xref: /linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega10_hwmgr.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 
29 #include "hwmgr.h"
30 #include "amd_powerplay.h"
31 #include "hardwaremanager.h"
32 #include "ppatomfwctrl.h"
33 #include "atomfirmware.h"
34 #include "cgs_common.h"
35 #include "vega10_powertune.h"
36 #include "smu9.h"
37 #include "smu9_driver_if.h"
38 #include "vega10_inc.h"
39 #include "soc15_common.h"
40 #include "pppcielanes.h"
41 #include "vega10_hwmgr.h"
42 #include "vega10_smumgr.h"
43 #include "vega10_processpptables.h"
44 #include "vega10_pptable.h"
45 #include "vega10_thermal.h"
46 #include "pp_debug.h"
47 #include "amd_pcie_helpers.h"
48 #include "ppinterrupt.h"
49 #include "pp_overdriver.h"
50 #include "pp_thermal.h"
51 #include "vega10_baco.h"
52 
53 #include "smuio/smuio_9_0_offset.h"
54 #include "smuio/smuio_9_0_sh_mask.h"
55 
56 #define smnPCIE_LC_SPEED_CNTL			0x11140290
57 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
58 
59 #define HBM_MEMORY_CHANNEL_WIDTH    128
60 
61 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
62 
63 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
64 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
65 
66 //DF_CS_AON0_DramBaseAddress0
67 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
68 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
69 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
70 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
71 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
72 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
73 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
74 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
75 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
76 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
77 
78 typedef enum {
79 	CLK_SMNCLK = 0,
80 	CLK_SOCCLK,
81 	CLK_MP0CLK,
82 	CLK_MP1CLK,
83 	CLK_LCLK,
84 	CLK_DCEFCLK,
85 	CLK_VCLK,
86 	CLK_DCLK,
87 	CLK_ECLK,
88 	CLK_UCLK,
89 	CLK_GFXCLK,
90 	CLK_COUNT,
91 } CLOCK_ID_e;
92 
93 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
94 
95 static struct vega10_power_state *cast_phw_vega10_power_state(
96 				  struct pp_hw_power_state *hw_ps)
97 {
98 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
99 				"Invalid Powerstate Type!",
100 				 return NULL;);
101 
102 	return (struct vega10_power_state *)hw_ps;
103 }
104 
105 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
106 				 const struct pp_hw_power_state *hw_ps)
107 {
108 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
109 				"Invalid Powerstate Type!",
110 				 return NULL;);
111 
112 	return (const struct vega10_power_state *)hw_ps;
113 }
114 
115 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
116 {
117 	struct vega10_hwmgr *data = hwmgr->backend;
118 
119 	data->registry_data.sclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
121 	data->registry_data.socclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
123 	data->registry_data.mclk_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
125 	data->registry_data.pcie_dpm_key_disabled =
126 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
127 
128 	data->registry_data.dcefclk_dpm_key_disabled =
129 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
130 
131 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
132 		data->registry_data.power_containment_support = 1;
133 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
134 		data->registry_data.enable_tdc_limit_feature = 1;
135 	}
136 
137 	data->registry_data.clock_stretcher_support =
138 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
139 
140 	data->registry_data.ulv_support =
141 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
142 
143 	data->registry_data.sclk_deep_sleep_support =
144 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
145 
146 	data->registry_data.disable_water_mark = 0;
147 
148 	data->registry_data.fan_control_support = 1;
149 	data->registry_data.thermal_support = 1;
150 	data->registry_data.fw_ctf_enabled = 1;
151 
152 	data->registry_data.avfs_support =
153 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
154 	data->registry_data.led_dpm_enabled = 1;
155 
156 	data->registry_data.vr0hot_enabled = 1;
157 	data->registry_data.vr1hot_enabled = 1;
158 	data->registry_data.regulator_hot_gpio_support = 1;
159 
160 	data->registry_data.didt_support = 1;
161 	if (data->registry_data.didt_support) {
162 		data->registry_data.didt_mode = 6;
163 		data->registry_data.sq_ramping_support = 1;
164 		data->registry_data.db_ramping_support = 0;
165 		data->registry_data.td_ramping_support = 0;
166 		data->registry_data.tcp_ramping_support = 0;
167 		data->registry_data.dbr_ramping_support = 0;
168 		data->registry_data.edc_didt_support = 1;
169 		data->registry_data.gc_didt_support = 0;
170 		data->registry_data.psm_didt_support = 0;
171 	}
172 
173 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
174 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
185 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
186 
187 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
188 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
189 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
190 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
191 }
192 
193 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
194 {
195 	struct vega10_hwmgr *data = hwmgr->backend;
196 	struct phm_ppt_v2_information *table_info =
197 			(struct phm_ppt_v2_information *)hwmgr->pptable;
198 	struct amdgpu_device *adev = hwmgr->adev;
199 
200 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
201 			PHM_PlatformCaps_SclkDeepSleep);
202 
203 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
204 			PHM_PlatformCaps_DynamicPatchPowerState);
205 
206 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
207 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
208 				PHM_PlatformCaps_ControlVDDCI);
209 
210 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
211 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
212 
213 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
214 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
215 				PHM_PlatformCaps_UVDPowerGating);
216 
217 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
218 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
219 				PHM_PlatformCaps_VCEPowerGating);
220 
221 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
222 			PHM_PlatformCaps_UnTabledHardwareInterface);
223 
224 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
225 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
226 
227 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
228 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
229 
230 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
231 				PHM_PlatformCaps_DynamicPowerManagement);
232 
233 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
234 			PHM_PlatformCaps_SMC);
235 
236 	/* power tune caps */
237 	/* assume disabled */
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_PowerContainment);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_DiDtSupport);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_SQRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_DBRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TDRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_TCPRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DBRRamping);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_DiDtEDCEnable);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_GCEDC);
256 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
257 			PHM_PlatformCaps_PSM);
258 
259 	if (data->registry_data.didt_support) {
260 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
261 		if (data->registry_data.sq_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
263 		if (data->registry_data.db_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
265 		if (data->registry_data.td_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
267 		if (data->registry_data.tcp_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
269 		if (data->registry_data.dbr_ramping_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
271 		if (data->registry_data.edc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
273 		if (data->registry_data.gc_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
275 		if (data->registry_data.psm_didt_support)
276 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
277 	}
278 
279 	if (data->registry_data.power_containment_support)
280 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 				PHM_PlatformCaps_PowerContainment);
282 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
283 			PHM_PlatformCaps_CAC);
284 
285 	if (table_info->tdp_table->usClockStretchAmount &&
286 			data->registry_data.clock_stretcher_support)
287 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
288 				PHM_PlatformCaps_ClockStretcher);
289 
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_RegulatorHot);
292 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
293 			PHM_PlatformCaps_AutomaticDCTransition);
294 
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_UVDDPM);
297 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
298 			PHM_PlatformCaps_VCEDPM);
299 
300 	return 0;
301 }
302 
303 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
304 {
305 	struct vega10_hwmgr *data = hwmgr->backend;
306 	struct phm_ppt_v2_information *table_info =
307 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
308 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
309 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
310 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
311 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
312 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
313 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
314 	uint32_t i;
315 	int result;
316 
317 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
318 	if (!result) {
319 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
320 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
321 	}
322 
323 	od_lookup_table = &odn_table->vddc_lookup_table;
324 	vddc_lookup_table = table_info->vddc_lookup_table;
325 
326 	for (i = 0; i < vddc_lookup_table->count; i++)
327 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
328 
329 	od_lookup_table->count = vddc_lookup_table->count;
330 
331 	dep_table[0] = table_info->vdd_dep_on_sclk;
332 	dep_table[1] = table_info->vdd_dep_on_mclk;
333 	dep_table[2] = table_info->vdd_dep_on_socclk;
334 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
335 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
336 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
337 
338 	for (i = 0; i < 3; i++)
339 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
340 
341 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
342 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
343 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
344 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
345 
346 	i = od_table[2]->count - 1;
347 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
348 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
349 					od_table[2]->entries[i].clk;
350 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
351 					odn_table->max_vddc :
352 					od_table[2]->entries[i].vddc;
353 
354 	return 0;
355 }
356 
357 static int vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
358 {
359 	struct vega10_hwmgr *data = hwmgr->backend;
360 	uint32_t sub_vendor_id, hw_revision;
361 	uint32_t top32, bottom32;
362 	struct amdgpu_device *adev = hwmgr->adev;
363 	int ret, i;
364 
365 	vega10_initialize_power_tune_defaults(hwmgr);
366 
367 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
368 		data->smu_features[i].smu_feature_id = 0xffff;
369 		data->smu_features[i].smu_feature_bitmap = 1 << i;
370 		data->smu_features[i].enabled = false;
371 		data->smu_features[i].supported = false;
372 	}
373 
374 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
375 			FEATURE_DPM_PREFETCHER_BIT;
376 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
377 			FEATURE_DPM_GFXCLK_BIT;
378 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
379 			FEATURE_DPM_UCLK_BIT;
380 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
381 			FEATURE_DPM_SOCCLK_BIT;
382 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
383 			FEATURE_DPM_UVD_BIT;
384 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
385 			FEATURE_DPM_VCE_BIT;
386 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
387 			FEATURE_DPM_MP0CLK_BIT;
388 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
389 			FEATURE_DPM_LINK_BIT;
390 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
391 			FEATURE_DPM_DCEFCLK_BIT;
392 	data->smu_features[GNLD_ULV].smu_feature_id =
393 			FEATURE_ULV_BIT;
394 	data->smu_features[GNLD_AVFS].smu_feature_id =
395 			FEATURE_AVFS_BIT;
396 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
397 			FEATURE_DS_GFXCLK_BIT;
398 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
399 			FEATURE_DS_SOCCLK_BIT;
400 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
401 			FEATURE_DS_LCLK_BIT;
402 	data->smu_features[GNLD_PPT].smu_feature_id =
403 			FEATURE_PPT_BIT;
404 	data->smu_features[GNLD_TDC].smu_feature_id =
405 			FEATURE_TDC_BIT;
406 	data->smu_features[GNLD_THERMAL].smu_feature_id =
407 			FEATURE_THERMAL_BIT;
408 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
409 			FEATURE_GFX_PER_CU_CG_BIT;
410 	data->smu_features[GNLD_RM].smu_feature_id =
411 			FEATURE_RM_BIT;
412 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
413 			FEATURE_DS_DCEFCLK_BIT;
414 	data->smu_features[GNLD_ACDC].smu_feature_id =
415 			FEATURE_ACDC_BIT;
416 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
417 			FEATURE_VR0HOT_BIT;
418 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
419 			FEATURE_VR1HOT_BIT;
420 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
421 			FEATURE_FW_CTF_BIT;
422 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
423 			FEATURE_LED_DISPLAY_BIT;
424 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
425 			FEATURE_FAN_CONTROL_BIT;
426 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
427 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
428 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
429 
430 	if (!data->registry_data.prefetcher_dpm_key_disabled)
431 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
432 
433 	if (!data->registry_data.sclk_dpm_key_disabled)
434 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
435 
436 	if (!data->registry_data.mclk_dpm_key_disabled)
437 		data->smu_features[GNLD_DPM_UCLK].supported = true;
438 
439 	if (!data->registry_data.socclk_dpm_key_disabled)
440 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
441 
442 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
443 		data->smu_features[GNLD_DPM_UVD].supported = true;
444 
445 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
446 		data->smu_features[GNLD_DPM_VCE].supported = true;
447 
448 	data->smu_features[GNLD_DPM_LINK].supported = true;
449 
450 	if (!data->registry_data.dcefclk_dpm_key_disabled)
451 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
452 
453 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
454 	    data->registry_data.sclk_deep_sleep_support) {
455 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
456 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
457 		data->smu_features[GNLD_DS_LCLK].supported = true;
458 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
459 	}
460 
461 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
462 		data->smu_features[GNLD_PPT].supported = true;
463 
464 	if (data->registry_data.enable_tdc_limit_feature)
465 		data->smu_features[GNLD_TDC].supported = true;
466 
467 	if (data->registry_data.thermal_support)
468 		data->smu_features[GNLD_THERMAL].supported = true;
469 
470 	if (data->registry_data.fan_control_support)
471 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
472 
473 	if (data->registry_data.fw_ctf_enabled)
474 		data->smu_features[GNLD_FW_CTF].supported = true;
475 
476 	if (data->registry_data.avfs_support)
477 		data->smu_features[GNLD_AVFS].supported = true;
478 
479 	if (data->registry_data.led_dpm_enabled)
480 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
481 
482 	if (data->registry_data.vr1hot_enabled)
483 		data->smu_features[GNLD_VR1HOT].supported = true;
484 
485 	if (data->registry_data.vr0hot_enabled)
486 		data->smu_features[GNLD_VR0HOT].supported = true;
487 
488 	ret = smum_send_msg_to_smc(hwmgr,
489 			PPSMC_MSG_GetSmuVersion,
490 			&hwmgr->smu_version);
491 	if (ret)
492 		return ret;
493 
494 		/* ACG firmware has major version 5 */
495 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
496 		data->smu_features[GNLD_ACG].supported = true;
497 	if (data->registry_data.didt_support)
498 		data->smu_features[GNLD_DIDT].supported = true;
499 
500 	hw_revision = adev->pdev->revision;
501 	sub_vendor_id = adev->pdev->subsystem_vendor;
502 
503 	if ((hwmgr->chip_id == 0x6862 ||
504 		hwmgr->chip_id == 0x6861 ||
505 		hwmgr->chip_id == 0x6868) &&
506 		(hw_revision == 0) &&
507 		(sub_vendor_id != 0x1002))
508 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
509 
510 	/* Get the SN to turn into a Unique ID */
511 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
512 	if (ret)
513 		return ret;
514 
515 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
516 	if (ret)
517 		return ret;
518 
519 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
520 	return 0;
521 }
522 
523 #ifdef PPLIB_VEGA10_EVV_SUPPORT
524 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
525 	phm_ppt_v1_voltage_lookup_table *lookup_table,
526 	uint16_t virtual_voltage_id, int32_t *socclk)
527 {
528 	uint8_t entry_id;
529 	uint8_t voltage_id;
530 	struct phm_ppt_v2_information *table_info =
531 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
532 
533 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
534 			"Lookup table is empty",
535 			return -EINVAL);
536 
537 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
538 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
539 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
540 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
541 			break;
542 	}
543 
544 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
545 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
546 			return -EINVAL);
547 
548 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
549 
550 	return 0;
551 }
552 
553 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
554 /**
555  * vega10_get_evv_voltages - Get Leakage VDDC based on leakage ID.
556  *
557  * @hwmgr:  the address of the powerplay hardware manager.
558  * return:  always 0.
559  */
560 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
561 {
562 	struct vega10_hwmgr *data = hwmgr->backend;
563 	uint16_t vv_id;
564 	uint32_t vddc = 0;
565 	uint16_t i, j;
566 	uint32_t sclk = 0;
567 	struct phm_ppt_v2_information *table_info =
568 			(struct phm_ppt_v2_information *)hwmgr->pptable;
569 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
570 			table_info->vdd_dep_on_socclk;
571 	int result;
572 
573 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
574 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
575 
576 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
577 				table_info->vddc_lookup_table, vv_id, &sclk)) {
578 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
579 				for (j = 1; j < socclk_table->count; j++) {
580 					if (socclk_table->entries[j].clk == sclk &&
581 							socclk_table->entries[j].cks_enable == 0) {
582 						sclk += 5000;
583 						break;
584 					}
585 				}
586 			}
587 
588 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
589 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
590 					"Error retrieving EVV voltage value!",
591 					continue);
592 
593 
594 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
595 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
596 					"Invalid VDDC value", result = -EINVAL;);
597 
598 			/* the voltage should not be zero nor equal to leakage ID */
599 			if (vddc != 0 && vddc != vv_id) {
600 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
601 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
602 				data->vddc_leakage.count++;
603 			}
604 		}
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  * vega10_patch_with_vdd_leakage - Change virtual leakage voltage to actual value.
612  *
613  * @hwmgr:         the address of the powerplay hardware manager.
614  * @voltage:       pointer to changing voltage
615  * @leakage_table: pointer to leakage table
616  */
617 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
618 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
619 {
620 	uint32_t index;
621 
622 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
623 	for (index = 0; index < leakage_table->count; index++) {
624 		/* if this voltage matches a leakage voltage ID */
625 		/* patch with actual leakage voltage */
626 		if (leakage_table->leakage_id[index] == *voltage) {
627 			*voltage = leakage_table->actual_voltage[index];
628 			break;
629 		}
630 	}
631 
632 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
633 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
634 }
635 
636 /**
637  * vega10_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
638  *
639  * @hwmgr:         the address of the powerplay hardware manager.
640  * @lookup_table:  pointer to voltage lookup table
641  * @leakage_table: pointer to leakage table
642  * return:         always 0
643  */
644 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
645 		phm_ppt_v1_voltage_lookup_table *lookup_table,
646 		struct vega10_leakage_voltage *leakage_table)
647 {
648 	uint32_t i;
649 
650 	for (i = 0; i < lookup_table->count; i++)
651 		vega10_patch_with_vdd_leakage(hwmgr,
652 				&lookup_table->entries[i].us_vdd, leakage_table);
653 
654 	return 0;
655 }
656 
657 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
658 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
659 		uint16_t *vddc)
660 {
661 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
662 
663 	return 0;
664 }
665 #endif
666 
667 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
668 		struct pp_hwmgr *hwmgr)
669 {
670 	uint8_t entry_id, voltage_id;
671 	unsigned i;
672 	struct phm_ppt_v2_information *table_info =
673 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
674 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
675 			table_info->mm_dep_table;
676 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
677 			table_info->vdd_dep_on_mclk;
678 
679 	for (i = 0; i < 6; i++) {
680 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
681 		switch (i) {
682 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
683 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
684 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
685 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
686 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
687 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
688 		}
689 
690 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
691 			voltage_id = vdt->entries[entry_id].vddInd;
692 			vdt->entries[entry_id].vddc =
693 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
694 		}
695 	}
696 
697 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
698 		voltage_id = mm_table->entries[entry_id].vddcInd;
699 		mm_table->entries[entry_id].vddc =
700 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
701 	}
702 
703 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
704 		voltage_id = mclk_table->entries[entry_id].vddInd;
705 		mclk_table->entries[entry_id].vddc =
706 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
707 		voltage_id = mclk_table->entries[entry_id].vddciInd;
708 		mclk_table->entries[entry_id].vddci =
709 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
710 		voltage_id = mclk_table->entries[entry_id].mvddInd;
711 		mclk_table->entries[entry_id].mvdd =
712 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
713 	}
714 
715 
716 	return 0;
717 
718 }
719 
720 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
721 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
722 {
723 	uint32_t table_size, i, j;
724 
725 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
726 		"Lookup table is empty", return -EINVAL);
727 
728 	table_size = lookup_table->count;
729 
730 	/* Sorting voltages */
731 	for (i = 0; i < table_size - 1; i++) {
732 		for (j = i + 1; j > 0; j--) {
733 			if (lookup_table->entries[j].us_vdd <
734 					lookup_table->entries[j - 1].us_vdd) {
735 				swap(lookup_table->entries[j - 1],
736 				     lookup_table->entries[j]);
737 			}
738 		}
739 	}
740 
741 	return 0;
742 }
743 
744 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
745 {
746 	int result = 0;
747 	int tmp_result;
748 	struct phm_ppt_v2_information *table_info =
749 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
750 #ifdef PPLIB_VEGA10_EVV_SUPPORT
751 	struct vega10_hwmgr *data = hwmgr->backend;
752 
753 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
754 			table_info->vddc_lookup_table, &(data->vddc_leakage));
755 	if (tmp_result)
756 		result = tmp_result;
757 
758 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
759 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
760 	if (tmp_result)
761 		result = tmp_result;
762 #endif
763 
764 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
765 	if (tmp_result)
766 		result = tmp_result;
767 
768 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
769 	if (tmp_result)
770 		result = tmp_result;
771 
772 	return result;
773 }
774 
775 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
776 {
777 	struct phm_ppt_v2_information *table_info =
778 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
779 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
780 			table_info->vdd_dep_on_socclk;
781 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
782 			table_info->vdd_dep_on_mclk;
783 
784 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
785 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
786 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
787 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
788 
789 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
790 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
791 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
792 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
793 
794 	table_info->max_clock_voltage_on_ac.sclk =
795 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
796 	table_info->max_clock_voltage_on_ac.mclk =
797 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
798 	table_info->max_clock_voltage_on_ac.vddc =
799 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
800 	table_info->max_clock_voltage_on_ac.vddci =
801 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
802 
803 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
804 		table_info->max_clock_voltage_on_ac.sclk;
805 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
806 		table_info->max_clock_voltage_on_ac.mclk;
807 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
808 		table_info->max_clock_voltage_on_ac.vddc;
809 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
810 		table_info->max_clock_voltage_on_ac.vddci;
811 
812 	return 0;
813 }
814 
815 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
816 {
817 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
818 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
819 
820 	kfree(hwmgr->backend);
821 	hwmgr->backend = NULL;
822 
823 	return 0;
824 }
825 
826 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
827 {
828 	int result = 0;
829 	struct vega10_hwmgr *data;
830 	uint32_t config_telemetry = 0;
831 	struct pp_atomfwctrl_voltage_table vol_table;
832 	struct amdgpu_device *adev = hwmgr->adev;
833 
834 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
835 	if (data == NULL)
836 		return -ENOMEM;
837 
838 	hwmgr->backend = data;
839 
840 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
841 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
842 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
843 
844 	vega10_set_default_registry_data(hwmgr);
845 	data->disable_dpm_mask = 0xff;
846 
847 	/* need to set voltage control types before EVV patching */
848 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
849 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
850 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
851 
852 	/* VDDCR_SOC */
853 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
854 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
855 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
856 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
857 				&vol_table)) {
858 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
859 					(vol_table.telemetry_offset & 0xff);
860 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
861 		}
862 	} else {
863 		kfree(hwmgr->backend);
864 		hwmgr->backend = NULL;
865 		PP_ASSERT_WITH_CODE(false,
866 				"VDDCR_SOC is not SVID2!",
867 				return -1);
868 	}
869 
870 	/* MVDDC */
871 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
872 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
873 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
874 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
875 				&vol_table)) {
876 			config_telemetry |=
877 					((vol_table.telemetry_slope << 24) & 0xff000000) |
878 					((vol_table.telemetry_offset << 16) & 0xff0000);
879 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
880 		}
881 	}
882 
883 	 /* VDDCI_MEM */
884 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
885 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
886 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
887 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
888 	}
889 
890 	data->config_telemetry = config_telemetry;
891 
892 	vega10_set_features_platform_caps(hwmgr);
893 
894 	result = vega10_init_dpm_defaults(hwmgr);
895 	if (result)
896 		return result;
897 
898 #ifdef PPLIB_VEGA10_EVV_SUPPORT
899 	/* Get leakage voltage based on leakage ID. */
900 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
901 			"Get EVV Voltage Failed.  Abort Driver loading!",
902 			return -1);
903 #endif
904 
905 	/* Patch our voltage dependency table with actual leakage voltage
906 	 * We need to perform leakage translation before it's used by other functions
907 	 */
908 	vega10_complete_dependency_tables(hwmgr);
909 
910 	/* Parse pptable data read from VBIOS */
911 	vega10_set_private_data_based_on_pptable(hwmgr);
912 
913 	data->is_tlu_enabled = false;
914 
915 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
916 			VEGA10_MAX_HARDWARE_POWERLEVELS;
917 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
918 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
919 
920 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
921 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
922 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
923 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
924 
925 	data->total_active_cus = adev->gfx.cu_info.number;
926 	if (!hwmgr->not_vf)
927 		return result;
928 
929 	/* Setup default Overdrive Fan control settings */
930 	data->odn_fan_table.target_fan_speed =
931 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
932 	data->odn_fan_table.target_temperature =
933 			hwmgr->thermal_controller.
