xref: /linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu7_hwmgr.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #if IS_ENABLED(CONFIG_X86_64)
30 #include <asm/intel-family.h>
31 #endif
32 #include <drm/amdgpu_drm.h>
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "pptable_v1_0.h"
36 #include "pppcielanes.h"
37 #include "amd_pcie_helpers.h"
38 #include "hardwaremanager.h"
39 #include "process_pptables_v1_0.h"
40 #include "cgs_common.h"
41 
42 #include "smu7_common.h"
43 
44 #include "hwmgr.h"
45 #include "smu7_hwmgr.h"
46 #include "smu_ucode_xfer_vi.h"
47 #include "smu7_powertune.h"
48 #include "smu7_dyn_defaults.h"
49 #include "smu7_thermal.h"
50 #include "smu7_clockpowergating.h"
51 #include "processpptables.h"
52 #include "pp_thermal.h"
53 #include "smu7_baco.h"
54 #include "smu7_smumgr.h"
55 #include "polaris10_smumgr.h"
56 
57 #include "ivsrcid/ivsrcid_vislands30.h"
58 
59 #define MC_CG_ARB_FREQ_F0           0x0a
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 #define MC_CG_ARB_FREQ_F2           0x0c
62 #define MC_CG_ARB_FREQ_F3           0x0d
63 
64 #define MC_CG_SEQ_DRAMCONF_S0       0x05
65 #define MC_CG_SEQ_DRAMCONF_S1       0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
67 #define MC_CG_SEQ_YCLK_RESUME       0x0a
68 
69 #define SMC_CG_IND_START            0xc0030000
70 #define SMC_CG_IND_END              0xc0040000
71 
72 #define MEM_FREQ_LOW_LATENCY        25000
73 #define MEM_FREQ_HIGH_LATENCY       80000
74 
75 #define MEM_LATENCY_HIGH            45
76 #define MEM_LATENCY_LOW             35
77 #define MEM_LATENCY_ERR             0xFFFF
78 
79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
80 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
81 #define MC_SEQ_MISC0_GDDR5_VALUE 5
82 
83 #define PCIE_BUS_CLK                10000
84 #define TCLK                        (PCIE_BUS_CLK / 10)
85 
86 static struct profile_mode_setting smu7_profiling[7] =
87 					{{0, 0, 0, 0, 0, 0, 0, 0},
88 					 {1, 0, 100, 30, 1, 0, 100, 10},
89 					 {1, 10, 0, 30, 0, 0, 0, 0},
90 					 {0, 0, 0, 0, 1, 10, 16, 31},
91 					 {1, 0, 11, 50, 1, 0, 100, 10},
92 					 {1, 0, 5, 30, 0, 0, 0, 0},
93 					 {0, 0, 0, 0, 0, 0, 0, 0},
94 					};
95 
96 #define PPSMC_MSG_SetVBITimeout_VEGAM    ((uint16_t) 0x310)
97 
98 #define ixPWR_SVI2_PLANE1_LOAD                     0xC0200280
99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK                    0x00000020L
100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK                 0x00000040L
101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT                  0x00000005
102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT               0x00000006
103 
104 #define STRAP_EVV_REVISION_MSB		2211
105 #define STRAP_EVV_REVISION_LSB		2208
106 
107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
108 enum DPM_EVENT_SRC {
109 	DPM_EVENT_SRC_ANALOG = 0,
110 	DPM_EVENT_SRC_EXTERNAL = 1,
111 	DPM_EVENT_SRC_DIGITAL = 2,
112 	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
113 	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
114 };
115 
116 #define ixDIDT_SQ_EDC_CTRL                         0x0013
117 #define ixDIDT_SQ_EDC_THRESHOLD                    0x0014
118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2            0x0015
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4            0x0016
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6            0x0017
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7              0x0018
122 
123 #define ixDIDT_TD_EDC_CTRL                         0x0053
124 #define ixDIDT_TD_EDC_THRESHOLD                    0x0054
125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2            0x0055
126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4            0x0056
127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6            0x0057
128 #define ixDIDT_TD_EDC_STALL_PATTERN_7              0x0058
129 
130 #define ixDIDT_TCP_EDC_CTRL                        0x0073
131 #define ixDIDT_TCP_EDC_THRESHOLD                   0x0074
132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2           0x0075
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4           0x0076
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6           0x0077
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7             0x0078
136 
137 #define ixDIDT_DB_EDC_CTRL                         0x0033
138 #define ixDIDT_DB_EDC_THRESHOLD                    0x0034
139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2            0x0035
140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4            0x0036
141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6            0x0037
142 #define ixDIDT_DB_EDC_STALL_PATTERN_7              0x0038
143 
144 uint32_t DIDTEDCConfig_P12[] = {
145     ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
146     ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
147     ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
148     ixDIDT_SQ_EDC_STALL_PATTERN_7,
149     ixDIDT_SQ_EDC_THRESHOLD,
150     ixDIDT_SQ_EDC_CTRL,
151     ixDIDT_TD_EDC_STALL_PATTERN_1_2,
152     ixDIDT_TD_EDC_STALL_PATTERN_3_4,
153     ixDIDT_TD_EDC_STALL_PATTERN_5_6,
154     ixDIDT_TD_EDC_STALL_PATTERN_7,
155     ixDIDT_TD_EDC_THRESHOLD,
156     ixDIDT_TD_EDC_CTRL,
157     ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
158     ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
159     ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
160     ixDIDT_TCP_EDC_STALL_PATTERN_7,
161     ixDIDT_TCP_EDC_THRESHOLD,
162     ixDIDT_TCP_EDC_CTRL,
163     ixDIDT_DB_EDC_STALL_PATTERN_1_2,
164     ixDIDT_DB_EDC_STALL_PATTERN_3_4,
165     ixDIDT_DB_EDC_STALL_PATTERN_5_6,
166     ixDIDT_DB_EDC_STALL_PATTERN_7,
167     ixDIDT_DB_EDC_THRESHOLD,
168     ixDIDT_DB_EDC_CTRL,
169     0xFFFFFFFF // End of list
170 };
171 
172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
174 		enum pp_clock_type type, uint32_t mask);
175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
176 
177 static struct smu7_power_state *cast_phw_smu7_power_state(
178 				  struct pp_hw_power_state *hw_ps)
179 {
180 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
181 				"Invalid Powerstate Type!",
182 				 return NULL);
183 
184 	return (struct smu7_power_state *)hw_ps;
185 }
186 
187 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
188 				 const struct pp_hw_power_state *hw_ps)
189 {
190 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
191 				"Invalid Powerstate Type!",
192 				 return NULL);
193 
194 	return (const struct smu7_power_state *)hw_ps;
195 }
196 
197 /**
198  * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
199  *
200  * @hwmgr:  the address of the powerplay hardware manager.
201  * Return:   always 0
202  */
203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
204 {
205 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
206 
207 	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
208 
209 	return 0;
210 }
211 
212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
213 {
214 	uint32_t speedCntl = 0;
215 
216 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
217 	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
218 			ixPCIE_LC_SPEED_CNTL);
219 	return((uint16_t)PHM_GET_FIELD(speedCntl,
220 			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
221 }
222 
223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
224 {
225 	uint32_t link_width;
226 
227 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
228 	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
229 			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
230 
231 	PP_ASSERT_WITH_CODE((7 >= link_width),
232 			"Invalid PCIe lane width!", return 0);
233 
234 	return decode_pcie_lane_width(link_width);
235 }
236 
237 /**
238  * smu7_enable_smc_voltage_controller - Enable voltage control
239  *
240  * @hwmgr:  the address of the powerplay hardware manager.
241  * Return:   always PP_Result_OK
242  */
243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
244 {
245 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
246 	    hwmgr->chip_id <= CHIP_VEGAM) {
247 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
248 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
249 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
250 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
251 	}
252 
253 	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
254 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
255 
256 	return 0;
257 }
258 
259 /**
260  * smu7_voltage_control - Checks if we want to support voltage control
261  *
262  * @hwmgr:  the address of the powerplay hardware manager.
263  */
264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
265 {
266 	const struct smu7_hwmgr *data =
267 			(const struct smu7_hwmgr *)(hwmgr->backend);
268 
269 	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
270 }
271 
272 /**
273  * smu7_enable_voltage_control - Enable voltage control
274  *
275  * @hwmgr:  the address of the powerplay hardware manager.
276  * Return:   always 0
277  */
278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
279 {
280 	/* enable voltage control */
281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
282 			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
283 
284 	return 0;
285 }
286 
287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
288 		struct phm_clock_voltage_dependency_table *voltage_dependency_table
289 		)
290 {
291 	uint32_t i;
292 
293 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
294 			"Voltage Dependency Table empty.", return -EINVAL;);
295 
296 	voltage_table->mask_low = 0;
297 	voltage_table->phase_delay = 0;
298 	voltage_table->count = voltage_dependency_table->count;
299 
300 	for (i = 0; i < voltage_dependency_table->count; i++) {
301 		voltage_table->entries[i].value =
302 			voltage_dependency_table->entries[i].v;
303 		voltage_table->entries[i].smio_low = 0;
304 	}
305 
306 	return 0;
307 }
308 
309 
310 /**
311  * smu7_construct_voltage_tables - Create Voltage Tables.
312  *
313  * @hwmgr:  the address of the powerplay hardware manager.
314  * Return:   always 0
315  */
316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
317 {
318 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
319 	struct phm_ppt_v1_information *table_info =
320 			(struct phm_ppt_v1_information *)hwmgr->pptable;
321 	int result = 0;
322 	uint32_t tmp;
323 
324 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
325 		result = atomctrl_get_voltage_table_v3(hwmgr,
326 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
327 				&(data->mvdd_voltage_table));
328 		PP_ASSERT_WITH_CODE((0 == result),
329 				"Failed to retrieve MVDD table.",
330 				return result);
331 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
332 		if (hwmgr->pp_table_version == PP_TABLE_V1)
333 			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
334 					table_info->vdd_dep_on_mclk);
335 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
336 			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
337 					hwmgr->dyn_state.mvdd_dependency_on_mclk);
338 
339 		PP_ASSERT_WITH_CODE((0 == result),
340 				"Failed to retrieve SVI2 MVDD table from dependency table.",
341 				return result;);
342 	}
343 
344 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
345 		result = atomctrl_get_voltage_table_v3(hwmgr,
346 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
347 				&(data->vddci_voltage_table));
348 		PP_ASSERT_WITH_CODE((0 == result),
349 				"Failed to retrieve VDDCI table.",
350 				return result);
351 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
352 		if (hwmgr->pp_table_version == PP_TABLE_V1)
353 			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
354 					table_info->vdd_dep_on_mclk);
355 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
356 			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
357 					hwmgr->dyn_state.vddci_dependency_on_mclk);
358 		PP_ASSERT_WITH_CODE((0 == result),
359 				"Failed to retrieve SVI2 VDDCI table from dependency table.",
360 				return result);
361 	}
362 
363 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
364 		/* VDDGFX has only SVI2 voltage control */
365 		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
366 					table_info->vddgfx_lookup_table);
367 		PP_ASSERT_WITH_CODE((0 == result),
368 			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
369 	}
370 
371 
372 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
373 		result = atomctrl_get_voltage_table_v3(hwmgr,
374 					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
375 					&data->vddc_voltage_table);
376 		PP_ASSERT_WITH_CODE((0 == result),
377 			"Failed to retrieve VDDC table.", return result;);
378 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
379 
380 		if (hwmgr->pp_table_version == PP_TABLE_V0)
381 			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
382 					hwmgr->dyn_state.vddc_dependency_on_mclk);
383 		else if (hwmgr->pp_table_version == PP_TABLE_V1)
384 			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
385 				table_info->vddc_lookup_table);
386 
387 		PP_ASSERT_WITH_CODE((0 == result),
388 			"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
389 	}
390 
391 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
392 	PP_ASSERT_WITH_CODE(
393 			(data->vddc_voltage_table.count <= tmp),
394 		"Too many voltage values for VDDC. Trimming to fit state table.",
395 			phm_trim_voltage_table_to_fit_state_table(tmp,
396 						&(data->vddc_voltage_table)));
397 
398 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
399 	PP_ASSERT_WITH_CODE(
400 			(data->vddgfx_voltage_table.count <= tmp),
401 		"Too many voltage values for VDDC. Trimming to fit state table.",
402 			phm_trim_voltage_table_to_fit_state_table(tmp,
403 						&(data->vddgfx_voltage_table)));
404 
405 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
406 	PP_ASSERT_WITH_CODE(
407 			(data->vddci_voltage_table.count <= tmp),
408 		"Too many voltage values for VDDCI. Trimming to fit state table.",
409 			phm_trim_voltage_table_to_fit_state_table(tmp,
410 					&(data->vddci_voltage_table)));
411 
412 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
413 	PP_ASSERT_WITH_CODE(
414 			(data->mvdd_voltage_table.count <= tmp),
415 		"Too many voltage values for MVDD. Trimming to fit state table.",
416 			phm_trim_voltage_table_to_fit_state_table(tmp,
417 						&(data->mvdd_voltage_table)));
418 
419 	return 0;
420 }
421 
422 /**
423  * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
424  *
425  * @hwmgr:  the address of the powerplay hardware manager.
426  * Return:   always 0
427  */
428 static int smu7_program_static_screen_threshold_parameters(
429 							struct pp_hwmgr *hwmgr)
430 {
431 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
432 
433 	/* Set static screen threshold unit */
434 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
435 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
436 			data->static_screen_threshold_unit);
437 	/* Set static screen threshold */
438 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
439 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
440 			data->static_screen_threshold);
441 
442 	return 0;
443 }
444 
445 /**
446  * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
447  *
448  * @hwmgr:  the address of the powerplay hardware manager.
449  * Return:   always  0
450  */
451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
452 {
453 	uint32_t display_gap =
454 			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
455 					ixCG_DISPLAY_GAP_CNTL);
456 
457 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
458 			DISP_GAP, DISPLAY_GAP_IGNORE);
459 
460 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
461 			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
462 
463 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
464 			ixCG_DISPLAY_GAP_CNTL, display_gap);
465 
466 	return 0;
467 }
468 
469 /**
470  * smu7_program_voting_clients - Programs activity state transition voting clients
471  *
472  * @hwmgr:  the address of the powerplay hardware manager.
473  * Return:   always  0
474  */
475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
476 {
477 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 	int i;
479 
480 	/* Clear reset for voting clients before enabling DPM */
481 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
482 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
483 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
484 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
485 
486 	for (i = 0; i < 8; i++)
487 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
488 					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
489 					data->voting_rights_clients[i]);
490 	return 0;
491 }
492 
493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
494 {
495 	int i;
496 
497 	/* Reset voting clients before disabling DPM */
498 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
499 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
500 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
501 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
502 
503 	for (i = 0; i < 8; i++)
504 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
506 
507 	return 0;
508 }
509 
510 /* Copy one arb setting to another and then switch the active set.
511  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
512  */
513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
514 		uint32_t arb_src, uint32_t arb_dest)
515 {
516 	uint32_t mc_arb_dram_timing;
517 	uint32_t mc_arb_dram_timing2;
518 	uint32_t burst_time;
519 	uint32_t mc_cg_config;
520 
521 	switch (arb_src) {
522 	case MC_CG_ARB_FREQ_F0:
523 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
524 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
525 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
526 		break;
527 	case MC_CG_ARB_FREQ_F1:
528 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
529 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
530 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
531 		break;
532 	default:
533 		return -EINVAL;
534 	}
535 
536 	switch (arb_dest) {
537 	case MC_CG_ARB_FREQ_F0:
538 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
539 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
540 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
541 		break;
542 	case MC_CG_ARB_FREQ_F1:
543 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
544 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
545 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
546 		break;
547 	default:
548 		return -EINVAL;
549 	}
550 
551 	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
552 	mc_cg_config |= 0x0000000F;
553 	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
554 	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
555 
556 	return 0;
557 }
558 
559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
560 {
561 	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
562 }
563 
564 /**
565  * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
566  *
567  * @hwmgr:  the address of the powerplay hardware manager.
568  * Return:   always 0
569  * This function is to be called from the SetPowerState table.
570  */
571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
572 {
573 	return smu7_copy_and_switch_arb_sets(hwmgr,
574 			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
575 }
576 
577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
578 {
579 	uint32_t tmp;
580 
581 	tmp = (cgs_read_ind_register(hwmgr->device,
582 			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
583 			0x0000ff00) >> 8;
584 
585 	if (tmp == MC_CG_ARB_FREQ_F0)
586 		return 0;
587 
588 	return smu7_copy_and_switch_arb_sets(hwmgr,
589 			tmp, MC_CG_ARB_FREQ_F0);
590 }
591 
592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
593 {
594 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
595 	uint16_t pcie_gen = 0;
596 
597 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
598 	    adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
599 		pcie_gen = 3;
600 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
601 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
602 		pcie_gen = 2;
603 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
604 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
605 		pcie_gen = 1;
606 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
607 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
608 		pcie_gen = 0;
609 
610 	return pcie_gen;
611 }
612 
613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
614 {
615 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
616 	uint16_t pcie_width = 0;
617 
618 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
619 		pcie_width = 16;
620 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
621 		pcie_width = 12;
622 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
623 		pcie_width = 8;
624 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
625 		pcie_width = 4;
626 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
627 		pcie_width = 2;
628 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
629 		pcie_width = 1;
630 
631 	return pcie_width;
632 }
633 
634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
635 {
636 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
637 
638 	struct phm_ppt_v1_information *table_info =
639 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
640 	struct phm_ppt_v1_pcie_table *pcie_table = NULL;
641 
642 	uint32_t i, max_entry;
643 	uint32_t tmp;
644 
645 	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
646 			data->use_pcie_power_saving_levels), "No pcie performance levels!",
647 			return -EINVAL);
648 
649 	if (table_info != NULL)
650 		pcie_table = table_info->pcie_table;
651 
652 	if (data->use_pcie_performance_levels &&
653 			!data->use_pcie_power_saving_levels) {
654 		data->pcie_gen_power_saving = data->pcie_gen_performance;
655 		data->pcie_lane_power_saving = data->pcie_lane_performance;
656 	} else if (!data->use_pcie_performance_levels &&
657 			data->use_pcie_power_saving_levels) {
658 		data->pcie_gen_performance = data->pcie_gen_power_saving;
659 		data->pcie_lane_performance = data->pcie_lane_power_saving;
660 	}
661 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
662 	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
663 					tmp,
664 					MAX_REGULAR_DPM_NUMBER);
665 
666 	if (pcie_table != NULL) {
667 		/* max_entry is used to make sure we reserve one PCIE level
668 		 * for boot level (fix for A+A PSPP issue).
