xref: /linux/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: MIT
2 //
3 // Copyright 2024 Advanced Micro Devices, Inc.
4 
5 #include "dc_spl.h"
6 #include "dc_spl_scl_filters.h"
7 #include "dc_spl_scl_easf_filters.h"
8 #include "dc_spl_isharp_filters.h"
9 #include "spl_debug.h"
10 
11 #define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
12 #define MIN_VIEWPORT_SIZE 12
13 
14 static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
15 {
16 	struct spl_rect rec;
17 	int r0_x_end = r0->x + r0->width;
18 	int r1_x_end = r1->x + r1->width;
19 	int r0_y_end = r0->y + r0->height;
20 	int r1_y_end = r1->y + r1->height;
21 
22 	rec.x = r0->x > r1->x ? r0->x : r1->x;
23 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
24 	rec.y = r0->y > r1->y ? r0->y : r1->y;
25 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
26 
27 	/* in case that there is no intersection */
28 	if (rec.width < 0 || rec.height < 0)
29 		memset(&rec, 0, sizeof(rec));
30 
31 	return rec;
32 }
33 
34 static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
35 {
36 	struct spl_rect rec_out = *rec_in;
37 
38 	rec_out.x += x;
39 	rec_out.y += y;
40 
41 	return rec_out;
42 }
43 
44 static struct spl_rect calculate_plane_rec_in_timing_active(
45 		struct spl_in *spl_in,
46 		const struct spl_rect *rec_in)
47 {
48 	/*
49 	 * The following diagram shows an example where we map a 1920x1200
50 	 * desktop to a 2560x1440 timing with a plane rect in the middle
51 	 * of the screen. To map a plane rect from Stream Source to Timing
52 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
53 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
54 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
55 	 * This will give us a plane rect's position in Timing Active. However
56 	 * we have to remove the fractional. The rule is that we find left/right
57 	 * and top/bottom positions and round the value to the adjacent integer.
58 	 *
59 	 * Stream Source Space
60 	 * ------------
61 	 *        __________________________________________________
62 	 *       |Stream Source (1920 x 1200) ^                     |
63 	 *       |                            y                     |
64 	 *       |         <------- w --------|>                    |
65 	 *       |          __________________V                     |
66 	 *       |<-- x -->|Plane//////////////| ^                  |
67 	 *       |         |(pre scale)////////| |                  |
68 	 *       |         |///////////////////| |                  |
69 	 *       |         |///////////////////| h                  |
70 	 *       |         |///////////////////| |                  |
71 	 *       |         |///////////////////| |                  |
72 	 *       |         |///////////////////| V                  |
73 	 *       |                                                  |
74 	 *       |                                                  |
75 	 *       |__________________________________________________|
76 	 *
77 	 *
78 	 * Timing Active Space
79 	 * ---------------------------------
80 	 *
81 	 *       Timing Active (2560 x 1440)
82 	 *        __________________________________________________
83 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
84 	 *       |*****|                                      |*****|
85 	 *       |<128>|                                      |*****|
86 	 *       |*****|     __________________               |*****|
87 	 *       |*****|    |Plane/////////////|              |*****|
88 	 *       |*****|    |(post scale)//////|              |*****|
89 	 *       |*****|    |//////////////////|              |*****|
90 	 *       |*****|    |//////////////////|              |*****|
91 	 *       |*****|    |//////////////////|              |*****|
92 	 *       |*****|    |//////////////////|              |*****|
93 	 *       |*****|                                      |*****|
94 	 *       |*****|                                      |*****|
95 	 *       |*****|                                      |*****|
96 	 *       |*****|______________________________________|*****|
97 	 *
98 	 * So the resulting formulas are shown below:
99 	 *
100 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
101 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
102 	 * recout_y = 0 + round(plane_y * 1440 / 1280)
103 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
104 	 *
105 	 * NOTE: fixed point division is not error free. To reduce errors
106 	 * introduced by fixed point division, we divide only after
107 	 * multiplication is complete.
