xref: /linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include "atom.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "cgs_common.h"
31 
32 #define MEM_ID_MASK           0xff000000
33 #define MEM_ID_SHIFT          24
34 #define CLOCK_RANGE_MASK      0x00ffffff
35 #define CLOCK_RANGE_SHIFT     0
36 #define LOW_NIBBLE_MASK       0xf
37 #define DATA_EQU_PREV         0
38 #define DATA_FROM_TABLE       4
39 
40 union voltage_object_info {
41 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
42 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
43 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
44 };
45 
46 static int atomctrl_retrieve_ac_timing(
47 		uint8_t index,
48 		ATOM_INIT_REG_BLOCK *reg_block,
49 		pp_atomctrl_mc_reg_table *table)
50 {
51 	uint32_t i, j;
52 	uint8_t tmem_id;
53 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
54 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
55 
56 	uint8_t num_ranges = 0;
57 
58 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
59 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
60 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
61 
62 		if (index == tmem_id) {
63 			table->mc_reg_table_entry[num_ranges].mclk_max =
64 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
65 						CLOCK_RANGE_SHIFT);
66 
67 			for (i = 0, j = 1; i < table->last; i++) {
68 				if ((table->mc_reg_address[i].uc_pre_reg_data &
69 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
70 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
71 						(uint32_t)*((uint32_t *)reg_data + j);
72 					j++;
73 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
74 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
75 					if (i)
76 						table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 							table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 				}
79 			}
80 			num_ranges++;
81 		}
82 
83 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 	}
86 
87 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 			"Invalid VramInfo table.", return -1);
89 	table->num_entries = num_ranges;
90 
91 	return 0;
92 }
93 
94 /**
95  * atomctrl_set_mc_reg_address_table - Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @reg_block: the address ATOM_INIT_REG_BLOCK
98  * @table: the address of MCRegTable
99  * Return:   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102 		ATOM_INIT_REG_BLOCK *reg_block,
103 		pp_atomctrl_mc_reg_table *table)
104 {
105 	uint8_t i = 0;
106 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109 
110 	num_entries--;        /* subtract 1 data end mark entry */
111 
112 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 			"Invalid VramInfo table.", return -1);
114 
115 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 			(i < num_entries)) {
118 		table->mc_reg_address[i].s1 =
119 			(uint16_t)(le16_to_cpu(format->usRegIndex));
120 		table->mc_reg_address[i].uc_pre_reg_data =
121 			format->ucPreRegDataLength;
122 
123 		i++;
124 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 	}
127 
128 	table->last = i;
129 	return 0;
130 }
131 
132 int atomctrl_initialize_mc_reg_table(
133 		struct pp_hwmgr *hwmgr,
134 		uint8_t module_index,
135 		pp_atomctrl_mc_reg_table *table)
136 {
137 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138 	ATOM_INIT_REG_BLOCK *reg_block;
139 	int result = 0;
140 	u8 frev, crev;
141 	u16 size;
142 
143 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144 		smu_atom_get_data_table(hwmgr->adev,
145 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146 
147 	if (module_index >= vram_info->ucNumOfVRAMModule) {
148 		pr_err("Invalid VramInfo table.");
149 		result = -1;
150 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151 		pr_err("Invalid VramInfo table.");
152 		result = -1;
153 	}
154 
155 	if (0 == result) {
156 		reg_block = (ATOM_INIT_REG_BLOCK *)
157 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
159 	}
160 
161 	if (0 == result) {
162 		result = atomctrl_retrieve_ac_timing(module_index,
163 					reg_block, table);
164 	}
165 
166 	return result;
167 }
168 
169 int atomctrl_initialize_mc_reg_table_v2_2(
170 		struct pp_hwmgr *hwmgr,
171 		uint8_t module_index,
172 		pp_atomctrl_mc_reg_table *table)
173 {
174 	ATOM_VRAM_INFO_HEADER_V2_2 *vram_info;
175 	ATOM_INIT_REG_BLOCK *reg_block;
176 	int result = 0;
177 	u8 frev, crev;
178 	u16 size;
179 
180 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_2 *)
181 		smu_atom_get_data_table(hwmgr->adev,
182 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
183 
184 	if (module_index >= vram_info->ucNumOfVRAMModule) {
185 		pr_err("Invalid VramInfo table.");
186 		result = -1;
187 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
188 		pr_err("Invalid VramInfo table.");
189 		result = -1;
190 	}
191 
192 	if (0 == result) {
193 		reg_block = (ATOM_INIT_REG_BLOCK *)
194 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
195 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
196 	}
197 
198 	if (0 == result) {
199 		result = atomctrl_retrieve_ac_timing(module_index,
200 					reg_block, table);
201 	}
202 
203 	return result;
204 }
205 
206 /*
207  * Set DRAM timings based on engine clock and memory clock.