669 		 * If PCIE table from PPTable have ULV entry + 8 entries,
670 		 * then ignore the last entry.*/
671 		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
672 		for (i = 1; i < max_entry; i++) {
673 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
674 					get_pcie_gen_support(data->pcie_gen_cap,
675 							pcie_table->entries[i].gen_speed),
676 					get_pcie_lane_support(data->pcie_lane_cap,
677 							pcie_table->entries[i].lane_width));
678 		}
679 		data->dpm_table.pcie_speed_table.count = max_entry - 1;
680 		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
681 	} else {
682 		/* Hardcode Pcie Table */
683 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
684 				get_pcie_gen_support(data->pcie_gen_cap,
685 						PP_Min_PCIEGen),
686 				get_pcie_lane_support(data->pcie_lane_cap,
687 						PP_Max_PCIELane));
688 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
689 				get_pcie_gen_support(data->pcie_gen_cap,
690 						PP_Min_PCIEGen),
691 				get_pcie_lane_support(data->pcie_lane_cap,
692 						PP_Max_PCIELane));
693 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
694 				get_pcie_gen_support(data->pcie_gen_cap,
695 						PP_Max_PCIEGen),
696 				get_pcie_lane_support(data->pcie_lane_cap,
697 						PP_Max_PCIELane));
698 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
699 				get_pcie_gen_support(data->pcie_gen_cap,
700 						PP_Max_PCIEGen),
701 				get_pcie_lane_support(data->pcie_lane_cap,
702 						PP_Max_PCIELane));
703 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
704 				get_pcie_gen_support(data->pcie_gen_cap,
705 						PP_Max_PCIEGen),
706 				get_pcie_lane_support(data->pcie_lane_cap,
707 						PP_Max_PCIELane));
708 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
709 				get_pcie_gen_support(data->pcie_gen_cap,
710 						PP_Max_PCIEGen),
711 				get_pcie_lane_support(data->pcie_lane_cap,
712 						PP_Max_PCIELane));
713 
714 		data->dpm_table.pcie_speed_table.count = 6;
715 	}
716 	/* Populate last level for boot PCIE level, but do not increment count. */
717 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
718 		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
719 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
720 				get_pcie_gen_support(data->pcie_gen_cap,
721 						PP_Max_PCIEGen),
722 				data->vbios_boot_state.pcie_lane_bootup_value);
723 	} else {
724 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
725 			data->dpm_table.pcie_speed_table.count,
726 			get_pcie_gen_support(data->pcie_gen_cap,
727 					PP_Min_PCIEGen),
728 			get_pcie_lane_support(data->pcie_lane_cap,
729 					PP_Max_PCIELane));
730 
731 		if (data->pcie_dpm_key_disabled)
732 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
733 				data->dpm_table.pcie_speed_table.count,
734 				smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
735 	}
736 	return 0;
737 }
738 
739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
740 {
741 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
742 
743 	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
744 
745 	phm_reset_single_dpm_table(
746 			&data->dpm_table.sclk_table,
747 				smum_get_mac_definition(hwmgr,
748 					SMU_MAX_LEVELS_GRAPHICS),
749 					MAX_REGULAR_DPM_NUMBER);
750 	phm_reset_single_dpm_table(
751 			&data->dpm_table.mclk_table,
752 			smum_get_mac_definition(hwmgr,
753 				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
754 
755 	phm_reset_single_dpm_table(
756 			&data->dpm_table.vddc_table,
757 				smum_get_mac_definition(hwmgr,
758 					SMU_MAX_LEVELS_VDDC),
759 					MAX_REGULAR_DPM_NUMBER);
760 	phm_reset_single_dpm_table(
761 			&data->dpm_table.vddci_table,
762 			smum_get_mac_definition(hwmgr,
763 				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
764 
765 	phm_reset_single_dpm_table(
766 			&data->dpm_table.mvdd_table,
767 				smum_get_mac_definition(hwmgr,
768 					SMU_MAX_LEVELS_MVDD),
769 					MAX_REGULAR_DPM_NUMBER);
770 	return 0;
771 }
772 /*
773  * This function is to initialize all DPM state tables
774  * for SMU7 based on the dependency table.
775  * Dynamic state patching function will then trim these
776  * state tables to the allowed range based
777  * on the power policy or external client requests,
778  * such as UVD request, etc.
779  */
780 
781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
782 {
783 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
784 	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
785 		hwmgr->dyn_state.vddc_dependency_on_sclk;
786 	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
787 		hwmgr->dyn_state.vddc_dependency_on_mclk;
788 	struct phm_cac_leakage_table *std_voltage_table =
789 		hwmgr->dyn_state.cac_leakage_table;
790 	uint32_t i;
791 
792 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
793 		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
794 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
795 		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
796 
797 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
798 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
799 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
800 		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
801 
802 
803 	/* Initialize Sclk DPM table based on allow Sclk values*/
804 	data->dpm_table.sclk_table.count = 0;
805 
806 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
807 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
808 				allowed_vdd_sclk_table->entries[i].clk) {
809 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
810 				allowed_vdd_sclk_table->entries[i].clk;
811 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
812 			data->dpm_table.sclk_table.count++;
813 		}
814 	}
815 
816 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
817 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
818 	/* Initialize Mclk DPM table based on allow Mclk values */
819 	data->dpm_table.mclk_table.count = 0;
820 	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
821 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
822 			allowed_vdd_mclk_table->entries[i].clk) {
823 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
824 				allowed_vdd_mclk_table->entries[i].clk;
825 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
826 			data->dpm_table.mclk_table.count++;
827 		}
828 	}
829 
830 	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
831 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
832 		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
833 		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
834 		/* param1 is for corresponding std voltage */
835 		data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
836 	}
837 
838 	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
839 	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
840 
841 	if (NULL != allowed_vdd_mclk_table) {
842 		/* Initialize Vddci DPM table based on allow Mclk values */
843 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
844 			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
845 			data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
846 		}
847 		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
848 	}
849 
850 	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
851 
852 	if (NULL != allowed_vdd_mclk_table) {
853 		/*
854 		 * Initialize MVDD DPM table based on allow Mclk
855 		 * values
856 		 */
857 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
858 			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
859 			data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
860 		}
861 		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
862 	}
863 
864 	return 0;
865 }
866 
867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
868 {
869 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
870 	struct phm_ppt_v1_information *table_info =
871 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
872 	uint32_t i;
873 
874 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
875 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
876 
877 	if (table_info == NULL)
878 		return -EINVAL;
879 
880 	dep_sclk_table = table_info->vdd_dep_on_sclk;
881 	dep_mclk_table = table_info->vdd_dep_on_mclk;
882 
883 	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
884 			"SCLK dependency table is missing.",
885 			return -EINVAL);
886 	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
887 			"SCLK dependency table count is 0.",
888 			return -EINVAL);
889 
890 	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
891 			"MCLK dependency table is missing.",
892 			return -EINVAL);
893 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
894 			"MCLK dependency table count is 0",
895 			return -EINVAL);
896 
897 	/* Initialize Sclk DPM table based on allow Sclk values */
898 	data->dpm_table.sclk_table.count = 0;
899 	for (i = 0; i < dep_sclk_table->count; i++) {
900 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
901 						dep_sclk_table->entries[i].clk) {
902 
903 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
904 					dep_sclk_table->entries[i].clk;
905 
906 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
907 					(i == 0) ? true : false;
908 			data->dpm_table.sclk_table.count++;
909 		}
910 	}
911 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
912 		hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
913 	/* Initialize Mclk DPM table based on allow Mclk values */
914 	data->dpm_table.mclk_table.count = 0;
915 	for (i = 0; i < dep_mclk_table->count; i++) {
916 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
917 				[data->dpm_table.mclk_table.count - 1].value !=
918 						dep_mclk_table->entries[i].clk) {
919 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
920 							dep_mclk_table->entries[i].clk;
921 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
922 							(i == 0) ? true : false;
923 			data->dpm_table.mclk_table.count++;
924 		}
925 	}
926 
927 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
928 		hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
929 	return 0;
930 }
931 
932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
933 {
934 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
935 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
936 	struct phm_ppt_v1_information *table_info =
937 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
938 	uint32_t i;
939 
940 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
941 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
942 	struct phm_odn_performance_level *entries;
943 
944 	if (table_info == NULL)
945 		return -EINVAL;
946 
947 	dep_sclk_table = table_info->vdd_dep_on_sclk;
948 	dep_mclk_table = table_info->vdd_dep_on_mclk;
949 
950 	odn_table->odn_core_clock_dpm_levels.num_of_pl =
951 						data->golden_dpm_table.sclk_table.count;
952 	entries = odn_table->odn_core_clock_dpm_levels.entries;
953 	for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
954 		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
955 		entries[i].enabled = true;
956 		entries[i].vddc = dep_sclk_table->entries[i].vddc;
957 	}
958 
959 	smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
960 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
961 
962 	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
963 						data->golden_dpm_table.mclk_table.count;
964 	entries = odn_table->odn_memory_clock_dpm_levels.entries;
965 	for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
966 		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
967 		entries[i].enabled = true;
968 		entries[i].vddc = dep_mclk_table->entries[i].vddc;
969 	}
970 
971 	smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
972 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
973 
974 	return 0;
975 }
976 
977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
978 {
979 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
980 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
981 	struct phm_ppt_v1_information *table_info =
982 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
983 	uint32_t min_vddc = 0;
984 	uint32_t max_vddc = 0;
985 
986 	if (!table_info)
987 		return;
988 
989 	dep_sclk_table = table_info->vdd_dep_on_sclk;
990 
991 	atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
992 
993 	if (min_vddc == 0 || min_vddc > 2000
994 		|| min_vddc > dep_sclk_table->entries[0].vddc)
995 		min_vddc = dep_sclk_table->entries[0].vddc;
996 
997 	if (max_vddc == 0 || max_vddc > 2000
998 		|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
999 		max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1000 
1001 	data->odn_dpm_table.min_vddc = min_vddc;
1002 	data->odn_dpm_table.max_vddc = max_vddc;
1003 }
1004 
1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1006 {
1007 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1009 	struct phm_ppt_v1_information *table_info =
1010 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 	uint32_t i;
1012 
1013 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1014 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1015 
1016 	if (table_info == NULL)
1017 		return;
1018 
1019 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1020 		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1021 					data->dpm_table.sclk_table.dpm_levels[i].value) {
1022 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1023 			break;
1024 		}
1025 	}
1026 
1027 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1028 		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1029 					data->dpm_table.mclk_table.dpm_levels[i].value) {
1030 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1031 			break;
1032 		}
1033 	}
1034 
1035 	dep_table = table_info->vdd_dep_on_mclk;
1036 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1037 
1038 	for (i = 0; i < dep_table->count; i++) {
1039 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1040 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1041 			return;
1042 		}
1043 	}
1044 
1045 	dep_table = table_info->vdd_dep_on_sclk;
1046 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1047 	for (i = 0; i < dep_table->count; i++) {
1048 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1049 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1050 			return;
1051 		}
1052 	}
1053 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1054 		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1055 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1056 	}
1057 }
1058 
1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1060 {
1061 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1062 
1063 	smu7_reset_dpm_tables(hwmgr);
1064 
1065 	if (hwmgr->pp_table_version == PP_TABLE_V1)
1066 		smu7_setup_dpm_tables_v1(hwmgr);
1067 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
1068 		smu7_setup_dpm_tables_v0(hwmgr);
1069 
1070 	smu7_setup_default_pcie_table(hwmgr);
1071 
1072 	/* save a copy of the default DPM table */
1073 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1074 			sizeof(struct smu7_dpm_table));
1075 
1076 	/* initialize ODN table */
1077 	if (hwmgr->od_enabled) {
1078 		if (data->odn_dpm_table.max_vddc) {
1079 			smu7_check_dpm_table_updated(hwmgr);
1080 		} else {
1081 			smu7_setup_voltage_range_from_vbios(hwmgr);
1082 			smu7_odn_initial_default_setting(hwmgr);
1083 		}
1084 	}
1085 	return 0;
1086 }
1087 
1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1089 {
1090 
1091 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1092 			PHM_PlatformCaps_RegulatorHot))
1093 		return smum_send_msg_to_smc(hwmgr,
1094 				PPSMC_MSG_EnableVRHotGPIOInterrupt,
1095 				NULL);
1096 
1097 	return 0;
1098 }
1099 
1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1101 {
1102 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1103 			SCLK_PWRMGT_OFF, 0);
1104 	return 0;
1105 }
1106 
1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1108 {
1109 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1110 
1111 	if (data->ulv_supported)
1112 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1113 
1114 	return 0;
1115 }
1116 
1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1118 {
1119 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1120 
1121 	if (data->ulv_supported)
1122 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1123 
1124 	return 0;
1125 }
1126 
1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1128 {
1129 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1130 			PHM_PlatformCaps_SclkDeepSleep)) {
1131 		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1132 			PP_ASSERT_WITH_CODE(false,
1133 					"Attempt to enable Master Deep Sleep switch failed!",
1134 					return -EINVAL);
1135 	} else {
1136 		if (smum_send_msg_to_smc(hwmgr,
1137 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1138 				NULL)) {
1139 			PP_ASSERT_WITH_CODE(false,
1140 					"Attempt to disable Master Deep Sleep switch failed!",
1141 					return -EINVAL);
1142 		}
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1149 {
1150 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1151 			PHM_PlatformCaps_SclkDeepSleep)) {
1152 		if (smum_send_msg_to_smc(hwmgr,
1153 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1154 				NULL)) {
1155 			PP_ASSERT_WITH_CODE(false,
1156 					"Attempt to disable Master Deep Sleep switch failed!",
1157 					return -EINVAL);
1158 		}
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1165 {
1166 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1167 	uint32_t soft_register_value = 0;
1168 	uint32_t handshake_disables_offset = data->soft_regs_start
1169 				+ smum_get_offsetof(hwmgr,
1170 					SMU_SoftRegisters, HandshakeDisables);
1171 
1172 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1173 				CGS_IND_REG__SMC, handshake_disables_offset);
1174 	soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1175 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1176 			handshake_disables_offset, soft_register_value);
1177 	return 0;
1178 }
1179 
1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1181 {
1182 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1183 	uint32_t soft_register_value = 0;
1184 	uint32_t handshake_disables_offset = data->soft_regs_start
1185 				+ smum_get_offsetof(hwmgr,
1186 					SMU_SoftRegisters, HandshakeDisables);
1187 
1188 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1189 				CGS_IND_REG__SMC, handshake_disables_offset);
1190 	soft_register_value |= smum_get_mac_definition(hwmgr,
1191 					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1192 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 			handshake_disables_offset, soft_register_value);
1194 	return 0;
1195 }
1196 
1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200 
1201 	/* enable SCLK dpm */
1202 	if (!data->sclk_dpm_key_disabled) {
1203 		if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1204 		    hwmgr->chip_id <= CHIP_VEGAM)
1205 			smu7_disable_sclk_vce_handshake(hwmgr);
1206 
1207 		PP_ASSERT_WITH_CODE(
1208 		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1209 		"Failed to enable SCLK DPM during DPM Start Function!",
1210 		return -EINVAL);
1211 	}
1212 
1213 	/* enable MCLK dpm */
1214 	if (0 == data->mclk_dpm_key_disabled) {
1215 		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1216 			smu7_disable_handshake_uvd(hwmgr);
1217 
1218 		PP_ASSERT_WITH_CODE(
1219 				(0 == smum_send_msg_to_smc(hwmgr,
1220 						PPSMC_MSG_MCLKDPM_Enable,
1221 						NULL)),
1222 				"Failed to enable MCLK DPM during DPM Start Function!",
1223 				return -EINVAL);
1224 
1225 		if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1226 		    (hwmgr->chip_id == CHIP_POLARIS10) ||
1227 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
1228 		    (hwmgr->chip_id == CHIP_POLARIS12) ||
1229 		    (hwmgr->chip_id == CHIP_TONGA) ||
1230 		    (hwmgr->chip_id == CHIP_TOPAZ))
1231 			PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1232 
1233 
1234 		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1235 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1236 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1237 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1238 			udelay(10);
1239 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1240 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1241 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1242 		} else {
1243 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1244 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1245 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1246 			udelay(10);
1247 			if (hwmgr->chip_id == CHIP_VEGAM) {
1248 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1249 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1250 			} else {
1251 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1252 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1253 			}
1254 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1255 		}
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1262 {
1263 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1264 
1265 	/*enable general power management */
1266 
1267 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1268 			GLOBAL_PWRMGT_EN, 1);
1269 
1270 	/* enable sclk deep sleep */
1271 
1272 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1273 			DYNAMIC_PM_EN, 1);
1274 
1275 	/* prepare for PCIE DPM */
1276 
1277 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1278 			data->soft_regs_start +
1279 			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1280 						VoltageChangeTimeout), 0x1000);
1281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1282 			SWRST_COMMAND_1, RESETLC, 0x0);
1283 
1284 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1285 		cgs_write_register(hwmgr->device, 0x1488,
1286 			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1287 
1288 	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1289 		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1290 		return -EINVAL;
1291 	}
1292 
1293 	/* enable PCIE dpm */
1294 	if (0 == data->pcie_dpm_key_disabled) {
1295 		PP_ASSERT_WITH_CODE(
1296 				(0 == smum_send_msg_to_smc(hwmgr,
1297 						PPSMC_MSG_PCIeDPM_Enable,
1298 						NULL)),
1299 				"Failed to enable pcie DPM during DPM Start Function!",
1300 				return -EINVAL);
1301 	} else {
1302 		PP_ASSERT_WITH_CODE(
1303 				(0 == smum_send_msg_to_smc(hwmgr,
1304 						PPSMC_MSG_PCIeDPM_Disable,
1305 						NULL)),
1306 				"Failed to disable pcie DPM during DPM Start Function!",
1307 				return -EINVAL);
1308 	}
1309 
1310 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1311 				PHM_PlatformCaps_Falcon_QuickTransition)) {
1312 		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1313 				PPSMC_MSG_EnableACDCGPIOInterrupt,
1314 				NULL)),
1315 				"Failed to enable AC DC GPIO Interrupt!",
1316 				);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1323 {
1324 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1325 
1326 	/* disable SCLK dpm */
1327 	if (!data->sclk_dpm_key_disabled) {
1328 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1329 				"Trying to disable SCLK DPM when DPM is disabled",
1330 				return 0);
1331 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1332 	}
1333 
1334 	/* disable MCLK dpm */
1335 	if (!data->mclk_dpm_key_disabled) {
1336 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1337 				"Trying to disable MCLK DPM when DPM is disabled",
1338 				return 0);
1339 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1346 {
1347 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348 
1349 	/* disable general power management */
1350 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1351 			GLOBAL_PWRMGT_EN, 0);
1352 	/* disable sclk deep sleep */
1353 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1354 			DYNAMIC_PM_EN, 0);
1355 
1356 	/* disable PCIE dpm */
1357 	if (!data->pcie_dpm_key_disabled) {
1358 		PP_ASSERT_WITH_CODE(
1359 				(smum_send_msg_to_smc(hwmgr,
1360 						PPSMC_MSG_PCIeDPM_Disable,
1361 						NULL) == 0),
1362 				"Failed to disable pcie DPM during DPM Stop Function!",
1363 				return -EINVAL);
1364 	}
1365 
1366 	smu7_disable_sclk_mclk_dpm(hwmgr);
1367 
1368 	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1369 			"Trying to disable voltage DPM when DPM is disabled",
1370 			return 0);
1371 
1372 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1373 
1374 	return 0;
1375 }
1376 
1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1378 {
1379 	bool protection;
1380 	enum DPM_EVENT_SRC src;
1381 
1382 	switch (sources) {
1383 	default:
1384 		pr_err("Unknown throttling event sources.");
1385 		fallthrough;
1386 	case 0:
1387 		protection = false;
1388 		/* src is unused */
1389 		break;
1390 	case (1 << PHM_AutoThrottleSource_Thermal):
1391 		protection = true;
1392 		src = DPM_EVENT_SRC_DIGITAL;
1393 		break;
1394 	case (1 << PHM_AutoThrottleSource_External):
1395 		protection = true;
1396 		src = DPM_EVENT_SRC_EXTERNAL;
1397 		break;
1398 	case (1 << PHM_AutoThrottleSource_External) |
1399 			(1 << PHM_AutoThrottleSource_Thermal):
1400 		protection = true;
1401 		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1402 		break;
1403 	}
1404 	/* Order matters - don't enable thermal protection for the wrong source. */
1405 	if (protection) {
1406 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1407 				DPM_EVENT_SRC, src);
1408 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1409 				THERMAL_PROTECTION_DIS,
1410 				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1411 						PHM_PlatformCaps_ThermalController));
1412 	} else
1413 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1414 				THERMAL_PROTECTION_DIS, 1);
1415 }
1416 
1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1418 		PHM_AutoThrottleSource source)
1419 {
1420 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1421 
1422 	if (!(data->active_auto_throttle_sources & (1 << source))) {
1423 		data->active_auto_throttle_sources |= 1 << source;
1424 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1425 	}
1426 	return 0;
1427 }
1428 
1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1430 {
1431 	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1432 }
1433 
1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1435 		PHM_AutoThrottleSource source)
1436 {
1437 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438 
1439 	if (data->active_auto_throttle_sources & (1 << source)) {
1440 		data->active_auto_throttle_sources &= ~(1 << source);
1441 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1442 	}
1443 	return 0;
1444 }
1445 