108 	 */
109 	const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
110 	const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
111 	struct spl_rect rec_out = {0};
112 	struct spl_fixed31_32 temp;
113 
114 
115 	temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
116 			stream_src->width);
117 	rec_out.x = stream_dst->x + spl_fixpt_round(temp);
118 
119 	temp = spl_fixpt_from_fraction(
120 			(rec_in->x + rec_in->width) * (long long)stream_dst->width,
121 			stream_src->width);
122 	rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
123 
124 	temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
125 			stream_src->height);
126 	rec_out.y = stream_dst->y + spl_fixpt_round(temp);
127 
128 	temp = spl_fixpt_from_fraction(
129 			(rec_in->y + rec_in->height) * (long long)stream_dst->height,
130 			stream_src->height);
131 	rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
132 
133 	return rec_out;
134 }
135 
136 static struct spl_rect calculate_mpc_slice_in_timing_active(
137 		struct spl_in *spl_in,
138 		struct spl_rect *plane_clip_rec)
139 {
140 	int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
141 	int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
142 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
143 	struct spl_rect mpc_rec;
144 
145 	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
146 	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
147 	mpc_rec.height = plane_clip_rec->height;
148 	mpc_rec.y = plane_clip_rec->y;
149 	SPL_ASSERT(mpc_slice_count == 1 ||
150 			spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
151 			mpc_rec.width % 2 == 0);
152 
153 	/* extra pixels in the division remainder need to go to pipes after
154 	 * the extra pixel index minus one(epimo) defined here as:
155 	 */
156 	if (mpc_slice_idx > epimo) {
157 		mpc_rec.x += mpc_slice_idx - epimo - 1;
158 		mpc_rec.width += 1;
159 	}
160 
161 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
162 		SPL_ASSERT(mpc_rec.height % 2 == 0);
163 		mpc_rec.height /= 2;
164 	}
165 	return mpc_rec;
166 }
167 
168 static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
169 {
170 	int odm_slice_count = spl_in->basic_out.odm_combine_factor;
171 	int odm_slice_idx = spl_in->odm_slice_index;
172 	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
173 	int h_active = spl_in->basic_out.output_size.width;
174 	int v_active = spl_in->basic_out.output_size.height;
175 	int odm_slice_width;
176 	struct spl_rect odm_rec;
177 
178 	if (spl_in->basic_out.odm_combine_factor > 0) {
179 		odm_slice_width = h_active / odm_slice_count;
180 		/*
181 		 * deprecated, caller must pass in odm slice rect i.e OPP input
182 		 * rect in timing active for the new interface.
183 		 */
184 		if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
185 			odm_slice_width++;
186 
187 		odm_rec.x = odm_slice_width * odm_slice_idx;
188 		odm_rec.width = is_last_odm_slice ?
189 				/* last slice width is the reminder of h_active */
190 				h_active - odm_slice_width * (odm_slice_count - 1) :
191 				/* odm slice width is the floor of h_active / count */
192 				odm_slice_width;
193 		odm_rec.y = 0;
194 		odm_rec.height = v_active;
195 
196 		return odm_rec;
197 	}
198 
199 	return spl_in->basic_out.odm_slice_rect;
200 }
201 
202 static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
203 {
204 	/*
205 	 * A plane clip represents the desired plane size and position in Stream
206 	 * Source Space. Stream Source is the destination where all planes are
207 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
208 	 * all planes associated with the current stream are drawn together.
209 	 * After Stream Source is completed, we will further scale and
210 	 * reposition the entire canvas of the stream source to Stream
211 	 * Destination in Timing Active Space. This could be due to display
212 	 * overscan adjustment where we will need to rescale and reposition all
213 	 * the planes so they can fit into a TV with overscan or downscale
214 	 * upscale features such as GPU scaling or VSR.
215 	 *
216 	 * This two step blending is a virtual procedure in software. In
217 	 * hardware there is no such thing as Stream Source. all planes are
218 	 * blended once in Timing Active Space. Software virtualizes a Stream
219 	 * Source space to decouple the math complicity so scaling param
220 	 * calculation focuses on one step at a time.
