE_SCALE; 1575 table->VceLevel[count].MinPhases = 1; 1576 1577 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1578 table->VceLevel[count].Frequency, ÷rs); 1579 PP_ASSERT_WITH_CODE((0 == result), 1580 "can not find divide id for VCE engine clock", 1581 return result); 1582 1583 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1584 1585 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); 1586 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage); 1587 } 1588 return result; 1589 } 1590 1591 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr, 1592 SMU7_Discrete_DpmTable *table) 1593 { 1594 int result = -EINVAL; 1595 uint8_t count; 1596 struct pp_atomctrl_clock_dividers_vi dividers; 1597 struct phm_acp_clock_voltage_dependency_table *acp_table = 1598 hwmgr->dyn_state.acp_clock_voltage_dependency_table; 1599 1600 table->AcpLevelCount = (uint8_t)(acp_table->count); 1601 table->AcpBootLevel = 0; 1602 1603 for (count = 0; count < table->AcpLevelCount; count++) { 1604 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk; 1605 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v; 1606 table->AcpLevel[count].MinPhases = 1; 1607 1608 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1609 table->AcpLevel[count].Frequency, ÷rs); 1610 PP_ASSERT_WITH_CODE((0 == result), 1611 "can not find divide id for engine clock", return result); 1612 1613 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1614 1615 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); 1616 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage); 1617 } 1618 return result; 1619 } 1620 1621 static int ci_populate_memory_timing_parameters( 1622 struct pp_hwmgr *hwmgr, 1623 uint32_t engine_clock, 1624 uint32_t memory_clock, 1625 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs 1626 ) 1627 { 1628 uint32_t dramTiming; 1629 uint32_t dramTiming2; 1630 uint32_t burstTime; 1631 int result; 1632 1633 result = atomctrl_set_engine_dram_timings_rv770(hwmgr, 1634 engine_clock, memory_clock); 1635 1636 PP_ASSERT_WITH_CODE(result == 0, 1637 "Error calling VBIOS to set DRAM_TIMING.", return result); 1638 1639 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 1640 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 1641 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 1642 1643 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); 1644 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); 1645 arb_regs->McArbBurstTime = (uint8_t)burstTime; 1646 1647 return 0; 1648 } 1649 1650 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) 1651 { 1652 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1653 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1654 int result = 0; 1655 SMU7_Discrete_MCArbDramTimingTable arb_regs; 1656 uint32_t i, j; 1657 1658 memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable)); 1659 1660 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1661 for (j = 0; j < data->dpm_table.mclk_table.count; j++) { 1662 result = ci_populate_memory_timing_parameters 1663 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, 1664 data->dpm_table.mclk_table.dpm_levels[j].value, 1665 &arb_regs.entries[i][j]); 1666 1667 if (0 != result) 1668 break; 1669 } 1670 } 1671 1672 if (0 == result) { 1673 result = ci_copy_bytes_to_smc( 1674 hwmgr, 1675 smu_data->arb_table_start, 1676 (uint8_t *)&arb_regs, 1677 sizeof(SMU7_Discrete_MCArbDramTimingTable), 1678 SMC_RAM_END 1679 ); 1680 } 1681 1682 return result; 1683 } 1684 1685 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr, 1686 SMU7_Discrete_DpmTable *table) 1687 { 1688 int result = 0; 1689 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1690 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1691 1692 table->GraphicsBootLevel = 0; 1693 table->MemoryBootLevel = 0; 1694 1695 /* find boot level from dpm table*/ 1696 result = phm_find_boot_level(&(data->dpm_table.sclk_table), 1697 data->vbios_boot_state.sclk_bootup_value, 1698 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); 1699 1700 if (0 != result) { 1701 smu_data->smc_state_table.GraphicsBootLevel = 0; 1702 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n"); 1703 result = 0; 1704 } 1705 1706 result = phm_find_boot_level(&(data->dpm_table.mclk_table), 1707 data->vbios_boot_state.mclk_bootup_value, 1708 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); 1709 1710 if (0 != result) { 1711 smu_data->smc_state_table.MemoryBootLevel = 0; 1712 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n"); 1713 result = 0; 1714 } 1715 1716 table->BootVddc = data->vbios_boot_state.vddc_bootup_value; 1717 table->BootVddci = data->vbios_boot_state.vddci_bootup_value; 1718 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; 1719 1720 return result; 1721 } 1722 1723 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr, 1724 SMU7_Discrete_MCRegisters *mc_reg_table) 1725 { 1726 const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend; 1727 1728 uint32_t i, j; 1729 1730 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { 1731 if (smu_data->mc_reg_table.validflag & 1<<j) { 1732 PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE, 1733 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL); 1734 mc_reg_table->address[i].s0 = 1735 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); 1736 mc_reg_table->address[i].s1 = 1737 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); 1738 i++; 1739 } 1740 } 1741 1742 mc_reg_table->last = (uint8_t)i; 1743 1744 return 0; 1745 } 1746 1747 static void ci_convert_mc_registers( 1748 const struct ci_mc_reg_entry *entry, 1749 SMU7_Discrete_MCRegisterSet *data, 1750 uint32_t num_entries, uint32_t valid_flag) 1751 { 1752 uint32_t i, j; 