208  */
209 int atomctrl_set_engine_dram_timings_rv770(
210 		struct pp_hwmgr *hwmgr,
211 		uint32_t engine_clock,
212 		uint32_t memory_clock)
213 {
214 	struct amdgpu_device *adev = hwmgr->adev;
215 
216 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
217 
218 	/* They are both in 10KHz Units. */
219 	engine_clock_parameters.ulTargetEngineClock =
220 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
221 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
222 
223 	/* in 10 khz units.*/
224 	engine_clock_parameters.sReserved.ulClock =
225 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
226 
227 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
228 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
229 			(uint32_t *)&engine_clock_parameters, sizeof(engine_clock_parameters));
230 }
231 
232 /*
233  * Private Function to get the PowerPlay Table Address.
234  * WARNING: The tabled returned by this function is in
235  * dynamically allocated memory.
236  * The caller has to release if by calling kfree.
237  */
238 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
239 {
240 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
241 	u8 frev, crev;
242 	u16 size;
243 	union voltage_object_info *voltage_info;
244 
245 	voltage_info = (union voltage_object_info *)
246 		smu_atom_get_data_table(device, index,
247 			&size, &frev, &crev);
248 
249 	if (voltage_info != NULL)
250 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
251 	else
252 		return NULL;
253 }
254 
255 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
256 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
257 		uint8_t voltage_type, uint8_t voltage_mode)
258 {
259 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
260 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
261 	uint8_t *start = (uint8_t *)voltage_object_info_table;
262 
263 	while (offset < size) {
264 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
265 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
266 
267 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
268 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
269 			return voltage_object;
270 
271 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
272 	}
273 
274 	return NULL;
275 }
276 
277 /**
278  * atomctrl_get_memory_pll_dividers_si
279  *
280  * @hwmgr:           input parameter: pointer to HwMgr
281  * @clock_value:     input parameter: memory clock
282  * @mpll_param:      output parameter: memory clock parameters
283  * @strobe_mode:     input parameter: 1 for strobe mode,  0 for performance mode
284  */
285 int atomctrl_get_memory_pll_dividers_si(
286 		struct pp_hwmgr *hwmgr,
287 		uint32_t clock_value,
288 		pp_atomctrl_memory_clock_param *mpll_param,
289 		bool strobe_mode)
290 {
291 	struct amdgpu_device *adev = hwmgr->adev;
292 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
293 	int result;
294 
295 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
296 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
297 
298 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
299 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
300 		(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
301 
302 	if (0 == result) {
303 		mpll_param->mpll_fb_divider.clk_frac =
304 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
305 		mpll_param->mpll_fb_divider.cl_kf =
306 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
307 		mpll_param->mpll_post_divider =
308 			(uint32_t)mpll_parameters.ucPostDiv;
309 		mpll_param->vco_mode =
310 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
311 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
312 		mpll_param->yclk_sel =
313 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
314 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
315 		mpll_param->qdr =
316 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
317 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
318 		mpll_param->half_rate =
319 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
320 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
321 		mpll_param->dll_speed =
322 			(uint32_t)(mpll_parameters.ucDllSpeed);
323 		mpll_param->bw_ctrl =
324 			(uint32_t)(mpll_parameters.ucBWCntl);
325 	}
326 
327 	return result;
328 }
329 
330 /**
331  * atomctrl_get_memory_pll_dividers_vi
332  *
333  * @hwmgr:                 input parameter: pointer to HwMgr
334  * @clock_value:           input parameter: memory clock
335  * @mpll_param:            output parameter: memory clock parameters
336  */
337 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
338 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
339 {
340 	struct amdgpu_device *adev = hwmgr->adev;
341 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
342 	int result;
343 
344 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