221 	 *
222 	 * In the following two diagrams, user applied 10% overscan adjustment
223 	 * so the Stream Source needs to be scaled down a little before mapping
224 	 * to Timing Active Space. As a result the Plane Clip is also scaled
225 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
226 	 * respect to Stream Source is also scaled down. To map it in Timing
227 	 * Active Space additional x and y offsets from Stream Destination are
228 	 * added to Plane Clip as well.
229 	 *
230 	 * Stream Source Space
231 	 * ------------
232 	 *        __________________________________________________
233 	 *       |Stream Source (3840 x 2160) ^                     |
234 	 *       |                            y                     |
235 	 *       |                            |                     |
236 	 *       |          __________________V                     |
237 	 *       |<-- x -->|Plane Clip/////////|                    |
238 	 *       |         |(pre scale)////////|                    |
239 	 *       |         |///////////////////|                    |
240 	 *       |         |///////////////////|                    |
241 	 *       |         |///////////////////|                    |
242 	 *       |         |///////////////////|                    |
243 	 *       |         |///////////////////|                    |
244 	 *       |                                                  |
245 	 *       |                                                  |
246 	 *       |__________________________________________________|
247 	 *
248 	 *
249 	 * Timing Active Space (3840 x 2160)
250 	 * ---------------------------------
251 	 *
252 	 *       Timing Active
253 	 *        __________________________________________________
254 	 *       | y_____________________________________________   |
255 	 *       |x |Stream Destination (3456 x 1944)            |  |
256 	 *       |  |                                            |  |
257 	 *       |  |        __________________                  |  |
258 	 *       |  |       |Plane Clip////////|                 |  |
259 	 *       |  |       |(post scale)//////|                 |  |
260 	 *       |  |       |//////////////////|                 |  |
261 	 *       |  |       |//////////////////|                 |  |
262 	 *       |  |       |//////////////////|                 |  |
263 	 *       |  |       |//////////////////|                 |  |
264 	 *       |  |                                            |  |
265 	 *       |  |                                            |  |
266 	 *       |  |____________________________________________|  |
267 	 *       |__________________________________________________|
268 	 *
269 	 *
270 	 * In Timing Active Space a plane clip could be further sliced into
271 	 * pieces called MPC slices. Each Pipe Context is responsible for
272 	 * processing only one MPC slice so the plane processing workload can be
273 	 * distributed to multiple DPP Pipes. MPC slices could be blended
274 	 * together to a single ODM slice. Each ODM slice is responsible for
275 	 * processing a portion of Timing Active divided horizontally so the
276 	 * output pixel processing workload can be distributed to multiple OPP
277 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
278 	 * slices belong to different ODM slices could be pieced together to
279 	 * form a single image in Timing Active. MPC slices must belong to
280 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
281 	 * needs to be divided into two MPC slices one for each ODM slice.
282 	 *
283 	 * In the following diagram the output pixel processing workload is
284 	 * divided horizontally into two ODM slices one for each OPP blend tree.
285 	 * OPP0 blend tree is responsible for processing left half of Timing
286 	 * Active, while OPP2 blend tree is responsible for processing right
287 	 * half.
288 	 *
289 	 * The plane has two MPC slices. However since the right MPC slice goes
290 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
291 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
292 	 *
293 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
294 	 * working on processing the plane in the diagram. We want to know the
295 	 * width and height of the shaded rectangle and its relative position
296 	 * with respect to the ODM slice0. This is called the recout of the pipe
297 	 * context.
298 	 *
299 	 * Planes can be at arbitrary size and position and there could be an
300 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
301 	 * all scenarios into account.