1753 1754 for (i = 0, j = 0; j < num_entries; j++) { 1755 if (valid_flag & 1<<j) { 1756 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); 1757 i++; 1758 } 1759 } 1760 } 1761 1762 static int ci_convert_mc_reg_table_entry_to_smc( 1763 struct pp_hwmgr *hwmgr, 1764 const uint32_t memory_clock, 1765 SMU7_Discrete_MCRegisterSet *mc_reg_table_data 1766 ) 1767 { 1768 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1769 uint32_t i = 0; 1770 1771 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { 1772 if (memory_clock <= 1773 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { 1774 break; 1775 } 1776 } 1777 1778 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) 1779 --i; 1780 1781 ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], 1782 mc_reg_table_data, smu_data->mc_reg_table.last, 1783 smu_data->mc_reg_table.validflag); 1784 1785 return 0; 1786 } 1787 1788 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, 1789 SMU7_Discrete_MCRegisters *mc_regs) 1790 { 1791 int result = 0; 1792 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1793 int res; 1794 uint32_t i; 1795 1796 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 1797 res = ci_convert_mc_reg_table_entry_to_smc( 1798 hwmgr, 1799 data->dpm_table.mclk_table.dpm_levels[i].value, 1800 &mc_regs->data[i] 1801 ); 1802 1803 if (0 != res) 1804 result = res; 1805 } 1806 1807 return result; 1808 } 1809 1810 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) 1811 { 1812 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1813 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1814 uint32_t address; 1815 int32_t result; 1816 1817 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) 1818 return 0; 1819 1820 1821 memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters)); 1822 1823 result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); 1824 1825 if (result != 0) 1826 return result; 1827 1828 address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]); 1829 1830 return ci_copy_bytes_to_smc(hwmgr, address, 1831 (uint8_t *)&smu_data->mc_regs.data[0], 1832 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, 1833 SMC_RAM_END); 1834 } 1835 1836 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) 1837 { 1838 int result; 1839 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1840 1841 memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters)); 1842 result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); 1843 PP_ASSERT_WITH_CODE(0 == result, 1844 "Failed to initialize MCRegTable for the MC register addresses!", return result;); 1845 1846 result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); 1847 PP_ASSERT_WITH_CODE(0 == result, 1848 "Failed to initialize MCRegTable for driver state!", return result;); 1849 1850 return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start, 1851 (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END); 1852 } 1853 1854 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr) 1855 { 1856 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1857 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1858 uint8_t count, level; 1859 1860 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); 1861 1862 for (level = 0; level < count; level++) { 1863 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk 1864 >= data->vbios_boot_state.sclk_bootup_value) { 1865 smu_data->smc_state_table.GraphicsBootLevel = level; 1866 break; 1867 } 1868 } 1869 1870 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); 1871 1872 for (level = 0; level < count; level++) { 1873 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk 1874 >= data->vbios_boot_state.mclk_bootup_value) { 1875 smu_data->smc_state_table.MemoryBootLevel = level; 1876 break; 1877 } 1878 } 1879 1880 return 0; 1881 } 1882 1883 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, 1884 SMU7_Discrete_DpmTable *table) 1885 { 1886 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1887 1888 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) 1889 table->SVI2Enable = 1; 1890 else 1891 table->SVI2Enable = 0; 1892 return 0; 1893 } 1894 1895 static int ci_start_smc(struct pp_hwmgr *hwmgr) 1896 { 1897 /* set smc instruct start point at 0x0 */ 1898 ci_program_jump_on_start(hwmgr); 1899 1900 /* enable smc clock */ 1901 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 1902 1903 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); 1904 1905 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, 1906 INTERRUPTS_ENABLED, 1); 1907 1908 return 0; 1909 } 1910 1911 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) 1912 { 1913 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1914 uint16_t config; 1915 1916 config = VR_SVI2_PLANE_1; 1917 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); 1918 1919 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1920 config = VR_SVI2_PLANE_2; 1921 table->VRConfig |= config; 1922 } else { 1923 pr_info("VDDCshould be on SVI2 controller!"); 1924 } 1925 1926 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 1927 config = VR_SVI2_PLANE_2; 1928 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1929 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 1930 config = VR_SMIO_PATTERN_1; 1931 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1932 } 1933 1934 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 1935 config = VR_SMIO_PATTERN_2; 1936 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); 1937 } 1938 1939 return 0; 1940 } 1941 1942 static int ci_init_smc_table(struct pp_hwmgr *hwmgr) 1943 { 1944 int result; 1945 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1946 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 1947 SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table); 1948 struct pp_atomctrl_gpio_pin_assignment gpio_pin; 1949 u32 i; 1950 1951 ci_initialize_power_tune_defaults(hwmgr); 1952 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); 1953 1954 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) 1955 ci_populate_smc_voltage_tables(hwmgr, table); 1956 1957 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1958 PHM_PlatformCaps_AutomaticDCTransition)) 1959 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; 1960 1961 1962 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1963 PHM_PlatformCaps_StepVddc)) 1964 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; 1965 1966 if (data->is_memory_gddr5) 1967 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; 1968 1969 if (data->ulv_supported) { 1970 result = ci_populate_ulv_state(hwmgr, &(table->Ulv)); 1971 PP_ASSERT_WITH_CODE(0 == result, 1972 "Failed to initialize ULV state!", return result); 1973 1974 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1975 ixCG_ULV_PARAMETER, 0x40035); 1976 } 1977 1978 result = ci_populate_all_graphic_levels(hwmgr); 1979 PP_ASSERT_WITH_CODE(0 == result, 1980 "Failed to initialize Graphics Level!", return result); 1981 1982 result = ci_populate_all_memory_levels(hwmgr); 1983 PP_ASSERT_WITH_CODE(0 == result, 1984 "Failed to initialize Memory Level!", return result); 1985 1986 result = ci_populate_smc_link_level(hwmgr, table); 1987 PP_ASSERT_WITH_CODE(0 == result, 1988 "Failed to initialize Link Level!", return result); 1989 1990 result = ci_populate_smc_acpi_level(hwmgr, table); 1991 PP_ASSERT_WITH_CODE(0 == result, 1992 "Failed to initialize ACPI Level!", return result); 1993 1994 result = ci_populate_smc_vce_level(hwmgr, table); 1995 PP_ASSERT_WITH_CODE(0 == result, 1996 "Failed to initialize VCE Level!", return result); 1997 1998 result = ci_populate_smc_acp_level(hwmgr, table); 1999 PP_ASSERT_WITH_CODE(0 == result, 2000 "Failed to initialize ACP Level!", return result); 2001 2002 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ 2003 /* need to populate the ARB settings for the initial state. */ 2004 result = ci_program_memory_timing_parameters(hwmgr); 2005 PP_ASSERT_WITH_CODE(0 == result, 2006 "Failed to Write ARB settings for the initial state.", return result); 2007 2008 result = ci_populate_smc_uvd_level(hwmgr, table); 2009 PP_ASSERT_WITH_CODE(0 == result, 2010 "Failed to initialize UVD Level!", return result); 2011 2012 table->UvdBootLevel = 0; 2013 table->VceBootLevel = 0; 2014 table->AcpBootLevel = 0; 2015 table->SamuBootLevel = 0; 2016 2017 table->GraphicsBootLevel = 0; 2018 table->MemoryBootLevel = 0; 2019 2020 result = ci_populate_smc_boot_level(hwmgr, table); 2021 PP_ASSERT_WITH_CODE(0 == result, 2022 "Failed to initialize Boot Level!", return result); 2023 2024 result = ci_populate_smc_initial_state(hwmgr); 2025 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); 2026 2027 result = ci_populate_bapm_parameters_in_dpm_table(hwmgr); 2028 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); 2029 2030 table->UVDInterval = 1; 2031 table->VCEInterval = 1; 2032 table->ACPInterval = 1; 2033 table->SAMUInterval = 1; 2034 table->GraphicsVoltageChangeEnable = 1; 2035 table->GraphicsThermThrottleEnable = 1; 2036 table->GraphicsInterval = 1; 2037 table->VoltageInterval = 1; 2038 table->ThermalInterval = 1; 2039 2040 table->TemperatureLimitHigh = 2041 (data->thermal_temp_setting.temperature_high * 2042 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2043 table->TemperatureLimitLow = 2044 (data->thermal_temp_setting.temperature_low * 2045 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2046 2047 table->MemoryVoltageChangeEnable = 1; 2048 table->MemoryInterval = 1; 2049 table->VoltageResponseTime = 0; 2050 table->VddcVddciDelta = 4000; 2051 table->PhaseResponseTime = 0; 2052 table->MemoryThermThrottleEnable = 1; 2053 2054 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), 2055 "There must be 1 or more PCIE levels defined in PPTable.", 2056 return -EINVAL); 2057 2058 table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count; 2059 table->PCIeGenInterval = 1; 2060 2061 result = ci_populate_vr_config(hwmgr, table); 2062 PP_ASSERT_WITH_CODE(0 == result, 2063 "Failed to populate VRConfig setting!", return result); 2064 data->vr_config = table->VRConfig; 2065 2066 ci_populate_smc_svi2_config(hwmgr, table); 2067 2068 for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++) 2069 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]); 2070 2071 table->ThermGpio = 17; 2072 table->SclkStepSize = 0x4000; 2073 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { 2074 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; 2075 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2076 PHM_PlatformCaps_RegulatorHot); 2077 } else { 2078 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; 2079 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2080 PHM_PlatformCaps_RegulatorHot); 2081 } 2082 2083 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; 2084 2085 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); 2086 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); 2087 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); 2088 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); 2089 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); 2090 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); 2091 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); 2092 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); 2093 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); 2094 table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta); 2095 