934 			advanceFanControlParameters.ucTargetTemperature;
935 	data->odn_fan_table.min_performance_clock =
936 			hwmgr->thermal_controller.advanceFanControlParameters.
937 			ulMinFanSCLKAcousticLimit;
938 	data->odn_fan_table.min_fan_limit =
939 			hwmgr->thermal_controller.
940 			advanceFanControlParameters.usFanPWMMinLimit *
941 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
942 
943 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
944 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
945 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
946 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
947 			"Mem Channel Index Exceeded maximum!",
948 			return -EINVAL);
949 
950 	return result;
951 }
952 
953 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
954 {
955 	struct vega10_hwmgr *data = hwmgr->backend;
956 
957 	data->low_sclk_interrupt_threshold = 0;
958 
959 	return 0;
960 }
961 
962 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
963 {
964 	struct vega10_hwmgr *data = hwmgr->backend;
965 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
966 
967 	struct pp_atomfwctrl_voltage_table table;
968 	uint8_t i, j;
969 	uint32_t mask = 0;
970 	uint32_t tmp;
971 	int32_t ret = 0;
972 
973 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
974 						VOLTAGE_OBJ_GPIO_LUT, &table);
975 
976 	if (!ret) {
977 		tmp = table.mask_low;
978 		for (i = 0, j = 0; i < 32; i++) {
979 			if (tmp & 1) {
980 				mask |= (uint32_t)(i << (8 * j));
981 				if (++j >= 3)
982 					break;
983 			}
984 			tmp >>= 1;
985 		}
986 	}
987 
988 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
989 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
990 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
991 	return 0;
992 }
993 
994 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
995 {
996 	if (!hwmgr->not_vf)
997 		return 0;
998 
999 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
1000 			"Failed to init sclk threshold!",
1001 			return -EINVAL);
1002 
1003 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
1004 			"Failed to set up led dpm config!",
1005 			return -EINVAL);
1006 
1007 	smum_send_msg_to_smc_with_parameter(hwmgr,
1008 				PPSMC_MSG_NumOfDisplays,
1009 				0,
1010 				NULL);
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * vega10_trim_voltage_table - Remove repeated voltage values and create table with unique values.
1017  *
1018  * @hwmgr:      the address of the powerplay hardware manager.
1019  * @vol_table:  the pointer to changing voltage table
1020  * return:      0 in success
1021  */
1022 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1023 		struct pp_atomfwctrl_voltage_table *vol_table)
1024 {
1025 	uint32_t i, j;
1026 	uint16_t vvalue;
1027 	bool found = false;
1028 	struct pp_atomfwctrl_voltage_table *table;
1029 
1030 	PP_ASSERT_WITH_CODE(vol_table,
1031 			"Voltage Table empty.", return -EINVAL);
1032 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1033 			GFP_KERNEL);
1034 
1035 	if (!table)
1036 		return -ENOMEM;
1037 
1038 	table->mask_low = vol_table->mask_low;
1039 	table->phase_delay = vol_table->phase_delay;
1040 
1041 	for (i = 0; i < vol_table->count; i++) {
1042 		vvalue = vol_table->entries[i].value;
1043 		found = false;
1044 
1045 		for (j = 0; j < table->count; j++) {
1046 			if (vvalue == table->entries[j].value) {
1047 				found = true;
1048 				break;
1049 			}
1050 		}
1051 
1052 		if (!found) {
1053 			table->entries[table->count].value = vvalue;
1054 			table->entries[table->count].smio_low =
1055 					vol_table->entries[i].smio_low;
1056 			table->count++;
1057 		}
1058 	}
1059 
1060 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1061 	kfree(table);
1062 
1063 	return 0;
1064 }
1065 
1066 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1067 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1068 		struct pp_atomfwctrl_voltage_table *vol_table)
1069 {
1070 	int i;
1071 
1072 	PP_ASSERT_WITH_CODE(dep_table->count,
1073 			"Voltage Dependency Table empty.",
1074 			return -EINVAL);
1075 
1076 	vol_table->mask_low = 0;
1077 	vol_table->phase_delay = 0;
1078 	vol_table->count = dep_table->count;
1079 
1080 	for (i = 0; i < vol_table->count; i++) {
1081 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1082 		vol_table->entries[i].smio_low = 0;
1083 	}
1084 
1085 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1086 			vol_table),
1087 			"Failed to trim MVDD Table!",
1088 			return -1);
1089 
1090 	return 0;
1091 }
1092 
1093 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1094 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1095 		struct pp_atomfwctrl_voltage_table *vol_table)
1096 {
1097 	uint32_t i;
1098 
1099 	PP_ASSERT_WITH_CODE(dep_table->count,
1100 			"Voltage Dependency Table empty.",
1101 			return -EINVAL);
1102 
1103 	vol_table->mask_low = 0;
1104 	vol_table->phase_delay = 0;
1105 	vol_table->count = dep_table->count;
1106 
1107 	for (i = 0; i < dep_table->count; i++) {
1108 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1109 		vol_table->entries[i].smio_low = 0;
1110 	}
1111 
1112 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1113 			"Failed to trim VDDCI table.",
1114 			return -1);
1115 
1116 	return 0;
1117 }
1118 
1119 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1120 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1121 		struct pp_atomfwctrl_voltage_table *vol_table)
1122 {
1123 	int i;
1124 
1125 	PP_ASSERT_WITH_CODE(dep_table->count,
1126 			"Voltage Dependency Table empty.",
1127 			return -EINVAL);
1128 
1129 	vol_table->mask_low = 0;
1130 	vol_table->phase_delay = 0;
1131 	vol_table->count = dep_table->count;
1132 
1133 	for (i = 0; i < vol_table->count; i++) {
1134 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1135 		vol_table->entries[i].smio_low = 0;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 /* ---- Voltage Tables ----
1142  * If the voltage table would be bigger than
1143  * what will fit into the state table on
1144  * the SMC keep only the higher entries.
1145  */
1146 static void vega10_trim_voltage_table_to_fit_state_table(
1147 		struct pp_hwmgr *hwmgr,
1148 		uint32_t max_vol_steps,
1149 		struct pp_atomfwctrl_voltage_table *vol_table)
1150 {
1151 	unsigned int i, diff;
1152 
1153 	if (vol_table->count <= max_vol_steps)
1154 		return;
1155 
1156 	diff = vol_table->count - max_vol_steps;
1157 
1158 	for (i = 0; i < max_vol_steps; i++)
1159 		vol_table->entries[i] = vol_table->entries[i + diff];
1160 
1161 	vol_table->count = max_vol_steps;
1162 }
1163 
1164 /**
1165  * vega10_construct_voltage_tables - Create Voltage Tables.
1166  *
1167  * @hwmgr:  the address of the powerplay hardware manager.
1168  * return:  always 0
1169  */
1170 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1171 {
1172 	struct vega10_hwmgr *data = hwmgr->backend;
1173 	struct phm_ppt_v2_information *table_info =
1174 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1175 	int result;
1176 
1177 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1178 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1179 		result = vega10_get_mvdd_voltage_table(hwmgr,
1180 				table_info->vdd_dep_on_mclk,
1181 				&(data->mvdd_voltage_table));
1182 		PP_ASSERT_WITH_CODE(!result,
1183 				"Failed to retrieve MVDDC table!",
1184 				return result);
1185 	}
1186 
1187 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1188 		result = vega10_get_vddci_voltage_table(hwmgr,
1189 				table_info->vdd_dep_on_mclk,
1190 				&(data->vddci_voltage_table));
1191 		PP_ASSERT_WITH_CODE(!result,
1192 				"Failed to retrieve VDDCI_MEM table!",
1193 				return result);
1194 	}
1195 
1196 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1197 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1198 		result = vega10_get_vdd_voltage_table(hwmgr,
1199 				table_info->vdd_dep_on_sclk,
1200 				&(data->vddc_voltage_table));
1201 		PP_ASSERT_WITH_CODE(!result,
1202 				"Failed to retrieve VDDCR_SOC table!",
1203 				return result);
1204 	}
1205 
1206 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1207 			"Too many voltage values for VDDC. Trimming to fit state table.",
1208 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1209 					16, &(data->vddc_voltage_table)));
1210 
1211 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1212 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1213 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1214 					16, &(data->vddci_voltage_table)));
1215 
1216 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1217 			"Too many voltage values for MVDD. Trimming to fit state table.",
1218 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1219 					16, &(data->mvdd_voltage_table)));
1220 
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * vega10_init_dpm_state
1227  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1228  *
1229  * @dpm_state: - the address of the DPM Table to initiailize.
1230  * return:   None.
1231  */
1232 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1233 {
1234 	dpm_state->soft_min_level = 0xff;
1235 	dpm_state->soft_max_level = 0xff;
1236 	dpm_state->hard_min_level = 0xff;
1237 	dpm_state->hard_max_level = 0xff;
1238 }
1239 
1240 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1241 		struct vega10_single_dpm_table *dpm_table,
1242 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1243 {
1244 	int i;
1245 
1246 	dpm_table->count = 0;
1247 
1248 	for (i = 0; i < dep_table->count; i++) {
1249 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1250 				dep_table->entries[i].clk) {
1251 			dpm_table->dpm_levels[dpm_table->count].value =
1252 					dep_table->entries[i].clk;
1253 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1254 			dpm_table->count++;
1255 		}
1256 	}
1257 }
1258 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1259 {
1260 	struct vega10_hwmgr *data = hwmgr->backend;
1261 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1262 	struct phm_ppt_v2_information *table_info =
1263 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1264 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1265 			table_info->pcie_table;
1266 	uint32_t i;
1267 
1268 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1269 			"Incorrect number of PCIE States from VBIOS!",
1270 			return -1);
1271 
1272 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1273 		if (data->registry_data.pcieSpeedOverride)
1274 			pcie_table->pcie_gen[i] =
1275 					data->registry_data.pcieSpeedOverride;
1276 		else
1277 			pcie_table->pcie_gen[i] =
1278 					bios_pcie_table->entries[i].gen_speed;
1279 
1280 		if (data->registry_data.pcieLaneOverride)
1281 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1282 					data->registry_data.pcieLaneOverride);
1283 		else
1284 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1285 							bios_pcie_table->entries[i].lane_width);
1286 		if (data->registry_data.pcieClockOverride)
1287 			pcie_table->lclk[i] =
1288 					data->registry_data.pcieClockOverride;
1289 		else
1290 			pcie_table->lclk[i] =
1291 					bios_pcie_table->entries[i].pcie_sclk;
1292 	}
1293 
1294 	pcie_table->count = NUM_LINK_LEVELS;
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * This function is to initialize all DPM state tables
1301  * for SMU based on the dependency table.
1302  * Dynamic state patching function will then trim these
1303  * state tables to the allowed range based
1304  * on the power policy or external client requests,
1305  * such as UVD request, etc.
1306  */
1307 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1308 {
1309 	struct vega10_hwmgr *data = hwmgr->backend;
1310 	struct phm_ppt_v2_information *table_info =
1311 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1312 	struct vega10_single_dpm_table *dpm_table;
1313 	uint32_t i;
1314 
1315 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1316 			table_info->vdd_dep_on_socclk;
1317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1318 			table_info->vdd_dep_on_sclk;
1319 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1320 			table_info->vdd_dep_on_mclk;
1321 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1322 			table_info->mm_dep_table;
1323 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1324 			table_info->vdd_dep_on_dcefclk;
1325 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1326 			table_info->vdd_dep_on_pixclk;
1327 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1328 			table_info->vdd_dep_on_dispclk;
1329 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1330 			table_info->vdd_dep_on_phyclk;
1331 
1332 	PP_ASSERT_WITH_CODE(dep_soc_table,
1333 			"SOCCLK dependency table is missing. This table is mandatory",
1334 			return -EINVAL);
1335 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1336 			"SOCCLK dependency table is empty. This table is mandatory",
1337 			return -EINVAL);
1338 
1339 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1340 			"GFXCLK dependency table is missing. This table is mandatory",
1341 			return -EINVAL);
1342 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1343 			"GFXCLK dependency table is empty. This table is mandatory",
1344 			return -EINVAL);
1345 
1346 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1347 			"MCLK dependency table is missing. This table is mandatory",
1348 			return -EINVAL);
1349 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1350 			"MCLK dependency table has to have is missing. This table is mandatory",
1351 			return -EINVAL);
1352 
1353 	/* Initialize Sclk DPM table based on allow Sclk values */
1354 	dpm_table = &(data->dpm_table.soc_table);
1355 	vega10_setup_default_single_dpm_table(hwmgr,
1356 			dpm_table,
1357 			dep_soc_table);
1358 
1359 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1360 
1361 	dpm_table = &(data->dpm_table.gfx_table);
1362 	vega10_setup_default_single_dpm_table(hwmgr,
1363 			dpm_table,
1364 			dep_gfx_table);
1365 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1366 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1367 					dpm_table->dpm_levels[dpm_table->count-1].value;
1368 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1369 
1370 	/* Initialize Mclk DPM table based on allow Mclk values */
1371 	data->dpm_table.mem_table.count = 0;
1372 	dpm_table = &(data->dpm_table.mem_table);
1373 	vega10_setup_default_single_dpm_table(hwmgr,
1374 			dpm_table,
1375 			dep_mclk_table);
1376 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1377 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1378 					dpm_table->dpm_levels[dpm_table->count-1].value;
1379 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1380 
1381 	data->dpm_table.eclk_table.count = 0;
1382 	dpm_table = &(data->dpm_table.eclk_table);
1383 	for (i = 0; i < dep_mm_table->count; i++) {
1384 		if (i == 0 || dpm_table->dpm_levels
1385 				[dpm_table->count - 1].value <=
1386 						dep_mm_table->entries[i].eclk) {
1387 			dpm_table->dpm_levels[dpm_table->count].value =
1388 					dep_mm_table->entries[i].eclk;
1389 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1390 			dpm_table->count++;
1391 		}
1392 	}
1393 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1394 
1395 	data->dpm_table.vclk_table.count = 0;
1396 	data->dpm_table.dclk_table.count = 0;
1397 	dpm_table = &(data->dpm_table.vclk_table);
1398 	for (i = 0; i < dep_mm_table->count; i++) {
1399 		if (i == 0 || dpm_table->dpm_levels
1400 				[dpm_table->count - 1].value <=
1401 						dep_mm_table->entries[i].vclk) {
1402 			dpm_table->dpm_levels[dpm_table->count].value =
1403 					dep_mm_table->entries[i].vclk;
1404 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1405 			dpm_table->count++;
1406 		}
1407 	}
1408 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1409 
1410 	dpm_table = &(data->dpm_table.dclk_table);
1411 	for (i = 0; i < dep_mm_table->count; i++) {
1412 		if (i == 0 || dpm_table->dpm_levels
1413 				[dpm_table->count - 1].value <=
1414 						dep_mm_table->entries[i].dclk) {
1415 			dpm_table->dpm_levels[dpm_table->count].value =
1416 					dep_mm_table->entries[i].dclk;
1417 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1418 			dpm_table->count++;
1419 		}
1420 	}
1421 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1422 
1423 	/* Assume there is no headless Vega10 for now */
1424 	dpm_table = &(data->dpm_table.dcef_table);
1425 	vega10_setup_default_single_dpm_table(hwmgr,
1426 			dpm_table,
1427 			dep_dcef_table);
1428 
1429 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1430 
1431 	dpm_table = &(data->dpm_table.pixel_table);
1432 	vega10_setup_default_single_dpm_table(hwmgr,
1433 			dpm_table,
1434 			dep_pix_table);
1435 
1436 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1437 
1438 	dpm_table = &(data->dpm_table.display_table);
1439 	vega10_setup_default_single_dpm_table(hwmgr,
1440 			dpm_table,
1441 			dep_disp_table);
1442 
1443 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1444 
1445 	dpm_table = &(data->dpm_table.phy_table);
1446 	vega10_setup_default_single_dpm_table(hwmgr,
1447 			dpm_table,
1448 			dep_phy_table);
1449 
1450 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1451 
1452 	vega10_setup_default_pcie_table(hwmgr);
1453 
1454 	/* Zero out the saved copy of the CUSTOM profile
1455 	 * This will be checked when trying to set the profile
1456 	 * and will require that new values be passed in
1457 	 */
1458 	data->custom_profile_mode[0] = 0;
1459 	data->custom_profile_mode[1] = 0;
1460 	data->custom_profile_mode[2] = 0;
1461 	data->custom_profile_mode[3] = 0;
1462 
1463 	/* save a copy of the default DPM table */
1464 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1465 			sizeof(struct vega10_dpm_table));
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * vega10_populate_ulv_state
1472  * Function to provide parameters for Utral Low Voltage state to SMC.
1473  *
1474  * @hwmgr: - the address of the hardware manager.
1475  * return:   Always 0.