345 
346 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
347 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
348 			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
349 
350 	if (!result)
351 		mpll_param->mpll_post_divider =
352 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
353 
354 	return result;
355 }
356 
357 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
358 					uint32_t clock_value,
359 					pp_atomctrl_memory_clock_param_ai *mpll_param)
360 {
361 	struct amdgpu_device *adev = hwmgr->adev;
362 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
363 	int result;
364 
365 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
366 
367 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
368 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
369 			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
370 
371 	/* VEGAM's mpll takes sometime to finish computing */
372 	udelay(10);
373 
374 	if (!result) {
375 		mpll_param->ulMclk_fcw_int =
376 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
377 		mpll_param->ulMclk_fcw_frac =
378 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
379 		mpll_param->ulClock =
380 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
381 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
382 	}
383 
384 	return result;
385 }
386 
387 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
388 					  uint32_t clock_value,
389 					  pp_atomctrl_clock_dividers_kong *dividers)
390 {
391 	struct amdgpu_device *adev = hwmgr->adev;
392 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
393 	int result;
394 
395 	pll_parameters.ulClock = cpu_to_le32(clock_value);
396 
397 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
398 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
399 		(uint32_t *)&pll_parameters, sizeof(pll_parameters));
400 
401 	if (0 == result) {
402 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
403 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
404 	}
405 
406 	return result;
407 }
408 
409 int atomctrl_get_engine_pll_dividers_vi(
410 		struct pp_hwmgr *hwmgr,
411 		uint32_t clock_value,
412 		pp_atomctrl_clock_dividers_vi *dividers)
413 {
414 	struct amdgpu_device *adev = hwmgr->adev;
415 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
416 	int result;
417 
418 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
419 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
420 
421 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
422 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
423 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
424 
425 	if (0 == result) {
426 		dividers->pll_post_divider =
427 			pll_patameters.ulClock.ucPostDiv;
428 		dividers->real_clock =
429 			le32_to_cpu(pll_patameters.ulClock.ulClock);
430 
431 		dividers->ul_fb_div.ul_fb_div_frac =
432 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
433 		dividers->ul_fb_div.ul_fb_div =
434 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
435 
436 		dividers->uc_pll_ref_div =
437 			pll_patameters.ucPllRefDiv;
438 		dividers->uc_pll_post_div =
439 			pll_patameters.ucPllPostDiv;
440 		dividers->uc_pll_cntl_flag =
441 			pll_patameters.ucPllCntlFlag;
442 	}
443 
444 	return result;
445 }
446 
447 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
448 		uint32_t clock_value,
449 		pp_atomctrl_clock_dividers_ai *dividers)
450 {
451 	struct amdgpu_device *adev = hwmgr->adev;
452 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
453 	int result;
454 
455 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
456 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
457 
458 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
459 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
460 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
461 
462 	if (0 == result) {
463 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
464 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
465 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
466 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
467 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
468 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
469 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
470 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
471 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
472 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
473 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
474 	}
475 	return result;
476 }
477 
478 int atomctrl_get_dfs_pll_dividers_vi(
479 		struct pp_hwmgr *hwmgr,
480 		uint32_t clock_value,
481 		pp_atomctrl_clock_dividers_vi *dividers)
482 {
483 	struct amdgpu_device *adev = hwmgr->adev;
484 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
485 	int result;
486 
487 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