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); 2096 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); 2097 2098 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); 2099 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); 2100 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); 2101 2102 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ 2103 result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start + 2104 offsetof(SMU7_Discrete_DpmTable, SystemFlags), 2105 (uint8_t *)&(table->SystemFlags), 2106 sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController), 2107 SMC_RAM_END); 2108 2109 PP_ASSERT_WITH_CODE(0 == result, 2110 "Failed to upload dpm data to SMC memory!", return result;); 2111 2112 result = ci_populate_initial_mc_reg_table(hwmgr); 2113 PP_ASSERT_WITH_CODE((0 == result), 2114 "Failed to populate initialize MC Reg table!", return result); 2115 2116 result = ci_populate_pm_fuses(hwmgr); 2117 PP_ASSERT_WITH_CODE(0 == result, 2118 "Failed to populate PM fuses to SMC memory!", return result); 2119 2120 ci_start_smc(hwmgr); 2121 2122 return 0; 2123 } 2124 2125 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) 2126 { 2127 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); 2128 SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; 2129 uint32_t duty100; 2130 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; 2131 uint16_t fdo_min, slope1, slope2; 2132 uint32_t reference_clock; 2133 int res; 2134 uint64_t tmp64; 2135 2136 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) 2137 return 0; 2138 2139 if (hwmgr->thermal_controller.fanInfo.bNoFan) { 2140 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2141 PHM_PlatformCaps_MicrocodeFanControl); 2142 return 0; 2143 } 2144 2145 if (0 == ci_data->fan_table_start) { 2146 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); 2147 return 0; 2148 } 2149 2150 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); 2151 2152 if (0 == duty100) { 2153 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); 2154 return 0; 2155 } 2156 2157 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; 2158 do_div(tmp64, 10000); 2159 fdo_min = (uint16_t)tmp64; 2160 2161 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; 2162 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; 2163 2164 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; 2165 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; 2166 2167 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); 2168 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); 2169 2170 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); 2171 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); 2172 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); 2173 2174 fan_table.Slope1 = cpu_to_be16(slope1); 2175 fan_table.Slope2 = cpu_to_be16(slope2); 2176 2177 fan_table.FdoMin = cpu_to_be16(fdo_min); 2178 2179 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); 2180 2181 fan_table.HystUp = cpu_to_be16(1); 2182 2183 fan_table.HystSlope = cpu_to_be16(1); 2184 2185 fan_table.TempRespLim = cpu_to_be16(5); 2186 2187 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 2188 2189 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); 2190 2191 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); 2192 2193 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); 2194 2195 res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); 2196 2197 return res; 2198 } 2199 2200 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) 2201 { 2202 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2203 2204 if (data->need_update_smu7_dpm_table & 2205 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK)) 2206 return ci_program_memory_timing_parameters(hwmgr); 2207 2208 return 0; 2209 } 2210 2211 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr) 2212 { 2213 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2214 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 2215 2216 int result = 0; 2217 uint32_t low_sclk_interrupt_threshold = 0; 2218 2219 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2220 PHM_PlatformCaps_SclkThrottleLowNotification) 2221 && (data->low_sclk_interrupt_threshold != 0)) { 2222 low_sclk_interrupt_threshold = 2223 data->low_sclk_interrupt_threshold; 2224 2225 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); 2226 2227 result = ci_copy_bytes_to_smc( 2228 hwmgr, 2229 smu_data->dpm_table_start + 2230 offsetof(SMU7_Discrete_DpmTable, 2231 LowSclkInterruptT), 2232 (uint8_t *)&low_sclk_interrupt_threshold, 2233 sizeof(uint32_t), 2234 SMC_RAM_END); 2235 } 2236 2237 result = ci_update_and_upload_mc_reg_table(hwmgr); 2238 2239 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result); 2240 2241 result = ci_program_mem_timing_parameters(hwmgr); 2242 PP_ASSERT_WITH_CODE((result == 0), 2243 "Failed to program memory timing parameters!", 2244 ); 2245 2246 return result; 2247 } 2248 2249 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member) 2250 { 2251 switch (type) { 2252 case SMU_SoftRegisters: 2253 switch (member) { 2254 case HandshakeDisables: 2255 return offsetof(SMU7_SoftRegisters, HandshakeDisables); 2256 case VoltageChangeTimeout: 2257 return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout); 2258 case AverageGraphicsActivity: 2259 return offsetof(SMU7_SoftRegisters, AverageGraphicsA); 2260 case AverageMemoryActivity: 2261 return offsetof(SMU7_SoftRegisters, AverageMemoryA); 2262 case PreVBlankGap: 2263 return offsetof(SMU7_SoftRegisters, PreVBlankGap); 2264 case VBlankTimeout: 2265 return offsetof(SMU7_SoftRegisters, VBlankTimeout); 2266 case DRAM_LOG_ADDR_H: 2267 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H); 2268 case