1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1447 {
1448 	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1449 }
1450 
1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1452 {
1453 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1454 	data->pcie_performance_request = true;
1455 
1456 	return 0;
1457 }
1458 
1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1460 					   uint32_t *cac_config_regs,
1461 					   AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1462 {
1463 	uint32_t data, i = 0;
1464 
1465 	while (cac_config_regs[i] != 0xFFFFFFFF) {
1466 		data = edc_leakage_table->DIDT_REG[i];
1467 		cgs_write_ind_register(hwmgr->device,
1468 				       CGS_IND_REG__DIDT,
1469 				       cac_config_regs[i],
1470 				       data);
1471 		i++;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1478 {
1479 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1480 	int ret = 0;
1481 
1482 	if (!data->disable_edc_leakage_controller &&
1483 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1484 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1485 		ret = smu7_program_edc_didt_registers(hwmgr,
1486 						      DIDTEDCConfig_P12,
1487 						      &data->edc_leakage_table);
1488 		if (ret)
1489 			return ret;
1490 
1491 		ret = smum_send_msg_to_smc(hwmgr,
1492 					   (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1493 					   NULL);
1494 	} else {
1495 		ret = smum_send_msg_to_smc(hwmgr,
1496 					   (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1497 					   NULL);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
1504 {
1505 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1506 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
1507 	int32_t tmp_sclk, count, percentage;
1508 
1509 	if (golden_dpm_table->mclk_table.count == 1) {
1510 		percentage = 70;
1511 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value;
1512 	} else {
1513 		percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
1514 				golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1515 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
1516 	}
1517 
1518 	tmp_sclk = hwmgr->pstate_mclk * percentage / 100;
1519 
1520 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
1521 		struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk =
1522 			hwmgr->dyn_state.vddc_dependency_on_sclk;
1523 
1524 		for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) {
1525 			if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) {
1526 				hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk;
1527 				break;
1528 			}
1529 		}
1530 		if (count < 0)
1531 			hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk;
1532 
1533 		hwmgr->pstate_sclk_peak =
1534 			vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk;
1535 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
1536 		struct phm_ppt_v1_information *table_info =
1537 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1538 		struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk =
1539 			table_info->vdd_dep_on_sclk;
1540 
1541 		for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) {
1542 			if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) {
1543 				hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk;
1544 				break;
1545 			}
1546 		}
1547 		if (count < 0)
1548 			hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk;
1549 
1550 		hwmgr->pstate_sclk_peak =
1551 			vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk;
1552 	}
1553 
1554 	hwmgr->pstate_mclk_peak =
1555 		golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1556 
1557 	/* make sure the output is in Mhz */
1558 	hwmgr->pstate_sclk /= 100;
1559 	hwmgr->pstate_mclk /= 100;
1560 	hwmgr->pstate_sclk_peak /= 100;
1561 	hwmgr->pstate_mclk_peak /= 100;
1562 }
1563 
1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1565 {
1566 	int tmp_result = 0;
1567 	int result = 0;
1568 
1569 	if (smu7_voltage_control(hwmgr)) {
1570 		tmp_result = smu7_enable_voltage_control(hwmgr);
1571 		PP_ASSERT_WITH_CODE(tmp_result == 0,
1572 				"Failed to enable voltage control!",
1573 				result = tmp_result);
1574 
1575 		tmp_result = smu7_construct_voltage_tables(hwmgr);
1576 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1577 				"Failed to construct voltage tables!",
1578 				result = tmp_result);
1579 	}
1580 	smum_initialize_mc_reg_table(hwmgr);
1581 
1582 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1583 			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1584 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1585 				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1586 
1587 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1588 			PHM_PlatformCaps_ThermalController))
1589 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1590 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1591 
1592 	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1593 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 			"Failed to program static screen threshold parameters!",
1595 			result = tmp_result);
1596 
1597 	tmp_result = smu7_enable_display_gap(hwmgr);
1598 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1599 			"Failed to enable display gap!", result = tmp_result);
1600 
1601 	tmp_result = smu7_program_voting_clients(hwmgr);
1602 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1603 			"Failed to program voting clients!", result = tmp_result);
1604 
1605 	tmp_result = smum_process_firmware_header(hwmgr);
1606 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1607 			"Failed to process firmware header!", result = tmp_result);
1608 
1609 	if (hwmgr->chip_id != CHIP_VEGAM) {
1610 		tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1611 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1612 				"Failed to initialize switch from ArbF0 to F1!",
1613 				result = tmp_result);
1614 	}
1615 
1616 	result = smu7_setup_default_dpm_tables(hwmgr);
1617 	PP_ASSERT_WITH_CODE(0 == result,
1618 			"Failed to setup default DPM tables!", return result);
1619 
1620 	tmp_result = smum_init_smc_table(hwmgr);
1621 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 			"Failed to initialize SMC table!", result = tmp_result);
1623 
1624 	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1625 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1627 
1628 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1629 	    hwmgr->chip_id <= CHIP_VEGAM) {
1630 		tmp_result = smu7_notify_has_display(hwmgr);
1631 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1632 				"Failed to enable display setting!", result = tmp_result);
1633 	} else {
1634 		smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1635 	}
1636 
1637 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1638 	    hwmgr->chip_id <= CHIP_VEGAM) {
1639 		tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1640 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1641 				"Failed to populate edc leakage registers!", result = tmp_result);
1642 	}
1643 
1644 	tmp_result = smu7_enable_sclk_control(hwmgr);
1645 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1646 			"Failed to enable SCLK control!", result = tmp_result);
1647 
1648 	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1649 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1650 			"Failed to enable voltage control!", result = tmp_result);
1651 
1652 	tmp_result = smu7_enable_ulv(hwmgr);
1653 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1654 			"Failed to enable ULV!", result = tmp_result);
1655 
1656 	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1657 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1658 			"Failed to enable deep sleep master switch!", result = tmp_result);
1659 
1660 	tmp_result = smu7_enable_didt_config(hwmgr);
1661 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1662 			"Failed to enable deep sleep master switch!", result = tmp_result);
1663 
1664 	tmp_result = smu7_start_dpm(hwmgr);
1665 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1666 			"Failed to start DPM!", result = tmp_result);
1667 
1668 	tmp_result = smu7_enable_smc_cac(hwmgr);
1669 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1670 			"Failed to enable SMC CAC!", result = tmp_result);
1671 
1672 	tmp_result = smu7_enable_power_containment(hwmgr);
1673 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1674 			"Failed to enable power containment!", result = tmp_result);
1675 
1676 	tmp_result = smu7_power_control_set_level(hwmgr);
1677 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1678 			"Failed to power control set level!", result = tmp_result);
1679 
1680 	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1681 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1682 			"Failed to enable thermal auto throttle!", result = tmp_result);
1683 
1684 	tmp_result = smu7_pcie_performance_request(hwmgr);
1685 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1686 			"pcie performance request failed!", result = tmp_result);
1687 
1688 	smu7_populate_umdpstate_clocks(hwmgr);
1689 
1690 	return 0;
1691 }
1692 
1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1694 {
1695 	if (!hwmgr->avfs_supported)
1696 		return 0;
1697 
1698 	if (enable) {
1699 		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1700 				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1701 			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1702 					hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1703 					"Failed to enable AVFS!",
1704 					return -EINVAL);
1705 		}
1706 	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1707 			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1708 		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1709 				hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1710 				"Failed to disable AVFS!",
1711 				return -EINVAL);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1718 {
1719 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1720 
1721 	if (!hwmgr->avfs_supported)
1722 		return 0;
1723 
1724 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1725 		smu7_avfs_control(hwmgr, false);
1726 	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1727 		smu7_avfs_control(hwmgr, false);
1728 		smu7_avfs_control(hwmgr, true);
1729 	} else {
1730 		smu7_avfs_control(hwmgr, true);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1737 {
1738 	int tmp_result, result = 0;
1739 
1740 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1741 			PHM_PlatformCaps_ThermalController))
1742 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1743 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1744 
1745 	tmp_result = smu7_disable_power_containment(hwmgr);
1746 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1747 			"Failed to disable power containment!", result = tmp_result);
1748 
1749 	tmp_result = smu7_disable_smc_cac(hwmgr);
1750 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1751 			"Failed to disable SMC CAC!", result = tmp_result);
1752 
1753 	tmp_result = smu7_disable_didt_config(hwmgr);
1754 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1755 			"Failed to disable DIDT!", result = tmp_result);
1756 
1757 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1758 			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1759 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1760 			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1761 
1762 	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1763 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1764 			"Failed to disable thermal auto throttle!", result = tmp_result);
1765 
1766 	tmp_result = smu7_avfs_control(hwmgr, false);
1767 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1768 			"Failed to disable AVFS!", result = tmp_result);
1769 
1770 	tmp_result = smu7_stop_dpm(hwmgr);
1771 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1772 			"Failed to stop DPM!", result = tmp_result);
1773 
1774 	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1775 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1776 			"Failed to disable deep sleep master switch!", result = tmp_result);
1777 
1778 	tmp_result = smu7_disable_ulv(hwmgr);
1779 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1780 			"Failed to disable ULV!", result = tmp_result);
1781 
1782 	tmp_result = smu7_clear_voting_clients(hwmgr);
1783 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1784 			"Failed to clear voting clients!", result = tmp_result);
1785 
1786 	tmp_result = smu7_reset_to_default(hwmgr);
1787 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1788 			"Failed to reset to default!", result = tmp_result);
1789 
1790 	tmp_result = smum_stop_smc(hwmgr);
1791 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1792 			"Failed to stop smc!", result = tmp_result);
1793 
1794 	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1795 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1796 			"Failed to force to switch arbf0!", result = tmp_result);
1797 
1798 	return result;
1799 }
1800 
1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1802 {
1803 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1804 	struct phm_ppt_v1_information *table_info =
1805 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1806 	struct amdgpu_device *adev = hwmgr->adev;
1807 	uint8_t tmp1, tmp2;
1808 	uint16_t tmp3 = 0;
1809 
1810 	data->dll_default_on = false;
1811 	data->mclk_dpm0_activity_target = 0xa;
1812 	data->vddc_vddgfx_delta = 300;
1813 	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1814 	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1815 	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1816 	data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1817 	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1818 	data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1819 	data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1820 	data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1821 	data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1822 	data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1823 
1824 	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1825 	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1826 	data->pcie_dpm_key_disabled =
1827 		!amdgpu_device_pcie_dynamic_switching_supported() ||
1828 		!(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1829 	/* need to set voltage control types before EVV patching */
1830 	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1831 	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1832 	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1833 	data->enable_tdc_limit_feature = true;
1834 	data->enable_pkg_pwr_tracking_feature = true;
1835 	data->force_pcie_gen = PP_PCIEGenInvalid;
1836 	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1837 	data->current_profile_setting.bupdate_sclk = 1;
1838 	data->current_profile_setting.sclk_up_hyst = 0;
1839 	data->current_profile_setting.sclk_down_hyst = 100;
1840 	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1841 	data->current_profile_setting.bupdate_mclk = 1;
1842 	if (hwmgr->chip_id >= CHIP_POLARIS10) {
1843 		if (adev->gmc.vram_width == 256) {
1844 			data->current_profile_setting.mclk_up_hyst = 10;
1845 			data->current_profile_setting.mclk_down_hyst = 60;
1846 			data->current_profile_setting.mclk_activity = 25;
1847 		} else if (adev->gmc.vram_width == 128) {
1848 			data->current_profile_setting.mclk_up_hyst = 5;
1849 			data->current_profile_setting.mclk_down_hyst = 16;
1850 			data->current_profile_setting.mclk_activity = 20;
1851 		} else if (adev->gmc.vram_width == 64) {
1852 			data->current_profile_setting.mclk_up_hyst = 3;
1853 			data->current_profile_setting.mclk_down_hyst = 16;
1854 			data->current_profile_setting.mclk_activity = 20;
1855 		}
1856 	} else {
1857 		data->current_profile_setting.mclk_up_hyst = 0;
1858 		data->current_profile_setting.mclk_down_hyst = 100;
1859 		data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1860 	}
1861 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1862 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1863 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1864 
1865 	if (hwmgr->chip_id  == CHIP_HAWAII) {
1866 		data->thermal_temp_setting.temperature_low = 94500;
1867 		data->thermal_temp_setting.temperature_high = 95000;
1868 		data->thermal_temp_setting.temperature_shutdown = 104000;
1869 	} else {
1870 		data->thermal_temp_setting.temperature_low = 99500;
1871 		data->thermal_temp_setting.temperature_high = 100000;
1872 		data->thermal_temp_setting.temperature_shutdown = 104000;
1873 	}
1874 
1875 	data->fast_watermark_threshold = 100;
1876 	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1877 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1878 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1879 	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1880 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1881 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1882 
1883 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1884 			PHM_PlatformCaps_ControlVDDGFX)) {
1885 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1886 			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1887 			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1888 		}
1889 	}
1890 
1891 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1892 			PHM_PlatformCaps_EnableMVDDControl)) {
1893 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1894 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1895 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1896 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1897 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1898 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1899 	}
1900 
1901 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1902 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1903 			PHM_PlatformCaps_ControlVDDGFX);
1904 
1905 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1906 			PHM_PlatformCaps_ControlVDDCI)) {
1907 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1908 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1909 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1910 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1911 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1912 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1913 	}
1914 
1915 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1916 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1917 				PHM_PlatformCaps_EnableMVDDControl);
1918 
1919 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1920 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1921 				PHM_PlatformCaps_ControlVDDCI);
1922 
1923 	data->vddc_phase_shed_control = 1;
1924 	if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1925 	    ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1926 	    ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1927 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1928 	    ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1929 		if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1930 			atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1931 							&tmp3);
1932 			tmp3 = (tmp3 >> 5) & 0x3;
1933 			data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1934 		}
1935 	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1936 		data->vddc_phase_shed_control = 1;
1937 	}
1938 
1939 	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1940 		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
1941 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1942 					PHM_PlatformCaps_ClockStretcher);
1943 
1944 	data->pcie_gen_performance.max = PP_PCIEGen1;
1945 	data->pcie_gen_performance.min = PP_PCIEGen3;
1946 	data->pcie_gen_power_saving.max = PP_PCIEGen1;
1947 	data->pcie_gen_power_saving.min = PP_PCIEGen3;
1948 	data->pcie_lane_performance.max = 0;
1949 	data->pcie_lane_performance.min = 16;
1950 	data->pcie_lane_power_saving.max = 0;
1951 	data->pcie_lane_power_saving.min = 16;
1952 
1953 
1954 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1955 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1956 			      PHM_PlatformCaps_UVDPowerGating);
1957 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1958 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1959 			      PHM_PlatformCaps_VCEPowerGating);
1960 
1961 	data->disable_edc_leakage_controller = true;
1962 	if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1963 	    ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1964 	    (adev->asic_type == CHIP_POLARIS12) ||
1965 	    (adev->asic_type == CHIP_VEGAM))
1966 		data->disable_edc_leakage_controller = false;
1967 
1968 	if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1969 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1970 			PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1971 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1972 			PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1973 	}
1974 
1975 	if ((adev->pdev->device == 0x699F) &&
1976 	    (adev->pdev->revision == 0xCF)) {
1977 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1978 				PHM_PlatformCaps_PowerContainment);
1979 		data->enable_tdc_limit_feature = false;
1980 		data->enable_pkg_pwr_tracking_feature = false;
1981 		data->disable_edc_leakage_controller = true;
1982 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1983 					PHM_PlatformCaps_ClockStretcher);
1984 	}
1985 }
1986 
1987 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1988 {
1989 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1990 	struct amdgpu_device *adev = hwmgr->adev;
1991 	uint32_t asicrev1, evv_revision, max = 0, min = 0;
1992 
1993 	atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
1994 			&evv_revision);
1995 
1996 	atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
1997 
1998 	if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1999 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
2000 		min = 1200;
2001 		max = 2500;
2002 	} else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
2003 		   ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
2004 		min = 900;
2005 		max= 2100;
2006 	} else if (hwmgr->chip_id == CHIP_POLARIS10) {
2007 		if (adev->pdev->subsystem_vendor == 0x106B) {
2008 			min = 1000;
2009 			max = 2300;
2010 		} else {
2011 			if (evv_revision == 0) {
2012 				min = 1000;
2013 				max = 2300;
2014 			} else if (evv_revision == 1) {
2015 				if (asicrev1 == 326) {
2016 					min = 1200;
2017 					max = 2500;
2018 					/* TODO: PATCH RO in VBIOS */
2019 				} else {
2020 					min = 1200;
2021 					max = 2000;
2022 				}
2023 			} else if (evv_revision == 2) {
2024 				min = 1200;
2025 				max = 2500;
2026 			}
2027 		}
2028 	} else {
2029 		min = 1100;
2030 		max = 2100;
2031 	}
2032 
2033 	data->ro_range_minimum = min;
2034 	data->ro_range_maximum = max;
2035 
2036 	/* TODO: PATCH RO in VBIOS here */
2037 
2038 	return 0;
2039 }
2040 
2041 /**
2042  * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
2043  *
2044  * @hwmgr:  the address of the powerplay hardware manager.
2045  * Return:   always 0
2046  */
2047 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
2048 {
2049 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2050 	uint16_t vv_id;
2051 	uint16_t vddc = 0;
2052 	uint16_t vddgfx = 0;
2053 	uint16_t i, j;
2054 	uint32_t sclk = 0;
2055 	struct phm_ppt_v1_information *table_info =
2056 			(struct phm_ppt_v1_information *)hwmgr->pptable;
2057 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2058 
2059 	if (hwmgr->chip_id == CHIP_POLARIS10 ||
2060 	    hwmgr->chip_id == CHIP_POLARIS11 ||
2061 	    hwmgr->chip_id == CHIP_POLARIS12)
2062 		smu7_calculate_ro_range(hwmgr);
2063 
2064 	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2065 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2066 
2067 		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2068 			if ((hwmgr->pp_table_version == PP_TABLE_V1)
2069 			    && !phm_get_sclk_for_voltage_evv(hwmgr,
2070 						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2071 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2072 							PHM_PlatformCaps_ClockStretcher)) {
2073 					sclk_table = table_info->vdd_dep_on_sclk;
2074 
2075 					for (j = 1; j < sclk_table->count; j++) {
2076 						if (sclk_table->entries[j].clk == sclk &&
2077 								sclk_table->entries[j].cks_enable == 0) {
2078 							sclk += 5000;
2079 							break;
2080 						}
2081 					}
2082 				}
2083 				if (0 == atomctrl_get_voltage_evv_on_sclk
2084 				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2085 				     vv_id, &vddgfx)) {
2086 					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2087 					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2088 
2089 					/* the voltage should not be zero nor equal to leakage ID */
2090 					if (vddgfx != 0 && vddgfx != vv_id) {
2091 						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2092 						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2093 						data->vddcgfx_leakage.count++;
2094 					}
2095 				} else {
2096 					pr_info("Error retrieving EVV voltage value!\n");
2097 				}
2098 			}
2099 		} else {
2100 			if ((hwmgr->pp_table_version == PP_TABLE_V0)
2101 				|| !phm_get_sclk_for_voltage_evv(hwmgr,
2102 					table_info->vddc_lookup_table, vv_id, &sclk)) {
2103 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2104 						PHM_PlatformCaps_ClockStretcher)) {
2105 					if (table_info == NULL)
2106 						return -EINVAL;
2107 					sclk_table = table_info->vdd_dep_on_sclk;
2108 
2109 					for (j = 1; j < sclk_table->count; j++) {
2110 						if (sclk_table->entries[j].clk == sclk &&
2111 								sclk_table->entries[j].cks_enable == 0) {
2112 							sclk += 5000;
2113 							break;
2114 						}
2115 					}
2116 				}
2117 
2118 				if (phm_get_voltage_evv_on_sclk(hwmgr,
2119 							VOLTAGE_TYPE_VDDC,
2120 							sclk, vv_id, &vddc) == 0) {
2121 					if (vddc >= 2000 || vddc == 0)
2122 						return -EINVAL;
2123 				} else {
2124 					pr_debug("failed to retrieving EVV voltage!\n");
2125 					continue;
2126 				}
2127 
2128 				/* the voltage should not be zero nor equal to leakage ID */
2129 				if (vddc != 0 && vddc != vv_id) {
2130 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2131 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2132 					data->vddc_leakage.count++;
2133 				}
2134 			}
2135 		}
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2143  *
2144  * @hwmgr:  the address of the powerplay hardware manager.