1476  */
1477 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1478 {
1479 	struct vega10_hwmgr *data = hwmgr->backend;
1480 	struct phm_ppt_v2_information *table_info =
1481 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1482 
1483 	data->smc_state_table.pp_table.UlvOffsetVid =
1484 			(uint8_t)table_info->us_ulv_voltage_offset;
1485 
1486 	data->smc_state_table.pp_table.UlvSmnclkDid =
1487 			(uint8_t)(table_info->us_ulv_smnclk_did);
1488 	data->smc_state_table.pp_table.UlvMp1clkDid =
1489 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1490 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1491 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1492 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1493 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1494 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1495 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1496 
1497 	return 0;
1498 }
1499 
1500 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1501 		uint32_t lclock, uint8_t *curr_lclk_did)
1502 {
1503 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1504 
1505 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1506 			hwmgr,
1507 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1508 			lclock, &dividers),
1509 			"Failed to get LCLK clock settings from VBIOS!",
1510 			return -1);
1511 
1512 	*curr_lclk_did = dividers.ulDid;
1513 
1514 	return 0;
1515 }
1516 
1517 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr)
1518 {
1519 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
1520 	struct vega10_hwmgr *data =
1521 			(struct vega10_hwmgr *)(hwmgr->backend);
1522 	uint32_t pcie_gen = 0, pcie_width = 0;
1523 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1524 	int i;
1525 
1526 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1527 		pcie_gen = 3;
1528 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1529 		pcie_gen = 2;
1530 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1531 		pcie_gen = 1;
1532 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1533 		pcie_gen = 0;
1534 
1535 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1536 		pcie_width = 6;
1537 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1538 		pcie_width = 5;
1539 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1540 		pcie_width = 4;
1541 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1542 		pcie_width = 3;
1543 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1544 		pcie_width = 2;
1545 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1546 		pcie_width = 1;
1547 
1548 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1549 		if (pp_table->PcieGenSpeed[i] > pcie_gen)
1550 			pp_table->PcieGenSpeed[i] = pcie_gen;
1551 
1552 		if (pp_table->PcieLaneCount[i] > pcie_width)
1553 			pp_table->PcieLaneCount[i] = pcie_width;
1554 	}
1555 
1556 	if (data->registry_data.pcie_dpm_key_disabled) {
1557 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
1558 			pp_table->PcieGenSpeed[i] = pcie_gen;
1559 			pp_table->PcieLaneCount[i] = pcie_width;
1560 		}
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1567 {
1568 	int result = -1;
1569 	struct vega10_hwmgr *data = hwmgr->backend;
1570 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1571 	struct vega10_pcie_table *pcie_table =
1572 			&(data->dpm_table.pcie_table);
1573 	uint32_t i, j;
1574 
1575 	for (i = 0; i < pcie_table->count; i++) {
1576 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1577 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1578 
1579 		result = vega10_populate_single_lclk_level(hwmgr,
1580 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1581 		if (result) {
1582 			pr_info("Populate LClock Level %d Failed!\n", i);
1583 			return result;
1584 		}
1585 	}
1586 
1587 	j = i - 1;
1588 	while (i < NUM_LINK_LEVELS) {
1589 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1590 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1591 
1592 		result = vega10_populate_single_lclk_level(hwmgr,
1593 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1594 		if (result) {
1595 			pr_info("Populate LClock Level %d Failed!\n", i);
1596 			return result;
1597 		}
1598 		i++;
1599 	}
1600 
1601 	return result;
1602 }
1603 
1604 /**
1605  * vega10_populate_single_gfx_level - Populates single SMC GFXSCLK structure
1606  *                                    using the provided engine clock
1607  *
1608  * @hwmgr:      the address of the hardware manager
1609  * @gfx_clock:  the GFX clock to use to populate the structure.
1610  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1611  * @acg_freq:   ACG frequenty to return (MHz)
1612  */
1613 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1614 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1615 		uint32_t *acg_freq)
1616 {
1617 	struct phm_ppt_v2_information *table_info =
1618 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1619 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1620 	struct vega10_hwmgr *data = hwmgr->backend;
1621 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1622 	uint32_t gfx_max_clock =
1623 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1624 	uint32_t i = 0;
1625 
1626 	if (hwmgr->od_enabled)
1627 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1628 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1629 	else
1630 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1631 
1632 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1633 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1634 			return -EINVAL);
1635 
1636 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1637 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1638 	else {
1639 		for (i = 0; i < dep_on_sclk->count; i++) {
1640 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1641 				break;
1642 		}
1643 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1644 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1645 				return -EINVAL);
1646 	}
1647 
1648 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1649 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1650 			gfx_clock, &dividers),
1651 			"Failed to get GFX Clock settings from VBIOS!",
1652 			return -EINVAL);
1653 
1654 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1655 	current_gfxclk_level->FbMult =
1656 			cpu_to_le32(dividers.ulPll_fb_mult);
1657 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1658 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1659 	current_gfxclk_level->SsFbMult =
1660 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1661 	current_gfxclk_level->SsSlewFrac =
1662 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1663 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1664 
1665 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * vega10_populate_single_soc_level - Populates single SMC SOCCLK structure
1672  *                                    using the provided clock.
1673  *
1674  * @hwmgr:     the address of the hardware manager.
1675  * @soc_clock: the SOC clock to use to populate the structure.
1676  * @current_soc_did:   DFS divider to pass back to caller
1677  * @current_vol_index: index of current VDD to pass back to caller
1678  * return:      0 on success
1679  */
1680 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1681 		uint32_t soc_clock, uint8_t *current_soc_did,
1682 		uint8_t *current_vol_index)
1683 {
1684 	struct vega10_hwmgr *data = hwmgr->backend;
1685 	struct phm_ppt_v2_information *table_info =
1686 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1687 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1688 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1689 	uint32_t i;
1690 
1691 	if (hwmgr->od_enabled) {
1692 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1693 						&data->odn_dpm_table.vdd_dep_on_socclk;
1694 		for (i = 0; i < dep_on_soc->count; i++) {
1695 			if (dep_on_soc->entries[i].clk >= soc_clock)
1696 				break;
1697 		}
1698 	} else {
1699 		dep_on_soc = table_info->vdd_dep_on_socclk;
1700 		for (i = 0; i < dep_on_soc->count; i++) {
1701 			if (dep_on_soc->entries[i].clk == soc_clock)
1702 				break;
1703 		}
1704 	}
1705 
1706 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1707 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1708 			return -EINVAL);
1709 
1710 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1711 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1712 			soc_clock, &dividers),
1713 			"Failed to get SOC Clock settings from VBIOS!",
1714 			return -EINVAL);
1715 
1716 	*current_soc_did = (uint8_t)dividers.ulDid;
1717 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1718 	return 0;
1719 }
1720 
1721 /**
1722  * vega10_populate_all_graphic_levels - Populates all SMC SCLK levels' structure
1723  *                                      based on the trimmed allowed dpm engine clock states
1724  *
1725  * @hwmgr:      the address of the hardware manager
1726  */
1727 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1728 {
1729 	struct vega10_hwmgr *data = hwmgr->backend;
1730 	struct phm_ppt_v2_information *table_info =
1731 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1732 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1733 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1734 	int result = 0;
1735 	uint32_t i, j;
1736 
1737 	for (i = 0; i < dpm_table->count; i++) {
1738 		result = vega10_populate_single_gfx_level(hwmgr,
1739 				dpm_table->dpm_levels[i].value,
1740 				&(pp_table->GfxclkLevel[i]),
1741 				&(pp_table->AcgFreqTable[i]));
1742 		if (result)
1743 			return result;
1744 	}
1745 
1746 	j = i - 1;
1747 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1748 		result = vega10_populate_single_gfx_level(hwmgr,
1749 				dpm_table->dpm_levels[j].value,
1750 				&(pp_table->GfxclkLevel[i]),
1751 				&(pp_table->AcgFreqTable[i]));
1752 		if (result)
1753 			return result;
1754 		i++;
1755 	}
1756 
1757 	pp_table->GfxclkSlewRate =
1758 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1759 
1760 	dpm_table = &(data->dpm_table.soc_table);
1761 	for (i = 0; i < dpm_table->count; i++) {
1762 		result = vega10_populate_single_soc_level(hwmgr,
1763 				dpm_table->dpm_levels[i].value,
1764 				&(pp_table->SocclkDid[i]),
1765 				&(pp_table->SocDpmVoltageIndex[i]));
1766 		if (result)
1767 			return result;
1768 	}
1769 
1770 	j = i - 1;
1771 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1772 		result = vega10_populate_single_soc_level(hwmgr,
1773 				dpm_table->dpm_levels[j].value,
1774 				&(pp_table->SocclkDid[i]),
1775 				&(pp_table->SocDpmVoltageIndex[i]));
1776 		if (result)
1777 			return result;
1778 		i++;
1779 	}
1780 
1781 	return result;
1782 }
1783 
1784 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1785 {
1786 	struct vega10_hwmgr *data = hwmgr->backend;
1787 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1788 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1789 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1790 
1791 	uint8_t soc_vid = 0;
1792 	uint32_t i, max_vddc_level;
1793 
1794 	if (hwmgr->od_enabled)
1795 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1796 	else
1797 		vddc_lookup_table = table_info->vddc_lookup_table;
1798 
1799 	max_vddc_level = vddc_lookup_table->count;
1800 	for (i = 0; i < max_vddc_level; i++) {
1801 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1802 		pp_table->SocVid[i] = soc_vid;
1803 	}
1804 	while (i < MAX_REGULAR_DPM_NUMBER) {
1805 		pp_table->SocVid[i] = soc_vid;
1806 		i++;
1807 	}
1808 }
1809 
1810 /*
1811  * Populates single SMC GFXCLK structure using the provided clock.
1812  *
1813  * @hwmgr:     the address of the hardware manager.
1814  * @mem_clock: the memory clock to use to populate the structure.
1815  * return:     0 on success..
1816  */
1817 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1818 		uint32_t mem_clock, uint8_t *current_mem_vid,
1819 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1820 {
1821 	struct vega10_hwmgr *data = hwmgr->backend;
1822 	struct phm_ppt_v2_information *table_info =
1823 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1824 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1825 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1826 	uint32_t mem_max_clock =
1827 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1828 	uint32_t i = 0;
1829 
1830 	if (hwmgr->od_enabled)
1831 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1832 					&data->odn_dpm_table.vdd_dep_on_mclk;
1833 	else
1834 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1835 
1836 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1837 			"Invalid SOC_VDD-UCLK Dependency Table!",
1838 			return -EINVAL);
1839 
1840 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1841 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1842 	} else {
1843 		for (i = 0; i < dep_on_mclk->count; i++) {
1844 			if (dep_on_mclk->entries[i].clk == mem_clock)
1845 				break;
1846 		}
1847 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1848 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1849 				return -EINVAL);
1850 	}
1851 
1852 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1853 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1854 			"Failed to get UCLK settings from VBIOS!",
1855 			return -1);
1856 
1857 	*current_mem_vid =
1858 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1859 	*current_mem_soc_vind =
1860 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1861 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1862 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1863 
1864 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1865 			"Invalid Divider ID!",
1866 			return -EINVAL);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * vega10_populate_all_memory_levels - Populates all SMC MCLK levels' structure
1873  *                                     based on the trimmed allowed dpm memory clock states.
1874  *
1875  * @hwmgr:  the address of the hardware manager.
1876  * return:   PP_Result_OK on success.
1877  */
1878 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1879 {
1880 	struct vega10_hwmgr *data = hwmgr->backend;
1881 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1882 	struct vega10_single_dpm_table *dpm_table =
1883 			&(data->dpm_table.mem_table);
1884 	int result = 0;
1885 	uint32_t i, j;
1886 
1887 	for (i = 0; i < dpm_table->count; i++) {
1888 		result = vega10_populate_single_memory_level(hwmgr,
1889 				dpm_table->dpm_levels[i].value,
1890 				&(pp_table->MemVid[i]),
1891 				&(pp_table->UclkLevel[i]),
1892 				&(pp_table->MemSocVoltageIndex[i]));
1893 		if (result)
1894 			return result;
1895 	}
1896 
1897 	j = i - 1;
1898 	while (i < NUM_UCLK_DPM_LEVELS) {
1899 		result = vega10_populate_single_memory_level(hwmgr,
1900 				dpm_table->dpm_levels[j].value,
1901 				&(pp_table->MemVid[i]),
1902 				&(pp_table->UclkLevel[i]),
1903 				&(pp_table->MemSocVoltageIndex[i]));
1904 		if (result)
1905 			return result;
1906 		i++;
1907 	}
1908 
1909 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1910 	pp_table->MemoryChannelWidth =
1911 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1912 					channel_number[data->mem_channels]);
1913 
1914 	pp_table->LowestUclkReservedForUlv =
1915 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1916 
1917 	return result;
1918 }
1919 
1920 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1921 		DSPCLK_e disp_clock)
1922 {
1923 	struct vega10_hwmgr *data = hwmgr->backend;
1924 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1925 	struct phm_ppt_v2_information *table_info =
1926 			(struct phm_ppt_v2_information *)
1927 			(hwmgr->pptable);
1928 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1929 	uint32_t i;
1930 	uint16_t clk = 0, vddc = 0;
1931 	uint8_t vid = 0;
1932 
1933 	switch (disp_clock) {
1934 	case DSPCLK_DCEFCLK:
1935 		dep_table = table_info->vdd_dep_on_dcefclk;
1936 		break;
1937 	case DSPCLK_DISPCLK:
1938 		dep_table = table_info->vdd_dep_on_dispclk;
1939 		break;
1940 	case DSPCLK_PIXCLK:
1941 		dep_table = table_info->vdd_dep_on_pixclk;
1942 		break;
1943 	case DSPCLK_PHYCLK:
1944 		dep_table = table_info->vdd_dep_on_phyclk;
1945 		break;
1946 	default:
1947 		return -1;
1948 	}
1949 
1950 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1951 			"Number Of Entries Exceeded maximum!",
1952 			return -1);
1953 
1954 	for (i = 0; i < dep_table->count; i++) {
1955 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1956 		vddc = table_info->vddc_lookup_table->
1957 				entries[dep_table->entries[i].vddInd].us_vdd;
1958 		vid = (uint8_t)convert_to_vid(vddc);
1959 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1960 				cpu_to_le16(clk);
1961 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1962 				cpu_to_le16(vid);
1963 	}
1964 
1965 	while (i < NUM_DSPCLK_LEVELS) {
1966 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1967 				cpu_to_le16(clk);
1968 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1969 				cpu_to_le16(vid);
1970 		i++;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1977 {
1978 	uint32_t i;
1979 
1980 	for (i = 0; i < DSPCLK_COUNT; i++) {
1981 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1982 				"Failed to populate Clock in DisplayClockTable!",
1983 				return -1);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1990 		uint32_t eclock, uint8_t *current_eclk_did,
1991 		uint8_t *current_soc_vol)
1992 {
1993 	struct phm_ppt_v2_information *table_info =
1994 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1995 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1996 			table_info->mm_dep_table;
1997 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1998 	uint32_t i;
1999 
2000 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2001 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2002 			eclock, &dividers),
2003 			"Failed to get ECLK clock settings from VBIOS!",
2004 			return -1);
2005 
2006 	*current_eclk_did = (uint8_t)dividers.ulDid;
2007 
2008 	for (i = 0; i < dep_table->count; i++) {
2009 		if (dep_table->entries[i].eclk == eclock)
2010 			*current_soc_vol = dep_table->entries[i].vddcInd;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
2017 {
2018 	struct vega10_hwmgr *data = hwmgr->backend;
2019 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2020 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
2021 	int result = -EINVAL;
2022 	uint32_t i, j;
2023 
2024 	for (i = 0; i < dpm_table->count; i++) {
2025 		result = vega10_populate_single_eclock_level(hwmgr,
2026 				dpm_table->dpm_levels[i].value,
2027 				&(pp_table->EclkDid[i]),
2028 				&(pp_table->VceDpmVoltageIndex[i]));
2029 		if (result)
2030 			return result;
2031 	}
2032 
2033 	j = i - 1;
2034 	while (i < NUM_VCE_DPM_LEVELS) {
2035 		result = vega10_populate_single_eclock_level(hwmgr,
2036 				dpm_table->dpm_levels[j].value,
2037 				&(pp_table->EclkDid[i]),
2038 				&(pp_table->VceDpmVoltageIndex[i]));
2039 		if (result)
2040 			return result;
2041 		i++;
2042 	}
2043 
2044 	return result;
2045 }
2046 
2047 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
2048 		uint32_t vclock, uint8_t *current_vclk_did)
2049 {
2050 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2051 
2052 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2053 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2054 			vclock, &dividers),
2055 			"Failed to get VCLK clock settings from VBIOS!",
2056 			return -EINVAL);
2057 
2058 	*current_vclk_did = (uint8_t)dividers.ulDid;
2059 
2060 	return 0;
2061 }
2062 
2063 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2064 		uint32_t dclock, uint8_t *current_dclk_did)
2065 {
2066 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2067 
2068 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2069 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2070 			dclock, &dividers),
2071 			"Failed to get DCLK clock settings from VBIOS!",
2072 			return -EINVAL);
2073 
2074 	*current_dclk_did = (uint8_t)dividers.ulDid;
2075 
2076 	return 0;
2077 }
2078 
2079 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2080 {
2081 	struct vega10_hwmgr *data = hwmgr->backend;
2082 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2083 	struct vega10_single_dpm_table *vclk_dpm_table =
2084 			&(data->dpm_table.vclk_table);
2085 	struct vega10_single_dpm_table *dclk_dpm_table =
2086 			&(data->dpm_table.dclk_table);
2087 	struct phm_ppt_v2_information *table_info =
2088 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2089 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2090 			table_info->mm_dep_table;
2091 	int result = -EINVAL;
2092 	uint32_t i, j;
2093 
2094 	for (i = 0; i < vclk_dpm_table->count; i++) {
2095 		result = vega10_populate_single_vclock_level(hwmgr,
2096 				vclk_dpm_table->dpm_levels[i].value,
2097 				&(pp_table->VclkDid[i]));
2098 		if (result)
2099 			return result;
2100 	}
2101 
2102 	j = i - 1;
2103 	while (i < NUM_UVD_DPM_LEVELS) {
2104 		result = vega10_populate_single_vclock_level(hwmgr,
2105 				vclk_dpm_table->dpm_levels[j].value,
2106 				&(pp_table->VclkDid[i]));
2107 		if (result)
2108 			return result;
2109 		i++;
2110 	}
2111 
2112 	for (i = 0; i < dclk_dpm_table->count; i++) {
2113 		result = vega10_populate_single_dclock_level(hwmgr,
2114 				dclk_dpm_table->dpm_levels[i].value,
2115 				&(pp_table->DclkDid[i]));
2116 		if (result)
2117 			return result;
2118 	}
2119 
2120 	j = i - 1;
2121 	while (i < NUM_UVD_DPM_LEVELS) {
2122 		result = vega10_populate_single_dclock_level(hwmgr,
2123 				dclk_dpm_table->dpm_levels[j].value,
2124 				&(pp_table->DclkDid[i]));
2125 		if (result)
2126 			return result;
2127 		i++;
2128 	}
2129 
2130 	for (i = 0; i < dep_table->count; i++) {
2131 		if (dep_table->entries[i].vclk ==
2132 				vclk_dpm_table->dpm_levels[i].value &&
2133 			dep_table->entries[i].dclk ==
2134 				dclk_dpm_table->dpm_levels[i].value)
2135 			pp_table->UvdDpmVoltageIndex[i] =
2136 					dep_table->entries[i].vddcInd;
2137 		else
2138 			return -1;
2139 	}
2140 
2141 	j = i - 1;
2142 	while (i < NUM_UVD_DPM_LEVELS) {
2143 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2144 		i++;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2151 {
2152 	struct vega10_hwmgr *data = hwmgr->backend;
2153 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2154 	struct phm_ppt_v2_information *table_info =
2155 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2156 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2157 			table_info->vdd_dep_on_sclk;
2158 	uint32_t i;
2159 
2160 	for (i = 0; i < dep_table->count; i++) {
2161 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2162 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2163 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2170 {
2171 	struct vega10_hwmgr *data = hwmgr->backend;
2172 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2173 	struct phm_ppt_v2_information *table_info =
2174 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2175 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2176 			table_info->vdd_dep_on_sclk;
2177 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2178 	int result = 0;
2179 	uint32_t i;
2180 
2181 	pp_table->MinVoltageVid = (uint8_t)0xff;
2182 	pp_table->MaxVoltageVid = (uint8_t)0;
2183 
2184 	if (data->smu_features[GNLD_AVFS].supported) {
2185 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2186 		if (!result) {
2187 			pp_table->MinVoltageVid = (uint8_t)
2188 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2189 			pp_table->MaxVoltageVid = (uint8_t)
2190 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2191 
2192 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2193 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2194 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2195 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2196 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2197 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2198 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2199 
2200 			pp_table->BtcGbVdroopTableCksOff.a0 =
2201 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2202 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2203 			pp_table->BtcGbVdroopTableCksOff.a1 =
2204 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2205 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2206 			pp_table->BtcGbVdroopTableCksOff.a2 =
2207 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2208 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2209 
2210 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2211 			pp_table->BtcGbVdroopTableCksOn.a0 =
2212 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2213 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2214 			pp_table->BtcGbVdroopTableCksOn.a1 =
2215 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2216 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2217 			pp_table->BtcGbVdroopTableCksOn.a2 =
2218 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2219 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2220 
2221 			pp_table->AvfsGbCksOn.m1 =
2222 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2223 			pp_table->AvfsGbCksOn.m2 =
2224 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2225 			pp_table->AvfsGbCksOn.b =
2226 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2227 			pp_table->AvfsGbCksOn.m1_shift = 24;
2228 			pp_table->AvfsGbCksOn.m2_shift = 12;
2229 			pp_table->AvfsGbCksOn.b_shift = 0;
2230 
2231 			pp_table->OverrideAvfsGbCksOn =
2232 					avfs_params.ucEnableGbFuseTableCkson;