DRAM_LOG_ADDR_L: 2269 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L); 2270 case DRAM_LOG_PHY_ADDR_H: 2271 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H); 2272 case DRAM_LOG_PHY_ADDR_L: 2273 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L); 2274 case DRAM_LOG_BUFF_SIZE: 2275 return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE); 2276 } 2277 break; 2278 case SMU_Discrete_DpmTable: 2279 switch (member) { 2280 case LowSclkInterruptThreshold: 2281 return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT); 2282 } 2283 break; 2284 } 2285 pr_debug("can't get the offset of type %x member %x\n", type, member); 2286 return 0; 2287 } 2288 2289 static uint32_t ci_get_mac_definition(uint32_t value) 2290 { 2291 switch (value) { 2292 case SMU_MAX_LEVELS_GRAPHICS: 2293 return SMU7_MAX_LEVELS_GRAPHICS; 2294 case SMU_MAX_LEVELS_MEMORY: 2295 return SMU7_MAX_LEVELS_MEMORY; 2296 case SMU_MAX_LEVELS_LINK: 2297 return SMU7_MAX_LEVELS_LINK; 2298 case SMU_MAX_ENTRIES_SMIO: 2299 return SMU7_MAX_ENTRIES_SMIO; 2300 case SMU_MAX_LEVELS_VDDC: 2301 case SMU_MAX_LEVELS_VDDGFX: 2302 return SMU7_MAX_LEVELS_VDDC; 2303 case SMU_MAX_LEVELS_VDDCI: 2304 return SMU7_MAX_LEVELS_VDDCI; 2305 case SMU_MAX_LEVELS_MVDD: 2306 return SMU7_MAX_LEVELS_MVDD; 2307 } 2308 2309 pr_debug("can't get the mac of %x\n", value); 2310 return 0; 2311 } 2312 2313 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr) 2314 { 2315 uint32_t byte_count, start_addr; 2316 uint8_t *src; 2317 uint32_t data; 2318 2319 struct cgs_firmware_info info = {0}; 2320 2321 cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info); 2322 2323 hwmgr->is_kicker = info.is_kicker; 2324 hwmgr->smu_version = info.version; 2325 byte_count = info.image_size; 2326 src = (uint8_t *)info.kptr; 2327 start_addr = info.ucode_start_address; 2328 2329 if (byte_count > SMC_RAM_END) { 2330 pr_err("SMC address is beyond the SMC RAM area.\n"); 2331 return -EINVAL; 2332 } 2333 2334 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr); 2335 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); 2336 2337 for (; byte_count >= 4; byte_count -= 4) { 2338 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; 2339 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); 2340 src += 4; 2341 } 2342 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); 2343 2344 if (0 != byte_count) { 2345 pr_err("SMC size must be divisible by 4\n"); 2346 return -EINVAL; 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int ci_upload_firmware(struct pp_hwmgr *hwmgr) 2353 { 2354 if (ci_is_smc_ram_running(hwmgr)) { 2355 pr_info("smc is running, no need to load smc firmware\n"); 2356 return 0; 2357 } 2358 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, 2359 boot_seq_done, 1); 2360 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL, 2361 pre_fetcher_en, 1); 2362 2363 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1); 2364 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); 2365 return ci_load_smc_ucode(hwmgr); 2366 } 2367 2368 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr) 2369 { 2370 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2371 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); 2372 2373 uint32_t tmp = 0; 2374 int result; 2375 bool error = false; 2376 2377 if (ci_upload_firmware(hwmgr)) 2378 return -EINVAL; 2379 2380 result = ci_read_smc_sram_dword(hwmgr, 2381 SMU7_FIRMWARE_HEADER_LOCATION + 2382 offsetof(SMU7_Firmware_Header, DpmTable), 2383 &tmp, SMC_RAM_END); 2384 2385 if (0 == result) 2386 ci_data->dpm_table_start = tmp; 2387 2388 error |= (0 != result); 2389 2390 result = ci_read_smc_sram_dword(hwmgr, 2391 SMU7_FIRMWARE_HEADER_LOCATION + 2392 offsetof(SMU7_Firmware_Header, SoftRegisters), 2393 &tmp, SMC_RAM_END); 2394 2395 if (0 == result) { 2396 data->soft_regs_start = tmp; 2397 ci_data->soft_regs_start = tmp; 2398 } 2399 2400 error |= (0 != result); 2401 2402 result = ci_read_smc_sram_dword(hwmgr, 2403 SMU7_FIRMWARE_HEADER_LOCATION + 2404 offsetof(SMU7_Firmware_Header, mcRegisterTable), 2405 &tmp, SMC_RAM_END); 2406 2407 if (0 == result) 2408 ci_data->mc_reg_table_start = tmp; 2409 2410 result = ci_read_smc_sram_dword(hwmgr, 2411 SMU7_FIRMWARE_HEADER_LOCATION + 2412 offsetof(SMU7_Firmware_Header, FanTable), 2413 &tmp, SMC_RAM_END); 2414 2415 if (0 == result) 2416 ci_data->fan_table_start = tmp; 2417 2418 error |= (0 != result); 2419 2420 result = ci_read_smc_sram_dword(hwmgr, 2421 SMU7_FIRMWARE_HEADER_LOCATION + 2422 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable), 2423 &tmp, SMC_RAM_END); 2424 2425 if (0 == result) 2426 ci_data->arb_table_start = tmp; 2427 2428 error |= (0 != result); 2429 2430 result = ci_read_smc_sram_dword(hwmgr, 2431 SMU7_FIRMWARE_HEADER_LOCATION + 2432 offsetof(SMU7_Firmware_Header, Version), 2433 &tmp, SMC_RAM_END); 2434 2435 if (0 == result) 2436 hwmgr->microcode_version_info.SMC = tmp; 2437 2438 error |= (0 != result); 2439 2440 return error ? 