488 	pll_patameters.ulClock.ucPostDiv =
489 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
490 
491 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
492 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
493 		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
494 
495 	if (0 == result) {
496 		dividers->pll_post_divider =
497 			pll_patameters.ulClock.ucPostDiv;
498 		dividers->real_clock =
499 			le32_to_cpu(pll_patameters.ulClock.ulClock);
500 
501 		dividers->ul_fb_div.ul_fb_div_frac =
502 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
503 		dividers->ul_fb_div.ul_fb_div =
504 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
505 
506 		dividers->uc_pll_ref_div =
507 			pll_patameters.ucPllRefDiv;
508 		dividers->uc_pll_post_div =
509 			pll_patameters.ucPllPostDiv;
510 		dividers->uc_pll_cntl_flag =
511 			pll_patameters.ucPllCntlFlag;
512 	}
513 
514 	return result;
515 }
516 
517 /*
518  * Get the reference clock in 10KHz
519  */
520 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
521 {
522 	ATOM_FIRMWARE_INFO *fw_info;
523 	u8 frev, crev;
524 	u16 size;
525 	uint32_t clock;
526 
527 	fw_info = (ATOM_FIRMWARE_INFO *)
528 		smu_atom_get_data_table(hwmgr->adev,
529 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
530 			&size, &frev, &crev);
531 
532 	if (fw_info == NULL)
533 		clock = 2700;
534 	else
535 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
536 
537 	return clock;
538 }
539 
540 /*
541  * Returns true if the given voltage type is controlled by GPIO pins.
542  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
543  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
544  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
545  */
546 bool atomctrl_is_voltage_controlled_by_gpio_v3(
547 		struct pp_hwmgr *hwmgr,
548 		uint8_t voltage_type,
549 		uint8_t voltage_mode)
550 {
551 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
552 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
553 	bool ret;
554 
555 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
556 			"Could not find Voltage Table in BIOS.", return false;);
557 
558 	ret = (NULL != atomctrl_lookup_voltage_type_v3
559 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
560 
561 	return ret;
562 }
563 
564 int atomctrl_get_voltage_table_v3(
565 		struct pp_hwmgr *hwmgr,
566 		uint8_t voltage_type,
567 		uint8_t voltage_mode,
568 		pp_atomctrl_voltage_table *voltage_table)
569 {
570 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
571 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
572 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
573 	unsigned int i;
574 
575 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
576 			"Could not find Voltage Table in BIOS.", return -1;);
577 
578 	voltage_object = atomctrl_lookup_voltage_type_v3
579 		(voltage_info, voltage_type, voltage_mode);
580 
581 	if (voltage_object == NULL)
582 		return -1;
583 
584 	PP_ASSERT_WITH_CODE(
585 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
586 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
587 			"Too many voltage entries!",
588 			return -1;
589 			);
590 
591 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
592 		voltage_table->entries[i].value =
593 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
594 		voltage_table->entries[i].smio_low =
595 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
596 	}
597 
598 	voltage_table->mask_low    =
599 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
600 	voltage_table->count      =
601 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
602 	voltage_table->phase_delay =
603 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
604 
605 	return 0;
606 }
607 
608 static bool atomctrl_lookup_gpio_pin(
609 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
610 		const uint32_t pinId,
611 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
612 {
613 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
614 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
615 	uint8_t *start = (uint8_t *)gpio_lookup_table;
616 
617 	while (offset < size) {
618 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
619 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
620 
621 		if (pinId == pin_assignment->ucGPIO_ID) {
622 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
623 				pin_assignment->ucGpioPinBitShift;
624 			gpio_pin_assignment->us_gpio_pin_aindex =
625 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
626 			return true;
627 		}
628 
629 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
630 	}
631 
632 	return false;
633 }
634 
635 /*
636  * Private Function to get the PowerPlay Table Address.
637  * WARNING: The tabled returned by this function is in
638  * dynamically allocated memory.
639  * The caller has to release if by calling kfree.