2233 			pp_table->AvfsGbCksOff.m1 =
2234 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2235 			pp_table->AvfsGbCksOff.m2 =
2236 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2237 			pp_table->AvfsGbCksOff.b =
2238 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2239 			pp_table->AvfsGbCksOff.m1_shift = 24;
2240 			pp_table->AvfsGbCksOff.m2_shift = 12;
2241 			pp_table->AvfsGbCksOff.b_shift = 0;
2242 
2243 			for (i = 0; i < dep_table->count; i++)
2244 				pp_table->StaticVoltageOffsetVid[i] =
2245 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2246 
2247 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2248 					data->disp_clk_quad_eqn_a) &&
2249 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2250 					data->disp_clk_quad_eqn_b)) {
2251 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2252 						(int32_t)data->disp_clk_quad_eqn_a;
2253 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2254 						(int32_t)data->disp_clk_quad_eqn_b;
2255 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2256 						(int32_t)data->disp_clk_quad_eqn_c;
2257 			} else {
2258 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2259 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2260 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2261 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2262 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2263 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2264 			}
2265 
2266 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2267 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2268 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2269 
2270 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2271 					data->dcef_clk_quad_eqn_a) &&
2272 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2273 					data->dcef_clk_quad_eqn_b)) {
2274 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2275 						(int32_t)data->dcef_clk_quad_eqn_a;
2276 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2277 						(int32_t)data->dcef_clk_quad_eqn_b;
2278 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2279 						(int32_t)data->dcef_clk_quad_eqn_c;
2280 			} else {
2281 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2282 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2283 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2284 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2285 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2286 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2287 			}
2288 
2289 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2290 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2291 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2292 
2293 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2294 					data->pixel_clk_quad_eqn_a) &&
2295 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2296 					data->pixel_clk_quad_eqn_b)) {
2297 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2298 						(int32_t)data->pixel_clk_quad_eqn_a;
2299 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2300 						(int32_t)data->pixel_clk_quad_eqn_b;
2301 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2302 						(int32_t)data->pixel_clk_quad_eqn_c;
2303 			} else {
2304 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2305 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2306 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2307 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2308 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2309 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2310 			}
2311 
2312 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2313 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2314 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2315 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2316 					data->phy_clk_quad_eqn_a) &&
2317 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2318 					data->phy_clk_quad_eqn_b)) {
2319 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2320 						(int32_t)data->phy_clk_quad_eqn_a;
2321 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2322 						(int32_t)data->phy_clk_quad_eqn_b;
2323 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2324 						(int32_t)data->phy_clk_quad_eqn_c;
2325 			} else {
2326 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2327 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2328 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2329 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2330 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2331 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2332 			}
2333 
2334 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2335 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2336 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2337 
2338 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2339 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2340 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2341 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2342 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2343 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2344 
2345 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2346 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2347 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2348 			pp_table->AcgAvfsGb.m1_shift             = 24;
2349 			pp_table->AcgAvfsGb.m2_shift             = 12;
2350 			pp_table->AcgAvfsGb.b_shift              = 0;
2351 
2352 		} else {
2353 			data->smu_features[GNLD_AVFS].supported = false;
2354 		}
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2361 {
2362 	struct vega10_hwmgr *data = hwmgr->backend;
2363 	uint32_t agc_btc_response;
2364 	int ret;
2365 
2366 	if (data->smu_features[GNLD_ACG].supported) {
2367 		if (0 == vega10_enable_smc_features(hwmgr, true,
2368 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2369 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2370 
2371 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2372 		if (ret)
2373 			return ret;
2374 
2375 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2376 		if (ret)
2377 			agc_btc_response = 0;
2378 
2379 		if (1 == agc_btc_response) {
2380 			if (1 == data->acg_loop_state)
2381 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2382 			else if (2 == data->acg_loop_state)
2383 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2384 			if (0 == vega10_enable_smc_features(hwmgr, true,
2385 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2386 					data->smu_features[GNLD_ACG].enabled = true;
2387 		} else {
2388 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2389 			data->smu_features[GNLD_ACG].enabled = false;
2390 		}
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2397 {
2398 	struct vega10_hwmgr *data = hwmgr->backend;
2399 
2400 	if (data->smu_features[GNLD_ACG].supported &&
2401 	    data->smu_features[GNLD_ACG].enabled)
2402 		if (!vega10_enable_smc_features(hwmgr, false,
2403 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2404 			data->smu_features[GNLD_ACG].enabled = false;
2405 
2406 	return 0;
2407 }
2408 
2409 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2410 {
2411 	struct vega10_hwmgr *data = hwmgr->backend;
2412 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2413 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2414 	int result;
2415 
2416 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2417 	if (!result) {
2418 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2419 		    data->registry_data.regulator_hot_gpio_support) {
2420 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2421 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2422 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2423 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2424 		} else {
2425 			pp_table->VR0HotGpio = 0;
2426 			pp_table->VR0HotPolarity = 0;
2427 			pp_table->VR1HotGpio = 0;
2428 			pp_table->VR1HotPolarity = 0;
2429 		}
2430 
2431 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2432 		    data->registry_data.ac_dc_switch_gpio_support) {
2433 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2434 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2435 		} else {
2436 			pp_table->AcDcGpio = 0;
2437 			pp_table->AcDcPolarity = 0;
2438 		}
2439 	}
2440 
2441 	return result;
2442 }
2443 
2444 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2445 {
2446 	struct vega10_hwmgr *data = hwmgr->backend;
2447 
2448 	if (data->smu_features[GNLD_AVFS].supported) {
2449 		/* Already enabled or disabled */
2450 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2451 			return 0;
2452 
2453 		if (enable) {
2454 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2455 					true,
2456 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2457 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2458 					return -1);
2459 			data->smu_features[GNLD_AVFS].enabled = true;
2460 		} else {
2461 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2462 					false,
2463 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2464 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2465 					return -1);
2466 			data->smu_features[GNLD_AVFS].enabled = false;
2467 		}
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2474 {
2475 	struct vega10_hwmgr *data = hwmgr->backend;
2476 
2477 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2478 		vega10_avfs_enable(hwmgr, false);
2479 	} else if (data->need_update_dpm_table) {
2480 		vega10_avfs_enable(hwmgr, false);
2481 		vega10_avfs_enable(hwmgr, true);
2482 	} else {
2483 		vega10_avfs_enable(hwmgr, true);
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2490 {
2491 	int result = 0;
2492 
2493 	uint64_t serial_number = 0;
2494 	uint32_t top32, bottom32;
2495 	struct phm_fuses_default fuse;
2496 
2497 	struct vega10_hwmgr *data = hwmgr->backend;
2498 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2499 
2500 	result = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2501 	if (result)
2502 		return result;
2503 	result = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2504 	if (result)
2505 		return result;
2506 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2507 
2508 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2509 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2510 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2511 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2512 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2513 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2514 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2515 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2516 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2517 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2518 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2519 						AVFSFUSETABLE, false);
2520 		PP_ASSERT_WITH_CODE(!result,
2521 			"Failed to upload FuseOVerride!",
2522 			);
2523 	}
2524 
2525 	return result;
2526 }
2527 
2528 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2529 {
2530 	struct vega10_hwmgr *data = hwmgr->backend;
2531 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2532 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2533 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2534 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2535 	uint32_t i;
2536 
2537 	dep_table = table_info->vdd_dep_on_mclk;
2538 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2539 
2540 	for (i = 0; i < dep_table->count; i++) {
2541 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2542 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2543 			return;
2544 		}
2545 	}
2546 
2547 	dep_table = table_info->vdd_dep_on_sclk;
2548 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2549 	for (i = 0; i < dep_table->count; i++) {
2550 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2551 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2552 			return;
2553 		}
2554 	}
2555 }
2556 
2557 /**
2558  * vega10_init_smc_table - Initializes the SMC table and uploads it
2559  *
2560  * @hwmgr:  the address of the powerplay hardware manager.
2561  * return:  always 0
2562  */
2563 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2564 {
2565 	int result;
2566 	struct vega10_hwmgr *data = hwmgr->backend;
2567 	struct phm_ppt_v2_information *table_info =
2568 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2569 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2570 	struct pp_atomfwctrl_voltage_table voltage_table;
2571 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2572 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2573 
2574 	result = vega10_setup_default_dpm_tables(hwmgr);
2575 	PP_ASSERT_WITH_CODE(!result,
2576 			"Failed to setup default DPM tables!",
2577 			return result);
2578 
2579 	if (!hwmgr->not_vf)
2580 		return 0;
2581 
2582 	/* initialize ODN table */
2583 	if (hwmgr->od_enabled) {
2584 		if (odn_table->max_vddc) {
2585 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2586 			vega10_check_dpm_table_updated(hwmgr);
2587 		} else {
2588 			vega10_odn_initial_default_setting(hwmgr);
2589 		}
2590 	}
2591 
2592 	result = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2593 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2594 	PP_ASSERT_WITH_CODE(!result,
2595 			"Failed to get voltage table!",
2596 			return result);
2597 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2598 
2599 	pp_table->GfxDpmVoltageMode =
2600 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2601 	pp_table->SocDpmVoltageMode =
2602 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2603 	pp_table->UclkDpmVoltageMode =
2604 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2605 	pp_table->UvdDpmVoltageMode =
2606 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2607 	pp_table->VceDpmVoltageMode =
2608 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2609 	pp_table->Mp0DpmVoltageMode =
2610 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2611 
2612 	pp_table->DisplayDpmVoltageMode =
2613 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2614 
2615 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2616 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2617 
2618 	if (data->registry_data.ulv_support &&
2619 			table_info->us_ulv_voltage_offset) {
2620 		result = vega10_populate_ulv_state(hwmgr);
2621 		PP_ASSERT_WITH_CODE(!result,
2622 				"Failed to initialize ULV state!",
2623 				return result);
2624 	}
2625 
2626 	result = vega10_populate_smc_link_levels(hwmgr);
2627 	PP_ASSERT_WITH_CODE(!result,
2628 			"Failed to initialize Link Level!",
2629 			return result);
2630 
2631 	result = vega10_override_pcie_parameters(hwmgr);
2632 	PP_ASSERT_WITH_CODE(!result,
2633 			"Failed to override pcie parameters!",
2634 			return result);
2635 
2636 	result = vega10_populate_all_graphic_levels(hwmgr);
2637 	PP_ASSERT_WITH_CODE(!result,
2638 			"Failed to initialize Graphics Level!",
2639 			return result);
2640 
2641 	result = vega10_populate_all_memory_levels(hwmgr);
2642 	PP_ASSERT_WITH_CODE(!result,
2643 			"Failed to initialize Memory Level!",
2644 			return result);
2645 
2646 	vega10_populate_vddc_soc_levels(hwmgr);
2647 
2648 	result = vega10_populate_all_display_clock_levels(hwmgr);
2649 	PP_ASSERT_WITH_CODE(!result,
2650 			"Failed to initialize Display Level!",
2651 			return result);
2652 
2653 	result = vega10_populate_smc_vce_levels(hwmgr);
2654 	PP_ASSERT_WITH_CODE(!result,
2655 			"Failed to initialize VCE Level!",
2656 			return result);
2657 
2658 	result = vega10_populate_smc_uvd_levels(hwmgr);
2659 	PP_ASSERT_WITH_CODE(!result,
2660 			"Failed to initialize UVD Level!",
2661 			return result);
2662 
2663 	if (data->registry_data.clock_stretcher_support) {
2664 		result = vega10_populate_clock_stretcher_table(hwmgr);
2665 		PP_ASSERT_WITH_CODE(!result,
2666 				"Failed to populate Clock Stretcher Table!",
2667 				return result);
2668 	}
2669 
2670 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2671 	if (!result) {
2672 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2673 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2674 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2675 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2676 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2677 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2678 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2679 
2680 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2681 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2682 
2683 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2684 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2685 		if (0 != boot_up_values.usVddc) {
2686 			smum_send_msg_to_smc_with_parameter(hwmgr,
2687 						PPSMC_MSG_SetFloorSocVoltage,
2688 						(boot_up_values.usVddc * 4),
2689 						NULL);
2690 			data->vbios_boot_state.bsoc_vddc_lock = true;
2691 		} else {
2692 			data->vbios_boot_state.bsoc_vddc_lock = false;
2693 		}
2694 		smum_send_msg_to_smc_with_parameter(hwmgr,
2695 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2696 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2697 				NULL);
2698 	}
2699 
2700 	result = vega10_populate_avfs_parameters(hwmgr);
2701 	PP_ASSERT_WITH_CODE(!result,
2702 			"Failed to initialize AVFS Parameters!",
2703 			return result);
2704 
2705 	result = vega10_populate_gpio_parameters(hwmgr);
2706 	PP_ASSERT_WITH_CODE(!result,
2707 			"Failed to initialize GPIO Parameters!",
2708 			return result);
2709 
2710 	pp_table->GfxclkAverageAlpha = (uint8_t)
2711 			(data->gfxclk_average_alpha);
2712 	pp_table->SocclkAverageAlpha = (uint8_t)
2713 			(data->socclk_average_alpha);
2714 	pp_table->UclkAverageAlpha = (uint8_t)
2715 			(data->uclk_average_alpha);
2716 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2717 			(data->gfx_activity_average_alpha);
2718 
2719 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2720 
2721 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2722 
2723 	PP_ASSERT_WITH_CODE(!result,
2724 			"Failed to upload PPtable!", return result);
2725 
2726 	result = vega10_avfs_enable(hwmgr, true);
2727 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2728 					return result);
2729 	vega10_acg_enable(hwmgr);
2730 
2731 	return 0;
2732 }
2733 
2734 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2735 {
2736 	struct vega10_hwmgr *data = hwmgr->backend;
2737 
2738 	if (data->smu_features[GNLD_THERMAL].supported) {
2739 		if (data->smu_features[GNLD_THERMAL].enabled)
2740 			pr_info("THERMAL Feature Already enabled!");
2741 
2742 		PP_ASSERT_WITH_CODE(
2743 				!vega10_enable_smc_features(hwmgr,
2744 				true,
2745 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2746 				"Enable THERMAL Feature Failed!",
2747 				return -1);
2748 		data->smu_features[GNLD_THERMAL].enabled = true;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2755 {
2756 	struct vega10_hwmgr *data = hwmgr->backend;
2757 
2758 	if (data->smu_features[GNLD_THERMAL].supported) {
2759 		if (!data->smu_features[GNLD_THERMAL].enabled)
2760 			pr_info("THERMAL Feature Already disabled!");
2761 
2762 		PP_ASSERT_WITH_CODE(
2763 				!vega10_enable_smc_features(hwmgr,
2764 				false,
2765 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2766 				"disable THERMAL Feature Failed!",
2767 				return -1);
2768 		data->smu_features[GNLD_THERMAL].enabled = false;
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2775 {
2776 	struct vega10_hwmgr *data = hwmgr->backend;
2777 
2778 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2779 		if (data->smu_features[GNLD_VR0HOT].supported) {
2780 			PP_ASSERT_WITH_CODE(
2781 					!vega10_enable_smc_features(hwmgr,
2782 					true,
2783 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2784 					"Attempt to Enable VR0 Hot feature Failed!",
2785 					return -1);
2786 			data->smu_features[GNLD_VR0HOT].enabled = true;
2787 		} else {
2788 			if (data->smu_features[GNLD_VR1HOT].supported) {
2789 				PP_ASSERT_WITH_CODE(
2790 						!vega10_enable_smc_features(hwmgr,
2791 						true,
2792 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2793 						"Attempt to Enable VR0 Hot feature Failed!",
2794 						return -1);
2795 				data->smu_features[GNLD_VR1HOT].enabled = true;
2796 			}
2797 		}
2798 	}
2799 	return 0;
2800 }
2801 
2802 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2803 {
2804 	struct vega10_hwmgr *data = hwmgr->backend;
2805 
2806 	if (data->registry_data.ulv_support) {
2807 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2808 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2809 				"Enable ULV Feature Failed!",
2810 				return -1);
2811 		data->smu_features[GNLD_ULV].enabled = true;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2818 {
2819 	struct vega10_hwmgr *data = hwmgr->backend;
2820 
2821 	if (data->registry_data.ulv_support) {
2822 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2823 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2824 				"disable ULV Feature Failed!",
2825 				return -EINVAL);
2826 		data->smu_features[GNLD_ULV].enabled = false;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2833 {
2834 	struct vega10_hwmgr *data = hwmgr->backend;
2835 
2836 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2837 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2838 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2839 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2840 				return -EINVAL);
2841 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2842 	}
2843 
2844 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2845 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2846 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2847 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2848 				return -EINVAL);
2849 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2850 	}
2851 
2852 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2853 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2854 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2855 				"Attempt to Enable DS_LCLK Feature Failed!",
2856 				return -EINVAL);
2857 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2858 	}
2859 
2860 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2861 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2862 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2863 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2864 				return -EINVAL);
2865 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2872 {
2873 	struct vega10_hwmgr *data = hwmgr->backend;
2874 
2875 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2876 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2877 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2878 				"Attempt to disable DS_GFXCLK Feature Failed!",
2879 				return -EINVAL);
2880 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2881 	}
2882 
2883 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2884 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2885 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2886 				"Attempt to disable DS_ Feature Failed!",
2887 				return -EINVAL);
2888 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2889 	}
2890 
2891 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2892 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2893 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2894 				"Attempt to disable DS_LCLK Feature Failed!",
2895 				return -EINVAL);
2896 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2897 	}
2898 
2899 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2900 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2901 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2902 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2903 				return -EINVAL);
2904 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2911 {
2912 	struct vega10_hwmgr *data = hwmgr->backend;
2913 	uint32_t i, feature_mask = 0;
2914 
2915 	if (!hwmgr->not_vf)
2916 		return 0;
2917 
2918 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2919 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2920 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2921 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2922 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2923 	}
2924 
2925 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2926 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2927 			if (data->smu_features[i].supported) {
2928 				if (data->smu_features[i].enabled) {
2929 					feature_mask |= data->smu_features[i].
2930 							smu_feature_bitmap;
2931 					data->smu_features[i].enabled = false;
2932 				}
2933 			}
2934 		}
2935 	}
2936 
2937 	return vega10_enable_smc_features(hwmgr, false, feature_mask);
2938 }
2939 
2940 /**
2941  * vega10_start_dpm - Tell SMC to enabled the supported DPMs.
2942  *
2943  * @hwmgr:   the address of the powerplay hardware manager.
2944  * @bitmap:  bitmap for the features to enabled.
2945  * return:  0 on at least one DPM is successfully enabled.
2946  */
2947 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2948 {
2949 	struct vega10_hwmgr *data = hwmgr->backend;
2950 	uint32_t i, feature_mask = 0;
2951 
2952 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2953 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2954 			if (data->smu_features[i].supported) {
2955 				if (!data->smu_features[i].enabled) {
2956 					feature_mask |= data->smu_features[i].