2145  * @voltage: pointer to changing voltage
2146  * @leakage_table: pointer to leakage table
2147  */
2148 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2149 		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2150 {
2151 	uint32_t index;
2152 
2153 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2154 	for (index = 0; index < leakage_table->count; index++) {
2155 		/* if this voltage matches a leakage voltage ID */
2156 		/* patch with actual leakage voltage */
2157 		if (leakage_table->leakage_id[index] == *voltage) {
2158 			*voltage = leakage_table->actual_voltage[index];
2159 			break;
2160 		}
2161 	}
2162 
2163 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2164 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2165 }
2166 
2167 /**
2168  * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2169  *
2170  * @hwmgr:  the address of the powerplay hardware manager.
2171  * @lookup_table: pointer to voltage lookup table
2172  * @leakage_table: pointer to leakage table
2173  * Return:     always 0
2174  */
2175 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2176 		phm_ppt_v1_voltage_lookup_table *lookup_table,
2177 		struct smu7_leakage_voltage *leakage_table)
2178 {
2179 	uint32_t i;
2180 
2181 	for (i = 0; i < lookup_table->count; i++)
2182 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2183 				&lookup_table->entries[i].us_vdd, leakage_table);
2184 
2185 	return 0;
2186 }
2187 
2188 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2189 		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2190 		uint16_t *vddc)
2191 {
2192 	struct phm_ppt_v1_information *table_info =
2193 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2194 	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2195 	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2196 			table_info->max_clock_voltage_on_dc.vddc;
2197 	return 0;
2198 }
2199 
2200 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2201 		struct pp_hwmgr *hwmgr)
2202 {
2203 	uint8_t entry_id;
2204 	uint8_t voltage_id;
2205 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2206 	struct phm_ppt_v1_information *table_info =
2207 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2208 
2209 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2210 			table_info->vdd_dep_on_sclk;
2211 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2212 			table_info->vdd_dep_on_mclk;
2213 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2214 			table_info->mm_dep_table;
2215 
2216 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2217 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2218 			voltage_id = sclk_table->entries[entry_id].vddInd;
2219 			sclk_table->entries[entry_id].vddgfx =
2220 				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2221 		}
2222 	} else {
2223 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2224 			voltage_id = sclk_table->entries[entry_id].vddInd;
2225 			sclk_table->entries[entry_id].vddc =
2226 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2227 		}
2228 	}
2229 
2230 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2231 		voltage_id = mclk_table->entries[entry_id].vddInd;
2232 		mclk_table->entries[entry_id].vddc =
2233 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2234 	}
2235 
2236 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2237 		voltage_id = mm_table->entries[entry_id].vddcInd;
2238 		mm_table->entries[entry_id].vddc =
2239 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2240 	}
2241 
2242 	return 0;
2243 
2244 }
2245 
2246 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2247 			phm_ppt_v1_voltage_lookup_table *look_up_table,
2248 			phm_ppt_v1_voltage_lookup_record *record)
2249 {
2250 	uint32_t i;
2251 
2252 	PP_ASSERT_WITH_CODE((NULL != look_up_table),
2253 		"Lookup Table empty.", return -EINVAL);
2254 	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2255 		"Lookup Table empty.", return -EINVAL);
2256 
2257 	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2258 	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2259 		"Lookup Table is full.", return -EINVAL);
2260 
2261 	/* This is to avoid entering duplicate calculated records. */
2262 	for (i = 0; i < look_up_table->count; i++) {
2263 		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2264 			if (look_up_table->entries[i].us_calculated == 1)
2265 				return 0;
2266 			break;
2267 		}
2268 	}
2269 
2270 	look_up_table->entries[i].us_calculated = 1;
2271 	look_up_table->entries[i].us_vdd = record->us_vdd;
2272 	look_up_table->entries[i].us_cac_low = record->us_cac_low;
2273 	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2274 	look_up_table->entries[i].us_cac_high = record->us_cac_high;
2275 	/* Only increment the count when we're appending, not replacing duplicate entry. */
2276 	if (i == look_up_table->count)
2277 		look_up_table->count++;
2278 
2279 	return 0;
2280 }
2281 
2282 
2283 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2284 {
2285 	uint8_t entry_id;
2286 	struct phm_ppt_v1_voltage_lookup_record v_record;
2287 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2288 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2289 
2290 	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2291 	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2292 
2293 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2294 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2295 			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2296 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2297 					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2298 			else
2299 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2300 					sclk_table->entries[entry_id].vdd_offset;
2301 
2302 			sclk_table->entries[entry_id].vddc =
2303 				v_record.us_cac_low = v_record.us_cac_mid =
2304 				v_record.us_cac_high = v_record.us_vdd;
2305 
2306 			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2307 		}
2308 
2309 		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2310 			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2311 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2312 					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2313 			else
2314 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2315 					mclk_table->entries[entry_id].vdd_offset;
2316 
2317 			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2318 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2319 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2320 		}
2321 	}
2322 	return 0;
2323 }
2324 
2325 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2326 {
2327 	uint8_t entry_id;
2328 	struct phm_ppt_v1_voltage_lookup_record v_record;
2329 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2330 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2331 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2332 
2333 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2334 		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2335 			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2336 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2337 					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2338 			else
2339 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2340 					mm_table->entries[entry_id].vddgfx_offset;
2341 
2342 			/* Add the calculated VDDGFX to the VDDGFX lookup table */
2343 			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2344 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2345 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2346 		}
2347 	}
2348 	return 0;
2349 }
2350 
2351 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2352 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2353 {
2354 	uint32_t table_size, i, j;
2355 	table_size = lookup_table->count;
2356 
2357 	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2358 		"Lookup table is empty", return -EINVAL);
2359 
2360 	/* Sorting voltages */
2361 	for (i = 0; i < table_size - 1; i++) {
2362 		for (j = i + 1; j > 0; j--) {
2363 			if (lookup_table->entries[j].us_vdd <
2364 					lookup_table->entries[j - 1].us_vdd) {
2365 				swap(lookup_table->entries[j - 1],
2366 				     lookup_table->entries[j]);
2367 			}
2368 		}
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2375 {
2376 	int result = 0;
2377 	int tmp_result;
2378 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2379 	struct phm_ppt_v1_information *table_info =
2380 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2381 
2382 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2383 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2384 			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2385 		if (tmp_result != 0)
2386 			result = tmp_result;
2387 
2388 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2389 			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2390 	} else {
2391 
2392 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2393 				table_info->vddc_lookup_table, &(data->vddc_leakage));
2394 		if (tmp_result)
2395 			result = tmp_result;
2396 
2397 		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2398 				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2399 		if (tmp_result)
2400 			result = tmp_result;
2401 	}
2402 
2403 	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2404 	if (tmp_result)
2405 		result = tmp_result;
2406 
2407 	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2408 	if (tmp_result)
2409 		result = tmp_result;
2410 
2411 	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2412 	if (tmp_result)
2413 		result = tmp_result;
2414 
2415 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2416 	if (tmp_result)
2417 		result = tmp_result;
2418 
2419 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2420 	if (tmp_result)
2421 		result = tmp_result;
2422 
2423 	return result;
2424 }
2425 
2426 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2427 {
2428 	struct phm_ppt_v1_information *table_info =
2429 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2430 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2431 						table_info->vdd_dep_on_sclk;
2432 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2433 						table_info->vddc_lookup_table;
2434 	uint16_t highest_voltage;
2435 	uint32_t i;
2436 
2437 	highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2438 
2439 	for (i = 0; i < lookup_table->count; i++) {
2440 		if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2441 		    lookup_table->entries[i].us_vdd > highest_voltage)
2442 			highest_voltage = lookup_table->entries[i].us_vdd;
2443 	}
2444 
2445 	return highest_voltage;
2446 }
2447 
2448 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2449 {
2450 	struct phm_ppt_v1_information *table_info =
2451 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2452 
2453 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2454 						table_info->vdd_dep_on_sclk;
2455 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2456 						table_info->vdd_dep_on_mclk;
2457 
2458 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2459 		"VDD dependency on SCLK table is missing.",
2460 		return -EINVAL);
2461 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2462 		"VDD dependency on SCLK table has to have is missing.",
2463 		return -EINVAL);
2464 
2465 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2466 		"VDD dependency on MCLK table is missing",
2467 		return -EINVAL);
2468 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2469 		"VDD dependency on MCLK table has to have is missing.",
2470 		return -EINVAL);
2471 
2472 	table_info->max_clock_voltage_on_ac.sclk =
2473 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2474 	table_info->max_clock_voltage_on_ac.mclk =
2475 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2476 	if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2477 		table_info->max_clock_voltage_on_ac.vddc =
2478 			smu7_find_highest_vddc(hwmgr);
2479 	else
2480 		table_info->max_clock_voltage_on_ac.vddc =
2481 			allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2482 	table_info->max_clock_voltage_on_ac.vddci =
2483 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2484 
2485 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2486 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2487 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2488 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2489 
2490 	return 0;
2491 }
2492 
2493 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2494 {
2495 	struct phm_ppt_v1_information *table_info =
2496 		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
2497 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2498 	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2499 	uint32_t i;
2500 	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2501 	struct amdgpu_device *adev = hwmgr->adev;
2502 
2503 	if (table_info != NULL) {
2504 		dep_mclk_table = table_info->vdd_dep_on_mclk;
2505 		lookup_table = table_info->vddc_lookup_table;
2506 	} else
2507 		return 0;
2508 
2509 	hw_revision = adev->pdev->revision;
2510 	sub_sys_id = adev->pdev->subsystem_device;
2511 	sub_vendor_id = adev->pdev->subsystem_vendor;
2512 
2513 	if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2514 	    ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2515 	     (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2516 	     (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2517 
2518 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2519 					      CGS_IND_REG__SMC,
2520 					      PWR_CKS_CNTL,
2521 					      CKS_STRETCH_AMOUNT,
2522 					      0x3);
2523 
2524 		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2525 			return 0;
2526 
2527 		for (i = 0; i < lookup_table->count; i++) {
2528 			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2529 				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2530 				return 0;
2531 			}
2532 		}
2533 	}
2534 	return 0;
2535 }
2536 
2537 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2538 {
2539 	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2540 	uint32_t temp_reg;
2541 	struct phm_ppt_v1_information *table_info =
2542 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2543 
2544 
2545 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2546 		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2547 		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2548 		case 0:
2549 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2550 			break;
2551 		case 1:
2552 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2553 			break;
2554 		case 2:
2555 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2556 			break;
2557 		case 3:
2558 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2559 			break;
2560 		case 4:
2561 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2562 			break;
2563 		default:
2564 			break;
2565 		}
2566 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2567 	}
2568 
2569 	if (table_info == NULL)
2570 		return 0;
2571 
2572 	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2573 		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2574 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2575 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2576 
2577 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2578 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2579 
2580 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2581 
2582 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2583 
2584 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2585 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2586 
2587 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2588 
2589 		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2590 								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2591 
2592 		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2593 		table_info->cac_dtp_table->usOperatingTempStep = 1;
2594 		table_info->cac_dtp_table->usOperatingTempHyst = 1;
2595 
2596 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2597 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2598 
2599 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2600 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2601 
2602 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2603 			       table_info->cac_dtp_table->usOperatingTempMinLimit;
2604 
2605 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2606 			       table_info->cac_dtp_table->usOperatingTempMaxLimit;
2607 
2608 		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2609 			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2610 
2611 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2612 			       table_info->cac_dtp_table->usOperatingTempStep;
2613 
2614 		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2615 			       table_info->cac_dtp_table->usTargetOperatingTemp;
2616 		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2617 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2618 					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 /**
2625  * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2626  *
2627  * @hwmgr:  the address of the powerplay hardware manager.
2628  * @voltage: pointer to changing voltage
2629  * @leakage_table: pointer to leakage table
2630  */
2631 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2632 		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2633 {
2634 	uint32_t index;
2635 
2636 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2637 	for (index = 0; index < leakage_table->count; index++) {
2638 		/* if this voltage matches a leakage voltage ID */
2639 		/* patch with actual leakage voltage */
2640 		if (leakage_table->leakage_id[index] == *voltage) {
2641 			*voltage = leakage_table->actual_voltage[index];
2642 			break;
2643 		}
2644 	}
2645 
2646 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2647 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2648 }
2649 
2650 
2651 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2652 			      struct phm_clock_voltage_dependency_table *tab)
2653 {
2654 	uint16_t i;
2655 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2656 
2657 	if (tab)
2658 		for (i = 0; i < tab->count; i++)
2659 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2660 						&data->vddc_leakage);
2661 
2662 	return 0;
2663 }
2664 
2665 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2666 			       struct phm_clock_voltage_dependency_table *tab)
2667 {
2668 	uint16_t i;
2669 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2670 
2671 	if (tab)
2672 		for (i = 0; i < tab->count; i++)
2673 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2674 							&data->vddci_leakage);
2675 
2676 	return 0;
2677 }
2678 
2679 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2680 				  struct phm_vce_clock_voltage_dependency_table *tab)
2681 {
2682 	uint16_t i;
2683 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2684 
2685 	if (tab)
2686 		for (i = 0; i < tab->count; i++)
2687 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2688 							&data->vddc_leakage);
2689 
2690 	return 0;
2691 }
2692 
2693 
2694 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2695 				  struct phm_uvd_clock_voltage_dependency_table *tab)
2696 {
2697 	uint16_t i;
2698 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2699 
2700 	if (tab)
2701 		for (i = 0; i < tab->count; i++)
2702 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2703 							&data->vddc_leakage);
2704 
2705 	return 0;
2706 }
2707 
2708 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2709 					 struct phm_phase_shedding_limits_table *tab)
2710 {
2711 	uint16_t i;
2712 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2713 
2714 	if (tab)
2715 		for (i = 0; i < tab->count; i++)
2716 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2717 							&data->vddc_leakage);
2718 
2719 	return 0;
2720 }
2721 
2722 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2723 				   struct phm_samu_clock_voltage_dependency_table *tab)
2724 {
2725 	uint16_t i;
2726 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2727 
2728 	if (tab)
2729 		for (i = 0; i < tab->count; i++)
2730 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2731 							&data->vddc_leakage);
2732 
2733 	return 0;
2734 }
2735 
2736 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2737 				  struct phm_acp_clock_voltage_dependency_table *tab)
2738 {
2739 	uint16_t i;
2740 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2741 
2742 	if (tab)
2743 		for (i = 0; i < tab->count; i++)
2744 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2745 					&data->vddc_leakage);
2746 
2747 	return 0;
2748 }
2749 
2750 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2751 				  struct phm_clock_and_voltage_limits *tab)
2752 {
2753 	uint32_t vddc, vddci;
2754 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2755 
2756 	if (tab) {
2757 		vddc = tab->vddc;
2758 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2759 						   &data->vddc_leakage);
2760 		tab->vddc = vddc;
2761 		vddci = tab->vddci;
2762 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2763 						   &data->vddci_leakage);
2764 		tab->vddci = vddci;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2771 {
2772 	uint32_t i;
2773 	uint32_t vddc;
2774 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2775 
2776 	if (tab) {
2777 		for (i = 0; i < tab->count; i++) {
2778 			vddc = (uint32_t)(tab->entries[i].Vddc);
2779 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2780 			tab->entries[i].Vddc = (uint16_t)vddc;
2781 		}
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2788 {
2789 	int tmp;
2790 
2791 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2792 	if (tmp)
2793 		return -EINVAL;
2794 
2795 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2796 	if (tmp)
2797 		return -EINVAL;
2798 
2799 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2800 	if (tmp)
2801 		return -EINVAL;
2802 
2803 	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2804 	if (tmp)
2805 		return -EINVAL;
2806 
2807 	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2808 	if (tmp)
2809 		return -EINVAL;
2810 
2811 	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2812 	if (tmp)
2813 		return -EINVAL;
2814 
2815 	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2816 	if (tmp)
2817 		return -EINVAL;
2818 
2819 	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2820 	if (tmp)
2821 		return -EINVAL;
2822 
2823 	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2824 	if (tmp)
2825 		return -EINVAL;
2826 
2827 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2828 	if (tmp)
2829 		return -EINVAL;
2830 
2831 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2832 	if (tmp)
2833 		return -EINVAL;
2834 
2835 	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2836 	if (tmp)
2837 		return -EINVAL;
2838 
2839 	return 0;
2840 }
2841 
2842 
2843 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2844 {
2845 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2846 
2847 	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2848 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2849 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2850 