302 	 *
303 	 * Timing Active Space (3840 x 2160)
304 	 * ---------------------------------
305 	 *
306 	 *       Timing Active
307 	 *        __________________________________________________
308 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
309 	 *       |                y        |                        |
310 	 *       |                |  <- w ->                        |
311 	 *       |           _____V________|____                    |
312 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
313 	 *       |<------ x |-----|->|/////|    |                   |
314 	 *       |          |     |  |/////|    |                   |
315 	 *       |          |     h  |/////|    |                   |
316 	 *       |          |     |  |/////|    |                   |
317 	 *       |          |_____V__|/////|____|                   |
318 	 *       |                         |                        |
319 	 *       |                         |                        |
320 	 *       |                         |                        |
321 	 *       |_________________________|________________________|
322 	 *
323 	 *
324 	 */
325 	struct spl_rect plane_clip;
326 	struct spl_rect mpc_slice_of_plane_clip;
327 	struct spl_rect odm_slice;
328 	struct spl_rect overlapping_area;
329 
330 	plane_clip = calculate_plane_rec_in_timing_active(spl_in,
331 			&spl_in->basic_in.clip_rect);
332 	/* guard plane clip from drawing beyond stream dst here */
333 	plane_clip = intersect_rec(&plane_clip,
334 				&spl_in->basic_out.dst_rect);
335 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
336 			spl_in, &plane_clip);
337 	odm_slice = calculate_odm_slice_in_timing_active(spl_in);
338 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
339 
340 	if (overlapping_area.height > 0 &&
341 			overlapping_area.width > 0) {
342 		/* shift the overlapping area so it is with respect to current
343 		 * ODM slice's position
344 		 */
345 		spl_scratch->scl_data.recout = shift_rec(
346 				&overlapping_area,
347 				-odm_slice.x, -odm_slice.y);
348 		spl_scratch->scl_data.recout.height -=
349 			spl_in->debug.visual_confirm_base_offset;
350 		spl_scratch->scl_data.recout.height -=
351 			spl_in->debug.visual_confirm_dpp_offset;
352 	} else
353 		/* if there is no overlap, zero recout */
354 		memset(&spl_scratch->scl_data.recout, 0,
355 				sizeof(struct spl_rect));
356 }
357 
358 /* Calculate scaling ratios */
359 static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
360 		struct spl_scratch *spl_scratch,
361 		struct spl_out *spl_out)
362 {
363 	const int in_w = spl_in->basic_out.src_rect.width;
364 	const int in_h = spl_in->basic_out.src_rect.height;
365 	const int out_w = spl_in->basic_out.dst_rect.width;
366 	const int out_h = spl_in->basic_out.dst_rect.height;
367 	struct spl_rect surf_src = spl_in->basic_in.src_rect;
368 
369 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
370 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
371 		spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
372 		spl_swap(surf_src.height, surf_src.width);
373 
374 	spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
375 					surf_src.width,
376 					spl_in->basic_in.dst_rect.width);
377 	spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
378 					surf_src.height,
379 					spl_in->basic_in.dst_rect.height);
380 
381 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
382 		spl_scratch->scl_data.ratios.horz.value *= 2;
383 	else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
384 		spl_scratch->scl_data.ratios.vert.value *= 2;
385 
386 	spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
387 		spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
388 	spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
389 		spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
390 
391 	spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
392 	spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
393 
394 	if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
395 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
396 		spl_scratch->scl_data.ratios.horz_c.value /= 2;
397 		spl_scratch->scl_data.ratios.vert_c.value /= 2;
398 	}
399 	spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
400 			spl_scratch->scl_data.ratios.horz, 19);
401 	spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
402 			spl_scratch->scl_data.ratios.vert, 19);
403 	spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
404 			spl_scratch->scl_data.ratios.horz_c, 19);
405 	spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
406 			spl_scratch->scl_data.ratios.vert_c, 19);
407 
408 	/*