2957 							smu_feature_bitmap;
2958 					data->smu_features[i].enabled = true;
2959 				}
2960 			}
2961 		}
2962 	}
2963 
2964 	if (vega10_enable_smc_features(hwmgr,
2965 			true, feature_mask)) {
2966 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2967 			if (data->smu_features[i].smu_feature_bitmap &
2968 					feature_mask)
2969 				data->smu_features[i].enabled = false;
2970 		}
2971 	}
2972 
2973 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2974 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2975 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2976 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2977 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2978 	}
2979 
2980 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2981 		smum_send_msg_to_smc_with_parameter(hwmgr,
2982 						PPSMC_MSG_SetFloorSocVoltage, 0,
2983 						NULL);
2984 		data->vbios_boot_state.bsoc_vddc_lock = false;
2985 	}
2986 
2987 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2988 		if (data->smu_features[GNLD_ACDC].supported) {
2989 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2990 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2991 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2992 					return -1);
2993 			data->smu_features[GNLD_ACDC].enabled = true;
2994 		}
2995 	}
2996 
2997 	if (data->registry_data.pcie_dpm_key_disabled) {
2998 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2999 				false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap),
3000 		"Attempt to Disable Link DPM feature Failed!", return -EINVAL);
3001 		data->smu_features[GNLD_DPM_LINK].enabled = false;
3002 		data->smu_features[GNLD_DPM_LINK].supported = false;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 
3009 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
3010 {
3011 	struct vega10_hwmgr *data = hwmgr->backend;
3012 
3013 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
3014 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
3015 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
3016 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3017 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
3018 				"Attempt to Enable PCC Limit feature Failed!",
3019 				return -EINVAL);
3020 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 static void vega10_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
3027 {
3028 	struct phm_ppt_v2_information *table_info =
3029 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3030 
3031 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
3032 	    table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
3033 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
3034 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
3035 	} else {
3036 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3037 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[0].clk;
3038 	}
3039 
3040 	hwmgr->pstate_sclk_peak = table_info->vdd_dep_on_sclk->entries[table_info->vdd_dep_on_sclk->count - 1].clk;
3041 	hwmgr->pstate_mclk_peak = table_info->vdd_dep_on_mclk->entries[table_info->vdd_dep_on_mclk->count - 1].clk;
3042 
3043 	/* make sure the output is in Mhz */
3044 	hwmgr->pstate_sclk /= 100;
3045 	hwmgr->pstate_mclk /= 100;
3046 	hwmgr->pstate_sclk_peak /= 100;
3047 	hwmgr->pstate_mclk_peak /= 100;
3048 }
3049 
3050 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3051 {
3052 	struct vega10_hwmgr *data = hwmgr->backend;
3053 	int tmp_result, result = 0;
3054 
3055 	if (hwmgr->not_vf) {
3056 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
3057 
3058 		smum_send_msg_to_smc_with_parameter(hwmgr,
3059 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
3060 			NULL);
3061 
3062 		tmp_result = vega10_construct_voltage_tables(hwmgr);
3063 		PP_ASSERT_WITH_CODE(!tmp_result,
3064 				    "Failed to construct voltage tables!",
3065 				    result = tmp_result);
3066 	}
3067 
3068 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
3069 		tmp_result = vega10_init_smc_table(hwmgr);
3070 		PP_ASSERT_WITH_CODE(!tmp_result,
3071 				    "Failed to initialize SMC table!",
3072 				    result = tmp_result);
3073 	}
3074 
3075 	if (hwmgr->not_vf) {
3076 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
3077 			tmp_result = vega10_enable_thermal_protection(hwmgr);
3078 			PP_ASSERT_WITH_CODE(!tmp_result,
3079 					    "Failed to enable thermal protection!",
3080 					    result = tmp_result);
3081 		}
3082 
3083 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
3084 		PP_ASSERT_WITH_CODE(!tmp_result,
3085 				    "Failed to enable VR hot feature!",
3086 				    result = tmp_result);
3087 
3088 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
3089 		PP_ASSERT_WITH_CODE(!tmp_result,
3090 				    "Failed to enable deep sleep master switch!",
3091 				    result = tmp_result);
3092 	}
3093 
3094 	if (hwmgr->not_vf) {
3095 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
3096 		PP_ASSERT_WITH_CODE(!tmp_result,
3097 				    "Failed to start DPM!", result = tmp_result);
3098 	}
3099 
3100 	if (hwmgr->not_vf) {
3101 		/* enable didt, do not abort if failed didt */
3102 		tmp_result = vega10_enable_didt_config(hwmgr);
3103 		PP_ASSERT(!tmp_result,
3104 			  "Failed to enable didt config!");
3105 	}
3106 
3107 	tmp_result = vega10_enable_power_containment(hwmgr);
3108 	PP_ASSERT_WITH_CODE(!tmp_result,
3109 			    "Failed to enable power containment!",
3110 			    result = tmp_result);
3111 
3112 	if (hwmgr->not_vf) {
3113 		tmp_result = vega10_power_control_set_level(hwmgr);
3114 		PP_ASSERT_WITH_CODE(!tmp_result,
3115 				    "Failed to power control set level!",
3116 				    result = tmp_result);
3117 
3118 		tmp_result = vega10_enable_ulv(hwmgr);
3119 		PP_ASSERT_WITH_CODE(!tmp_result,
3120 				    "Failed to enable ULV!",
3121 				    result = tmp_result);
3122 	}
3123 
3124 	vega10_populate_umdpstate_clocks(hwmgr);
3125 
3126 	return result;
3127 }
3128 
3129 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3130 {
3131 	return sizeof(struct vega10_power_state);
3132 }
3133 
3134 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3135 		void *state, struct pp_power_state *power_state,
3136 		void *pp_table, uint32_t classification_flag)
3137 {
3138 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3139 	struct vega10_power_state *vega10_ps =
3140 			cast_phw_vega10_power_state(&(power_state->hardware));
3141 	struct vega10_performance_level *performance_level;
3142 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3143 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3144 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3145 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3146 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3147 			(((unsigned long)powerplay_table) +
3148 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3149 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3150 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3151 			(((unsigned long)powerplay_table) +
3152 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3153 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3154 			(ATOM_Vega10_MCLK_Dependency_Table *)
3155 			(((unsigned long)powerplay_table) +
3156 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3157 
3158 
3159 	/* The following fields are not initialized here:
3160 	 * id orderedList allStatesList
3161 	 */
3162 	power_state->classification.ui_label =
3163 			(le16_to_cpu(state_entry->usClassification) &
3164 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3165 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3166 	power_state->classification.flags = classification_flag;
3167 	/* NOTE: There is a classification2 flag in BIOS
3168 	 * that is not being used right now
3169 	 */
3170 	power_state->classification.temporary_state = false;
3171 	power_state->classification.to_be_deleted = false;
3172 
3173 	power_state->validation.disallowOnDC =
3174 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3175 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3176 
3177 	power_state->display.disableFrameModulation = false;
3178 	power_state->display.limitRefreshrate = false;
3179 	power_state->display.enableVariBright =
3180 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3181 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3182 
3183 	power_state->validation.supportedPowerLevels = 0;
3184 	power_state->uvd_clocks.VCLK = 0;
3185 	power_state->uvd_clocks.DCLK = 0;
3186 	power_state->temperatures.min = 0;
3187 	power_state->temperatures.max = 0;
3188 
3189 	performance_level = &(vega10_ps->performance_levels
3190 			[vega10_ps->performance_level_count++]);
3191 
3192 	PP_ASSERT_WITH_CODE(
3193 			(vega10_ps->performance_level_count <
3194 					NUM_GFXCLK_DPM_LEVELS),
3195 			"Performance levels exceeds SMC limit!",
3196 			return -1);
3197 
3198 	PP_ASSERT_WITH_CODE(
3199 			(vega10_ps->performance_level_count <
3200 					hwmgr->platform_descriptor.
3201 					hardwareActivityPerformanceLevels),
3202 			"Performance levels exceeds Driver limit!",
3203 			return -1);
3204 
3205 	/* Performance levels are arranged from low to high. */
3206 	performance_level->soc_clock = socclk_dep_table->entries
3207 			[state_entry->ucSocClockIndexLow].ulClk;
3208 	performance_level->gfx_clock = gfxclk_dep_table->entries
3209 			[state_entry->ucGfxClockIndexLow].ulClk;
3210 	performance_level->mem_clock = mclk_dep_table->entries
3211 			[state_entry->ucMemClockIndexLow].ulMemClk;
3212 
3213 	performance_level = &(vega10_ps->performance_levels
3214 				[vega10_ps->performance_level_count++]);
3215 	performance_level->soc_clock = socclk_dep_table->entries
3216 				[state_entry->ucSocClockIndexHigh].ulClk;
3217 	if (gfxclk_dep_table->ucRevId == 0) {
3218 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3219 		 * to level-4 due to the limited 110w-power
3220 		 */
3221 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3222 			performance_level->gfx_clock =
3223 				gfxclk_dep_table->entries[4].ulClk;
3224 		else
3225 			performance_level->gfx_clock = gfxclk_dep_table->entries
3226 				[state_entry->ucGfxClockIndexHigh].ulClk;
3227 	} else if (gfxclk_dep_table->ucRevId == 1) {
3228 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3229 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3230 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3231 		else
3232 			performance_level->gfx_clock =
3233 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3234 	}
3235 
3236 	performance_level->mem_clock = mclk_dep_table->entries
3237 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3238 	return 0;
3239 }
3240 
3241 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3242 		unsigned long entry_index, struct pp_power_state *state)
3243 {
3244 	int result;
3245 	struct vega10_power_state *vega10_ps;
3246 
3247 	state->hardware.magic = PhwVega10_Magic;
3248 
3249 	vega10_ps = cast_phw_vega10_power_state(&state->hardware);
3250 
3251 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3252 			vega10_get_pp_table_entry_callback_func);
3253 	if (result)
3254 		return result;
3255 
3256 	/*
3257 	 * This is the earliest time we have all the dependency table
3258 	 * and the VBIOS boot state
3259 	 */
3260 	/* set DC compatible flag if this state supports DC */
3261 	if (!state->validation.disallowOnDC)
3262 		vega10_ps->dc_compatible = true;
3263 
3264 	vega10_ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3265 	vega10_ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3266 
3267 	return 0;
3268 }
3269 
3270 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3271 	     struct pp_hw_power_state *hw_ps)
3272 {
3273 	return 0;
3274 }
3275 
3276 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3277 				struct pp_power_state  *request_ps,
3278 			const struct pp_power_state *current_ps)
3279 {
3280 	struct amdgpu_device *adev = hwmgr->adev;
3281 	struct vega10_power_state *vega10_ps;
3282 	uint32_t sclk;
3283 	uint32_t mclk;
3284 	struct PP_Clocks minimum_clocks = {0};
3285 	bool disable_mclk_switching;
3286 	bool disable_mclk_switching_for_frame_lock;
3287 	bool disable_mclk_switching_for_vr;
3288 	bool force_mclk_high;
3289 	const struct phm_clock_and_voltage_limits *max_limits;
3290 	uint32_t i;
3291 	struct vega10_hwmgr *data = hwmgr->backend;
3292 	struct phm_ppt_v2_information *table_info =
3293 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3294 	int32_t count;
3295 	uint32_t stable_pstate_sclk_dpm_percentage;
3296 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3297 	uint32_t latency;
3298 
3299 	vega10_ps = cast_phw_vega10_power_state(&request_ps->hardware);
3300 	if (!vega10_ps)
3301 		return -EINVAL;
3302 
3303 	data->battery_state = (PP_StateUILabel_Battery ==
3304 			request_ps->classification.ui_label);
3305 
3306 	if (vega10_ps->performance_level_count != 2)
3307 		pr_info("VI should always have 2 performance levels");
3308 
3309 	max_limits = adev->pm.ac_power ?
3310 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3311 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3312 
3313 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3314 	if (!adev->pm.ac_power) {
3315 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3316 			if (vega10_ps->performance_levels[i].mem_clock >
3317 				max_limits->mclk)
3318 				vega10_ps->performance_levels[i].mem_clock =
3319 						max_limits->mclk;
3320 			if (vega10_ps->performance_levels[i].gfx_clock >
3321 				max_limits->sclk)
3322 				vega10_ps->performance_levels[i].gfx_clock =
3323 						max_limits->sclk;
3324 		}
3325 	}
3326 
3327 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3328 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3329 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3330 
3331 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3332 		stable_pstate_sclk_dpm_percentage =
3333 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3334 		PP_ASSERT_WITH_CODE(
3335 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3336 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3337 			"percent sclk value must range from 1% to 100%, setting default value",
3338 			stable_pstate_sclk_dpm_percentage = 75);
3339 
3340 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3341 		stable_pstate_sclk = (max_limits->sclk *
3342 				stable_pstate_sclk_dpm_percentage) / 100;
3343 
3344 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3345 				count >= 0; count--) {
3346 			if (stable_pstate_sclk >=
3347 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3348 				stable_pstate_sclk =
3349 						table_info->vdd_dep_on_sclk->entries[count].clk;
3350 				break;
3351 			}
3352 		}
3353 
3354 		if (count < 0)
3355 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3356 
3357 		stable_pstate_mclk = max_limits->mclk;
3358 
3359 		minimum_clocks.engineClock = stable_pstate_sclk;
3360 		minimum_clocks.memoryClock = stable_pstate_mclk;
3361 	}
3362 
3363 	disable_mclk_switching_for_frame_lock =
3364 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3365 	disable_mclk_switching_for_vr =
3366 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3367 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3368 
3369 	if (hwmgr->display_config->num_display == 0)
3370 		disable_mclk_switching = false;
3371 	else
3372 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3373 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3374 			disable_mclk_switching_for_frame_lock ||
3375 			disable_mclk_switching_for_vr ||
3376 			force_mclk_high;
3377 
3378 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3379 	mclk = vega10_ps->performance_levels[0].mem_clock;
3380 
3381 	if (sclk < minimum_clocks.engineClock)
3382 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3383 				max_limits->sclk : minimum_clocks.engineClock;
3384 
3385 	if (mclk < minimum_clocks.memoryClock)
3386 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3387 				max_limits->mclk : minimum_clocks.memoryClock;
3388 
3389 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3390 	vega10_ps->performance_levels[0].mem_clock = mclk;
3391 
3392 	if (vega10_ps->performance_levels[1].gfx_clock <
3393 			vega10_ps->performance_levels[0].gfx_clock)
3394 		vega10_ps->performance_levels[0].gfx_clock =
3395 				vega10_ps->performance_levels[1].gfx_clock;
3396 
3397 	if (disable_mclk_switching) {
3398 		/* Set Mclk the max of level 0 and level 1 */
3399 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3400 			mclk = vega10_ps->performance_levels[1].mem_clock;
3401 
3402 		/* Find the lowest MCLK frequency that is within
3403 		 * the tolerable latency defined in DAL
3404 		 */
3405 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3406 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3407 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3408 				(data->mclk_latency_table.entries[i].frequency >=
3409 						vega10_ps->performance_levels[0].mem_clock) &&
3410 				(data->mclk_latency_table.entries[i].frequency <=
3411 						vega10_ps->performance_levels[1].mem_clock))
3412 				mclk = data->mclk_latency_table.entries[i].frequency;
3413 		}
3414 		vega10_ps->performance_levels[0].mem_clock = mclk;
3415 	} else {
3416 		if (vega10_ps->performance_levels[1].mem_clock <
3417 				vega10_ps->performance_levels[0].mem_clock)
3418 			vega10_ps->performance_levels[0].mem_clock =
3419 					vega10_ps->performance_levels[1].mem_clock;
3420 	}
3421 
3422 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3423 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3424 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3425 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3426 		}
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3433 {
3434 	struct vega10_hwmgr *data = hwmgr->backend;
3435 	const struct phm_set_power_state_input *states =
3436 			(const struct phm_set_power_state_input *)input;
3437 	const struct vega10_power_state *vega10_ps =
3438 			cast_const_phw_vega10_power_state(states->pnew_state);
3439 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3440 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3441 	uint32_t sclk, mclk;
3442 	uint32_t i;
3443 
3444 	if (vega10_ps == NULL)
3445 		return -EINVAL;
3446 	sclk = vega10_ps->performance_levels
3447 			[vega10_ps->performance_level_count - 1].gfx_clock;
3448 	mclk = vega10_ps->performance_levels
3449 			[vega10_ps->performance_level_count - 1].mem_clock;
3450 
3451 	for (i = 0; i < sclk_table->count; i++) {
3452 		if (sclk == sclk_table->dpm_levels[i].value)
3453 			break;
3454 	}
3455 
3456 	if (i >= sclk_table->count) {
3457 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3458 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3459 			sclk_table->dpm_levels[i-1].value = sclk;
3460 		}
3461 	}
3462 
3463 	for (i = 0; i < mclk_table->count; i++) {
3464 		if (mclk == mclk_table->dpm_levels[i].value)
3465 			break;
3466 	}
3467 
3468 	if (i >= mclk_table->count) {
3469 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3470 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3471 			mclk_table->dpm_levels[i-1].value = mclk;
3472 		}
3473 	}
3474 
3475 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3476 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3477 
3478 	return 0;
3479 }
3480 
3481 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3482 		struct pp_hwmgr *hwmgr, const void *input)
3483 {
3484 	int result = 0;
3485 	struct vega10_hwmgr *data = hwmgr->backend;
3486 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3487 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3488 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3489 	int count;
3490 
3491 	if (!data->need_update_dpm_table)
3492 		return 0;
3493 
3494 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3495 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3496 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3497 	}
3498 
3499 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3500 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3501 		for (count = 0; count < dpm_table->mem_table.count; count++)
3502 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3503 	}
3504 
3505 	if (data->need_update_dpm_table &
3506 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3507 		result = vega10_populate_all_graphic_levels(hwmgr);
3508 		PP_ASSERT_WITH_CODE((0 == result),
3509 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3510 				return result);
3511 	}
3512 
3513 	if (data->need_update_dpm_table &
3514 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3515 		result = vega10_populate_all_memory_levels(hwmgr);
3516 		PP_ASSERT_WITH_CODE((0 == result),
3517 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3518 				return result);
3519 	}
3520 
3521 	vega10_populate_vddc_soc_levels(hwmgr);
3522 
3523 	return result;
3524 }
3525 
3526 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3527 		struct vega10_single_dpm_table *dpm_table,
3528 		uint32_t low_limit, uint32_t high_limit)
3529 {
3530 	uint32_t i;
3531 
3532 	for (i = 0; i < dpm_table->count; i++) {
3533 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3534 		    (dpm_table->dpm_levels[i].value > high_limit))
3535 			dpm_table->dpm_levels[i].enabled = false;
3536 		else
3537 			dpm_table->dpm_levels[i].enabled = true;
3538 	}
3539 	return 0;
3540 }
3541 
3542 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3543 		struct vega10_single_dpm_table *dpm_table,
3544 		uint32_t low_limit, uint32_t high_limit,
3545 		uint32_t disable_dpm_mask)
3546 {
3547 	uint32_t i;
3548 
3549 	for (i = 0; i < dpm_table->count; i++) {
3550 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3551 		    (dpm_table->dpm_levels[i].value > high_limit))
3552 			dpm_table->dpm_levels[i].enabled = false;
3553 		else if (!((1 << i) & disable_dpm_mask))
3554 			dpm_table->dpm_levels[i].enabled = false;
3555 		else
3556 			dpm_table->dpm_levels[i].enabled = true;
3557 	}
3558 	return 0;
3559 }
3560 
3561 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3562 		const struct vega10_power_state *vega10_ps)
3563 {
3564 	struct vega10_hwmgr *data = hwmgr->backend;
3565 	uint32_t high_limit_count;
3566 
3567 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3568 			"power state did not have any performance level",
3569 			return -1);
3570 
3571 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3572 
3573 	vega10_trim_single_dpm_states(hwmgr,
3574 			&(data->dpm_table.soc_table),
3575 			vega10_ps->performance_levels[0].soc_clock,
3576 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3577 
3578 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3579 			&(data->dpm_table.gfx_table),
3580 			vega10_ps->performance_levels[0].gfx_clock,
3581 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3582 			data->disable_dpm_mask);
3583 
3584 	vega10_trim_single_dpm_states(hwmgr,
3585 			&(data->dpm_table.mem_table),
3586 			vega10_ps->performance_levels[0].mem_clock,
3587 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3588 
3589 	return 0;
3590 }
3591 
3592 static uint32_t vega10_find_lowest_dpm_level(
3593 		struct vega10_single_dpm_table *table)
3594 {
3595 	uint32_t i;
3596 
3597 	for (i = 0; i < table->count; i++) {
3598 		if (table->dpm_levels[i].enabled)
3599 			break;
3600 	}
3601 
3602 	return i;
3603 }
3604 
3605 static uint32_t vega10_find_highest_dpm_level(
3606 		struct vega10_single_dpm_table *table)
3607 {
3608 	uint32_t i = 0;
3609 
3610 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3611 		for (i = table->count; i > 0; i--) {
3612 			if (table->dpm_levels[i - 1].enabled)
3613 				return i - 1;
3614 		}
3615 	} else {
3616 		pr_info("DPM Table Has Too Many Entries!");
3617 		return MAX_REGULAR_DPM_NUMBER - 1;
3618 	}
3619 
3620 	return i;
3621 }
3622 
3623 static void vega10_apply_dal_minimum_voltage_request(
3624 		struct pp_hwmgr *hwmgr)
3625 {
3626 	return;
3627 }
3628 
3629 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3630 {
3631 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3632 	struct phm_ppt_v2_information *table_info =
3633 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3634 
3635 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3636 
3637 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3638 }
3639 
3640 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3641 {
3642 	struct vega10_hwmgr *data = hwmgr->backend;
3643 	uint32_t socclk_idx;
3644 
3645 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3646 
3647 	if (!data->registry_data.sclk_dpm_key_disabled) {
3648 		if (data->smc_state_table.gfx_boot_level !=
3649 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3650 			smum_send_msg_to_smc_with_parameter(hwmgr,
3651 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3652 				data->smc_state_table.gfx_boot_level,
3653 				NULL);
3654 
3655 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3656 					data->smc_state_table.gfx_boot_level;
3657 		}
3658 	}
3659 
3660 	if (!data->registry_data.mclk_dpm_key_disabled) {
3661 		if (data->smc_state_table.mem_boot_level !=
3662 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3663 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3664 			    && hwmgr->not_vf) {
3665 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3666 				smum_send_msg_to_smc_with_parameter(hwmgr,
3667 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3668 						socclk_idx,
3669 						NULL);
3670 			} else {
3671 				smum_send_msg_to_smc_with_parameter(hwmgr,
3672 						PPSMC_MSG_SetSoftMinUclkByIndex,
3673 						data->smc_state_table.mem_boot_level,
3674 						NULL);
3675 			}
3676 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3677 					data->smc_state_table.mem_boot_level;
3678 		}
3679 	}
3680 
3681 	if (!hwmgr->not_vf)
3682 		return 0;
3683 
3684 	if (!data->registry_data.socclk_dpm_key_disabled) {
3685 		if (data->smc_state_table.soc_boot_level !=
3686 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3687 			smum_send_msg_to_smc_with_parameter(hwmgr,
3688 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3689 				data->smc_state_table.soc_boot_level,
3690 				NULL);
3691 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3692 					data->smc_state_table.soc_boot_level;
3693 		}
3694 	}
3695 
3696 	return 0;
3697 }
3698 
3699 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3700 {
3701 	struct vega10_hwmgr *data = hwmgr->backend;
3702 
3703 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3704 
3705 	if (!data->registry_data.sclk_dpm_key_disabled) {
3706 		if (data->smc_state_table.gfx_max_level !=
3707 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3708 			smum_send_msg_to_smc_with_parameter(hwmgr,
3709 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3710 				data->smc_state_table.gfx_max_level,
3711 				NULL);
3712 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3713 					data->smc_state_table.gfx_max_level;
3714 		}
3715 	}
3716 
3717 	if (!data->registry_data.mclk_dpm_key_disabled) {
3718 		if (data->smc_state_table.mem_max_level !=
3719 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3720 			smum_send_msg_to_smc_with_parameter(hwmgr,
3721 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3722 					data->smc_state_table.mem_max_level,
3723 					NULL);
3724 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3725 					data->smc_state_table.mem_max_level;
3726 		}
3727 	}
3728 
3729 	if (!hwmgr->not_vf)
3730 		return 0;
3731 
3732 	if (!data->registry_data.socclk_dpm_key_disabled) {
3733 		if (data->smc_state_table.soc_max_level !=
3734 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3735 			smum_send_msg_to_smc_with_parameter(hwmgr,
3736 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3737 				data->smc_state_table.soc_max_level,
3738 				NULL);
3739 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3740 					data->smc_state_table.soc_max_level;
3741 		}
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 static int vega10_generate_dpm_level_enable_mask(
3748 		struct pp_hwmgr *hwmgr, const void *input)
3749 {
3750 	struct vega10_hwmgr *data = hwmgr->backend;
3751 	const struct phm_set_power_state_input *states =
3752 			(const struct phm_set_power_state_input *)input;
3753 	const struct vega10_power_state *vega10_ps =
3754 			cast_const_phw_vega10_power_state(states->pnew_state);
3755 	int i;
3756 
3757 	if (vega10_ps == NULL)
3758 		return -EINVAL;
3759 
3760 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3761 			"Attempt to Trim DPM States Failed!",
3762 			return -1);
3763 
3764 	data->smc_state_table.gfx_boot_level =
3765 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3766 	data->smc_state_table.gfx_max_level =
3767 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3768 	data->smc_state_table.mem_boot_level =
3769 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3770 	data->smc_state_table.mem_max_level =
3771 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3772 	data->smc_state_table.soc_boot_level =
3773 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3774 	data->smc_state_table.soc_max_level =
3775 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3776 
3777 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3778 			"Attempt to upload DPM Bootup Levels Failed!",
3779 			return -1);
3780 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3781 			"Attempt to upload DPM Max Levels Failed!",
3782 			return -1);
3783 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3784 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3785 
3786 
3787 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3788 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3789 
3790 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3791 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3792 
3793 	return 0;
3794 }
3795 
3796 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3797 {
3798 	struct vega10_hwmgr *data = hwmgr->backend;
3799 
3800 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3801 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3802 				enable,
3803 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3804 				"Attempt to Enable/Disable DPM VCE Failed!",
3805 				return -1);
3806 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3813 {
3814 	struct vega10_hwmgr *data = hwmgr->backend;
3815 	uint32_t low_sclk_interrupt_threshold = 0;
3816 
3817 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3818 		(data->low_sclk_interrupt_threshold != 0)) {
3819 		low_sclk_interrupt_threshold =
3820 				data->low_sclk_interrupt_threshold;
3821 
3822 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3823 				cpu_to_le32(low_sclk_interrupt_threshold);
3824 
3825 		/* This message will also enable SmcToHost Interrupt */
3826 		smum_send_msg_to_smc_with_parameter(hwmgr,
3827 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3828 				(uint32_t)low_sclk_interrupt_threshold,
3829 				NULL);
3830 	}
3831 
3832 	return 0;
3833 }
3834 
3835 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3836 		const void *input)
3837 {
3838 	int tmp_result, result = 0;
3839 	struct vega10_hwmgr *data = hwmgr->backend;
3840 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3841 
3842 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3843 	PP_ASSERT_WITH_CODE(!tmp_result,
3844 			"Failed to find DPM states clocks in DPM table!",
3845 			result = tmp_result);
3846 
3847 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3848 	PP_ASSERT_WITH_CODE(!tmp_result,
3849 			"Failed to populate and upload SCLK MCLK DPM levels!",
3850 			result = tmp_result);
3851 
3852 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3853 	PP_ASSERT_WITH_CODE(!tmp_result,
3854 			"Failed to generate DPM level enabled mask!",
3855 			result = tmp_result);
3856 
3857 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3858 	PP_ASSERT_WITH_CODE(!tmp_result,
3859 			"Failed to update SCLK threshold!",
3860 			result = tmp_result);
3861 
3862 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3863 	PP_ASSERT_WITH_CODE(!result,
3864 			"Failed to upload PPtable!", return result);
3865 
3866 	/*
3867 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3868 	 * That effectively disables AVFS feature.