1 : 0; 2441 } 2442 2443 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr) 2444 { 2445 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); 2446 } 2447 2448 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) 2449 { 2450 bool result = true; 2451 2452 switch (in_reg) { 2453 case mmMC_SEQ_RAS_TIMING: 2454 *out_reg = mmMC_SEQ_RAS_TIMING_LP; 2455 break; 2456 2457 case mmMC_SEQ_DLL_STBY: 2458 *out_reg = mmMC_SEQ_DLL_STBY_LP; 2459 break; 2460 2461 case mmMC_SEQ_G5PDX_CMD0: 2462 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; 2463 break; 2464 2465 case mmMC_SEQ_G5PDX_CMD1: 2466 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; 2467 break; 2468 2469 case mmMC_SEQ_G5PDX_CTRL: 2470 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; 2471 break; 2472 2473 case mmMC_SEQ_CAS_TIMING: 2474 *out_reg = mmMC_SEQ_CAS_TIMING_LP; 2475 break; 2476 2477 case mmMC_SEQ_MISC_TIMING: 2478 *out_reg = mmMC_SEQ_MISC_TIMING_LP; 2479 break; 2480 2481 case mmMC_SEQ_MISC_TIMING2: 2482 *out_reg = mmMC_SEQ_MISC_TIMING2_LP; 2483 break; 2484 2485 case mmMC_SEQ_PMG_DVS_CMD: 2486 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; 2487 break; 2488 2489 case mmMC_SEQ_PMG_DVS_CTL: 2490 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; 2491 break; 2492 2493 case mmMC_SEQ_RD_CTL_D0: 2494 *out_reg = mmMC_SEQ_RD_CTL_D0_LP; 2495 break; 2496 2497 case mmMC_SEQ_RD_CTL_D1: 2498 *out_reg = mmMC_SEQ_RD_CTL_D1_LP; 2499 break; 2500 2501 case mmMC_SEQ_WR_CTL_D0: 2502 *out_reg = mmMC_SEQ_WR_CTL_D0_LP; 2503 break; 2504 2505 case mmMC_SEQ_WR_CTL_D1: 2506 *out_reg = mmMC_SEQ_WR_CTL_D1_LP; 2507 break; 2508 2509 case mmMC_PMG_CMD_EMRS: 2510 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; 2511 break; 2512 2513 case mmMC_PMG_CMD_MRS: 2514 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; 2515 break; 2516 2517 case mmMC_PMG_CMD_MRS1: 2518 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; 2519 break; 2520 2521 case mmMC_SEQ_PMG_TIMING: 2522 *out_reg = mmMC_SEQ_PMG_TIMING_LP; 2523 break; 2524 2525 case mmMC_PMG_CMD_MRS2: 2526 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; 2527 break; 2528 2529 case mmMC_SEQ_WR_CTL_2: 2530 *out_reg = mmMC_SEQ_WR_CTL_2_LP; 2531 break; 2532 2533 default: 2534 result = false; 2535 break; 2536 } 2537 2538 return result; 2539 } 2540 2541 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table) 2542 { 2543 uint32_t i; 2544 uint16_t address; 2545 2546 for (i = 0; i < table->last; i++) { 2547 table->mc_reg_address[i].s0 = 2548 ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) 2549 ? address : table->mc_reg_address[i].s1; 2550 } 2551 return 0; 2552 } 2553 2554 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, 2555 struct ci_mc_reg_table *ni_table) 2556 { 2557 uint8_t i, j; 2558 2559 PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2560 "Invalid VramInfo table.", return -EINVAL); 2561 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), 2562 "Invalid VramInfo table.", return -EINVAL); 2563 2564 for (i = 0; i < table->last; i++) 2565 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; 2566 2567 ni_table->last = table->last; 2568 2569 for (i = 0; i < table->num_entries; i++) { 2570 ni_table->mc_reg_table_entry[i].mclk_max = 2571 table->mc_reg_table_entry[i].mclk_max; 2572 for (j = 0; j < table->last; j++) { 2573 ni_table->mc_reg_table_entry[i].mc_data[j] = 2574 table->mc_reg_table_entry[i].mc_data[j]; 2575 } 2576 } 2577 2578 ni_table->num_entries = table->num_entries; 2579 2580 return 0; 2581 } 2582 2583 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr, 2584 struct ci_mc_reg_table *table) 2585 { 2586 uint8_t i, j, k; 2587 uint32_t temp_reg; 2588 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2589 2590 for (i = 0, j = table->last; i < table->last; i++) { 2591 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2592 "Invalid VramInfo table.", return -EINVAL); 2593 2594 switch (table->mc_reg_address[i].s1) { 2595 2596 case mmMC_SEQ_MISC1: 2597 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); 2598 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; 2599 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; 2600 for (k = 0; k < table->num_entries; k++) { 2601 table->mc_reg_table_entry[k].mc_data[j] = 2602 ((temp_reg & 0xffff0000)) | 2603 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); 2604 } 2605 j++; 2606 2607 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2608 "Invalid VramInfo table.", return -EINVAL); 2609 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); 2610 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; 2611 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; 2612 for (k = 0; k < table->num_entries; k++) { 2613 table->mc_reg_table_entry[k].mc_data[j] = 2614 (temp_reg & 0xffff0000) | 2615 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 2616 2617 if (!data->is_memory_gddr5) 2618 table->mc_reg_table_entry[k].mc_data[j] |= 0x100; 2619 } 2620 j++; 2621 2622 if (!data->is_memory_gddr5) { 2623 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2624 "Invalid VramInfo table.", return -EINVAL); 2625 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; 2626 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; 2627 for (k = 0; k < table->num_entries; k++) { 2628 table->mc_reg_table_entry[k].mc_data[j] = 2629 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; 2630 } 2631 j++; 2632 } 2633 2634 break; 2635 2636 case mmMC_SEQ_RESERVE_M: 2637 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); 2638 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; 2639 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; 2640 for (k = 0; k < table->num_entries; k++) { 2641 table->mc_reg_table_entry[k].mc_data[j] = 2642 (temp_reg & 0xffff0000) | 2643 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 2644 } 2645 j++; 2646 break; 2647 2648 default: 2649 break; 2650 } 2651 2652 } 2653 2654 table->last = j; 2655 2656 return 0; 2657 } 2658 2659 static int ci_set_valid_flag(struct ci_mc_reg_table *table) 2660 { 2661 uint8_t i, j; 2662 2663 for (i = 0; i < table->last; i++) { 2664 for (j = 1; j < table->num_entries; j++) { 2665 if (table->mc_reg_table_entry[j-1].mc_data[i] != 2666 table->mc_reg_table_entry[j].mc_data[i]) { 2667 table->validflag |= (1 << i); 2668 break; 2669 } 2670 } 2671 } 2672 2673 return 0; 2674 } 2675 2676 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) 2677 { 2678 int result; 2679 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); 