409 	 * Coefficient table and some registers are different based on ratio
410 	 * that is output/input.  Currently we calculate input/output
411 	 * Store 1/ratio in recip_ratio for those lookups
412 	 */
413 	spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
414 			spl_scratch->scl_data.ratios.horz);
415 	spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
416 			spl_scratch->scl_data.ratios.vert);
417 	spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
418 			spl_scratch->scl_data.ratios.horz_c);
419 	spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
420 			spl_scratch->scl_data.ratios.vert_c);
421 }
422 
423 /* Calculate Viewport size */
424 static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
425 {
426 	spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
427 							spl_scratch->scl_data.recout.width));
428 	spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
429 							spl_scratch->scl_data.recout.height));
430 	spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
431 						spl_scratch->scl_data.recout.width));
432 	spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
433 						spl_scratch->scl_data.recout.height));
434 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
435 			spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
436 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
437 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
438 	}
439 }
440 
441 static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
442 			   bool horizontal_mirror,
443 			   bool *orthogonal_rotation,
444 			   bool *flip_vert_scan_dir,
445 			   bool *flip_horz_scan_dir)
446 {
447 	*orthogonal_rotation = false;
448 	*flip_vert_scan_dir = false;
449 	*flip_horz_scan_dir = false;
450 	if (rotation == SPL_ROTATION_ANGLE_180) {
451 		*flip_vert_scan_dir = true;
452 		*flip_horz_scan_dir = true;
453 	} else if (rotation == SPL_ROTATION_ANGLE_90) {
454 		*orthogonal_rotation = true;
455 		*flip_horz_scan_dir = true;
456 	} else if (rotation == SPL_ROTATION_ANGLE_270) {
457 		*orthogonal_rotation = true;
458 		*flip_vert_scan_dir = true;
459 	}
460 
461 	if (horizontal_mirror)
462 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
463 }
464 
465 /*
466  * We completely calculate vp offset, size and inits here based entirely on scaling
467  * ratios and recout for pixel perfect pipe combine.
468  */
469 static void spl_calculate_init_and_vp(bool flip_scan_dir,
470 				int recout_offset_within_recout_full,
471 				int recout_size,
472 				int src_size,
473 				int taps,
474 				struct spl_fixed31_32 ratio,
475 				struct spl_fixed31_32 init_adj,
476 				struct spl_fixed31_32 *init,
477 				int *vp_offset,
478 				int *vp_size)
479 {
480 	struct spl_fixed31_32 temp;
481 	int int_part;
482 
483 	/*
484 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
485 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
486 	 * All following calculations are based on this logic.
487 	 *
488 	 * Init calculated according to formula:
489 	 * init = (scaling_ratio + number_of_taps + 1) / 2
490 	 * init_bot = init + scaling_ratio
491 	 * to get pixel perfect combine add the fraction from calculating vp offset
492 	 */
493 	temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
494 	*vp_offset = spl_fixpt_floor(temp);
495 	temp.value &= 0xffffffff;
496 	*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
497 	*init = spl_fixpt_add(*init, init_adj);
498 	*init = spl_fixpt_truncate(*init, 19);
499 
500 	/*
501 	 * If viewport has non 0 offset and there are more taps than covered by init then
502 	 * we should decrease the offset and increase init so we are never sampling
503 	 * outside of viewport.
504 	 */
505 	int_part = spl_fixpt_floor(*init);
506 	if (int_part < taps) {
507 		int_part = taps - int_part;
508 		if (int_part > *vp_offset)
509 			int_part = *vp_offset;
510 		*vp_offset -= int_part;
511 		*init = spl_fixpt_add_int(*init, int_part);
512 	}
513 	/*
514 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
515 	 * available in the surface we should increase the viewport size, regardless set vp to
516 	 * only what is used.
517 	 */
518 	temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
519 	*vp_size = spl_fixpt_floor(temp);
520 	if (*vp_size + *vp_offset > src_size)
521 		*vp_size = src_size - *vp_offset;
522 
523 	/* We did all the math assuming we are scanning same direction as display does,
524 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
525 	 * is flipped we simply need to calculate offset from the other side of plane.
526 	 * Note that outside of viewport all scaling hardware works in recout space.