3869 	 */
3870 	if(hwmgr->hardcode_pp_table != NULL)
3871 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3872 
3873 	vega10_update_avfs(hwmgr);
3874 
3875 	/*
3876 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3877 	 * That will help to keep AVFS disabled.
3878 	 */
3879 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3880 
3881 	return 0;
3882 }
3883 
3884 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3885 {
3886 	struct pp_power_state *ps;
3887 	struct vega10_power_state *vega10_ps;
3888 
3889 	if (hwmgr == NULL)
3890 		return -EINVAL;
3891 
3892 	ps = hwmgr->request_ps;
3893 
3894 	if (ps == NULL)
3895 		return -EINVAL;
3896 
3897 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3898 
3899 	if (low)
3900 		return vega10_ps->performance_levels[0].gfx_clock;
3901 	else
3902 		return vega10_ps->performance_levels
3903 				[vega10_ps->performance_level_count - 1].gfx_clock;
3904 }
3905 
3906 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3907 {
3908 	struct pp_power_state *ps;
3909 	struct vega10_power_state *vega10_ps;
3910 
3911 	if (hwmgr == NULL)
3912 		return -EINVAL;
3913 
3914 	ps = hwmgr->request_ps;
3915 
3916 	if (ps == NULL)
3917 		return -EINVAL;
3918 
3919 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3920 
3921 	if (low)
3922 		return vega10_ps->performance_levels[0].mem_clock;
3923 	else
3924 		return vega10_ps->performance_levels
3925 				[vega10_ps->performance_level_count-1].mem_clock;
3926 }
3927 
3928 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3929 		uint32_t *query)
3930 {
3931 	uint32_t value;
3932 	int ret;
3933 
3934 	if (!query)
3935 		return -EINVAL;
3936 
3937 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3938 	if (ret)
3939 		return ret;
3940 
3941 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3942 	*query = value << 8;
3943 
3944 	return 0;
3945 }
3946 
3947 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3948 			      void *value, int *size)
3949 {
3950 	struct amdgpu_device *adev = hwmgr->adev;
3951 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3952 	struct vega10_hwmgr *data = hwmgr->backend;
3953 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3954 	int ret = 0;
3955 	uint32_t val_vid;
3956 
3957 	switch (idx) {
3958 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3959 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3960 		if (ret)
3961 			break;
3962 
3963 		*((uint32_t *)value) = sclk_mhz * 100;
3964 		break;
3965 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3966 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3967 		if (ret)
3968 			break;
3969 		if (mclk_idx < dpm_table->mem_table.count) {
3970 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3971 			*size = 4;
3972 		} else {
3973 			ret = -EINVAL;
3974 		}
3975 		break;
3976 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3977 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3978 						&activity_percent);
3979 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3980 		*size = 4;
3981 		break;
3982 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3983 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3984 		*size = 4;
3985 		break;
3986 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3987 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3988 		*((uint32_t *)value) = *((uint32_t *)value) *
3989 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3990 		*size = 4;
3991 		break;
3992 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3993 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3994 		*((uint32_t *)value) = *((uint32_t *)value) *
3995 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3996 		*size = 4;
3997 		break;
3998 	case AMDGPU_PP_SENSOR_UVD_POWER:
3999 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4000 		*size = 4;
4001 		break;
4002 	case AMDGPU_PP_SENSOR_VCE_POWER:
4003 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4004 		*size = 4;
4005 		break;
4006 	case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
4007 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
4008 		break;
4009 	case AMDGPU_PP_SENSOR_VDDGFX:
4010 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
4011 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
4012 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
4013 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
4014 		return 0;
4015 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
4016 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
4017 		if (!ret)
4018 			*size = 8;
4019 		break;
4020 	default:
4021 		ret = -EOPNOTSUPP;
4022 		break;
4023 	}
4024 
4025 	return ret;
4026 }
4027 
4028 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
4029 		bool has_disp)
4030 {
4031 	smum_send_msg_to_smc_with_parameter(hwmgr,
4032 			PPSMC_MSG_SetUclkFastSwitch,
4033 			has_disp ? 1 : 0,
4034 			NULL);
4035 }
4036 
4037 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
4038 		struct pp_display_clock_request *clock_req)
4039 {
4040 	int result = 0;
4041 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
4042 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
4043 	DSPCLK_e clk_select = 0;
4044 	uint32_t clk_request = 0;
4045 
4046 	switch (clk_type) {
4047 	case amd_pp_dcef_clock:
4048 		clk_select = DSPCLK_DCEFCLK;
4049 		break;
4050 	case amd_pp_disp_clock:
4051 		clk_select = DSPCLK_DISPCLK;
4052 		break;
4053 	case amd_pp_pixel_clock:
4054 		clk_select = DSPCLK_PIXCLK;
4055 		break;
4056 	case amd_pp_phy_clock:
4057 		clk_select = DSPCLK_PHYCLK;
4058 		break;
4059 	default:
4060 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
4061 		result = -1;
4062 		break;
4063 	}
4064 
4065 	if (!result) {
4066 		clk_request = (clk_freq << 16) | clk_select;
4067 		smum_send_msg_to_smc_with_parameter(hwmgr,
4068 				PPSMC_MSG_RequestDisplayClockByFreq,
4069 				clk_request,
4070 				NULL);
4071 	}
4072 
4073 	return result;
4074 }
4075 
4076 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
4077 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
4078 						uint32_t frequency)
4079 {
4080 	uint8_t count;
4081 	uint8_t i;
4082 
4083 	if (mclk_table == NULL || mclk_table->count == 0)
4084 		return 0;
4085 
4086 	count = (uint8_t)(mclk_table->count);
4087 
4088 	for(i = 0; i < count; i++) {
4089 		if(mclk_table->entries[i].clk >= frequency)
4090 			return i;
4091 	}
4092 
4093 	return i-1;
4094 }
4095 
4096 static int vega10_notify_smc_display_config_after_ps_adjustment(
4097 		struct pp_hwmgr *hwmgr)
4098 {
4099 	struct vega10_hwmgr *data = hwmgr->backend;
4100 	struct vega10_single_dpm_table *dpm_table =
4101 			&data->dpm_table.dcef_table;
4102 	struct phm_ppt_v2_information *table_info =
4103 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4104 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
4105 	uint32_t idx;
4106 	struct PP_Clocks min_clocks = {0};
4107 	uint32_t i;
4108 	struct pp_display_clock_request clock_req;
4109 
4110 	if ((hwmgr->display_config->num_display > 1) &&
4111 	     !hwmgr->display_config->multi_monitor_in_sync &&
4112 	     !hwmgr->display_config->nb_pstate_switch_disable)
4113 		vega10_notify_smc_display_change(hwmgr, false);
4114 	else
4115 		vega10_notify_smc_display_change(hwmgr, true);
4116 
4117 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
4118 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
4119 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
4120 
4121 	for (i = 0; i < dpm_table->count; i++) {
4122 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
4123 			break;
4124 	}
4125 
4126 	if (i < dpm_table->count) {
4127 		clock_req.clock_type = amd_pp_dcef_clock;
4128 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4129 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4130 			smum_send_msg_to_smc_with_parameter(
4131 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4132 					min_clocks.dcefClockInSR / 100,
4133 					NULL);
4134 		} else {
4135 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4136 		}
4137 	} else {
4138 		pr_debug("Cannot find requested DCEFCLK!");
4139 	}
4140 
4141 	if (min_clocks.memoryClock != 0) {
4142 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4143 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4144 						NULL);
4145 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4146 	}
4147 
4148 	return 0;
4149 }
4150 
4151 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4152 {
4153 	struct vega10_hwmgr *data = hwmgr->backend;
4154 
4155 	data->smc_state_table.gfx_boot_level =
4156 	data->smc_state_table.gfx_max_level =
4157 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4158 	data->smc_state_table.mem_boot_level =
4159 	data->smc_state_table.mem_max_level =
4160 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4161 
4162 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4163 			"Failed to upload boot level to highest!",
4164 			return -1);
4165 
4166 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4167 			"Failed to upload dpm max level to highest!",
4168 			return -1);
4169 
4170 	return 0;
4171 }
4172 
4173 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4174 {
4175 	struct vega10_hwmgr *data = hwmgr->backend;
4176 
4177 	data->smc_state_table.gfx_boot_level =
4178 	data->smc_state_table.gfx_max_level =
4179 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4180 	data->smc_state_table.mem_boot_level =
4181 	data->smc_state_table.mem_max_level =
4182 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4183 
4184 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4185 			"Failed to upload boot level to highest!",
4186 			return -1);
4187 
4188 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4189 			"Failed to upload dpm max level to highest!",
4190 			return -1);
4191 
4192 	return 0;
4193 
4194 }
4195 
4196 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4197 {
4198 	struct vega10_hwmgr *data = hwmgr->backend;
4199 
4200 	data->smc_state_table.gfx_boot_level =
4201 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4202 	data->smc_state_table.gfx_max_level =
4203 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4204 	data->smc_state_table.mem_boot_level =
4205 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4206 	data->smc_state_table.mem_max_level =
4207 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4208 
4209 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4210 			"Failed to upload DPM Bootup Levels!",
4211 			return -1);
4212 
4213 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4214 			"Failed to upload DPM Max Levels!",
4215 			return -1);
4216 	return 0;
4217 }
4218 
4219 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4220 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4221 {
4222 	struct phm_ppt_v2_information *table_info =
4223 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4224 
4225 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4226 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4227 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4228 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4229 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4230 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4231 	}
4232 
4233 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4234 		*sclk_mask = 0;
4235 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4236 		*mclk_mask = 0;
4237 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4238 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4239 		 * to level-4 due to the limited power
4240 		 */
4241 		if (hwmgr->pp_one_vf)
4242 			*sclk_mask = 4;
4243 		else
4244 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4245 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4246 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4253 {
4254 	if (!hwmgr->not_vf)
4255 		return;
4256 
4257 	switch (mode) {
4258 	case AMD_FAN_CTRL_NONE:
4259 		vega10_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
4260 		break;
4261 	case AMD_FAN_CTRL_MANUAL:
4262 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4263 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4264 		break;
4265 	case AMD_FAN_CTRL_AUTO:
4266 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4267 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4268 		break;
4269 	default:
4270 		break;
4271 	}
4272 }
4273 
4274 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4275 		enum pp_clock_type type, uint32_t mask)
4276 {
4277 	struct vega10_hwmgr *data = hwmgr->backend;
4278 
4279 	switch (type) {
4280 	case PP_SCLK:
4281 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4282 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4283 
4284 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4285 			"Failed to upload boot level to lowest!",
4286 			return -EINVAL);
4287 
4288 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4289 			"Failed to upload dpm max level to highest!",
4290 			return -EINVAL);
4291 		break;
4292 
4293 	case PP_MCLK:
4294 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4295 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4296 
4297 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4298 			"Failed to upload boot level to lowest!",
4299 			return -EINVAL);
4300 
4301 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4302 			"Failed to upload dpm max level to highest!",
4303 			return -EINVAL);
4304 
4305 		break;
4306 
4307 	case PP_SOCCLK:
4308 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4309 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4310 
4311 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4312 			"Failed to upload boot level to lowest!",
4313 			return -EINVAL);
4314 
4315 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4316 			"Failed to upload dpm max level to highest!",
4317 			return -EINVAL);
4318 
4319 		break;
4320 
4321 	case PP_DCEFCLK:
4322 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4323 		break;
4324 
4325 	case PP_PCIE:
4326 	default:
4327 		break;
4328 	}
4329 
4330 	return 0;
4331 }
4332 
4333 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4334 				enum amd_dpm_forced_level level)
4335 {
4336 	int ret = 0;
4337 	uint32_t sclk_mask = 0;
4338 	uint32_t mclk_mask = 0;
4339 	uint32_t soc_mask = 0;
4340 
4341 	switch (level) {
4342 	case AMD_DPM_FORCED_LEVEL_HIGH:
4343 		ret = vega10_force_dpm_highest(hwmgr);
4344 		break;
4345 	case AMD_DPM_FORCED_LEVEL_LOW:
4346 		ret = vega10_force_dpm_lowest(hwmgr);
4347 		break;
4348 	case AMD_DPM_FORCED_LEVEL_AUTO:
4349 		ret = vega10_unforce_dpm_levels(hwmgr);
4350 		break;
4351 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4352 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4353 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4354 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4355 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4356 		if (ret)
4357 			return ret;
4358 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4359 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4360 		break;
4361 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4362 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4363 	default:
4364 		break;
4365 	}
4366 
4367 	if (!hwmgr->not_vf)
4368 		return ret;
4369 
4370 	if (!ret) {
4371 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4372 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4373 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4374 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4375 	}
4376 
4377 	return ret;
4378 }
4379 
4380 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4381 {
4382 	struct vega10_hwmgr *data = hwmgr->backend;
4383 
4384 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4385 		return AMD_FAN_CTRL_MANUAL;
4386 	else
4387 		return AMD_FAN_CTRL_AUTO;
4388 }
4389 
4390 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4391 		struct amd_pp_simple_clock_info *info)
4392 {
4393 	struct phm_ppt_v2_information *table_info =
4394 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4395 	struct phm_clock_and_voltage_limits *max_limits =
4396 			&table_info->max_clock_voltage_on_ac;
4397 
4398 	info->engine_max_clock = max_limits->sclk;
4399 	info->memory_max_clock = max_limits->mclk;
4400 
4401 	return 0;
4402 }
4403 
4404 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4405 		struct pp_clock_levels_with_latency *clocks)
4406 {
4407 	struct phm_ppt_v2_information *table_info =
4408 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4409 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4410 			table_info->vdd_dep_on_sclk;
4411 	uint32_t i;
4412 
4413 	clocks->num_levels = 0;
4414 	for (i = 0; i < dep_table->count; i++) {
4415 		if (dep_table->entries[i].clk) {
4416 			clocks->data[clocks->num_levels].clocks_in_khz =
4417 					dep_table->entries[i].clk * 10;
4418 			clocks->num_levels++;
4419 		}
4420 	}
4421 
4422 }
4423 
4424 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4425 		struct pp_clock_levels_with_latency *clocks)
4426 {
4427 	struct phm_ppt_v2_information *table_info =
4428 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4429 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4430 			table_info->vdd_dep_on_mclk;
4431 	struct vega10_hwmgr *data = hwmgr->backend;
4432 	uint32_t j = 0;
4433 	uint32_t i;
4434 
4435 	for (i = 0; i < dep_table->count; i++) {
4436 		if (dep_table->entries[i].clk) {
4437 
4438 			clocks->data[j].clocks_in_khz =
4439 						dep_table->entries[i].clk * 10;
4440 			data->mclk_latency_table.entries[j].frequency =
4441 							dep_table->entries[i].clk;
4442 			clocks->data[j].latency_in_us =
4443 				data->mclk_latency_table.entries[j].latency = 25;
4444 			j++;
4445 		}
4446 	}
4447 	clocks->num_levels = data->mclk_latency_table.count = j;
4448 }
4449 
4450 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4451 		struct pp_clock_levels_with_latency *clocks)
4452 {
4453 	struct phm_ppt_v2_information *table_info =
4454 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4455 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4456 			table_info->vdd_dep_on_dcefclk;
4457 	uint32_t i;
4458 
4459 	for (i = 0; i < dep_table->count; i++) {
4460 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4461 		clocks->data[i].latency_in_us = 0;
4462 		clocks->num_levels++;
4463 	}
4464 }
4465 
4466 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4467 		struct pp_clock_levels_with_latency *clocks)
4468 {
4469 	struct phm_ppt_v2_information *table_info =
4470 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4471 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4472 			table_info->vdd_dep_on_socclk;
4473 	uint32_t i;
4474 
4475 	for (i = 0; i < dep_table->count; i++) {
4476 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4477 		clocks->data[i].latency_in_us = 0;
4478 		clocks->num_levels++;