640  */
641 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
642 {
643 	u8 frev, crev;
644 	u16 size;
645 	void *table_address;
646 
647 	table_address = (ATOM_GPIO_PIN_LUT *)
648 		smu_atom_get_data_table(device,
649 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
650 				&size, &frev, &crev);
651 
652 	PP_ASSERT_WITH_CODE((NULL != table_address),
653 			"Error retrieving BIOS Table Address!", return NULL;);
654 
655 	return (ATOM_GPIO_PIN_LUT *)table_address;
656 }
657 
658 /*
659  * Returns 1 if the given pin id find in lookup table.
660  */
661 bool atomctrl_get_pp_assign_pin(
662 		struct pp_hwmgr *hwmgr,
663 		const uint32_t pinId,
664 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
665 {
666 	bool bRet = false;
667 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
668 		get_gpio_lookup_table(hwmgr->adev);
669 
670 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
671 			"Could not find GPIO lookup Table in BIOS.", return false);
672 
673 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
674 		gpio_pin_assignment);
675 
676 	return bRet;
677 }
678 
679 /**
680  * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
681  * @hwmgr:              input: pointer to hwManager
682  * @voltage_type:       input: type of EVV voltage VDDC or VDDGFX
683  * @sclk:               input: in 10Khz unit. DPM state SCLK frequency
684  *		         which is define in PPTable SCLK/VDDC dependence
685  *			 table associated with this virtual_voltage_Id
686  * @virtual_voltage_Id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
687  * @voltage: 	        output: real voltage level in unit of mv
688  */
689 int atomctrl_get_voltage_evv_on_sclk(
690 		struct pp_hwmgr *hwmgr,
691 		uint8_t voltage_type,
692 		uint32_t sclk, uint16_t virtual_voltage_Id,
693 		uint16_t *voltage)
694 {
695 	struct amdgpu_device *adev = hwmgr->adev;
696 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
697 	int result;
698 
699 	get_voltage_info_param_space.ucVoltageType   =
700 		voltage_type;
701 	get_voltage_info_param_space.ucVoltageMode   =
702 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
703 	get_voltage_info_param_space.usVoltageLevel  =
704 		cpu_to_le16(virtual_voltage_Id);
705 	get_voltage_info_param_space.ulSCLKFreq      =
706 		cpu_to_le32(sclk);
707 
708 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
709 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
710 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
711 
712 	*voltage = result ? 0 :
713 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
714 				(&get_voltage_info_param_space))->usVoltageLevel);
715 
716 	return result;
717 }
718 
719 /**
720  * atomctrl_get_voltage_evv: gets voltage via call to ATOM COMMAND table.
721  * @hwmgr:              input: pointer to hwManager
722  * @virtual_voltage_id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
723  * @voltage: 	       output: real voltage level in unit of mv
724  */
725 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
726 			     uint16_t virtual_voltage_id,
727 			     uint16_t *voltage)
728 {
729 	struct amdgpu_device *adev = hwmgr->adev;
730 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
731 	int result;
732 	int entry_id;
733 
734 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
735 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
736 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
737 			/* found */
738 			break;
739 		}
740 	}
741 
742 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
743 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
744 	        return -EINVAL;
745 	}
746 
747 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
748 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
749 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
750 	get_voltage_info_param_space.ulSCLKFreq =
751 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
752 
753 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
754 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
755 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
756 
757 	if (0 != result)
758 		return result;
759 
760 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
761 				(&get_voltage_info_param_space))->usVoltageLevel);
762 
763 	return result;
764 }
765 
766 /*
767  * Get the mpll reference clock in 10KHz
768  */
769 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
770 {
771 	ATOM_COMMON_TABLE_HEADER *fw_info;
772 	uint32_t clock;
773 	u8 frev, crev;
774 	u16 size;
775 
776 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
777 		smu_atom_get_data_table(hwmgr->adev,
778 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
779 				&size, &frev, &crev);
780 
781 	if (fw_info == NULL)
782 		clock = 2700;
783 	else {
784 		if ((fw_info->ucTableFormatRevision == 2) &&
785 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
786 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
787 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