2680 pp_atomctrl_mc_reg_table *table; 2681 struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table; 2682 uint8_t module_index = ci_get_memory_modile_index(hwmgr); 2683 2684 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); 2685 2686 if (NULL == table) 2687 return -ENOMEM; 2688 2689 /* Program additional LP registers that are no longer programmed by VBIOS */ 2690 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); 2691 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); 2692 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); 2693 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); 2694 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); 2695 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); 2696 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); 2697 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); 2698 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); 2699 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); 2700 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); 2701 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); 2702 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); 2703 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); 2704 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); 2705 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); 2706 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); 2707 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); 2708 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); 2709 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); 2710 2711 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); 2712 2713 if (0 == result) 2714 result = ci_copy_vbios_smc_reg_table(table, ni_table); 2715 2716 if (0 == result) { 2717 ci_set_s0_mc_reg_index(ni_table); 2718 result = ci_set_mc_special_registers(hwmgr, ni_table); 2719 } 2720 2721 if (0 == result) 2722 ci_set_valid_flag(ni_table); 2723 2724 kfree(table); 2725 2726 return result; 2727 } 2728 2729 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr) 2730 { 2731 return ci_is_smc_ram_running(hwmgr); 2732 } 2733 2734 static int ci_smu_init(struct pp_hwmgr *hwmgr) 2735 { 2736 struct ci_smumgr *ci_priv; 2737 2738 ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL); 2739 2740 if (ci_priv == NULL) 2741 return -ENOMEM; 2742 2743 hwmgr->smu_backend = ci_priv; 2744 2745 return 0; 2746 } 2747 2748 static int ci_smu_fini(struct pp_hwmgr *hwmgr) 2749 { 2750 kfree(hwmgr->smu_backend); 2751 hwmgr->smu_backend = NULL; 2752 return 0; 2753 } 2754 2755 static int ci_start_smu(struct pp_hwmgr *hwmgr) 2756 { 2757 return 0; 2758 } 2759 2760 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr, 2761 void *profile_setting) 2762 { 2763 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2764 struct ci_smumgr *smu_data = (struct ci_smumgr *) 2765 (hwmgr->smu_backend); 2766 struct profile_mode_setting *setting; 2767 struct SMU7_Discrete_GraphicsLevel *levels = 2768 smu_data->smc_state_table.GraphicsLevel; 2769 uint32_t array = smu_data->dpm_table_start + 2770 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); 2771 2772 uint32_t mclk_array = smu_data->dpm_table_start + 2773 offsetof(SMU7_Discrete_DpmTable, MemoryLevel); 2774 struct SMU7_Discrete_MemoryLevel *mclk_levels = 2775 smu_data->smc_state_table.MemoryLevel; 2776 uint32_t i; 2777 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; 2778 2779 if (profile_setting == NULL) 2780 return -EINVAL; 2781 2782 setting = (struct profile_mode_setting *)profile_setting; 2783 2784 if (setting->bupdate_sclk) { 2785 if (!data->sclk_dpm_key_disabled) 2786 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL); 2787 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { 2788 if (levels[i].ActivityLevel != 2789 cpu_to_be16(setting->sclk_activity)) { 2790 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); 2791 2792 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) 2793 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel); 2794 offset = clk_activity_offset & ~0x3; 2795 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2796 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); 2797 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2798 2799 } 2800 if (levels[i].UpH != setting->sclk_up_hyst || 2801 levels[i].DownH != setting->sclk_down_hyst) { 2802 levels[i].UpH = setting->sclk_up_hyst; 2803 levels[i].DownH = setting->sclk_down_hyst; 2804 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) 2805 + offsetof(SMU7_Discrete_GraphicsLevel, UpH); 2806 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) 2807 + offsetof(SMU7_Discrete_GraphicsLevel, DownH); 2808 offset = up_hyst_offset & ~0x3; 2809 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2810 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t)); 2811 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t)); 2812 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2813 } 2814 } 2815 if (!data->sclk_dpm_key_disabled) 2816 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL); 2817 } 2818 2819 if (setting->bupdate_mclk) { 2820 if (!data->mclk_dpm_key_disabled) 2821 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL); 2822 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { 2823 if (mclk_levels[i].ActivityLevel != 2824 cpu_to_be16(setting->mclk_activity)) { 2825 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); 2826 2827 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) 2828 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel); 2829 offset = clk_activity_offset & ~0x3; 2830 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2831 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); 2832 