4479 	}
4480 }
4481 
4482 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4483 		enum amd_pp_clock_type type,
4484 		struct pp_clock_levels_with_latency *clocks)
4485 {
4486 	switch (type) {
4487 	case amd_pp_sys_clock:
4488 		vega10_get_sclks(hwmgr, clocks);
4489 		break;
4490 	case amd_pp_mem_clock:
4491 		vega10_get_memclocks(hwmgr, clocks);
4492 		break;
4493 	case amd_pp_dcef_clock:
4494 		vega10_get_dcefclocks(hwmgr, clocks);
4495 		break;
4496 	case amd_pp_soc_clock:
4497 		vega10_get_socclocks(hwmgr, clocks);
4498 		break;
4499 	default:
4500 		return -1;
4501 	}
4502 
4503 	return 0;
4504 }
4505 
4506 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4507 		enum amd_pp_clock_type type,
4508 		struct pp_clock_levels_with_voltage *clocks)
4509 {
4510 	struct phm_ppt_v2_information *table_info =
4511 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4512 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4513 	uint32_t i;
4514 
4515 	switch (type) {
4516 	case amd_pp_mem_clock:
4517 		dep_table = table_info->vdd_dep_on_mclk;
4518 		break;
4519 	case amd_pp_dcef_clock:
4520 		dep_table = table_info->vdd_dep_on_dcefclk;
4521 		break;
4522 	case amd_pp_disp_clock:
4523 		dep_table = table_info->vdd_dep_on_dispclk;
4524 		break;
4525 	case amd_pp_pixel_clock:
4526 		dep_table = table_info->vdd_dep_on_pixclk;
4527 		break;
4528 	case amd_pp_phy_clock:
4529 		dep_table = table_info->vdd_dep_on_phyclk;
4530 		break;
4531 	default:
4532 		return -1;
4533 	}
4534 
4535 	for (i = 0; i < dep_table->count; i++) {
4536 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4537 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4538 				entries[dep_table->entries[i].vddInd].us_vdd);
4539 		clocks->num_levels++;
4540 	}
4541 
4542 	if (i < dep_table->count)
4543 		return -1;
4544 
4545 	return 0;
4546 }
4547 
4548 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4549 							void *clock_range)
4550 {
4551 	struct vega10_hwmgr *data = hwmgr->backend;
4552 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4553 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4554 
4555 	if (!data->registry_data.disable_water_mark) {
4556 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4557 		data->water_marks_bitmap = WaterMarksExist;
4558 	}
4559 
4560 	return 0;
4561 }
4562 
4563 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4564 {
4565 	static const char *ppfeature_name[] = {
4566 				"DPM_PREFETCHER",
4567 				"GFXCLK_DPM",
4568 				"UCLK_DPM",
4569 				"SOCCLK_DPM",
4570 				"UVD_DPM",
4571 				"VCE_DPM",
4572 				"ULV",
4573 				"MP0CLK_DPM",
4574 				"LINK_DPM",
4575 				"DCEFCLK_DPM",
4576 				"AVFS",
4577 				"GFXCLK_DS",
4578 				"SOCCLK_DS",
4579 				"LCLK_DS",
4580 				"PPT",
4581 				"TDC",
4582 				"THERMAL",
4583 				"GFX_PER_CU_CG",
4584 				"RM",
4585 				"DCEFCLK_DS",
4586 				"ACDC",
4587 				"VR0HOT",
4588 				"VR1HOT",
4589 				"FW_CTF",
4590 				"LED_DISPLAY",
4591 				"FAN_CONTROL",
4592 				"FAST_PPT",
4593 				"DIDT",
4594 				"ACG",
4595 				"PCC_LIMIT"};
4596 	static const char *output_title[] = {
4597 				"FEATURES",
4598 				"BITMASK",
4599 				"ENABLEMENT"};
4600 	uint64_t features_enabled;
4601 	int i;
4602 	int ret = 0;
4603 	int size = 0;
4604 
4605 	phm_get_sysfs_buf(&buf, &size);
4606 
4607 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4608 	PP_ASSERT_WITH_CODE(!ret,
4609 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4610 			return ret);
4611 
4612 	size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4613 	size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n",
4614 				output_title[0],
4615 				output_title[1],
4616 				output_title[2]);
4617 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4618 		size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n",
4619 					ppfeature_name[i],
4620 					1ULL << i,
4621 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4622 	}
4623 
4624 	return size;
4625 }
4626 
4627 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4628 {
4629 	uint64_t features_enabled;
4630 	uint64_t features_to_enable;
4631 	uint64_t features_to_disable;
4632 	int ret = 0;
4633 
4634 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4635 		return -EINVAL;
4636 
4637 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4638 	if (ret)
4639 		return ret;
4640 
4641 	features_to_disable =
4642 		features_enabled & ~new_ppfeature_masks;
4643 	features_to_enable =
4644 		~features_enabled & new_ppfeature_masks;
4645 
4646 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4647 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4648 
4649 	if (features_to_disable) {
4650 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4651 		if (ret)
4652 			return ret;
4653 	}
4654 
4655 	if (features_to_enable) {
4656 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4657 		if (ret)
4658 			return ret;
4659 	}
4660 
4661 	return 0;
4662 }
4663 
4664 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr)
4665 {
4666 	struct amdgpu_device *adev = hwmgr->adev;
4667 
4668 	return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
4669 		PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
4670 		>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
4671 }
4672 
4673 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr)
4674 {
4675 	struct amdgpu_device *adev = hwmgr->adev;
4676 
4677 	return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
4678 		PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
4679 		>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
4680 }
4681 
4682 static int vega10_emit_clock_levels(struct pp_hwmgr *hwmgr,
4683 				    enum pp_clock_type type, char *buf, int *offset)
4684 {
4685 	struct vega10_hwmgr *data = hwmgr->backend;
4686 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4687 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4688 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4689 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4690 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4691 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4692 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4693 
4694 	uint32_t i, now, count = 0;
4695 	int ret = 0;
4696 
4697 	switch (type) {
4698 	case PP_SCLK:
4699 		if (data->registry_data.sclk_dpm_key_disabled)
4700 			return -EOPNOTSUPP;
4701 
4702 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4703 		if (unlikely(ret != 0))
4704 			return ret;
4705 
4706 		if (hwmgr->pp_one_vf &&
4707 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4708 			count = 5;
4709 		else
4710 			count = sclk_table->count;
4711 		for (i = 0; i < count; i++)
4712 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4713 					i, sclk_table->dpm_levels[i].value / 100,
4714 					(i == now) ? "*" : "");
4715 		break;
4716 	case PP_MCLK:
4717 		if (data->registry_data.mclk_dpm_key_disabled)
4718 			return -EOPNOTSUPP;
4719 
4720 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4721 		if (unlikely(ret != 0))
4722 			return ret;
4723 
4724 		for (i = 0; i < mclk_table->count; i++)
4725 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4726 					i, mclk_table->dpm_levels[i].value / 100,
4727 					(i == now) ? "*" : "");
4728 		break;
4729 	case PP_SOCCLK:
4730 		if (data->registry_data.socclk_dpm_key_disabled)
4731 			return -EOPNOTSUPP;
4732 
4733 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4734 		if (unlikely(ret != 0))
4735 			return ret;
4736 
4737 		for (i = 0; i < soc_table->count; i++)
4738 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4739 					i, soc_table->dpm_levels[i].value / 100,
4740 					(i == now) ? "*" : "");
4741 		break;
4742 	case PP_DCEFCLK:
4743 		if (data->registry_data.dcefclk_dpm_key_disabled)
4744 			return -EOPNOTSUPP;
4745 
4746 		ret = smum_send_msg_to_smc_with_parameter(hwmgr,
4747 							  PPSMC_MSG_GetClockFreqMHz,
4748 							  CLK_DCEFCLK, &now);
4749 		if (unlikely(ret != 0))
4750 			return ret;
4751 
4752 		for (i = 0; i < dcef_table->count; i++)
4753 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4754 					i, dcef_table->dpm_levels[i].value / 100,
4755 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4756 					"*" : "");
4757 		break;
4758 	case PP_PCIE:
4759 		current_gen_speed =
4760 			vega10_get_current_pcie_link_speed_level(hwmgr);
4761 		current_lane_width =
4762 			vega10_get_current_pcie_link_width_level(hwmgr);
4763 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4764 			gen_speed = pptable->PcieGenSpeed[i];
4765 			lane_width = pptable->PcieLaneCount[i];
4766 
4767 			*offset += sysfs_emit_at(buf, *offset, "%d: %s %s %s\n", i,
4768 					(gen_speed == 0) ? "2.5GT/s," :
4769 					(gen_speed == 1) ? "5.0GT/s," :
4770 					(gen_speed == 2) ? "8.0GT/s," :
4771 					(gen_speed == 3) ? "16.0GT/s," : "",
4772 					(lane_width == 1) ? "x1" :
4773 					(lane_width == 2) ? "x2" :
4774 					(lane_width == 3) ? "x4" :
4775 					(lane_width == 4) ? "x8" :
4776 					(lane_width == 5) ? "x12" :
4777 					(lane_width == 6) ? "x16" : "",
4778 					(current_gen_speed == gen_speed) &&
4779 					(current_lane_width == lane_width) ?
4780 					"*" : "");
4781 		}
4782 		break;
4783 
4784 	case OD_SCLK:
4785 		if (!hwmgr->od_enabled)
4786 			return -EOPNOTSUPP;
4787 
4788 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_SCLK");
4789 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4790 		for (i = 0; i < podn_vdd_dep->count; i++)
4791 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4792 						 i, podn_vdd_dep->entries[i].clk / 100,
4793 						 podn_vdd_dep->entries[i].vddc);
4794 		break;
4795 	case OD_MCLK:
4796 		if (!hwmgr->od_enabled)
4797 			return -EOPNOTSUPP;
4798 
4799 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_MCLK");
4800 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4801 		for (i = 0; i < podn_vdd_dep->count; i++)
4802 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4803 						 i, podn_vdd_dep->entries[i].clk/100,
4804 						 podn_vdd_dep->entries[i].vddc);
4805 		break;
4806 	case OD_RANGE:
4807 		if (!hwmgr->od_enabled)
4808 			return -EOPNOTSUPP;
4809 
4810 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_RANGE");
4811 		*offset += sysfs_emit_at(buf, *offset, "SCLK: %7uMHz %10uMHz\n",
4812 					 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4813 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4814 		*offset += sysfs_emit_at(buf, *offset, "MCLK: %7uMHz %10uMHz\n",
4815 					 data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4816 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4817 		*offset += sysfs_emit_at(buf, *offset, "VDDC: %7umV %11umV\n",
4818 					 data->odn_dpm_table.min_vddc,
4819 					 data->odn_dpm_table.max_vddc);
4820 		break;
4821 	default:
4822 		ret = -ENOENT;
4823 		break;
4824 	}
4825 	return ret;
4826 }
4827 
4828 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4829 		enum pp_clock_type type, char *buf)
4830 {
4831 	struct vega10_hwmgr *data = hwmgr->backend;
4832 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4833 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4834 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4835 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4836 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4837 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4838 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4839 
4840 	int i, ret, now,  size = 0, count = 0;
4841 
4842 	switch (type) {
4843 	case PP_SCLK:
4844 		if (data->registry_data.sclk_dpm_key_disabled)
4845 			break;
4846 
4847 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4848 		if (ret)
4849 			break;
4850 
4851 		if (hwmgr->pp_one_vf &&
4852 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4853 			count = 5;
4854 		else
4855 			count = sclk_table->count;
4856 		for (i = 0; i < count; i++)
4857 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4858 					i, sclk_table->dpm_levels[i].value / 100,
4859 					(i == now) ? "*" : "");
4860 		break;
4861 	case PP_MCLK:
4862 		if (data->registry_data.mclk_dpm_key_disabled)
4863 			break;
4864 
4865 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4866 		if (ret)
4867 			break;
4868 
4869 		for (i = 0; i < mclk_table->count; i++)
4870 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4871 					i, mclk_table->dpm_levels[i].value / 100,
4872 					(i == now) ? "*" : "");
4873 		break;
4874 	case PP_SOCCLK:
4875 		if (data->registry_data.socclk_dpm_key_disabled)
4876 			break;
4877 
4878 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4879 		if (ret)
4880 			break;
4881 
4882 		for (i = 0; i < soc_table->count; i++)
4883 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4884 					i, soc_table->dpm_levels[i].value / 100,
4885 					(i == now) ? "*" : "");
4886 		break;
4887 	case PP_DCEFCLK:
4888 		if (data->registry_data.dcefclk_dpm_key_disabled)
4889 			break;
4890 
4891 		ret = smum_send_msg_to_smc_with_parameter(hwmgr,
4892 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4893 		if (ret)
4894 			break;
4895 
4896 		for (i = 0; i < dcef_table->count; i++)
4897 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4898 					i, dcef_table->dpm_levels[i].value / 100,
4899 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4900 					"*" : "");
4901 		break;
4902 	case PP_PCIE:
4903 		current_gen_speed =
4904 			vega10_get_current_pcie_link_speed_level(hwmgr);
4905 		current_lane_width =
4906 			vega10_get_current_pcie_link_width_level(hwmgr);
4907 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4908 			gen_speed = pptable->PcieGenSpeed[i];
4909 			lane_width = pptable->PcieLaneCount[i];
4910 
4911 			size += sprintf(buf + size, "%d: %s %s %s\n", i,
4912 					(gen_speed == 0) ? "2.5GT/s," :
4913 					(gen_speed == 1) ? "5.0GT/s," :
4914 					(gen_speed == 2) ? "8.0GT/s," :
4915 					(gen_speed == 3) ? "16.0GT/s," : "",
4916 					(lane_width == 1) ? "x1" :
4917 					(lane_width == 2) ? "x2" :
4918 					(lane_width == 3) ? "x4" :
4919 					(lane_width == 4) ? "x8" :
4920 					(lane_width == 5) ? "x12" :
4921 					(lane_width == 6) ? "x16" : "",
4922 					(current_gen_speed == gen_speed) &&
4923 					(current_lane_width == lane_width) ?
4924 					"*" : "");
4925 		}
4926 		break;
4927 
4928 	case OD_SCLK:
4929 		if (hwmgr->od_enabled) {
4930 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
4931 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4932 			for (i = 0; i < podn_vdd_dep->count; i++)
4933 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4934 					i, podn_vdd_dep->entries[i].clk / 100,
4935 						podn_vdd_dep->entries[i].vddc);
4936 		}
4937 		break;
4938 	case OD_MCLK:
4939 		if (hwmgr->od_enabled) {
4940 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
4941 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4942 			for (i = 0; i < podn_vdd_dep->count; i++)
4943 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4944 					i, podn_vdd_dep->entries[i].clk/100,
4945 						podn_vdd_dep->entries[i].vddc);
4946 		}
4947 		break;
4948 	case OD_RANGE:
4949 		if (hwmgr->od_enabled) {
4950 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
4951 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4952 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4953 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4954 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4955 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4956 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4957 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4958 				data->odn_dpm_table.min_vddc,
4959 				data->odn_dpm_table.max_vddc);
4960 		}
4961 		break;
4962 	default:
4963 		break;
4964 	}
4965 	return size;
4966 }
4967 
4968 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4969 {
4970 	struct vega10_hwmgr *data = hwmgr->backend;
4971 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4972 	int result = 0;
4973 
4974 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4975 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4976 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4977 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4978 		data->water_marks_bitmap |= WaterMarksLoaded;
4979 	}
4980 
4981 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4982 		smum_send_msg_to_smc_with_parameter(hwmgr,
4983 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4984 			NULL);
4985 	}
4986 
4987 	return result;
4988 }
4989 
4990 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4991 {
4992 	struct vega10_hwmgr *data = hwmgr->backend;
4993 
4994 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4995 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4996 				enable,
4997 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4998 				"Attempt to Enable/Disable DPM UVD Failed!",
4999 				return -1);
5000 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
5001 	}
5002 	return 0;
5003 }
5004 
5005 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
5006 {
5007 	struct vega10_hwmgr *data = hwmgr->backend;
5008 
5009 	data->vce_power_gated = bgate;
5010 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
5011 }
5012 
5013 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
5014 {
5015 	struct vega10_hwmgr *data = hwmgr->backend;
5016 
5017 	data->uvd_power_gated = bgate;
5018 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
5019 }
5020 
5021 static inline bool vega10_are_power_levels_equal(
5022 				const struct vega10_performance_level *pl1,
5023 				const struct vega10_performance_level *pl2)
5024 {
5025 	return ((pl1->soc_clock == pl2->soc_clock) &&
5026 			(pl1->gfx_clock == pl2->gfx_clock) &&
5027 			(pl1->mem_clock == pl2->mem_clock));
5028 }
5029 
5030 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
5031 				const struct pp_hw_power_state *pstate1,
5032 			const struct pp_hw_power_state *pstate2, bool *equal)
5033 {
5034 	const struct vega10_power_state *vega10_psa;
5035 	const struct vega10_power_state *vega10_psb;
5036 	int i;
5037 
5038 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
5039 		return -EINVAL;
5040 
5041 	vega10_psa = cast_const_phw_vega10_power_state(pstate1);
5042 	vega10_psb = cast_const_phw_vega10_power_state(pstate2);
5043 	if (vega10_psa == NULL || vega10_psb == NULL)
5044 		return -EINVAL;
5045 
5046 	/* If the two states don't even have the same number of performance levels
5047 	 * they cannot be the same state.
5048 	 */
5049 	if (vega10_psa->performance_level_count != vega10_psb->performance_level_count) {
5050 		*equal = false;
5051 		return 0;
5052 	}
5053 
5054 	for (i = 0; i < vega10_psa->performance_level_count; i++) {
5055 		if (!vega10_are_power_levels_equal(&(vega10_psa->performance_levels[i]),
5056 						   &(vega10_psb->performance_levels[i]))) {
5057 			/* If we have found even one performance level pair
5058 			 * that is different the states are different.