788 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
789 		} else {
790 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
791 				(ATOM_FIRMWARE_INFO *)fw_info;
792 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
793 		}
794 	}
795 
796 	return clock;
797 }
798 
799 /*
800  * Get the asic internal spread spectrum table
801  */
802 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
803 {
804 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
805 	u8 frev, crev;
806 	u16 size;
807 
808 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
809 		smu_atom_get_data_table(device,
810 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
811 			&size, &frev, &crev);
812 
813 	return table;
814 }
815 
816 bool atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr *hwmgr)
817 {
818 	ATOM_ASIC_INTERNAL_SS_INFO *table =
819 		asic_internal_ss_get_ss_table(hwmgr->adev);
820 
821 	if (table)
822 		return true;
823 	else
824 		return false;
825 }
826 
827 /*
828  * Get the asic internal spread spectrum assignment
829  */
830 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
831 		const uint8_t clockSource,
832 		const uint32_t clockSpeed,
833 		pp_atomctrl_internal_ss_info *ssEntry)
834 {
835 	ATOM_ASIC_INTERNAL_SS_INFO *table;
836 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
837 	int entry_found = 0;
838 
839 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
840 
841 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
842 
843 	if (NULL == table)
844 		return -1;
845 
846 	ssInfo = &table->asSpreadSpectrum[0];
847 
848 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
849 		le16_to_cpu(table->sHeader.usStructureSize)) {
850 		if ((clockSource == ssInfo->ucClockIndication) &&
851 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
852 			entry_found = 1;
853 			break;
854 		}
855 
856 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
857 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
858 	}
859 
860 	if (entry_found) {
861 		ssEntry->speed_spectrum_percentage =
862 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
863 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
864 
865 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
866 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
867 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
868 			ssEntry->speed_spectrum_rate /= 100;
869 		}
870 
871 		switch (ssInfo->ucSpreadSpectrumMode) {
872 		case 0:
873 			ssEntry->speed_spectrum_mode =
874 				pp_atomctrl_spread_spectrum_mode_down;
875 			break;
876 		case 1:
877 			ssEntry->speed_spectrum_mode =
878 				pp_atomctrl_spread_spectrum_mode_center;
879 			break;
880 		default:
881 			ssEntry->speed_spectrum_mode =
882 				pp_atomctrl_spread_spectrum_mode_down;
883 			break;
884 		}
885 	}
886 
887 	return entry_found ? 0 : 1;
888 }
889 
890 /*
891  * Get the memory clock spread spectrum info
892  */
893 int atomctrl_get_memory_clock_spread_spectrum(
894 		struct pp_hwmgr *hwmgr,
895 		const uint32_t memory_clock,
896 		pp_atomctrl_internal_ss_info *ssInfo)
897 {
898 	return asic_internal_ss_get_ss_asignment(hwmgr,
899 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
900 }
901 
902 /*
903  * Get the engine clock spread spectrum info
904  */
905 int atomctrl_get_engine_clock_spread_spectrum(
906 		struct pp_hwmgr *hwmgr,
907 		const uint32_t engine_clock,
908 		pp_atomctrl_internal_ss_info *ssInfo)
909 {
910 	return asic_internal_ss_get_ss_asignment(hwmgr,
911 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
912 }
913 
914 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
915 		uint16_t end_index, uint32_t *efuse)
916 {
917 	struct amdgpu_device *adev = hwmgr->adev;
918 	uint32_t mask;
919 	int result;
920 	READ_EFUSE_VALUE_PARAMETER efuse_param;
921 
922 	if ((end_index - start_index)  == 31)
923 		mask = 0xFFFFFFFF;
924 	else
925 		mask = (1 << ((end_index - start_index) + 1)) - 1;
926 
927 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
928 	efuse_param.sEfuse.ucBitShift = (uint8_t)
929 			(start_index - ((start_index / 32) * 32));
930 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
931 			((end_index - start_index) + 1);
932 
933 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
934 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
935 			(uint32_t *)&efuse_param, sizeof(efuse_param));
936 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
937 
938 	return result;
939 }
940 
941 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
942 			      uint8_t level)
943 {
944 	struct amdgpu_device *adev = hwmgr->adev;
945 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
946 	int result;
947 
948 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
949 		memory_clock & SET_CLOCK_FREQ_MASK;
950 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
951 		ADJUST_MC_SETTING_PARAM;
952 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
953 
954 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