2851 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2852 		"VDDC dependency on SCLK table is missing. This table is mandatory",
2853 		return -EINVAL);
2854 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2855 		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2856 		return -EINVAL);
2857 
2858 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2859 		"VDDC dependency on MCLK table is missing. This table is mandatory",
2860 		return -EINVAL);
2861 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2862 		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
2863 		return -EINVAL);
2864 
2865 	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2866 	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2867 
2868 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2869 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2870 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2871 		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2872 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2873 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2874 
2875 	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2876 		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2877 		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2878 	}
2879 
2880 	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2881 		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2882 
2883 	return 0;
2884 }
2885 
2886 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2887 {
2888 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2889 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2890 	kfree(hwmgr->backend);
2891 	hwmgr->backend = NULL;
2892 
2893 	return 0;
2894 }
2895 
2896 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2897 {
2898 	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2899 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2900 	int i;
2901 
2902 	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2903 		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2904 			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2905 			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2906 								virtual_voltage_id,
2907 								efuse_voltage_id) == 0) {
2908 				if (vddc != 0 && vddc != virtual_voltage_id) {
2909 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2910 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2911 					data->vddc_leakage.count++;
2912 				}
2913 				if (vddci != 0 && vddci != virtual_voltage_id) {
2914 					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2915 					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2916 					data->vddci_leakage.count++;
2917 				}
2918 			}
2919 		}
2920 	}
2921 	return 0;
2922 }
2923 
2924 #define LEAKAGE_ID_MSB			463
2925 #define LEAKAGE_ID_LSB			454
2926 
2927 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2928 {
2929 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2930 	uint32_t efuse;
2931 	uint16_t offset;
2932 	int ret = 0;
2933 
2934 	if (data->disable_edc_leakage_controller)
2935 		return 0;
2936 
2937 	ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2938 							 &data->edc_hilo_leakage_offset_from_vbios);
2939 	if (ret)
2940 		return ret;
2941 
2942 	if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2943 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2944 		atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2945 		if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2946 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2947 		else
2948 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2949 
2950 		ret = atomctrl_get_edc_leakage_table(hwmgr,
2951 						     &data->edc_leakage_table,
2952 						     offset);
2953 		if (ret)
2954 			return ret;
2955 	}
2956 
2957 	return ret;
2958 }
2959 
2960 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2961 {
2962 	struct smu7_hwmgr *data;
2963 	int result = 0;
2964 
2965 	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2966 	if (data == NULL)
2967 		return -ENOMEM;
2968 
2969 	hwmgr->backend = data;
2970 	smu7_patch_voltage_workaround(hwmgr);
2971 	smu7_init_dpm_defaults(hwmgr);
2972 
2973 	/* Get leakage voltage based on leakage ID. */
2974 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2975 			PHM_PlatformCaps_EVV)) {
2976 		result = smu7_get_evv_voltages(hwmgr);
2977 		if (result) {
2978 			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
2979 			return -EINVAL;
2980 		}
2981 	} else {
2982 		smu7_get_elb_voltages(hwmgr);
2983 	}
2984 
2985 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
2986 		smu7_complete_dependency_tables(hwmgr);
2987 		smu7_set_private_data_based_on_pptable_v1(hwmgr);
2988 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2989 		smu7_patch_dependency_tables_with_leakage(hwmgr);
2990 		smu7_set_private_data_based_on_pptable_v0(hwmgr);
2991 	}
2992 
2993 	/* Initalize Dynamic State Adjustment Rule Settings */
2994 	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2995 
2996 	if (0 == result) {
2997 		struct amdgpu_device *adev = hwmgr->adev;
2998 
2999 		data->is_tlu_enabled = false;
3000 
3001 		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3002 							SMU7_MAX_HARDWARE_POWERLEVELS;
3003 		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3004 		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3005 
3006 		data->pcie_gen_cap = adev->pm.pcie_gen_mask;
3007 		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3008 			data->pcie_spc_cap = 20;
3009 		else
3010 			data->pcie_spc_cap = 16;
3011 		data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
3012 
3013 		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3014 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3015 		hwmgr->platform_descriptor.clockStep.engineClock = 500;
3016 		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3017 		smu7_thermal_parameter_init(hwmgr);
3018 	} else {
3019 		/* Ignore return value in here, we are cleaning up a mess. */
3020 		smu7_hwmgr_backend_fini(hwmgr);
3021 	}
3022 
3023 	result = smu7_update_edc_leakage_table(hwmgr);
3024 	if (result)
3025 		return result;
3026 
3027 	return 0;
3028 }
3029 
3030 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
3031 {
3032 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3033 	uint32_t level, tmp;
3034 
3035 	if (!data->pcie_dpm_key_disabled) {
3036 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3037 			level = 0;
3038 			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3039 			while (tmp >>= 1)
3040 				level++;
3041 
3042 			if (level)
3043 				smum_send_msg_to_smc_with_parameter(hwmgr,
3044 						PPSMC_MSG_PCIeDPM_ForceLevel, level,
3045 						NULL);
3046 		}
3047 	}
3048 
3049 	if (!data->sclk_dpm_key_disabled) {
3050 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3051 			level = 0;
3052 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3053 			while (tmp >>= 1)
3054 				level++;
3055 
3056 			if (level)
3057 				smum_send_msg_to_smc_with_parameter(hwmgr,
3058 						PPSMC_MSG_SCLKDPM_SetEnabledMask,
3059 						(1 << level),
3060 						NULL);
3061 		}
3062 	}
3063 
3064 	if (!data->mclk_dpm_key_disabled) {
3065 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3066 			level = 0;
3067 			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3068 			while (tmp >>= 1)
3069 				level++;
3070 
3071 			if (level)
3072 				smum_send_msg_to_smc_with_parameter(hwmgr,
3073 						PPSMC_MSG_MCLKDPM_SetEnabledMask,
3074 						(1 << level),
3075 						NULL);
3076 		}
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3083 {
3084 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3085 
3086 	if (hwmgr->pp_table_version == PP_TABLE_V1)
3087 		phm_apply_dal_min_voltage_request(hwmgr);
3088 /* TO DO  for v0 iceland and Ci*/
3089 
3090 	if (!data->sclk_dpm_key_disabled) {
3091 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3092 			smum_send_msg_to_smc_with_parameter(hwmgr,
3093 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
3094 					data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3095 					NULL);
3096 	}
3097 
3098 	if (!data->mclk_dpm_key_disabled) {
3099 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3100 			smum_send_msg_to_smc_with_parameter(hwmgr,
3101 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
3102 					data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3103 					NULL);
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3110 {
3111 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3112 
3113 	if (!smum_is_dpm_running(hwmgr))
3114 		return -EINVAL;
3115 
3116 	if (!data->pcie_dpm_key_disabled) {
3117 		smum_send_msg_to_smc(hwmgr,
3118 				PPSMC_MSG_PCIeDPM_UnForceLevel,
3119 				NULL);
3120 	}
3121 
3122 	return smu7_upload_dpm_level_enable_mask(hwmgr);
3123 }
3124 
3125 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3126 {
3127 	struct smu7_hwmgr *data =
3128 			(struct smu7_hwmgr *)(hwmgr->backend);
3129 	uint32_t level;
3130 
3131 	if (!data->sclk_dpm_key_disabled)
3132 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3133 			level = phm_get_lowest_enabled_level(hwmgr,
3134 							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3135 			smum_send_msg_to_smc_with_parameter(hwmgr,
3136 							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
3137 							    (1 << level),
3138 							    NULL);
3139 
3140 	}
3141 
3142 	if (!data->mclk_dpm_key_disabled) {
3143 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3144 			level = phm_get_lowest_enabled_level(hwmgr,
3145 							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3146 			smum_send_msg_to_smc_with_parameter(hwmgr,
3147 							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
3148 							    (1 << level),
3149 							    NULL);
3150 		}
3151 	}
3152 
3153 	if (!data->pcie_dpm_key_disabled) {
3154 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3155 			level = phm_get_lowest_enabled_level(hwmgr,
3156 							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3157 			smum_send_msg_to_smc_with_parameter(hwmgr,
3158 							    PPSMC_MSG_PCIeDPM_ForceLevel,
3159 							    (level),
3160 							    NULL);
3161 		}
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3168 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3169 {
3170 	uint32_t percentage;
3171 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3172 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3173 	int32_t tmp_mclk;
3174 	int32_t tmp_sclk;
3175 	int32_t count;
3176 
3177 	if (golden_dpm_table->mclk_table.count < 1)
3178 		return -EINVAL;
3179 
3180 	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3181 			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3182 
3183 	if (golden_dpm_table->mclk_table.count == 1) {
3184 		percentage = 70;
3185 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3186 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3187 	} else {
3188 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3189 		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
3190 	}
3191 
3192 	tmp_sclk = tmp_mclk * percentage / 100;
3193 
3194 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3195 		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3196 			count >= 0; count--) {
3197 			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3198 				*sclk_mask = count;
3199 				break;
3200 			}
3201 		}
3202 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3203 			*sclk_mask = 0;
3204 
3205 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3206 			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3207 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3208 		struct phm_ppt_v1_information *table_info =
3209 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
3210 
3211 		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3212 			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3213 				*sclk_mask = count;
3214 				break;
3215 			}
3216 		}
3217 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3218 			*sclk_mask = 0;
3219 
3220 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3221 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3222 	}
3223 
3224 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3225 		*mclk_mask = 0;
3226 	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3227 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3228 
3229 	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3230 
3231 	return 0;
3232 }
3233 
3234 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3235 				enum amd_dpm_forced_level level)
3236 {
3237 	int ret = 0;
3238 	uint32_t sclk_mask = 0;
3239 	uint32_t mclk_mask = 0;
3240 	uint32_t pcie_mask = 0;
3241 
3242 	switch (level) {
3243 	case AMD_DPM_FORCED_LEVEL_HIGH:
3244 		ret = smu7_force_dpm_highest(hwmgr);
3245 		break;
3246 	case AMD_DPM_FORCED_LEVEL_LOW:
3247 		ret = smu7_force_dpm_lowest(hwmgr);
3248 		break;
3249 	case AMD_DPM_FORCED_LEVEL_AUTO:
3250 		ret = smu7_unforce_dpm_levels(hwmgr);
3251 		break;
3252 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3253 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3254 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3255 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3256 		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3257 		if (ret)
3258 			return ret;
3259 		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3260 		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3261 		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3262 		break;
3263 	case AMD_DPM_FORCED_LEVEL_MANUAL:
3264 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3265 	default:
3266 		break;
3267 	}
3268 
3269 	if (!ret) {
3270 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3271 			smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3272 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3273 			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3274 	}
3275 	return ret;
3276 }
3277 
3278 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3279 {
3280 	return sizeof(struct smu7_power_state);
3281 }
3282 
3283 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3284 				 uint32_t vblank_time_us)
3285 {
3286 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3287 	uint32_t switch_limit_us;
3288 
3289 	switch (hwmgr->chip_id) {
3290 	case CHIP_POLARIS10:
3291 	case CHIP_POLARIS11:
3292 	case CHIP_POLARIS12:
3293 		if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3294 			switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3295 		else
3296 			switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3297 		break;
3298 	case CHIP_VEGAM:
3299 		switch_limit_us = 30;
3300 		break;
3301 	default:
3302 		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3303 		break;
3304 	}
3305 
3306 	if (vblank_time_us < switch_limit_us)
3307 		return true;
3308 	else
3309 		return false;
3310 }
3311 
3312 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3313 				struct pp_power_state *request_ps,
3314 			const struct pp_power_state *current_ps)
3315 {
3316 	struct amdgpu_device *adev = hwmgr->adev;
3317 	struct smu7_power_state *smu7_ps =
3318 				cast_phw_smu7_power_state(&request_ps->hardware);
3319 	uint32_t sclk;
3320 	uint32_t mclk;
3321 	struct PP_Clocks minimum_clocks = {0};
3322 	bool disable_mclk_switching;
3323 	bool disable_mclk_switching_for_frame_lock;
3324 	bool disable_mclk_switching_for_display;
3325 	const struct phm_clock_and_voltage_limits *max_limits;
3326 	uint32_t i;
3327 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3328 	struct phm_ppt_v1_information *table_info =
3329 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3330 	int32_t count;
3331 	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3332 	uint32_t latency;
3333 	bool latency_allowed = false;
3334 
3335 	data->battery_state = (PP_StateUILabel_Battery ==
3336 			request_ps->classification.ui_label);
3337 	data->mclk_ignore_signal = false;
3338 
3339 	max_limits = adev->pm.ac_power ?
3340 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3341 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3342 
3343 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3344 	if (!adev->pm.ac_power) {
3345 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3346 			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3347 				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3348 			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3349 				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3350 		}
3351 	}
3352 
3353 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3354 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3355 
3356 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3357 			PHM_PlatformCaps_StablePState)) {
3358 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3359 		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3360 
3361 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3362 				count >= 0; count--) {
3363 			if (stable_pstate_sclk >=
3364 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3365 				stable_pstate_sclk =
3366 						table_info->vdd_dep_on_sclk->entries[count].clk;
3367 				break;
3368 			}
3369 		}
3370 
3371 		if (count < 0)
3372 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3373 
3374 		stable_pstate_mclk = max_limits->mclk;
3375 
3376 		minimum_clocks.engineClock = stable_pstate_sclk;
3377 		minimum_clocks.memoryClock = stable_pstate_mclk;
3378 	}
3379 
3380 	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3381 				    hwmgr->platform_descriptor.platformCaps,
3382 				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3383 
3384 	disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3385 						!hwmgr->display_config->multi_monitor_in_sync) ||
3386 						(hwmgr->display_config->num_display &&
3387 						smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3388 
3389 	disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3390 					 disable_mclk_switching_for_display;
3391 
3392 	if (hwmgr->display_config->num_display == 0) {
3393 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3394 			data->mclk_ignore_signal = true;
3395 		else
3396 			disable_mclk_switching = false;
3397 	}
3398 
3399 	sclk = smu7_ps->performance_levels[0].engine_clock;
3400 	mclk = smu7_ps->performance_levels[0].memory_clock;
3401 
3402 	if (disable_mclk_switching &&
3403 	    (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3404 	    hwmgr->chip_id <= CHIP_VEGAM)))
3405 		mclk = smu7_ps->performance_levels
3406 		[smu7_ps->performance_level_count - 1].memory_clock;
3407 
3408 	if (sclk < minimum_clocks.engineClock)
3409 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3410 				max_limits->sclk : minimum_clocks.engineClock;
3411 
3412 	if (mclk < minimum_clocks.memoryClock)
3413 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3414 				max_limits->mclk : minimum_clocks.memoryClock;
3415 
3416 	smu7_ps->performance_levels[0].engine_clock = sclk;
3417 	smu7_ps->performance_levels[0].memory_clock = mclk;
3418 
3419 	smu7_ps->performance_levels[1].engine_clock =
3420 		(smu7_ps->performance_levels[1].engine_clock >=
3421 				smu7_ps->performance_levels[0].engine_clock) ?
3422 						smu7_ps->performance_levels[1].engine_clock :
3423 						smu7_ps->performance_levels[0].engine_clock;
3424 
3425 	if (disable_mclk_switching) {
3426 		if (mclk < smu7_ps->performance_levels[1].memory_clock)
3427 			mclk = smu7_ps->performance_levels[1].memory_clock;
3428 
3429 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3430 			if (disable_mclk_switching_for_display) {
3431 				/* Find the lowest MCLK frequency that is within
3432 				 * the tolerable latency defined in DAL
3433 				 */
3434 				latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3435 				for (i = 0; i < data->mclk_latency_table.count; i++) {
3436 					if (data->mclk_latency_table.entries[i].latency <= latency) {
3437 						latency_allowed = true;
3438 
3439 						if ((data->mclk_latency_table.entries[i].frequency >=
3440 								smu7_ps->performance_levels[0].memory_clock) &&
3441 						    (data->mclk_latency_table.entries[i].frequency <=
3442 								smu7_ps->performance_levels[1].memory_clock)) {
3443 							mclk = data->mclk_latency_table.entries[i].frequency;
3444 							break;
3445 						}
3446 					}
3447 				}
3448 				if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3449 					data->mclk_ignore_signal = true;
3450 				} else {
3451 					data->mclk_ignore_signal = false;
3452 				}
3453 			}
3454 
3455 			if (disable_mclk_switching_for_frame_lock)
3456 				mclk = smu7_ps->performance_levels[1].memory_clock;
3457 		}
3458 
3459 		smu7_ps->performance_levels[0].memory_clock = mclk;
3460 
3461 		if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3462 		      hwmgr->chip_id <= CHIP_VEGAM))
3463 			smu7_ps->performance_levels[1].memory_clock = mclk;
3464 	} else {
3465 		if (smu7_ps->performance_levels[1].memory_clock <
3466 				smu7_ps->performance_levels[0].memory_clock)
3467 			smu7_ps->performance_levels[1].memory_clock =
3468 					smu7_ps->performance_levels[0].memory_clock;
3469 	}
3470 
3471 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3472 			PHM_PlatformCaps_StablePState)) {
3473 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3474 			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3475 			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3476 			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3477 			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3478 		}
3479 	}
3480 	return 0;
3481 }
3482 
3483 
3484 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3485 {
3486 	struct pp_power_state  *ps;
3487 	struct smu7_power_state  *smu7_ps;
3488 
3489 	if (hwmgr == NULL)
3490 		return -EINVAL;
3491 
3492 	ps = hwmgr->request_ps;
3493 
3494 	if (ps == NULL)
3495 		return -EINVAL;
3496 
3497 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3498 
3499 	if (low)
3500 		return smu7_ps->performance_levels[0].memory_clock;
3501 	else
3502 		return smu7_ps->performance_levels
3503 				[smu7_ps->performance_level_count-1].memory_clock;
3504 }
3505 
3506 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3507 {
3508 	struct pp_power_state  *ps;
3509 	struct smu7_power_state  *smu7_ps;
3510 
3511 	if (hwmgr == NULL)
3512 		return -EINVAL;
3513 
3514 	ps = hwmgr->request_ps;
3515 
3516 	if (ps == NULL)
3517 		return -EINVAL;
3518 
3519 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3520 
3521 	if (low)
3522 		return smu7_ps->performance_levels[0].engine_clock;
3523 	else
3524 		return smu7_ps->performance_levels
3525 				[smu7_ps->performance_level_count-1].engine_clock;
3526 }
3527 
3528 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3529 					struct pp_hw_power_state *hw_ps)
3530 {
3531 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3532 	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3533 	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3534 	uint16_t size;
3535 	uint8_t frev, crev;
3536 	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3537 
3538 	/* First retrieve the Boot clocks and VDDC from the firmware info table.
3539 	 * We assume here that fw_info is unchanged if this call fails.