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2833 2834 } 2835 if (mclk_levels[i].UpH != setting->mclk_up_hyst || 2836 mclk_levels[i].DownH != setting->mclk_down_hyst) { 2837 mclk_levels[i].UpH = setting->mclk_up_hyst; 2838 mclk_levels[i].DownH = setting->mclk_down_hyst; 2839 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) 2840 + offsetof(SMU7_Discrete_MemoryLevel, UpH); 2841 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) 2842 + offsetof(SMU7_Discrete_MemoryLevel, DownH); 2843 offset = up_hyst_offset & ~0x3; 2844 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2845 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t)); 2846 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t)); 2847 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2848 } 2849 } 2850 if (!data->mclk_dpm_key_disabled) 2851 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL); 2852 } 2853 return 0; 2854 } 2855 2856 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr) 2857 { 2858 struct amdgpu_device *adev = hwmgr->adev; 2859 struct smu7_hwmgr *data = hwmgr->backend; 2860 struct ci_smumgr *smu_data = hwmgr->smu_backend; 2861 struct phm_uvd_clock_voltage_dependency_table *uvd_table = 2862 hwmgr->dyn_state.uvd_clock_voltage_dependency_table; 2863 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | 2864 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | 2865 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | 2866 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; 2867 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : 2868 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; 2869 int32_t i; 2870 2871 if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0) 2872 smu_data->smc_state_table.UvdBootLevel = 0; 2873 else 2874 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1; 2875 2876 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475, 2877 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel); 2878 2879 data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0; 2880 2881 for (i = uvd_table->count - 1; i >= 0; i--) { 2882 if (uvd_table->entries[i].v <= max_vddc) 2883 data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i; 2884 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM)) 2885 break; 2886 } 2887 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask, 2888 data->dpm_level_enable_mask.uvd_dpm_enable_mask, 2889 NULL); 2890 2891 return 0; 2892 } 2893 2894 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr) 2895 { 2896 struct amdgpu_device *adev = hwmgr->adev; 2897 struct smu7_hwmgr *data = hwmgr->backend; 2898 struct phm_vce_clock_voltage_dependency_table *vce_table = 2899 hwmgr->dyn_state.vce_clock_voltage_dependency_table; 2900 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | 2901 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | 2902 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | 2903 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; 2904 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : 2905 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; 2906 int32_t i; 2907 2908 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475, 2909 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/ 2910 2911 data->dpm_level_enable_mask.vce_dpm_enable_mask = 0; 2912 2913 for (i = vce_table->count - 1; i >= 0; i--) { 2914 if (vce_table->entries[i].v <= max_vddc) 2915 data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i; 2916 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM)) 2917 break; 2918 } 2919 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask, 2920 data->dpm_level_enable_mask.vce_dpm_enable_mask, 2921 NULL); 2922 2923 return 0; 2924 } 2925 2926 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) 2927 { 2928 switch (type) { 2929 case SMU_UVD_TABLE: 2930 ci_update_uvd_smc_table(hwmgr); 2931 break; 2932 case SMU_VCE_TABLE: 2933 ci_update_vce_smc_table(hwmgr); 2934 break; 2935 default: 2936 break; 2937 } 2938 return 0; 2939 } 2940 2941 static void ci_reset_smc(struct pp_hwmgr *hwmgr) 2942 { 2943 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 2944 SMC_SYSCON_RESET_CNTL, 2945 rst_reg, 1); 2946 } 2947 2948 2949 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr) 2950 { 2951 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 2952 SMC_SYSCON_CLOCK_CNTL_0, 2953 ck_disable, 1); 2954 } 2955 2956 static int ci_stop_smc(struct pp_hwmgr *hwmgr) 2957 { 2958 ci_reset_smc(hwmgr); 2959 ci_stop_smc_clock(hwmgr); 2960 2961 return 0; 2962 } 2963 2964 const struct pp_smumgr_func ci_smu_funcs = { 2965 .name = "ci_smu", 2966 .smu_init = ci_smu_init, 2967 .smu_fini = ci_smu_fini, 2968 .start_smu = ci_start_smu, 2969 .check_fw_load_finish = NULL, 2970 .request_smu_load_fw = NULL, 2971 .request_smu_load_specific_fw = NULL, 2972 .send_msg_to_smc = ci_send_msg_to_smc, 2973 .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter, 2974 .get_argument = smu7_get_argument, 2975 .download_pptable_settings = NULL, 2976 .upload_pptable_settings = NULL, 2977 .get_offsetof = ci_get_offsetof, 2978 .process_firmware_header = ci_process_firmware_header, 2979 .init_smc_table = ci_init_smc_table, 2980 .update_sclk_threshold = ci_update_sclk_threshold, 2981 .thermal_setup_fan_table = ci_thermal_setup_fan_table, 2982 .populate_all_graphic_levels = ci_populate_all_graphic_levels, 2983 .populate_all_memory_levels = ci_populate_all_memory_levels, 2984 .get_mac_definition = ci_get_mac_definition, 2985 .initialize_mc_reg_table = ci_initialize_mc_reg_table, 2986 .is_dpm_running = ci_is_dpm_running, 2987 .update_dpm_settings = ci_update_dpm_settings, 2988 .update_smc_table = ci_update_smc_table, 2989 .stop_smc = ci_stop_smc, 2990 }; 2991