955 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
956 		(uint32_t *)&memory_clock_parameters, sizeof(memory_clock_parameters));
957 
958 	return result;
959 }
960 
961 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
962 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
963 {
964 	struct amdgpu_device *adev = hwmgr->adev;
965 	int result;
966 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
967 
968 	get_voltage_info_param_space.ucVoltageType = voltage_type;
969 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
970 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
971 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
972 
973 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
974 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
975 			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
976 
977 	*voltage = result ? 0 :
978 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
979 
980 	return result;
981 }
982 
983 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
984 {
985 
986 	int i;
987 	u8 frev, crev;
988 	u16 size;
989 
990 	ATOM_SMU_INFO_V2_1 *psmu_info =
991 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
992 			GetIndexIntoMasterTable(DATA, SMU_Info),
993 			&size, &frev, &crev);
994 
995 
996 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
997 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
998 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
999 		table->entry[i].usFcw_pcc =
1000 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1001 		table->entry[i].usFcw_trans_upper =
1002 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1003 		table->entry[i].usRcw_trans_lower =
1004 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 int atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr *hwmgr, uint8_t *shared_rail)
1011 {
1012 	ATOM_SMU_INFO_V2_1 *psmu_info =
1013 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1014 			GetIndexIntoMasterTable(DATA, SMU_Info),
1015 			NULL, NULL, NULL);
1016 	if (!psmu_info)
1017 		return -1;
1018 
1019 	*shared_rail = psmu_info->ucSharePowerSource;
1020 
1021 	return 0;
1022 }
1023 
1024 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1025 				  struct pp_atom_ctrl__avfs_parameters *param)
1026 {
1027 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1028 
1029 	if (param == NULL)
1030 		return -EINVAL;
1031 
1032 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1033 			smu_atom_get_data_table(hwmgr->adev,
1034 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1035 					NULL, NULL, NULL);
1036 	if (!profile)
1037 		return -1;
1038 
1039 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1040 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1041 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1042 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1043 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1044 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1045 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1046 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1047 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1048 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1049 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1050 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1051 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1052 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1053 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1054 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1055 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1056 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1057 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1058 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1059 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1060 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1061 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1062 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1063 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1064 
1065 	return 0;
1066 }
1067 
1068 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1069 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1070 				uint16_t *load_line)
1071 {
1072 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1073 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1074 
1075 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1076 
1077 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1078 			"Could not find Voltage Table in BIOS.", return -EINVAL);
1079 
1080 	voltage_object = atomctrl_lookup_voltage_type_v3
1081 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1082 
1083 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1084 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1085 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1086 
1087 	return 0;
1088 }
1089 
1090 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1091 {