3540 	 */
3541 	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3542 			&size, &frev, &crev);
3543 	if (!fw_info)
3544 		/* During a test, there is no firmware info table. */
3545 		return 0;
3546 
3547 	/* Patch the state. */
3548 	data->vbios_boot_state.sclk_bootup_value =
3549 			le32_to_cpu(fw_info->ulDefaultEngineClock);
3550 	data->vbios_boot_state.mclk_bootup_value =
3551 			le32_to_cpu(fw_info->ulDefaultMemoryClock);
3552 	data->vbios_boot_state.mvdd_bootup_value =
3553 			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3554 	data->vbios_boot_state.vddc_bootup_value =
3555 			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3556 	data->vbios_boot_state.vddci_bootup_value =
3557 			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3558 	data->vbios_boot_state.pcie_gen_bootup_value =
3559 			smu7_get_current_pcie_speed(hwmgr);
3560 
3561 	data->vbios_boot_state.pcie_lane_bootup_value =
3562 			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3563 
3564 	/* set boot power state */
3565 	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3566 	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3567 	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3568 	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3569 
3570 	return 0;
3571 }
3572 
3573 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3574 {
3575 	int result;
3576 	unsigned long ret = 0;
3577 
3578 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3579 		result = pp_tables_get_num_of_entries(hwmgr, &ret);
3580 		return result ? 0 : ret;
3581 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3582 		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3583 		return result;
3584 	}
3585 	return 0;
3586 }
3587 
3588 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3589 		void *state, struct pp_power_state *power_state,
3590 		void *pp_table, uint32_t classification_flag)
3591 {
3592 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3593 	struct smu7_power_state  *smu7_power_state =
3594 			(struct smu7_power_state *)(&(power_state->hardware));
3595 	struct smu7_performance_level *performance_level;
3596 	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3597 	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3598 			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3599 	PPTable_Generic_SubTable_Header *sclk_dep_table =
3600 			(PPTable_Generic_SubTable_Header *)
3601 			(((unsigned long)powerplay_table) +
3602 				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3603 
3604 	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3605 			(ATOM_Tonga_MCLK_Dependency_Table *)
3606 			(((unsigned long)powerplay_table) +
3607 				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3608 
3609 	/* The following fields are not initialized here: id orderedList allStatesList */
3610 	power_state->classification.ui_label =
3611 			(le16_to_cpu(state_entry->usClassification) &
3612 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3613 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3614 	power_state->classification.flags = classification_flag;
3615 	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3616 
3617 	power_state->classification.temporary_state = false;
3618 	power_state->classification.to_be_deleted = false;
3619 
3620 	power_state->validation.disallowOnDC =
3621 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3622 					ATOM_Tonga_DISALLOW_ON_DC));
3623 
3624 	power_state->pcie.lanes = 0;
3625 
3626 	power_state->display.disableFrameModulation = false;
3627 	power_state->display.limitRefreshrate = false;
3628 	power_state->display.enableVariBright =
3629 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3630 					ATOM_Tonga_ENABLE_VARIBRIGHT));
3631 
3632 	power_state->validation.supportedPowerLevels = 0;
3633 	power_state->uvd_clocks.VCLK = 0;
3634 	power_state->uvd_clocks.DCLK = 0;
3635 	power_state->temperatures.min = 0;
3636 	power_state->temperatures.max = 0;
3637 
3638 	performance_level = &(smu7_power_state->performance_levels
3639 			[smu7_power_state->performance_level_count++]);
3640 
3641 	PP_ASSERT_WITH_CODE(
3642 			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3643 			"Performance levels exceeds SMC limit!",
3644 			return -EINVAL);
3645 
3646 	PP_ASSERT_WITH_CODE(
3647 			(smu7_power_state->performance_level_count <
3648 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3649 			"Performance levels exceeds Driver limit!",
3650 			return -EINVAL);
3651 
3652 	/* Performance levels are arranged from low to high. */
3653 	performance_level->memory_clock = mclk_dep_table->entries
3654 			[state_entry->ucMemoryClockIndexLow].ulMclk;
3655 	if (sclk_dep_table->ucRevId == 0)
3656 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3657 			[state_entry->ucEngineClockIndexLow].ulSclk;
3658 	else if (sclk_dep_table->ucRevId == 1)
3659 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3660 			[state_entry->ucEngineClockIndexLow].ulSclk;
3661 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3662 			state_entry->ucPCIEGenLow);
3663 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3664 			state_entry->ucPCIELaneLow);
3665 
3666 	performance_level = &(smu7_power_state->performance_levels
3667 			[smu7_power_state->performance_level_count++]);
3668 	performance_level->memory_clock = mclk_dep_table->entries
3669 			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3670 
3671 	if (sclk_dep_table->ucRevId == 0)
3672 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3673 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3674 	else if (sclk_dep_table->ucRevId == 1)
3675 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3676 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3677 
3678 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3679 			state_entry->ucPCIEGenHigh);
3680 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3681 			state_entry->ucPCIELaneHigh);
3682 
3683 	return 0;
3684 }
3685 
3686 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3687 		unsigned long entry_index, struct pp_power_state *state)
3688 {
3689 	int result;
3690 	struct smu7_power_state *ps;
3691 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3692 	struct phm_ppt_v1_information *table_info =
3693 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3694 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3695 			table_info->vdd_dep_on_mclk;
3696 
3697 	state->hardware.magic = PHM_VIslands_Magic;
3698 
3699 	ps = (struct smu7_power_state *)(&state->hardware);
3700 
3701 	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3702 			smu7_get_pp_table_entry_callback_func_v1);
3703 
3704 	/* This is the earliest time we have all the dependency table and the VBIOS boot state
3705 	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3706 	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3707 	 */
3708 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3709 		if (dep_mclk_table->entries[0].clk !=
3710 				data->vbios_boot_state.mclk_bootup_value)
3711 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3712 					"does not match VBIOS boot MCLK level");
3713 		if (dep_mclk_table->entries[0].vddci !=
3714 				data->vbios_boot_state.vddci_bootup_value)
3715 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3716 					"does not match VBIOS boot VDDCI level");
3717 	}
3718 
3719 	/* set DC compatible flag if this state supports DC */
3720 	if (!state->validation.disallowOnDC)
3721 		ps->dc_compatible = true;
3722 
3723 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3724 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3725 
3726 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3727 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3728 
3729 	if (!result) {
3730 		uint32_t i;
3731 
3732 		switch (state->classification.ui_label) {
3733 		case PP_StateUILabel_Performance:
3734 			data->use_pcie_performance_levels = true;
3735 			for (i = 0; i < ps->performance_level_count; i++) {
3736 				if (data->pcie_gen_performance.max <
3737 						ps->performance_levels[i].pcie_gen)
3738 					data->pcie_gen_performance.max =
3739 							ps->performance_levels[i].pcie_gen;
3740 
3741 				if (data->pcie_gen_performance.min >
3742 						ps->performance_levels[i].pcie_gen)
3743 					data->pcie_gen_performance.min =
3744 							ps->performance_levels[i].pcie_gen;
3745 
3746 				if (data->pcie_lane_performance.max <
3747 						ps->performance_levels[i].pcie_lane)
3748 					data->pcie_lane_performance.max =
3749 							ps->performance_levels[i].pcie_lane;
3750 				if (data->pcie_lane_performance.min >
3751 						ps->performance_levels[i].pcie_lane)
3752 					data->pcie_lane_performance.min =
3753 							ps->performance_levels[i].pcie_lane;
3754 			}
3755 			break;
3756 		case PP_StateUILabel_Battery:
3757 			data->use_pcie_power_saving_levels = true;
3758 
3759 			for (i = 0; i < ps->performance_level_count; i++) {
3760 				if (data->pcie_gen_power_saving.max <
3761 						ps->performance_levels[i].pcie_gen)
3762 					data->pcie_gen_power_saving.max =
3763 							ps->performance_levels[i].pcie_gen;
3764 
3765 				if (data->pcie_gen_power_saving.min >
3766 						ps->performance_levels[i].pcie_gen)
3767 					data->pcie_gen_power_saving.min =
3768 							ps->performance_levels[i].pcie_gen;
3769 
3770 				if (data->pcie_lane_power_saving.max <
3771 						ps->performance_levels[i].pcie_lane)
3772 					data->pcie_lane_power_saving.max =
3773 							ps->performance_levels[i].pcie_lane;
3774 
3775 				if (data->pcie_lane_power_saving.min >
3776 						ps->performance_levels[i].pcie_lane)
3777 					data->pcie_lane_power_saving.min =
3778 							ps->performance_levels[i].pcie_lane;
3779 			}
3780 			break;
3781 		default:
3782 			break;
3783 		}
3784 	}
3785 	return 0;
3786 }
3787 
3788 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3789 					struct pp_hw_power_state *power_state,
3790 					unsigned int index, const void *clock_info)
3791 {
3792 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3793 	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
3794 	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3795 	struct smu7_performance_level *performance_level;
3796 	uint32_t engine_clock, memory_clock;
3797 	uint16_t pcie_gen_from_bios;
3798 
3799 	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3800 	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3801 
3802 	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3803 		data->highest_mclk = memory_clock;
3804 
3805 	PP_ASSERT_WITH_CODE(
3806 			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3807 			"Performance levels exceeds SMC limit!",
3808 			return -EINVAL);
3809 
3810 	PP_ASSERT_WITH_CODE(
3811 			(ps->performance_level_count <
3812 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3813 			"Performance levels exceeds Driver limit, Skip!",
3814 			return 0);
3815 
3816 	performance_level = &(ps->performance_levels
3817 			[ps->performance_level_count++]);
3818 
3819 	/* Performance levels are arranged from low to high. */
3820 	performance_level->memory_clock = memory_clock;
3821 	performance_level->engine_clock = engine_clock;
3822 
3823 	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3824 
3825 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3826 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3827 
3828 	return 0;
3829 }
3830 
3831 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3832 		unsigned long entry_index, struct pp_power_state *state)
3833 {
3834 	int result;
3835 	struct smu7_power_state *ps;
3836 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3837 	struct phm_clock_voltage_dependency_table *dep_mclk_table =
3838 			hwmgr->dyn_state.vddci_dependency_on_mclk;
3839 
3840 	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3841 
3842 	state->hardware.magic = PHM_VIslands_Magic;
3843 
3844 	ps = (struct smu7_power_state *)(&state->hardware);
3845 
3846 	result = pp_tables_get_entry(hwmgr, entry_index, state,
3847 			smu7_get_pp_table_entry_callback_func_v0);
3848 
3849 	/*
3850 	 * This is the earliest time we have all the dependency table
3851 	 * and the VBIOS boot state as
3852 	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3853 	 * state if there is only one VDDCI/MCLK level, check if it's
3854 	 * the same as VBIOS boot state
3855 	 */
3856 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3857 		if (dep_mclk_table->entries[0].clk !=
3858 				data->vbios_boot_state.mclk_bootup_value)
3859 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3860 					"does not match VBIOS boot MCLK level");
3861 		if (dep_mclk_table->entries[0].v !=
3862 				data->vbios_boot_state.vddci_bootup_value)
3863 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3864 					"does not match VBIOS boot VDDCI level");
3865 	}
3866 
3867 	/* set DC compatible flag if this state supports DC */
3868 	if (!state->validation.disallowOnDC)
3869 		ps->dc_compatible = true;
3870 
3871 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3872 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3873 
3874 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3875 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3876 
3877 	if (!result) {
3878 		uint32_t i;
3879 
3880 		switch (state->classification.ui_label) {
3881 		case PP_StateUILabel_Performance:
3882 			data->use_pcie_performance_levels = true;
3883 
3884 			for (i = 0; i < ps->performance_level_count; i++) {
3885 				if (data->pcie_gen_performance.max <
3886 						ps->performance_levels[i].pcie_gen)
3887 					data->pcie_gen_performance.max =
3888 							ps->performance_levels[i].pcie_gen;
3889 
3890 				if (data->pcie_gen_performance.min >
3891 						ps->performance_levels[i].pcie_gen)
3892 					data->pcie_gen_performance.min =
3893 							ps->performance_levels[i].pcie_gen;
3894 
3895 				if (data->pcie_lane_performance.max <
3896 						ps->performance_levels[i].pcie_lane)
3897 					data->pcie_lane_performance.max =
3898 							ps->performance_levels[i].pcie_lane;
3899 
3900 				if (data->pcie_lane_performance.min >
3901 						ps->performance_levels[i].pcie_lane)
3902 					data->pcie_lane_performance.min =
3903 							ps->performance_levels[i].pcie_lane;
3904 			}
3905 			break;
3906 		case PP_StateUILabel_Battery:
3907 			data->use_pcie_power_saving_levels = true;
3908 
3909 			for (i = 0; i < ps->performance_level_count; i++) {
3910 				if (data->pcie_gen_power_saving.max <
3911 						ps->performance_levels[i].pcie_gen)
3912 					data->pcie_gen_power_saving.max =
3913 							ps->performance_levels[i].pcie_gen;
3914 
3915 				if (data->pcie_gen_power_saving.min >
3916 						ps->performance_levels[i].pcie_gen)
3917 					data->pcie_gen_power_saving.min =
3918 							ps->performance_levels[i].pcie_gen;
3919 
3920 				if (data->pcie_lane_power_saving.max <
3921 						ps->performance_levels[i].pcie_lane)
3922 					data->pcie_lane_power_saving.max =
3923 							ps->performance_levels[i].pcie_lane;
3924 
3925 				if (data->pcie_lane_power_saving.min >
3926 						ps->performance_levels[i].pcie_lane)
3927 					data->pcie_lane_power_saving.min =
3928 							ps->performance_levels[i].pcie_lane;
3929 			}
3930 			break;
3931 		default:
3932 			break;
3933 		}
3934 	}
3935 	return 0;
3936 }
3937 
3938 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3939 		unsigned long entry_index, struct pp_power_state *state)
3940 {
3941 	if (hwmgr->pp_table_version == PP_TABLE_V0)
3942 		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3943 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
3944 		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3945 
3946 	return 0;
3947 }
3948 
3949 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3950 {
3951 	struct amdgpu_device *adev = hwmgr->adev;
3952 	int i;
3953 	u32 tmp = 0;
3954 
3955 	if (!query)
3956 		return -EINVAL;
3957 
3958 	/*
3959 	 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3960 	 *  - Hawaii
3961 	 *  - Bonaire
3962 	 *  - Fiji
3963 	 *  - Tonga
3964 	 */
3965 	if ((adev->asic_type != CHIP_HAWAII) &&
3966 	    (adev->asic_type != CHIP_BONAIRE) &&
3967 	    (adev->asic_type != CHIP_FIJI) &&
3968 	    (adev->asic_type != CHIP_TONGA)) {
3969 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3970 		*query = tmp;
3971 
3972 		if (tmp != 0)
3973 			return 0;
3974 	}
3975 
3976 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3977 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3978 							ixSMU_PM_STATUS_95, 0);
3979 
3980 	for (i = 0; i < 10; i++) {
3981 		msleep(500);
3982 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3983 		tmp = cgs_read_ind_register(hwmgr->device,
3984 						CGS_IND_REG__SMC,
3985 						ixSMU_PM_STATUS_95);
3986 		if (tmp != 0)
3987 			break;
3988 	}
3989 	*query = tmp;
3990 
3991 	return 0;
3992 }
3993 
3994 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3995 			    void *value, int *size)
3996 {
3997 	uint32_t sclk, mclk, activity_percent;
3998 	uint32_t offset, val_vid;
3999 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4000 
4001 	/* size must be at least 4 bytes for all sensors */
4002 	if (*size < 4)
4003 		return -EINVAL;
4004 
4005 	switch (idx) {
4006 	case AMDGPU_PP_SENSOR_GFX_SCLK:
4007 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
4008 		*((uint32_t *)value) = sclk;
4009 		*size = 4;
4010 		return 0;
4011 	case AMDGPU_PP_SENSOR_GFX_MCLK:
4012 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
4013 		*((uint32_t *)value) = mclk;
4014 		*size = 4;
4015 		return 0;
4016 	case AMDGPU_PP_SENSOR_GPU_LOAD:
4017 	case AMDGPU_PP_SENSOR_MEM_LOAD:
4018 		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
4019 								SMU_SoftRegisters,
4020 								(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
4021 								AverageGraphicsActivity:
4022 								AverageMemoryActivity);
4023 
4024 		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4025 		activity_percent += 0x80;
4026 		activity_percent >>= 8;
4027 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
4028 		*size = 4;
4029 		return 0;
4030 	case AMDGPU_PP_SENSOR_GPU_TEMP:
4031 		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
4032 		*size = 4;
4033 		return 0;
4034 	case AMDGPU_PP_SENSOR_UVD_POWER:
4035 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4036 		*size = 4;
4037 		return 0;
4038 	case AMDGPU_PP_SENSOR_VCE_POWER:
4039 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4040 		*size = 4;
4041 		return 0;
4042 	case AMDGPU_PP_SENSOR_GPU_POWER:
4043 		return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4044 	case AMDGPU_PP_SENSOR_VDDGFX:
4045 		if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4046 		    (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4047 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4048 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4049 		else
4050 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4051 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4052 
4053 		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4054 		return 0;
4055 	default:
4056 		return -EOPNOTSUPP;
4057 	}
4058 }
4059 
4060 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4061 {
4062 	const struct phm_set_power_state_input *states =
4063 			(const struct phm_set_power_state_input *)input;
4064 	const struct smu7_power_state *smu7_ps =
4065 			cast_const_phw_smu7_power_state(states->pnew_state);
4066 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4067 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4068 	uint32_t sclk = smu7_ps->performance_levels
4069 			[smu7_ps->performance_level_count - 1].engine_clock;
4070 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4071 	uint32_t mclk = smu7_ps->performance_levels
4072 			[smu7_ps->performance_level_count - 1].memory_clock;
4073 	struct PP_Clocks min_clocks = {0};
4074 	uint32_t i;
4075 
4076 	for (i = 0; i < sclk_table->count; i++) {
4077 		if (sclk == sclk_table->dpm_levels[i].value)
4078 			break;
4079 	}
4080 
4081 	if (i >= sclk_table->count) {
4082 		if (sclk > sclk_table->dpm_levels[i-1].value) {
4083 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4084 			sclk_table->dpm_levels[i-1].value = sclk;
4085 		}
4086 	} else {
4087 	/* TODO: Check SCLK in DAL's minimum clocks
4088 	 * in case DeepSleep divider update is required.
4089 	 */
4090 		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4091 			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4092 				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4093 			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4094 	}
4095 
4096 	for (i = 0; i < mclk_table->count; i++) {
4097 		if (mclk == mclk_table->dpm_levels[i].value)
4098 			break;
4099 	}
4100 
4101 	if (i >= mclk_table->count) {
4102 		if (mclk > mclk_table->dpm_levels[i-1].value) {
4103 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4104 			mclk_table->dpm_levels[i-1].value = mclk;
4105 		}
4106 	}
4107 
4108 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4109 		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4110 
4111 	return 0;
4112 }
4113 
4114 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4115 		const struct smu7_power_state *smu7_ps)
4116 {
4117 	uint32_t i;
4118 	uint32_t sclk, max_sclk = 0;
4119 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4120 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4121 
4122 	for (i = 0; i < smu7_ps->performance_level_count; i++) {
4123 		sclk = smu7_ps->performance_levels[i].engine_clock;
4124 		if (max_sclk < sclk)
4125 			max_sclk = sclk;
4126 	}
4127 
4128 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
4129 		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4130 			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4131 					dpm_table->pcie_speed_table.dpm_levels
4132 					[dpm_table->pcie_speed_table.count - 1].value :
4133 					dpm_table->pcie_speed_table.dpm_levels[i].value);
4134 	}
4135 
4136 	return 0;
4137 }
4138 
4139 static int smu7_request_link_speed_change_before_state_change(
4140 		struct pp_hwmgr *hwmgr, const void *input)
4141 {
4142 	const struct phm_set_power_state_input *states =
4143 			(const struct phm_set_power_state_input *)input;
4144 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4145 	const struct smu7_power_state *smu7_nps =
4146 			cast_const_phw_smu7_power_state(states->pnew_state);
4147 	const struct smu7_power_state *polaris10_cps =
4148 			cast_const_phw_smu7_power_state(states->pcurrent_state);
4149 
4150 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4151 	uint16_t current_link_speed;
4152 
4153 	if (data->force_pcie_gen == PP_PCIEGenInvalid)
4154 		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4155 	else
4156 		current_link_speed = data->force_pcie_gen;
4157 
4158 	data->force_pcie_gen = PP_PCIEGenInvalid;
4159 	data->pspp_notify_required = false;
4160 
4161 	if (target_link_speed > current_link_speed) {
4162 		switch (target_link_speed) {
4163 #ifdef CONFIG_ACPI
4164 		case PP_PCIEGen3:
4165 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4166 				break;
4167 			data->force_pcie_gen = PP_PCIEGen2;
4168 			if (current_link_speed == PP_PCIEGen2)
4169 				break;
4170 			fallthrough;
4171 		case PP_PCIEGen2:
4172 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4173 				break;
4174 			fallthrough;
4175 #endif
4176 		default:
4177 			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4178 			break;
4179 		}
4180 	} else {
4181 		if (target_link_speed < current_link_speed)
4182 			data->pspp_notify_required = true;
4183 	}
4184 
4185 	return 0;
4186 }
4187 
4188 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4189 {
4190 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4191 
4192 	if (0 == data->need_update_smu7_dpm_table)
4193 		return 0;
4194 
4195 	if ((0 == data->sclk_dpm_key_disabled) &&
4196 		(data->need_update_smu7_dpm_table &
4197 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4198 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4199 				"Trying to freeze SCLK DPM when DPM is disabled",
4200 				);
4201 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4202 				PPSMC_MSG_SCLKDPM_FreezeLevel,
4203 				NULL),
4204 				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4205 				return -EINVAL);
4206 	}
4207 
4208 	if ((0 == data->mclk_dpm_key_disabled) &&
4209 		!data->mclk_ignore_signal &&
4210 		(data->need_update_smu7_dpm_table &
4211 		 DPMTABLE_OD_UPDATE_MCLK)) {
4212 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4213 				"Trying to freeze MCLK DPM when DPM is disabled",
4214 				);
4215 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4216 				PPSMC_MSG_MCLKDPM_FreezeLevel,
4217 				NULL),
4218 				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4219 				return -EINVAL);
4220 	}
4221 
4222 	return 0;
4223 }
4224 
4225 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4226 		struct pp_hwmgr *hwmgr, const void *input)
4227 {
4228 	int result = 0;
4229 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4230 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4231 	uint32_t count;
4232 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4233 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4234 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4235 
4236 	if (0 == data->need_update_smu7_dpm_table)
4237 		return 0;
4238 
4239 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4240 		for (count = 0; count < dpm_table->sclk_table.count; count++) {
4241 			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4242 			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4243 		}
4244 	}
4245 
4246 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4247 		for (count = 0; count < dpm_table->mclk_table.count; count++) {
4248 			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4249 			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4250 		}
4251 	}
4252 
4253 	if (data->need_update_smu7_dpm_table &
4254 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
4255 		result = smum_populate_all_graphic_levels(hwmgr);
4256 		PP_ASSERT_WITH_CODE((0 == result),
4257 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4258 				return result);
4259 	}
4260 
4261 	if (data->need_update_smu7_dpm_table &
4262 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
4263 		/*populate MCLK dpm table to SMU7 */
4264 		result = smum_populate_all_memory_levels(hwmgr);
4265 		PP_ASSERT_WITH_CODE((0 == result),
4266 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4267 				return result);
4268 	}
4269 
4270 	return result;
4271 }
4272 
4273 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4274 			  struct smu7_single_dpm_table *dpm_table,
4275 			uint32_t low_limit, uint32_t high_limit)
4276 {
4277 	uint32_t i;
4278 
4279 	/* force the trim if mclk_switching is disabled to prevent flicker */
4280 	bool force_trim = (low_limit == high_limit);
4281 	for (i = 0; i < dpm_table->count; i++) {
4282 	/*skip the trim if od is enabled*/
4283 		if ((!hwmgr->od_enabled || force_trim)
4284 			&& (dpm_table->dpm_levels[i].value < low_limit
4285 			|| dpm_table->dpm_levels[i].value > high_limit))
4286 			dpm_table->dpm_levels[i].enabled = false;
4287 		else
4288 			dpm_table->dpm_levels[i].enabled = true;
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4295 		const struct smu7_power_state *smu7_ps)
4296 {
4297 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4298 	uint32_t high_limit_count;
4299 
4300 	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4301 			"power state did not have any performance level",
4302 			return -EINVAL);
4303 
4304 	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4305 
4306 	smu7_trim_single_dpm_states(hwmgr,
4307 			&(data->dpm_table.sclk_table),
4308 			smu7_ps->performance_levels[0].engine_clock,
4309 			smu7_ps->performance_levels[high_limit_count].engine_clock);
4310 
4311 	smu7_trim_single_dpm_states(hwmgr,
4312 			&(data->dpm_table.mclk_table),
4313 			smu7_ps->performance_levels[0].memory_clock,
4314 			smu7_ps->performance_levels[high_limit_count].memory_clock);
4315 
4316 	return 0;
4317 }
4318 
4319 static int smu7_generate_dpm_level_enable_mask(
4320 		struct pp_hwmgr *hwmgr, const void *input)
4321 {
4322 	int result = 0;
4323 	const struct phm_set_power_state_input *states =
4324 			(const struct phm_set_power_state_input *)input;
4325 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4326 	const struct smu7_power_state *smu7_ps =
4327 			cast_const_phw_smu7_power_state(states->pnew_state);
4328 
4329 
4330 	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4331 	if (result)
4332 		return result;
4333 
4334 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4335 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4336 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4337 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4338 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4339 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4340 
4341 	return 0;
4342 }
4343 
4344 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4345 {
4346 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4347 
4348 	if (0 == data->need_update_smu7_dpm_table)
4349 		return 0;
4350 
4351 	if ((0 == data->sclk_dpm_key_disabled) &&
4352 		(data->need_update_smu7_dpm_table &
4353 		(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4354 
4355 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4356 				"Trying to Unfreeze SCLK DPM when DPM is disabled",
4357 				);
4358 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4359 				PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4360 				NULL),
4361 			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4362 			return -EINVAL);
4363 	}
4364 
4365 	if ((0 == data->mclk_dpm_key_disabled) &&
4366 		!data->mclk_ignore_signal &&
4367 		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4368 
4369 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4370 				"Trying to Unfreeze MCLK DPM when DPM is disabled",
4371 				);
4372 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4373 				PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4374 				NULL),
4375 		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4376 		    return -EINVAL);
4377 	}
4378 
4379 	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4380 
4381 	return 0;
4382 }
4383 
4384 static int smu7_notify_link_speed_change_after_state_change(
4385 		struct pp_hwmgr *hwmgr, const void *input)
4386 {
4387 	const struct phm_set_power_state_input *states =
4388 			(const struct phm_set_power_state_input *)input;
4389 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4390 	const struct smu7_power_state *smu7_ps =
4391 			cast_const_phw_smu7_power_state(states->pnew_state);
4392 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4393 	uint8_t  request;
4394 
4395 	if (data->pspp_notify_required) {
4396 		if (target_link_speed == PP_PCIEGen3)
4397 			request = PCIE_PERF_REQ_GEN3;
4398 		else if (target_link_speed == PP_PCIEGen2)
4399 			request = PCIE_PERF_REQ_GEN2;
4400 		else
4401 			request = PCIE_PERF_REQ_GEN1;
4402 
4403 		if (request == PCIE_PERF_REQ_GEN1 &&
4404 				smu7_get_current_pcie_speed(hwmgr) > 0)
4405 			return 0;
4406 
4407 #ifdef CONFIG_ACPI
4408 		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4409 			if (PP_PCIEGen2 == target_link_speed)
4410 				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4411 			else
4412 				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4413 		}
4414 #endif
4415 	}
4416 
4417 	return 0;
4418 }
4419 
4420 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4421 {
4422 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ?  0 : -EINVAL;
4423 }
4424 
4425 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4426 {
4427 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4428 
4429 	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4430 		if (hwmgr->chip_id == CHIP_VEGAM)
4431 			smum_send_msg_to_smc_with_parameter(hwmgr,
4432 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4433 					NULL);
4434 		else
4435 			smum_send_msg_to_smc_with_parameter(hwmgr,
4436 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4437 					NULL);
4438 		data->last_sent_vbi_timeout = data->frame_time_x2;
4439 	}
4440 
4441 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ?  0 : -EINVAL;
4442 }
4443 
4444 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4445 {
4446 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4447 	int result = 0;
4448 
4449 	if (data->mclk_ignore_signal)
4450 		result = smu7_notify_no_display(hwmgr);
4451 	else
4452 		result = smu7_notify_has_display(hwmgr);
4453 
4454 	return result;
4455 }
4456 
4457 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4458 {
4459 	int tmp_result, result = 0;
4460 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4461 
4462 	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4463 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4464 			"Failed to find DPM states clocks in DPM table!",
4465 			result = tmp_result);
4466 
4467 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4468 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4469 		tmp_result =
4470 			smu7_request_link_speed_change_before_state_change(hwmgr, input);
4471 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4472 				"Failed to request link speed change before state change!",
4473 				result = tmp_result);
4474 	}
4475 
4476 	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4477 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4478 			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4479 
4480 	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4481 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4482 			"Failed to populate and upload SCLK MCLK DPM levels!",
4483 			result = tmp_result);
4484 
4485 	/*
4486 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4487 	 * That effectively disables AVFS feature.