527 	 */
528 	if (flip_scan_dir)
529 		*vp_offset = src_size - *vp_offset - *vp_size;
530 }
531 
532 static bool spl_is_yuv420(enum spl_pixel_format format)
533 {
534 	if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
535 		(format <= SPL_PIXEL_FORMAT_420BPP10))
536 		return true;
537 
538 	return false;
539 }
540 
541 static bool spl_is_rgb8(enum spl_pixel_format format)
542 {
543 	if (format == SPL_PIXEL_FORMAT_ARGB8888)
544 		return true;
545 
546 	return false;
547 }
548 
549 /*Calculate inits and viewport */
550 static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
551 		struct spl_scratch *spl_scratch)
552 {
553 	struct spl_rect src = spl_in->basic_in.src_rect;
554 	struct spl_rect recout_dst_in_active_timing;
555 	struct spl_rect recout_clip_in_active_timing;
556 	struct spl_rect recout_clip_in_recout_dst;
557 	struct spl_rect overlap_in_active_timing;
558 	struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
559 	int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
560 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
561 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
562 	struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
563 	struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
564 
565 	recout_clip_in_active_timing = shift_rec(
566 			&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
567 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
568 			spl_in, &spl_in->basic_in.dst_rect);
569 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
570 			&recout_dst_in_active_timing);
571 	if (overlap_in_active_timing.width > 0 &&
572 			overlap_in_active_timing.height > 0)
573 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
574 				-recout_dst_in_active_timing.x,
575 				-recout_dst_in_active_timing.y);
576 	else
577 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
578 	/*
579 	 * Work in recout rotation since that requires less transformations
580 	 */
581 	spl_get_vp_scan_direction(
582 			spl_in->basic_in.rotation,
583 			spl_in->basic_in.horizontal_mirror,
584 			&orthogonal_rotation,
585 			&flip_vert_scan_dir,
586 			&flip_horz_scan_dir);
587 
588 	if (orthogonal_rotation) {
589 		spl_swap(src.width, src.height);
590 		spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
591 	}
592 
593 	if (spl_is_yuv420(spl_in->basic_in.format)) {
594 		/* this gives the direction of the cositing (negative will move
595 		 * left, right otherwise)
596 		 */
597 		int sign = 1;
598 
599 		switch (spl_in->basic_in.cositing) {
600 
601 		case CHROMA_COSITING_LEFT:
602 			init_adj_h = spl_fixpt_zero;
603 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
604 			break;
605 		case CHROMA_COSITING_NONE:
606 			init_adj_h = spl_fixpt_from_fraction(sign, 4);
607 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
608 			break;
609 		case CHROMA_COSITING_TOPLEFT:
610 		default:
611 			init_adj_h = spl_fixpt_zero;
612 			init_adj_v = spl_fixpt_zero;
613 			break;
614 		}
615 	}
616 
617 	spl_calculate_init_and_vp(
618 			flip_horz_scan_dir,
619 			recout_clip_in_recout_dst.x,
620 			spl_scratch->scl_data.recout.width,
621 			src.width,
622 			spl_scratch->scl_data.taps.h_taps,
623 			spl_scratch->scl_data.ratios.horz,
624 			spl_fixpt_zero,
625 			&spl_scratch->scl_data.inits.h,
626 			&spl_scratch->scl_data.viewport.x,
627 			&spl_scratch->scl_data.viewport.width);
628 	spl_calculate_init_and_vp(
629 			flip_horz_scan_dir,
630 			recout_clip_in_recout_dst.x,
631 			spl_scratch->scl_data.recout.width,
632 			src.width / vpc_div,
633 			spl_scratch->scl_data.taps.h_taps_c,
634 			spl_scratch->scl_data.ratios.horz_c,
635 			init_adj_h,
636 			&spl_scratch->scl_data.inits.h_c,
637 			&spl_scratch->scl_data.viewport_c.x,
638 			&spl_scratch->scl_data.viewport_c.width);
639 	spl_calculate_init_and_vp(
640 			flip_vert_scan_dir,
641 			recout_clip_in_recout_dst.y,
642 			spl_scratch->scl_data.recout.height,
643 			src.height,
644 			spl_scratch->scl_data.taps.v_taps,
645 			spl_scratch->scl_data.ratios.vert,
646 			spl_fixpt_zero,