1092 	struct amdgpu_device *adev = hwmgr->adev;
1093 	SET_VOLTAGE_PS_ALLOCATION allocation;
1094 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1095 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1096 	int result;
1097 
1098 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1099 
1100 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1101 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1102 			(uint32_t *)voltage_parameters, sizeof(*voltage_parameters));
1103 
1104 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1105 
1106 	return result;
1107 }
1108 
1109 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1110 					uint16_t *vddc, uint16_t *vddci,
1111 					uint16_t virtual_voltage_id,
1112 					uint16_t efuse_voltage_id)
1113 {
1114 	int i, j;
1115 	int ix;
1116 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1117 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1118 
1119 	*vddc = 0;
1120 	*vddci = 0;
1121 
1122 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1123 
1124 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1125 			smu_atom_get_data_table(hwmgr->adev,
1126 					ix,
1127 					NULL, NULL, NULL);
1128 	if (!profile)
1129 		return -EINVAL;
1130 
1131 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1132 		(profile->asHeader.ucTableContentRevision >= 1) &&
1133 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1134 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1135 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1136 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1137 		if (profile->ucElbVDDC_Num > 0) {
1138 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1139 				if (vddc_id_buf[i] == virtual_voltage_id) {
1140 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1141 						if (efuse_voltage_id <= leakage_bin[j]) {
1142 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1143 							break;
1144 						}
1145 					}
1146 					break;
1147 				}
1148 			}
1149 		}
1150 
1151 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1152 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1153 		if (profile->ucElbVDDCI_Num > 0) {
1154 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1155 				if (vddci_id_buf[i] == virtual_voltage_id) {
1156 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1157 						if (efuse_voltage_id <= leakage_bin[j]) {
1158 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1159 							break;
1160 						}
1161 					}
1162 					break;
1163 				}
1164 			}
1165 		}
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1172 							uint32_t *min_vddc)
1173 {
1174 	void *profile;
1175 
1176 	profile = smu_atom_get_data_table(hwmgr->adev,
1177 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1178 					NULL, NULL, NULL);
1179 
1180 	if (profile) {
1181 		switch (hwmgr->chip_id) {
1182 		case CHIP_TONGA:
1183 		case CHIP_FIJI:
1184 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1185 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1186 			return;
1187 		case CHIP_POLARIS11:
1188 		case CHIP_POLARIS10:
1189 		case CHIP_POLARIS12:
1190 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1191 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1192 			return;
1193 		default:
1194 			break;
1195 		}
1196 	}
1197 	*max_vddc = 0;
1198 	*min_vddc = 0;
1199 }
1200 
1201 int atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr *hwmgr,
1202 					       AtomCtrl_HiLoLeakageOffsetTable *table)
1203 {
1204 	ATOM_GFX_INFO_V2_3 *gfxinfo = smu_atom_get_data_table(hwmgr->adev,
1205 					GetIndexIntoMasterTable(DATA, GFX_Info),
1206 					NULL, NULL, NULL);
1207 	if (!gfxinfo)
1208 		return -ENOENT;
1209 
1210 	table->usHiLoLeakageThreshold = gfxinfo->usHiLoLeakageThreshold;
1211 	table->usEdcDidtLoDpm7TableOffset = gfxinfo->usEdcDidtLoDpm7TableOffset;
1212 	table->usEdcDidtHiDpm7TableOffset = gfxinfo->usEdcDidtHiDpm7TableOffset;
1213 
1214 	return 0;
1215 }
1216 
1217 static AtomCtrl_EDCLeakgeTable *get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1218 						      uint16_t offset)
1219 {
1220 	void *table_address;
1221 	char *temp;
1222 
1223 	table_address = smu_atom_get_data_table(hwmgr->adev,
1224 			GetIndexIntoMasterTable(DATA, GFX_Info),
1225 			NULL, NULL, NULL);
1226 	if (!table_address)
1227 		return NULL;
1228 
1229 	temp = (char *)table_address;
1230 	table_address += offset;
1231 
1232 	return (AtomCtrl_EDCLeakgeTable *)temp;
1233 }
1234 
1235 int atomctrl_get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1236 				   AtomCtrl_EDCLeakgeTable *table,
1237 				   uint16_t offset)
1238 {
1239 	uint32_t length, i;
1240 	AtomCtrl_EDCLeakgeTable *leakage_table =
1241 		get_edc_leakage_table(hwmgr, offset);
1242 
1243 	if (!leakage_table)
1244 		return -ENOENT;
1245 
1246 	length = sizeof(leakage_table->DIDT_REG) /
1247 		 sizeof(leakage_table->DIDT_REG[0]);
1248 	for (i = 0; i < length; i++)
1249 		table->DIDT_REG[i] = leakage_table->DIDT_REG[i];
1250 
1251 	return 0;
1252 }
1253