4488 	 */
4489 	if (hwmgr->hardcode_pp_table != NULL)
4490 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4491 
4492 	tmp_result = smu7_update_avfs(hwmgr);
4493 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4494 			"Failed to update avfs voltages!",
4495 			result = tmp_result);
4496 
4497 	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4498 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4499 			"Failed to generate DPM level enabled mask!",
4500 			result = tmp_result);
4501 
4502 	tmp_result = smum_update_sclk_threshold(hwmgr);
4503 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4504 			"Failed to update SCLK threshold!",
4505 			result = tmp_result);
4506 
4507 	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4508 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4509 			"Failed to unfreeze SCLK MCLK DPM!",
4510 			result = tmp_result);
4511 
4512 	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4513 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4514 			"Failed to upload DPM level enabled mask!",
4515 			result = tmp_result);
4516 
4517 	tmp_result = smu7_notify_smc_display(hwmgr);
4518 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4519 			"Failed to notify smc display settings!",
4520 			result = tmp_result);
4521 
4522 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4523 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4524 		tmp_result =
4525 			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4526 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4527 				"Failed to notify link speed change after state change!",
4528 				result = tmp_result);
4529 	}
4530 	data->apply_optimized_settings = false;
4531 	return result;
4532 }
4533 
4534 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4535 {
4536 	hwmgr->thermal_controller.
4537 	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4538 
4539 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4540 			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4541 			NULL);
4542 }
4543 
4544 static int
4545 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4546 {
4547 	return 0;
4548 }
4549 
4550 /**
4551  * smu7_program_display_gap - Programs the display gap
4552  *
4553  * @hwmgr:  the address of the powerplay hardware manager.
4554  * Return:   always OK
4555  */
4556 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4557 {
4558 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4559 	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4560 	uint32_t display_gap2;
4561 	uint32_t pre_vbi_time_in_us;
4562 	uint32_t frame_time_in_us;
4563 	uint32_t ref_clock, refresh_rate;
4564 
4565 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4566 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4567 
4568 	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4569 	refresh_rate = hwmgr->display_config->vrefresh;
4570 
4571 	if (0 == refresh_rate)
4572 		refresh_rate = 60;
4573 
4574 	frame_time_in_us = 1000000 / refresh_rate;
4575 
4576 	pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4577 
4578 	data->frame_time_x2 = frame_time_in_us * 2 / 100;
4579 
4580 	if (data->frame_time_x2 < 280) {
4581 		pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4582 		data->frame_time_x2 = 280;
4583 	}
4584 
4585 	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4586 
4587 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4588 
4589 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4590 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4591 							SMU_SoftRegisters,
4592 							PreVBlankGap), 0x64);
4593 
4594 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4595 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4596 							SMU_SoftRegisters,
4597 							VBlankTimeout),
4598 					(frame_time_in_us - pre_vbi_time_in_us));
4599 
4600 	return 0;
4601 }
4602 
4603 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4604 {
4605 	return smu7_program_display_gap(hwmgr);
4606 }
4607 
4608 /**
4609  * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4610  *
4611  * @hwmgr:  the address of the powerplay hardware manager.
4612  * @us_max_fan_rpm:  max operating fan RPM value.
4613  * Return:   The response that came from the SMC.
4614  */
4615 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4616 {
4617 	hwmgr->thermal_controller.
4618 	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4619 
4620 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4621 			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4622 			NULL);
4623 }
4624 
4625 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4626 	.process = phm_irq_process,
4627 };
4628 
4629 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4630 {
4631 	struct amdgpu_irq_src *source =
4632 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4633 
4634 	if (!source)
4635 		return -ENOMEM;
4636 
4637 	source->funcs = &smu7_irq_funcs;
4638 
4639 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4640 			AMDGPU_IRQ_CLIENTID_LEGACY,
4641 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4642 			source);
4643 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4644 			AMDGPU_IRQ_CLIENTID_LEGACY,
4645 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4646 			source);
4647 
4648 	/* Register CTF(GPIO_19) interrupt */
4649 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4650 			AMDGPU_IRQ_CLIENTID_LEGACY,
4651 			VISLANDS30_IV_SRCID_GPIO_19,
4652 			source);
4653 
4654 	return 0;
4655 }
4656 
4657 static bool
4658 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4659 {
4660 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4661 	bool is_update_required = false;
4662 
4663 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4664 		is_update_required = true;
4665 
4666 	if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4667 		is_update_required = true;
4668 
4669 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4670 	    hwmgr->chip_id <= CHIP_VEGAM &&
4671 	    data->last_sent_vbi_timeout != data->frame_time_x2)
4672 		is_update_required = true;
4673 
4674 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4675 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4676 			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4677 			hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4678 			is_update_required = true;
4679 	}
4680 	return is_update_required;
4681 }
4682 
4683 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4684 							   const struct smu7_performance_level *pl2)
4685 {
4686 	return ((pl1->memory_clock == pl2->memory_clock) &&
4687 		  (pl1->engine_clock == pl2->engine_clock) &&
4688 		  (pl1->pcie_gen == pl2->pcie_gen) &&
4689 		  (pl1->pcie_lane == pl2->pcie_lane));
4690 }
4691 
4692 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4693 		const struct pp_hw_power_state *pstate1,
4694 		const struct pp_hw_power_state *pstate2, bool *equal)
4695 {
4696 	const struct smu7_power_state *psa;
4697 	const struct smu7_power_state *psb;
4698 	int i;
4699 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4700 
4701 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4702 		return -EINVAL;
4703 
4704 	psa = cast_const_phw_smu7_power_state(pstate1);
4705 	psb = cast_const_phw_smu7_power_state(pstate2);
4706 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4707 	if (psa->performance_level_count != psb->performance_level_count) {
4708 		*equal = false;
4709 		return 0;
4710 	}
4711 
4712 	for (i = 0; i < psa->performance_level_count; i++) {
4713 		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4714 			/* If we have found even one performance level pair that is different the states are different. */
4715 			*equal = false;
4716 			return 0;
4717 		}
4718 	}
4719 
4720 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4721 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4722 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4723 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4724 	/* For OD call, set value based on flag */
4725 	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4726 							DPMTABLE_OD_UPDATE_MCLK |
4727 							DPMTABLE_OD_UPDATE_VDDC));
4728 
4729 	return 0;
4730 }
4731 
4732 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4733 {
4734 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4735 
4736 	uint32_t tmp;
4737 
4738 	/* Read MC indirect register offset 0x9F bits [3:0] to see
4739 	 * if VBIOS has already loaded a full version of MC ucode
4740 	 * or not.
4741 	 */
4742 
4743 	smu7_get_mc_microcode_version(hwmgr);
4744 
4745 	data->need_long_memory_training = false;
4746 
4747 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4748 							ixMC_IO_DEBUG_UP_13);
4749 	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4750 
4751 	if (tmp & (1 << 23)) {
4752 		data->mem_latency_high = MEM_LATENCY_HIGH;
4753 		data->mem_latency_low = MEM_LATENCY_LOW;
4754 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4755 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4756 		    (hwmgr->chip_id == CHIP_POLARIS12))
4757 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4758 	} else {
4759 		data->mem_latency_high = 330;
4760 		data->mem_latency_low = 330;
4761 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4762 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4763 		    (hwmgr->chip_id == CHIP_POLARIS12))
4764 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4765 	}
4766 
4767 	return 0;
4768 }
4769 
4770 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4771 {
4772 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4773 
4774 	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
4775 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4776 	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
4777 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4778 	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
4779 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4780 	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
4781 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4782 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
4783 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4784 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4785 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4786 	data->clock_registers.vDLL_CNTL                  =
4787 		cgs_read_register(hwmgr->device, mmDLL_CNTL);
4788 	data->clock_registers.vMCLK_PWRMGT_CNTL          =
4789 		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4790 	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
4791 		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4792 	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
4793 		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4794 	data->clock_registers.vMPLL_FUNC_CNTL            =
4795 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4796 	data->clock_registers.vMPLL_FUNC_CNTL_1          =
4797 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4798 	data->clock_registers.vMPLL_FUNC_CNTL_2          =
4799 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4800 	data->clock_registers.vMPLL_SS1                  =
4801 		cgs_read_register(hwmgr->device, mmMPLL_SS1);
4802 	data->clock_registers.vMPLL_SS2                  =
4803 		cgs_read_register(hwmgr->device, mmMPLL_SS2);
4804 	return 0;
4805 
4806 }
4807 
4808 /**
4809  * smu7_get_memory_type - Find out if memory is GDDR5.
4810  *
4811  * @hwmgr:  the address of the powerplay hardware manager.
4812  * Return:   always 0
4813  */
4814 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4815 {
4816 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4817 	struct amdgpu_device *adev = hwmgr->adev;
4818 
4819 	data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4820 
4821 	return 0;
4822 }
4823 
4824 /**
4825  * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4826  *
4827  * @hwmgr:  the address of the powerplay hardware manager.
4828  * Return:   always 0
4829  */
4830 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4831 {
4832 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4833 			GENERAL_PWRMGT, STATIC_PM_EN, 1);
4834 
4835 	return 0;
4836 }
4837 
4838 /**
4839  * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4840  *
4841  * @hwmgr:  the address of the powerplay hardware manager.
4842  * Return:   always 0
4843  */
4844 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4845 {
4846 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4847 
4848 	data->uvd_power_gated = false;
4849 	data->vce_power_gated = false;
4850 
4851 	return 0;
4852 }
4853 
4854 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4855 {
4856 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4857 
4858 	data->low_sclk_interrupt_threshold = 0;
4859 	return 0;
4860 }
4861 
4862 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4863 {
4864 	int tmp_result, result = 0;
4865 
4866 	smu7_check_mc_firmware(hwmgr);
4867 
4868 	tmp_result = smu7_read_clock_registers(hwmgr);
4869 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4870 			"Failed to read clock registers!", result = tmp_result);
4871 
4872 	tmp_result = smu7_get_memory_type(hwmgr);
4873 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4874 			"Failed to get memory type!", result = tmp_result);
4875 
4876 	tmp_result = smu7_enable_acpi_power_management(hwmgr);
4877 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4878 			"Failed to enable ACPI power management!", result = tmp_result);
4879 
4880 	tmp_result = smu7_init_power_gate_state(hwmgr);
4881 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4882 			"Failed to init power gate state!", result = tmp_result);
4883 
4884 	tmp_result = smu7_get_mc_microcode_version(hwmgr);
4885 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4886 			"Failed to get MC microcode version!", result = tmp_result);
4887 
4888 	tmp_result = smu7_init_sclk_threshold(hwmgr);
4889 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4890 			"Failed to init sclk threshold!", result = tmp_result);
4891 
4892 	return result;
4893 }
4894 
4895 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4896 		enum pp_clock_type type, uint32_t mask)
4897 {
4898 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4899 
4900 	if (mask == 0)
4901 		return -EINVAL;
4902 
4903 	switch (type) {
4904 	case PP_SCLK:
4905 		if (!data->sclk_dpm_key_disabled)
4906 			smum_send_msg_to_smc_with_parameter(hwmgr,
4907 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4908 					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4909 					NULL);
4910 		break;
4911 	case PP_MCLK:
4912 		if (!data->mclk_dpm_key_disabled)
4913 			smum_send_msg_to_smc_with_parameter(hwmgr,
4914 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4915 					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4916 					NULL);
4917 		break;
4918 	case PP_PCIE:
4919 	{
4920 		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4921 
4922 		if (!data->pcie_dpm_key_disabled) {
4923 			if (fls(tmp) != ffs(tmp))
4924 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4925 						NULL);
4926 			else
4927 				smum_send_msg_to_smc_with_parameter(hwmgr,
4928 					PPSMC_MSG_PCIeDPM_ForceLevel,
4929 					fls(tmp) - 1,
4930 					NULL);
4931 		}
4932 		break;
4933 	}
4934 	default:
4935 		break;
4936 	}
4937 
4938 	return 0;
4939 }
4940 
4941 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4942 		enum pp_clock_type type, char *buf)
4943 {
4944 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4945 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4946 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4947 	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4948 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4949 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4950 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4951 	int size = 0;
4952 	uint32_t i, now, clock, pcie_speed;
4953 
4954 	switch (type) {
4955 	case PP_SCLK:
4956 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4957 
4958 		for (i = 0; i < sclk_table->count; i++) {
4959 			if (clock > sclk_table->dpm_levels[i].value)
4960 				continue;
4961 			break;
4962 		}
4963 		now = i;
4964 
4965 		for (i = 0; i < sclk_table->count; i++)
4966 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4967 					i, sclk_table->dpm_levels[i].value / 100,
4968 					(i == now) ? "*" : "");
4969 		break;
4970 	case PP_MCLK:
4971 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4972 
4973 		for (i = 0; i < mclk_table->count; i++) {
4974 			if (clock > mclk_table->dpm_levels[i].value)
4975 				continue;
4976 			break;
4977 		}
4978 		now = i;
4979 
4980 		for (i = 0; i < mclk_table->count; i++)
4981 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4982 					i, mclk_table->dpm_levels[i].value / 100,
4983 					(i == now) ? "*" : "");
4984 		break;
4985 	case PP_PCIE:
4986 		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4987 		for (i = 0; i < pcie_table->count; i++) {
4988 			if (pcie_speed != pcie_table->dpm_levels[i].value)
4989 				continue;
4990 			break;
4991 		}
4992 		now = i;
4993 
4994 		for (i = 0; i < pcie_table->count; i++)
4995 			size += sprintf(buf + size, "%d: %s %s\n", i,
4996 					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
4997 					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
4998 					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
4999 					(i == now) ? "*" : "");
5000 		break;
5001 	case OD_SCLK:
5002 		if (hwmgr->od_enabled) {
5003 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
5004 			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
5005 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5006 					i, odn_sclk_table->entries[i].clock/100,
5007 					odn_sclk_table->entries[i].vddc);
5008 		}
5009 		break;
5010 	case OD_MCLK:
5011 		if (hwmgr->od_enabled) {
5012 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
5013 			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
5014 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5015 					i, odn_mclk_table->entries[i].clock/100,
5016 					odn_mclk_table->entries[i].vddc);
5017 		}
5018 		break;
5019 	case OD_RANGE:
5020 		if (hwmgr->od_enabled) {
5021 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
5022 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
5023 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5024 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5025 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
5026 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5027 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5028 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
5029 				data->odn_dpm_table.min_vddc,
5030 				data->odn_dpm_table.max_vddc);
5031 		}
5032 		break;
5033 	default:
5034 		break;
5035 	}
5036 	return size;
5037 }
5038 
5039 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5040 {
5041 	switch (mode) {
5042 	case AMD_FAN_CTRL_NONE:
5043 		smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5044 		break;
5045 	case AMD_FAN_CTRL_MANUAL:
5046 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5047 			PHM_PlatformCaps_MicrocodeFanControl))
5048 			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5049 		break;
5050 	case AMD_FAN_CTRL_AUTO:
5051 		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5052 			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5053 		break;
5054 	default:
5055 		break;
5056 	}
5057 }
5058 
5059 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5060 {
5061 	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5062 }
5063 
5064 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5065 {
5066 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5067 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5068 	struct smu7_single_dpm_table *golden_sclk_table =
5069 			&(data->golden_dpm_table.sclk_table);
5070 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5071 	int golden_value = golden_sclk_table->dpm_levels
5072 			[golden_sclk_table->count - 1].value;
5073 
5074 	value -= golden_value;
5075 	value = DIV_ROUND_UP(value * 100, golden_value);
5076 
5077 	return value;
5078 }
5079 
5080 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5081 {
5082 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5083 	struct smu7_single_dpm_table *golden_sclk_table =
5084 			&(data->golden_dpm_table.sclk_table);
5085 	struct pp_power_state  *ps;
5086 	struct smu7_power_state  *smu7_ps;
5087 
5088 	if (value > 20)
5089 		value = 20;
5090 
5091 	ps = hwmgr->request_ps;
5092 
5093 	if (ps == NULL)
5094 		return -EINVAL;
5095 
5096 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5097 
5098 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5099 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5100 			value / 100 +
5101 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5102 
5103 	return 0;
5104 }
5105 
5106 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5107 {
5108 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5109 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5110 	struct smu7_single_dpm_table *golden_mclk_table =
5111 			&(data->golden_dpm_table.mclk_table);
5112         int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5113 	int golden_value = golden_mclk_table->dpm_levels
5114 			[golden_mclk_table->count - 1].value;
5115 
5116 	value -= golden_value;
5117 	value = DIV_ROUND_UP(value * 100, golden_value);
5118 
5119 	return value;
5120 }
5121 
5122 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5123 {
5124 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5125 	struct smu7_single_dpm_table *golden_mclk_table =
5126 			&(data->golden_dpm_table.mclk_table);
5127 	struct pp_power_state  *ps;
5128 	struct smu7_power_state  *smu7_ps;
5129 
5130 	if (value > 20)
5131 		value = 20;
5132 
5133 	ps = hwmgr->request_ps;
5134 
5135 	if (ps == NULL)
5136 		return -EINVAL;
5137 
5138 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5139 
5140 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5141 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5142 			value / 100 +
5143 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5144 
5145 	return 0;
5146 }
5147 
5148 
5149 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5150 {
5151 	struct phm_ppt_v1_information *table_info =
5152 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5153 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5154 	struct phm_clock_voltage_dependency_table *sclk_table;
5155 	int i;
5156 
5157 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5158 		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5159 			return -EINVAL;
5160 		dep_sclk_table = table_info->vdd_dep_on_sclk;
5161 		for (i = 0; i < dep_sclk_table->count; i++)
5162 			clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5163 		clocks->count = dep_sclk_table->count;
5164 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5165 		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5166 		for (i = 0; i < sclk_table->count; i++)