5059 			 */
5060 			*equal = false;
5061 			return 0;
5062 		}
5063 	}
5064 
5065 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5066 	*equal = ((vega10_psa->uvd_clks.vclk == vega10_psb->uvd_clks.vclk) &&
5067 		  (vega10_psa->uvd_clks.dclk == vega10_psb->uvd_clks.dclk));
5068 	*equal &= ((vega10_psa->vce_clks.evclk == vega10_psb->vce_clks.evclk) &&
5069 		   (vega10_psa->vce_clks.ecclk == vega10_psb->vce_clks.ecclk));
5070 	*equal &= (vega10_psa->sclk_threshold == vega10_psb->sclk_threshold);
5071 
5072 	return 0;
5073 }
5074 
5075 static bool
5076 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5077 {
5078 	struct vega10_hwmgr *data = hwmgr->backend;
5079 	bool is_update_required = false;
5080 
5081 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
5082 		is_update_required = true;
5083 
5084 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
5085 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
5086 			is_update_required = true;
5087 	}
5088 
5089 	return is_update_required;
5090 }
5091 
5092 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
5093 {
5094 	int tmp_result, result = 0;
5095 
5096 	if (!hwmgr->not_vf)
5097 		return 0;
5098 
5099 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
5100 		vega10_disable_thermal_protection(hwmgr);
5101 
5102 	tmp_result = vega10_disable_power_containment(hwmgr);
5103 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5104 			"Failed to disable power containment!", result = tmp_result);
5105 
5106 	tmp_result = vega10_disable_didt_config(hwmgr);
5107 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5108 			"Failed to disable didt config!", result = tmp_result);
5109 
5110 	tmp_result = vega10_avfs_enable(hwmgr, false);
5111 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5112 			"Failed to disable AVFS!", result = tmp_result);
5113 
5114 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
5115 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5116 			"Failed to stop DPM!", result = tmp_result);
5117 
5118 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
5119 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5120 			"Failed to disable deep sleep!", result = tmp_result);
5121 
5122 	tmp_result = vega10_disable_ulv(hwmgr);
5123 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5124 			"Failed to disable ulv!", result = tmp_result);
5125 
5126 	tmp_result =  vega10_acg_disable(hwmgr);
5127 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5128 			"Failed to disable acg!", result = tmp_result);
5129 
5130 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
5131 	return result;
5132 }
5133 
5134 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
5135 {
5136 	struct vega10_hwmgr *data = hwmgr->backend;
5137 	int result;
5138 
5139 	result = vega10_disable_dpm_tasks(hwmgr);
5140 	PP_ASSERT_WITH_CODE((0 == result),
5141 			"[disable_dpm_tasks] Failed to disable DPM!",
5142 			);
5143 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
5144 
5145 	return result;
5146 }
5147 
5148 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
5149 {
5150 	struct vega10_hwmgr *data = hwmgr->backend;
5151 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
5152 	struct vega10_single_dpm_table *golden_sclk_table =
5153 			&(data->golden_dpm_table.gfx_table);
5154 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5155 	int golden_value = golden_sclk_table->dpm_levels
5156 			[golden_sclk_table->count - 1].value;
5157 
5158 	value -= golden_value;
5159 	value = DIV_ROUND_UP(value * 100, golden_value);
5160 
5161 	return value;
5162 }
5163 
5164 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5165 {
5166 	struct vega10_hwmgr *data = hwmgr->backend;
5167 	struct vega10_single_dpm_table *golden_sclk_table =
5168 			&(data->golden_dpm_table.gfx_table);
5169 	struct pp_power_state *ps;
5170 	struct vega10_power_state *vega10_ps;
5171 
5172 	ps = hwmgr->request_ps;
5173 
5174 	if (ps == NULL)
5175 		return -EINVAL;
5176 
5177 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5178 	if (vega10_ps == NULL)
5179 		return -EINVAL;
5180 
5181 	vega10_ps->performance_levels
5182 	[vega10_ps->performance_level_count - 1].gfx_clock =
5183 			golden_sclk_table->dpm_levels
5184 			[golden_sclk_table->count - 1].value *
5185 			value / 100 +
5186 			golden_sclk_table->dpm_levels
5187 			[golden_sclk_table->count - 1].value;
5188 
5189 	if (vega10_ps->performance_levels
5190 			[vega10_ps->performance_level_count - 1].gfx_clock >
5191 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
5192 		vega10_ps->performance_levels
5193 		[vega10_ps->performance_level_count - 1].gfx_clock =
5194 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
5195 		pr_warn("max sclk supported by vbios is %d\n",
5196 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
5197 	}
5198 	return 0;
5199 }
5200 
5201 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
5202 {
5203 	struct vega10_hwmgr *data = hwmgr->backend;
5204 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
5205 	struct vega10_single_dpm_table *golden_mclk_table =
5206 			&(data->golden_dpm_table.mem_table);
5207 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5208 	int golden_value = golden_mclk_table->dpm_levels
5209 			[golden_mclk_table->count - 1].value;
5210 
5211 	value -= golden_value;
5212 	value = DIV_ROUND_UP(value * 100, golden_value);
5213 
5214 	return value;
5215 }
5216 
5217 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5218 {
5219 	struct vega10_hwmgr *data = hwmgr->backend;
5220 	struct vega10_single_dpm_table *golden_mclk_table =
5221 			&(data->golden_dpm_table.mem_table);
5222 	struct pp_power_state  *ps;
5223 	struct vega10_power_state  *vega10_ps;
5224 
5225 	ps = hwmgr->request_ps;
5226 
5227 	if (ps == NULL)
5228 		return -EINVAL;
5229 
5230 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5231 	if (vega10_ps == NULL)
5232 		return -EINVAL;
5233 
5234 	vega10_ps->performance_levels
5235 	[vega10_ps->performance_level_count - 1].mem_clock =
5236 			golden_mclk_table->dpm_levels
5237 			[golden_mclk_table->count - 1].value *
5238 			value / 100 +
5239 			golden_mclk_table->dpm_levels
5240 			[golden_mclk_table->count - 1].value;
5241 
5242 	if (vega10_ps->performance_levels
5243 			[vega10_ps->performance_level_count - 1].mem_clock >
5244 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
5245 		vega10_ps->performance_levels
5246 		[vega10_ps->performance_level_count - 1].mem_clock =
5247 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
5248 		pr_warn("max mclk supported by vbios is %d\n",
5249 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
5250 	}
5251 
5252 	return 0;
5253 }
5254 
5255 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5256 					uint32_t virtual_addr_low,
5257 					uint32_t virtual_addr_hi,
5258 					uint32_t mc_addr_low,
5259 					uint32_t mc_addr_hi,
5260 					uint32_t size)
5261 {
5262 	smum_send_msg_to_smc_with_parameter(hwmgr,
5263 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
5264 					virtual_addr_hi,
5265 					NULL);
5266 	smum_send_msg_to_smc_with_parameter(hwmgr,
5267 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
5268 					virtual_addr_low,
5269 					NULL);
5270 	smum_send_msg_to_smc_with_parameter(hwmgr,
5271 					PPSMC_MSG_DramLogSetDramAddrHigh,
5272 					mc_addr_hi,
5273 					NULL);
5274 
5275 	smum_send_msg_to_smc_with_parameter(hwmgr,
5276 					PPSMC_MSG_DramLogSetDramAddrLow,
5277 					mc_addr_low,
5278 					NULL);
5279 
5280 	smum_send_msg_to_smc_with_parameter(hwmgr,
5281 					PPSMC_MSG_DramLogSetDramSize,
5282 					size,
5283 					NULL);
5284 	return 0;
5285 }
5286 
5287 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5288 		struct PP_TemperatureRange *thermal_data)
5289 {
5290 	struct vega10_hwmgr *data = hwmgr->backend;
5291 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
5292 	struct phm_ppt_v2_information *pp_table_info =
5293 		(struct phm_ppt_v2_information *)(hwmgr->pptable);
5294 	struct phm_tdp_table *tdp_table = pp_table_info->tdp_table;
5295 
5296 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
5297 
5298 	thermal_data->max = pp_table->TedgeLimit *
5299 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5300 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
5301 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5302 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
5303 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5304 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
5305 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5306 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
5307 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5308 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
5309 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5310 
5311 	if (tdp_table->usSoftwareShutdownTemp > pp_table->ThotspotLimit &&
5312 	    tdp_table->usSoftwareShutdownTemp < VEGA10_THERMAL_MAXIMUM_ALERT_TEMP)
5313 		thermal_data->sw_ctf_threshold = tdp_table->usSoftwareShutdownTemp;
5314 	else
5315 		thermal_data->sw_ctf_threshold = VEGA10_THERMAL_MAXIMUM_ALERT_TEMP;
5316 	thermal_data->sw_ctf_threshold *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5317 
5318 	return 0;
5319 }
5320 
5321 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5322 {
5323 	struct vega10_hwmgr *data = hwmgr->backend;
5324 	uint32_t i, size = 0;
5325 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
5326 						{70, 60, 1, 3,},
5327 						{90, 60, 0, 0,},
5328 						{70, 60, 0, 0,},
5329 						{70, 90, 0, 0,},
5330 						{30, 60, 0, 6,},
5331 						};
5332 	static const char *title[6] = {"NUM",
5333 			"MODE_NAME",
5334 			"BUSY_SET_POINT",
5335 			"FPS",
5336 			"USE_RLC_BUSY",
5337 			"MIN_ACTIVE_LEVEL"};
5338 
5339 	if (!buf)
5340 		return -EINVAL;
5341 
5342 	phm_get_sysfs_buf(&buf, &size);
5343 
5344 	size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n",title[0],
5345 			title[1], title[2], title[3], title[4], title[5]);
5346 
5347 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5348 		size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n",
5349 			i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5350 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5351 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5352 
5353 	size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5354 			amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5355 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5356 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5357 	return size;
5358 }
5359 
5360 static bool vega10_get_power_profile_mode_quirks(struct pp_hwmgr *hwmgr)
5361 {
5362 	struct amdgpu_device *adev = hwmgr->adev;
5363 
5364 	return (adev->pdev->device == 0x6860);
5365 }
5366 
5367 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5368 {
5369 	struct vega10_hwmgr *data = hwmgr->backend;
5370 	uint8_t busy_set_point;
5371 	uint8_t FPS;
5372 	uint8_t use_rlc_busy;
5373 	uint8_t min_active_level;
5374 	uint32_t power_profile_mode = input[size];
5375 
5376 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5377 		if (size != 0 && size != 4)
5378 			return -EINVAL;
5379 
5380 		/* If size = 0 and the CUSTOM profile has been set already
5381 		 * then just apply the profile. The copy stored in the hwmgr
5382 		 * is zeroed out on init
5383 		 */
5384 		if (size == 0) {
5385 			if (data->custom_profile_mode[0] != 0)
5386 				goto out;
5387 			else
5388 				return -EINVAL;
5389 		}
5390 
5391 		data->custom_profile_mode[0] = busy_set_point = input[0];
5392 		data->custom_profile_mode[1] = FPS = input[1];
5393 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5394 		data->custom_profile_mode[3] = min_active_level = input[3];
5395 		smum_send_msg_to_smc_with_parameter(hwmgr,
5396 					PPSMC_MSG_SetCustomGfxDpmParameters,
5397 					busy_set_point | FPS<<8 |
5398 					use_rlc_busy << 16 | min_active_level<<24,
5399 					NULL);
5400 	}
5401 
5402 out:
5403 	if (vega10_get_power_profile_mode_quirks(hwmgr))
5404 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5405 						1 << power_profile_mode,
5406 						NULL);
5407 	else
5408 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5409 						(!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1),
5410 						NULL);
5411 
5412 	hwmgr->power_profile_mode = power_profile_mode;
5413 
5414 	return 0;
5415 }
5416 
5417 
5418 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5419 					enum PP_OD_DPM_TABLE_COMMAND type,
5420 					uint32_t clk,
5421 					uint32_t voltage)
5422 {
5423 	struct vega10_hwmgr *data = hwmgr->backend;
5424 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5425 	struct vega10_single_dpm_table *golden_table;
5426 
5427 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5428 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5429 		return false;
5430 	}
5431 
5432 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5433 		golden_table = &(data->golden_dpm_table.gfx_table);
5434 		if (golden_table->dpm_levels[0].value > clk ||
5435 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5436 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5437 				golden_table->dpm_levels[0].value/100,
5438 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5439 			return false;
5440 		}
5441 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5442 		golden_table = &(data->golden_dpm_table.mem_table);
5443 		if (golden_table->dpm_levels[0].value > clk ||
5444 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5445 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5446 				golden_table->dpm_levels[0].value/100,
5447 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5448 			return false;
5449 		}
5450 	} else {
5451 		return false;
5452 	}
5453 
5454 	return true;
5455 }
5456 
5457 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5458 {
5459 	struct vega10_hwmgr *data = hwmgr->backend;
5460 	struct pp_power_state *ps = hwmgr->request_ps;
5461 	struct vega10_power_state *vega10_ps;
5462 	struct vega10_single_dpm_table *gfx_dpm_table =
5463 		&data->dpm_table.gfx_table;
5464 	struct vega10_single_dpm_table *soc_dpm_table =
5465 		&data->dpm_table.soc_table;
5466 	struct vega10_single_dpm_table *mem_dpm_table =
5467 		&data->dpm_table.mem_table;
5468 	int max_level;
5469 
5470 	if (!ps)
5471 		return;
5472 
5473 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5474 	if (vega10_ps == NULL)
5475 		return;
5476 
5477 	max_level = vega10_ps->performance_level_count - 1;
5478 
5479 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5480 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5481 		vega10_ps->performance_levels[max_level].gfx_clock =
5482 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5483 
5484 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5485 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5486 		vega10_ps->performance_levels[max_level].soc_clock =
5487 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5488 
5489 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5490 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5491 		vega10_ps->performance_levels[max_level].mem_clock =
5492 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5493 
5494 	if (!hwmgr->ps)
5495 		return;
5496 
5497 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5498 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5499 	if (vega10_ps == NULL)
5500 		return;
5501 
5502 	max_level = vega10_ps->performance_level_count - 1;
5503 
5504 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5505 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5506 		vega10_ps->performance_levels[max_level].gfx_clock =
5507 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5508 
5509 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5510 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5511 		vega10_ps->performance_levels[max_level].soc_clock =
5512 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5513 
5514 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5515 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5516 		vega10_ps->performance_levels[max_level].mem_clock =
5517 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5518 }
5519 
5520 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5521 						enum PP_OD_DPM_TABLE_COMMAND type)
5522 {
5523 	struct vega10_hwmgr *data = hwmgr->backend;
5524 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5525 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5526 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5527 
5528 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5529 							&data->odn_dpm_table.vdd_dep_on_socclk;
5530 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5531 
5532 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5533 	uint8_t i, j;
5534 
5535 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5536 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5537 		for (i = 0; i < podn_vdd_dep->count; i++)
5538 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5539 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5540 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5541 		for (i = 0; i < dpm_table->count; i++) {
5542 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5543 				if (od_vddc_lookup_table->entries[j].us_vdd >
5544 					podn_vdd_dep->entries[i].vddc)
5545 					break;
5546 			}
5547 			if (j == od_vddc_lookup_table->count) {
5548 				j = od_vddc_lookup_table->count - 1;
5549 				od_vddc_lookup_table->entries[j].us_vdd =
5550 					podn_vdd_dep->entries[i].vddc;
5551 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5552 			}
5553 			podn_vdd_dep->entries[i].vddInd = j;
5554 		}
5555 		dpm_table = &data->dpm_table.soc_table;
5556 		for (i = 0; i < dep_table->count; i++) {
5557 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5558 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5559 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5560 				for (; (i < dep_table->count) &&
5561 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5562 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5563 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5564 				}
5565 				break;
5566 			} else {
5567 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5568 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5569 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5570 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5571 			}
5572 		}
5573 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5574 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5575 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5576 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5577 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5578 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5579 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5580 		}
5581 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5582 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5583 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5584 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5585 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5586 		}
5587 	}
5588 	vega10_odn_update_power_state(hwmgr);
5589 }
5590 
5591 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5592 					enum PP_OD_DPM_TABLE_COMMAND type,
5593 					long *input, uint32_t size)
5594 {
5595 	struct vega10_hwmgr *data = hwmgr->backend;
5596 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5597 	struct vega10_single_dpm_table *dpm_table;
5598 
5599 	uint32_t input_clk;
5600 	uint32_t input_vol;
5601 	uint32_t input_level;
5602 	uint32_t i;
5603 
5604 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5605 				return -EINVAL);
5606 
5607 	if (!hwmgr->od_enabled) {
5608 		pr_info("OverDrive feature not enabled\n");
5609 		return -EINVAL;
5610 	}
5611 
5612 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5613 		dpm_table = &data->dpm_table.gfx_table;
5614 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5615 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5616 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5617 		dpm_table = &data->dpm_table.mem_table;
5618 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5619 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5620 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5621 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5622 		vega10_odn_initial_default_setting(hwmgr);
5623 		vega10_odn_update_power_state(hwmgr);
5624 		/* force to update all clock tables */
5625 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5626 					      DPMTABLE_UPDATE_MCLK |
5627 					      DPMTABLE_UPDATE_SOCCLK;
5628 		return 0;
5629 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5630 		vega10_check_dpm_table_updated(hwmgr);
5631 		return 0;
5632 	} else {
5633 		return -EINVAL;
5634 	}
5635 
5636 	for (i = 0; i < size; i += 3) {
5637 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5638 			pr_info("invalid clock voltage input\n");
5639 			return 0;
5640 		}
5641 		input_level = input[i];
5642 		input_clk = input[i+1] * 100;
5643 		input_vol = input[i+2];
5644 
5645 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5646 			dpm_table->dpm_levels[input_level].value = input_clk;
5647 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5648 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5649 		} else {
5650 			return -EINVAL;
5651 		}
5652 	}
5653 	vega10_odn_update_soc_table(hwmgr, type);
5654 	return 0;
5655 }
5656 
5657 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5658 				enum pp_mp1_state mp1_state)
5659 {
5660 	uint16_t msg;
5661 	int ret;
5662 
5663 	switch (mp1_state) {
5664 	case PP_MP1_STATE_UNLOAD:
5665 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5666 		break;
5667 	case PP_MP1_STATE_SHUTDOWN:
5668 	case PP_MP1_STATE_RESET:
5669 	case PP_MP1_STATE_NONE:
5670 	default:
5671 		return 0;
5672 	}
5673 
5674 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5675 			    "[PrepareMp1] Failed!",
5676 			    return ret);
5677 
5678 	return 0;
5679 }
5680 
5681 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5682 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5683 				PHM_PerformanceLevel *level)
5684 {
5685 	const struct vega10_power_state *vega10_ps;
5686 	uint32_t i;
5687 
5688 	if (level == NULL || hwmgr == NULL || state == NULL)
5689 		return -EINVAL;
5690 
5691 	vega10_ps = cast_const_phw_vega10_power_state(state);
5692 	if (vega10_ps == NULL)
5693 		return -EINVAL;
5694 
5695 	i = index > vega10_ps->performance_level_count - 1 ?
5696 			vega10_ps->performance_level_count - 1 : index;
5697 
5698 	level->coreClock = vega10_ps->performance_levels[i].gfx_clock;
5699 	level->memory_clock = vega10_ps->performance_levels[i].mem_clock;
5700 
5701 	return 0;
5702 }
5703 
5704 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5705 {
5706 	struct vega10_hwmgr *data = hwmgr->backend;
5707 	uint32_t feature_mask = 0;
5708 
5709 	if (disable) {
5710 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5711 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5712 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5713 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5714 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5715 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5716 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5717 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5718 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5719 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5720 	} else {
5721 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5722 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5723 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5724 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5725 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5726 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5727 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5728 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5729 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5730 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5731 	}
5732 
5733 	if (feature_mask)
5734 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5735 				!disable, feature_mask),
5736 				"enable/disable power features for compute performance Failed!",
5737 				return -EINVAL);
5738 
5739 	if (disable) {
5740 		data->smu_features[GNLD_ULV].enabled = false;
5741 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5742 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5743 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5744 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5745 	} else {
5746 		data->smu_features[GNLD_ULV].enabled = true;
5747 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5748 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5749 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5750 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5751 	}
5752 
5753 	return 0;
5754 
5755 }
5756 
5757 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5758 	.backend_init = vega10_hwmgr_backend_init,
5759 	.backend_fini = vega10_hwmgr_backend_fini,
5760 	.asic_setup = vega10_setup_asic_task,
5761 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5762 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5763 	.get_num_of_pp_table_entries =
5764 			vega10_get_number_of_powerplay_table_entries,
5765 	.get_power_state_size = vega10_get_power_state_size,
5766 	.get_pp_table_entry = vega10_get_pp_table_entry,
5767 	.patch_boot_state = vega10_patch_boot_state,
5768 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5769 	.power_state_set = vega10_set_power_state_tasks,
5770 	.get_sclk = vega10_dpm_get_sclk,
5771 	.get_mclk = vega10_dpm_get_mclk,
5772 	.notify_smc_display_config_after_ps_adjustment =
5773 			vega10_notify_smc_display_config_after_ps_adjustment,
5774 	.force_dpm_level = vega10_dpm_force_dpm_level,
5775 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5776 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5777 	.get_fan_speed_pwm = vega10_fan_ctrl_get_fan_speed_pwm,
5778 	.set_fan_speed_pwm = vega10_fan_ctrl_set_fan_speed_pwm,
5779 	.reset_fan_speed_to_default =
5780 			vega10_fan_ctrl_reset_fan_speed_to_default,
5781 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5782 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5783 	.uninitialize_thermal_controller =
5784 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5785 	.set_fan_control_mode = vega10_set_fan_control_mode,
5786 	.get_fan_control_mode = vega10_get_fan_control_mode,
5787 	.read_sensor = vega10_read_sensor,
5788 	.get_dal_power_level = vega10_get_dal_power_level,
5789 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5790 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5791 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5792 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5793 	.force_clock_level = vega10_force_clock_level,
5794 	.emit_clock_levels = vega10_emit_clock_levels,
5795 	.print_clock_levels = vega10_print_clock_levels,
5796 	.display_config_changed = vega10_display_configuration_changed_task,
5797 	.powergate_uvd = vega10_power_gate_uvd,
5798 	.powergate_vce = vega10_power_gate_vce,
5799 	.check_states_equal = vega10_check_states_equal,
5800 	.check_smc_update_required_for_display_configuration =
5801 			vega10_check_smc_update_required_for_display_configuration,
5802 	.power_off_asic = vega10_power_off_asic,
5803 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5804 	.get_sclk_od = vega10_get_sclk_od,
5805 	.set_sclk_od = vega10_set_sclk_od,
5806 	.get_mclk_od = vega10_get_mclk_od,
5807 	.set_mclk_od = vega10_set_mclk_od,
5808 	.avfs_control = vega10_avfs_enable,
5809 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5810 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5811 	.register_irq_handlers = smu9_register_irq_handlers,
5812 	.start_thermal_controller = vega10_start_thermal_controller,
5813 	.get_power_profile_mode = vega10_get_power_profile_mode,
5814 	.set_power_profile_mode = vega10_set_power_profile_mode,
5815 	.set_power_limit = vega10_set_power_limit,
5816 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5817 	.get_performance_level = vega10_get_performance_level,
5818 	.get_bamaco_support = smu9_get_bamaco_support,
5819 	.get_asic_baco_state = smu9_baco_get_state,
5820 	.set_asic_baco_state = vega10_baco_set_state,
5821 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5822 	.get_ppfeature_status = vega10_get_ppfeature_status,
5823 	.set_ppfeature_status = vega10_set_ppfeature_status,
5824 	.set_mp1_state = vega10_set_mp1_state,
5825 	.disable_power_features_for_compute_performance =
5826 			vega10_disable_power_features_for_compute_performance,
5827 };
5828 
5829 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5830 {
5831 	struct amdgpu_device *adev = hwmgr->adev;
5832 
5833 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5834 	hwmgr->pptable_func = &vega10_pptable_funcs;
5835 	if (amdgpu_passthrough(adev))
5836 		return vega10_baco_set_cap(hwmgr);
5837 
5838 	return 0;
5839 }
5840