5167 			clocks->clock[i] = sclk_table->entries[i].clk * 10;
5168 		clocks->count = sclk_table->count;
5169 	}
5170 
5171 	return 0;
5172 }
5173 
5174 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5175 {
5176 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5177 
5178 	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5179 		return data->mem_latency_high;
5180 	else if (clk >= MEM_FREQ_HIGH_LATENCY)
5181 		return data->mem_latency_low;
5182 	else
5183 		return MEM_LATENCY_ERR;
5184 }
5185 
5186 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5187 {
5188 	struct phm_ppt_v1_information *table_info =
5189 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5190 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5191 	int i;
5192 	struct phm_clock_voltage_dependency_table *mclk_table;
5193 
5194 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5195 		if (table_info == NULL)
5196 			return -EINVAL;
5197 		dep_mclk_table = table_info->vdd_dep_on_mclk;
5198 		for (i = 0; i < dep_mclk_table->count; i++) {
5199 			clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5200 			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5201 						dep_mclk_table->entries[i].clk);
5202 		}
5203 		clocks->count = dep_mclk_table->count;
5204 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5205 		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5206 		for (i = 0; i < mclk_table->count; i++)
5207 			clocks->clock[i] = mclk_table->entries[i].clk * 10;
5208 		clocks->count = mclk_table->count;
5209 	}
5210 	return 0;
5211 }
5212 
5213 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5214 						struct amd_pp_clocks *clocks)
5215 {
5216 	switch (type) {
5217 	case amd_pp_sys_clock:
5218 		smu7_get_sclks(hwmgr, clocks);
5219 		break;
5220 	case amd_pp_mem_clock:
5221 		smu7_get_mclks(hwmgr, clocks);
5222 		break;
5223 	default:
5224 		return -EINVAL;
5225 	}
5226 
5227 	return 0;
5228 }
5229 
5230 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5231 				       struct pp_clock_levels_with_latency *clocks)
5232 {
5233 	struct phm_ppt_v1_information *table_info =
5234 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5235 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5236 			table_info->vdd_dep_on_sclk;
5237 	int i;
5238 
5239 	clocks->num_levels = 0;
5240 	for (i = 0; i < dep_sclk_table->count; i++) {
5241 		if (dep_sclk_table->entries[i].clk) {
5242 			clocks->data[clocks->num_levels].clocks_in_khz =
5243 				dep_sclk_table->entries[i].clk * 10;
5244 			clocks->num_levels++;
5245 		}
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5252 				       struct pp_clock_levels_with_latency *clocks)
5253 {
5254 	struct phm_ppt_v1_information *table_info =
5255 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5256 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5257 			table_info->vdd_dep_on_mclk;
5258 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5259 	int i;
5260 
5261 	clocks->num_levels = 0;
5262 	data->mclk_latency_table.count = 0;
5263 	for (i = 0; i < dep_mclk_table->count; i++) {
5264 		if (dep_mclk_table->entries[i].clk) {
5265 			clocks->data[clocks->num_levels].clocks_in_khz =
5266 					dep_mclk_table->entries[i].clk * 10;
5267 			data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5268 					dep_mclk_table->entries[i].clk;
5269 			clocks->data[clocks->num_levels].latency_in_us =
5270 				data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5271 					smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5272 			clocks->num_levels++;
5273 			data->mclk_latency_table.count++;
5274 		}
5275 	}
5276 
5277 	return 0;
5278 }
5279 
5280 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5281 					       enum amd_pp_clock_type type,
5282 					       struct pp_clock_levels_with_latency *clocks)
5283 {
5284 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5285 	      hwmgr->chip_id <= CHIP_VEGAM))
5286 		return -EINVAL;
5287 
5288 	switch (type) {
5289 	case amd_pp_sys_clock:
5290 		smu7_get_sclks_with_latency(hwmgr, clocks);
5291 		break;
5292 	case amd_pp_mem_clock:
5293 		smu7_get_mclks_with_latency(hwmgr, clocks);
5294 		break;
5295 	default:
5296 		return -EINVAL;
5297 	}
5298 
5299 	return 0;
5300 }
5301 
5302 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5303 						 void *clock_range)
5304 {
5305 	struct phm_ppt_v1_information *table_info =
5306 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5307 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5308 			table_info->vdd_dep_on_mclk;
5309 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5310 			table_info->vdd_dep_on_sclk;
5311 	struct polaris10_smumgr *smu_data =
5312 			(struct polaris10_smumgr *)(hwmgr->smu_backend);
5313 	SMU74_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
5314 	struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5315 			(struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5316 	uint32_t i, j, k;
5317 	bool valid_entry;
5318 
5319 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5320 	      hwmgr->chip_id <= CHIP_VEGAM))
5321 		return -EINVAL;
5322 
5323 	for (i = 0; i < dep_mclk_table->count; i++) {
5324 		for (j = 0; j < dep_sclk_table->count; j++) {
5325 			valid_entry = false;
5326 			for (k = 0; k < watermarks->num_wm_sets; k++) {
5327 				if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5328 				    dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5329 				    dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5330 				    dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5331 					valid_entry = true;
5332 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5333 					break;
5334 				}
5335 			}
5336 			PP_ASSERT_WITH_CODE(valid_entry,
5337 					"Clock is not in range of specified clock range for watermark from DAL!  Using highest water mark set.",
5338 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5339 		}
5340 	}
5341 
5342 	return smu7_copy_bytes_to_smc(hwmgr,
5343 				      smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5344 				      (uint8_t *)table->DisplayWatermark,
5345 				      sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5346 				      SMC_RAM_END);
5347 }
5348 
5349 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5350 					uint32_t virtual_addr_low,
5351 					uint32_t virtual_addr_hi,
5352 					uint32_t mc_addr_low,
5353 					uint32_t mc_addr_hi,
5354 					uint32_t size)
5355 {
5356 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5357 
5358 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5359 					data->soft_regs_start +
5360 					smum_get_offsetof(hwmgr,
5361 					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5362 					mc_addr_hi);
5363 
5364 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5365 					data->soft_regs_start +
5366 					smum_get_offsetof(hwmgr,
5367 					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5368 					mc_addr_low);
5369 
5370 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5371 					data->soft_regs_start +
5372 					smum_get_offsetof(hwmgr,
5373 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5374 					virtual_addr_hi);
5375 
5376 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5377 					data->soft_regs_start +
5378 					smum_get_offsetof(hwmgr,
5379 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5380 					virtual_addr_low);
5381 
5382 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5383 					data->soft_regs_start +
5384 					smum_get_offsetof(hwmgr,
5385 					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5386 					size);
5387 	return 0;
5388 }
5389 
5390 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5391 					struct amd_pp_simple_clock_info *clocks)
5392 {
5393 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5394 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5395 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5396 
5397 	if (clocks == NULL)
5398 		return -EINVAL;
5399 
5400 	clocks->memory_max_clock = mclk_table->count > 1 ?
5401 				mclk_table->dpm_levels[mclk_table->count-1].value :
5402 				mclk_table->dpm_levels[0].value;
5403 	clocks->engine_max_clock = sclk_table->count > 1 ?
5404 				sclk_table->dpm_levels[sclk_table->count-1].value :
5405 				sclk_table->dpm_levels[0].value;
5406 	return 0;
5407 }
5408 
5409 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5410 		struct PP_TemperatureRange *thermal_data)
5411 {
5412 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5413 	struct phm_ppt_v1_information *table_info =
5414 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5415 
5416 	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5417 
5418 	if (hwmgr->pp_table_version == PP_TABLE_V1)
5419 		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5420 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5421 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
5422 		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5423 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5424 
5425 	thermal_data->sw_ctf_threshold = thermal_data->max;
5426 
5427 	return 0;
5428 }
5429 
5430 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5431 					enum PP_OD_DPM_TABLE_COMMAND type,
5432 					uint32_t clk,
5433 					uint32_t voltage)
5434 {
5435 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5436 
5437 	if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5438 		pr_info("OD voltage is out of range [%d - %d] mV\n",
5439 						data->odn_dpm_table.min_vddc,
5440 						data->odn_dpm_table.max_vddc);
5441 		return false;
5442 	}
5443 
5444 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5445 		if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5446 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5447 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5448 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5449 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5450 			return false;
5451 		}
5452 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5453 		if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5454 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5455 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5456 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5457 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5458 			return false;
5459 		}
5460 	} else {
5461 		return false;
5462 	}
5463 
5464 	return true;
5465 }
5466 
5467 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5468 					enum PP_OD_DPM_TABLE_COMMAND type,
5469 					long *input, uint32_t size)
5470 {
5471 	uint32_t i;
5472 	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5473 	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5474 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5475 
5476 	uint32_t input_clk;
5477 	uint32_t input_vol;
5478 	uint32_t input_level;
5479 
5480 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5481 				return -EINVAL);
5482 
5483 	if (!hwmgr->od_enabled) {
5484 		pr_info("OverDrive feature not enabled\n");
5485 		return -EINVAL;
5486 	}
5487 
5488 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5489 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5490 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5491 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5492 				"Failed to get ODN SCLK and Voltage tables",
5493 				return -EINVAL);
5494 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5495 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5496 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5497 
5498 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5499 			"Failed to get ODN MCLK and Voltage tables",
5500 			return -EINVAL);
5501 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5502 		smu7_odn_initial_default_setting(hwmgr);
5503 		return 0;
5504 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5505 		smu7_check_dpm_table_updated(hwmgr);
5506 		return 0;
5507 	} else {
5508 		return -EINVAL;
5509 	}
5510 
5511 	for (i = 0; i < size; i += 3) {
5512 		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5513 			pr_info("invalid clock voltage input \n");
5514 			return 0;
5515 		}
5516 		input_level = input[i];
5517 		input_clk = input[i+1] * 100;
5518 		input_vol = input[i+2];
5519 
5520 		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5521 			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5522 			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5523 			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5524 			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5525 			podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5526 		} else {
5527 			return -EINVAL;
5528 		}
5529 	}
5530 
5531 	return 0;
5532 }
5533 
5534 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5535 {
5536 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5537 	uint32_t i, size = 0;
5538 	uint32_t len;
5539 
5540 	static const char *title[8] = {"NUM",
5541 			"MODE_NAME",
5542 			"SCLK_UP_HYST",
5543 			"SCLK_DOWN_HYST",
5544 			"SCLK_ACTIVE_LEVEL",
5545 			"MCLK_UP_HYST",
5546 			"MCLK_DOWN_HYST",
5547 			"MCLK_ACTIVE_LEVEL"};
5548 
5549 	if (!buf)
5550 		return -EINVAL;
5551 
5552 	phm_get_sysfs_buf(&buf, &size);
5553 
5554 	size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5555 			title[0], title[1], title[2], title[3],
5556 			title[4], title[5], title[6], title[7]);
5557 
5558 	len = ARRAY_SIZE(smu7_profiling);
5559 
5560 	for (i = 0; i < len; i++) {
5561 		if (i == hwmgr->power_profile_mode) {
5562 			size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5563 			i, amdgpu_pp_profile_name[i], "*",
5564 			data->current_profile_setting.sclk_up_hyst,
5565 			data->current_profile_setting.sclk_down_hyst,
5566 			data->current_profile_setting.sclk_activity,
5567 			data->current_profile_setting.mclk_up_hyst,
5568 			data->current_profile_setting.mclk_down_hyst,
5569 			data->current_profile_setting.mclk_activity);
5570 			continue;
5571 		}
5572 		if (smu7_profiling[i].bupdate_sclk)
5573 			size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5574 			i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5575 			smu7_profiling[i].sclk_down_hyst,
5576 			smu7_profiling[i].sclk_activity);
5577 		else
5578 			size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5579 			i, amdgpu_pp_profile_name[i], "-", "-", "-");
5580 
5581 		if (smu7_profiling[i].bupdate_mclk)
5582 			size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5583 			smu7_profiling[i].mclk_up_hyst,
5584 			smu7_profiling[i].mclk_down_hyst,
5585 			smu7_profiling[i].mclk_activity);
5586 		else
5587 			size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5588 			"-", "-", "-");
5589 	}
5590 
5591 	return size;
5592 }
5593 
5594 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5595 					enum PP_SMC_POWER_PROFILE requst)
5596 {
5597 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5598 	uint32_t tmp, level;
5599 
5600 	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5601 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5602 			level = 0;
5603 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5604 			while (tmp >>= 1)
5605 				level++;
5606 			if (level > 0)
5607 				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5608 		}
5609 	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5610 		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5611 	}
5612 }
5613 
5614 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5615 {
5616 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5617 	struct profile_mode_setting tmp;
5618 	enum PP_SMC_POWER_PROFILE mode;
5619 
5620 	if (input == NULL)
5621 		return -EINVAL;
5622 
5623 	mode = input[size];
5624 	switch (mode) {
5625 	case PP_SMC_POWER_PROFILE_CUSTOM:
5626 		if (size < 8 && size != 0)
5627 			return -EINVAL;
5628 		/* If only CUSTOM is passed in, use the saved values. Check
5629 		 * that we actually have a CUSTOM profile by ensuring that
5630 		 * the "use sclk" or the "use mclk" bits are set
5631 		 */
5632 		tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5633 		if (size == 0) {
5634 			if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5635 				return -EINVAL;
5636 		} else {
5637 			tmp.bupdate_sclk = input[0];
5638 			tmp.sclk_up_hyst = input[1];
5639 			tmp.sclk_down_hyst = input[2];
5640 			tmp.sclk_activity = input[3];
5641 			tmp.bupdate_mclk = input[4];
5642 			tmp.mclk_up_hyst = input[5];
5643 			tmp.mclk_down_hyst = input[6];
5644 			tmp.mclk_activity = input[7];
5645 			smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5646 		}
5647 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5648 			memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5649 			hwmgr->power_profile_mode = mode;
5650 		}
5651 		break;
5652 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5653 	case PP_SMC_POWER_PROFILE_POWERSAVING:
5654 	case PP_SMC_POWER_PROFILE_VIDEO:
5655 	case PP_SMC_POWER_PROFILE_VR:
5656 	case PP_SMC_POWER_PROFILE_COMPUTE:
5657 		if (mode == hwmgr->power_profile_mode)
5658 			return 0;
5659 
5660 		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5661 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5662 			if (tmp.bupdate_sclk) {
5663 				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5664 				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5665 				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5666 				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5667 			}
5668 			if (tmp.bupdate_mclk) {
5669 				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5670 				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5671 				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5672 				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5673 			}
5674 			smu7_patch_compute_profile_mode(hwmgr, mode);
5675 			hwmgr->power_profile_mode = mode;
5676 		}
5677 		break;
5678 	default:
5679 		return -EINVAL;
5680 	}
5681 
5682 	return 0;
5683 }
5684 
5685 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5686 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5687 				PHM_PerformanceLevel *level)
5688 {
5689 	const struct smu7_power_state *ps;
5690 	uint32_t i;
5691 
5692 	if (level == NULL || hwmgr == NULL || state == NULL)
5693 		return -EINVAL;
5694 
5695 	ps = cast_const_phw_smu7_power_state(state);
5696 
5697 	i = index > ps->performance_level_count - 1 ?
5698 			ps->performance_level_count - 1 : index;
5699 
5700 	level->coreClock = ps->performance_levels[i].engine_clock;
5701 	level->memory_clock = ps->performance_levels[i].memory_clock;
5702 
5703 	return 0;
5704 }
5705 
5706 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5707 {
5708 	int result;
5709 
5710 	result = smu7_disable_dpm_tasks(hwmgr);
5711 	PP_ASSERT_WITH_CODE((0 == result),
5712 			"[disable_dpm_tasks] Failed to disable DPM!",
5713 			);
5714 
5715 	return result;
5716 }
5717 
5718 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5719 	.backend_init = &smu7_hwmgr_backend_init,
5720 	.backend_fini = &smu7_hwmgr_backend_fini,
5721 	.asic_setup = &smu7_setup_asic_task,
5722 	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5723 	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5724 	.force_dpm_level = &smu7_force_dpm_level,
5725 	.power_state_set = smu7_set_power_state_tasks,
5726 	.get_power_state_size = smu7_get_power_state_size,
5727 	.get_mclk = smu7_dpm_get_mclk,
5728 	.get_sclk = smu7_dpm_get_sclk,
5729 	.patch_boot_state = smu7_dpm_patch_boot_state,
5730 	.get_pp_table_entry = smu7_get_pp_table_entry,
5731 	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5732 	.powerdown_uvd = smu7_powerdown_uvd,
5733 	.powergate_uvd = smu7_powergate_uvd,
5734 	.powergate_vce = smu7_powergate_vce,
5735 	.disable_clock_power_gating = smu7_disable_clock_power_gating,
5736 	.update_clock_gatings = smu7_update_clock_gatings,
5737 	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5738 	.display_config_changed = smu7_display_configuration_changed_task,
5739 	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5740 	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5741 	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5742 	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5743 	.get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5744 	.set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5745 	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5746 	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5747 	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5748 	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5749 	.register_irq_handlers = smu7_register_irq_handlers,
5750 	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5751 	.check_states_equal = smu7_check_states_equal,
5752 	.set_fan_control_mode = smu7_set_fan_control_mode,
5753 	.get_fan_control_mode = smu7_get_fan_control_mode,
5754 	.force_clock_level = smu7_force_clock_level,
5755 	.print_clock_levels = smu7_print_clock_levels,
5756 	.powergate_gfx = smu7_powergate_gfx,
5757 	.get_sclk_od = smu7_get_sclk_od,
5758 	.set_sclk_od = smu7_set_sclk_od,
5759 	.get_mclk_od = smu7_get_mclk_od,
5760 	.set_mclk_od = smu7_set_mclk_od,
5761 	.get_clock_by_type = smu7_get_clock_by_type,
5762 	.get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5763 	.set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5764 	.read_sensor = smu7_read_sensor,
5765 	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5766 	.avfs_control = smu7_avfs_control,
5767 	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5768 	.start_thermal_controller = smu7_start_thermal_controller,
5769 	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5770 	.get_max_high_clocks = smu7_get_max_high_clocks,
5771 	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5772 	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5773 	.set_power_limit = smu7_set_power_limit,
5774 	.get_power_profile_mode = smu7_get_power_profile_mode,
5775 	.set_power_profile_mode = smu7_set_power_profile_mode,
5776 	.get_performance_level = smu7_get_performance_level,
5777 	.get_asic_baco_capability = smu7_baco_get_capability,
5778 	.get_asic_baco_state = smu7_baco_get_state,
5779 	.set_asic_baco_state = smu7_baco_set_state,
5780 	.power_off_asic = smu7_power_off_asic,
5781 };
5782 
5783 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5784 		uint32_t clock_insr)
5785 {
5786 	uint8_t i;
5787 	uint32_t temp;
5788 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5789 
5790 	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5791 	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
5792 		temp = clock >> i;
5793 
5794 		if (temp >= min || i == 0)
5795 			break;
5796 	}
5797 	return i;
5798 }
5799 
5800 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5801 {
5802 	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5803 	if (hwmgr->pp_table_version == PP_TABLE_V0)
5804 		hwmgr->pptable_func = &pptable_funcs;
5805 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
5806 		hwmgr->pptable_func = &pptable_v1_0_funcs;
5807 
5808 	return 0;
5809 }
5810