647 			&spl_scratch->scl_data.inits.v,
648 			&spl_scratch->scl_data.viewport.y,
649 			&spl_scratch->scl_data.viewport.height);
650 	spl_calculate_init_and_vp(
651 			flip_vert_scan_dir,
652 			recout_clip_in_recout_dst.y,
653 			spl_scratch->scl_data.recout.height,
654 			src.height / vpc_div,
655 			spl_scratch->scl_data.taps.v_taps_c,
656 			spl_scratch->scl_data.ratios.vert_c,
657 			init_adj_v,
658 			&spl_scratch->scl_data.inits.v_c,
659 			&spl_scratch->scl_data.viewport_c.y,
660 			&spl_scratch->scl_data.viewport_c.height);
661 	if (orthogonal_rotation) {
662 		spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
663 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
664 		spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
665 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
666 	}
667 	spl_scratch->scl_data.viewport.x += src.x;
668 	spl_scratch->scl_data.viewport.y += src.y;
669 	SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
670 	spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
671 	spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
672 }
673 
674 static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
675 {
676 	/*
677 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
678 	 * since 3d is special and needs to calculate vp as if there is no recout offset
679 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
680 	 */
681 	if (spl_in->basic_in.mpc_combine_v) {
682 		SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
683 			(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
684 					spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
685 		if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
686 			recout->y += recout->height;
687 		else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
688 			recout->x += recout->width;
689 	}
690 }
691 
692 static void spl_clamp_viewport(struct spl_rect *viewport)
693 {
694 	/* Clamp minimum viewport size */
695 	if (viewport->height < MIN_VIEWPORT_SIZE)
696 		viewport->height = MIN_VIEWPORT_SIZE;
697 	if (viewport->width < MIN_VIEWPORT_SIZE)
698 		viewport->width = MIN_VIEWPORT_SIZE;
699 }
700 
701 static bool spl_dscl_is_420_format(enum spl_pixel_format format)
702 {
703 	if (format == SPL_PIXEL_FORMAT_420BPP8 ||
704 			format == SPL_PIXEL_FORMAT_420BPP10)
705 		return true;
706 	else
707 		return false;
708 }
709 
710 static bool spl_dscl_is_video_format(enum spl_pixel_format format)
711 {
712 	if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
713 			&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
714 		return true;
715 	else
716 		return false;
717 }
718 
719 static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
720 				const struct spl_scaler_data *data,
721 				bool enable_isharp, bool enable_easf)
722 {
723 	const long long one = spl_fixpt_one.value;
724 	enum spl_pixel_format pixel_format = spl_in->basic_in.format;
725 
726 	/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
727 	if (data->ratios.horz.value == one
728 			&& data->ratios.vert.value == one
729 			&& data->ratios.horz_c.value == one
730 			&& data->ratios.vert_c.value == one
731 			&& !spl_in->basic_out.always_scale
732 			&& !enable_isharp)
733 		return SCL_MODE_SCALING_444_BYPASS;
734 
735 	if (!spl_dscl_is_420_format(pixel_format)) {
736 		if (spl_dscl_is_video_format(pixel_format))
737 			return SCL_MODE_SCALING_444_YCBCR_ENABLE;
738 		else
739 			return SCL_MODE_SCALING_444_RGB_ENABLE;
740 	}
741 
742 	/* Bypass YUV if at 1:1 with no ISHARP or if doing 2:1 YUV
743 	 *  downscale without EASF
744 	 */
745 	if ((!enable_isharp) && (!enable_easf)) {
746 		if (data->ratios.horz.value == one && data->ratios.vert.value == one)
747 			return SCL_MODE_SCALING_420_LUMA_BYPASS;
748 		if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
749 			return SCL_MODE_SCALING_420_CHROMA_BYPASS;
750 	}
751 
752 	return SCL_MODE_SCALING_420_YCBCR_ENABLE;
753 }
754 
755 static bool spl_choose_lls_policy(enum spl_pixel_format format,
756 	enum spl_transfer_func_type tf_type,
757 	enum spl_transfer_func_predefined tf_predefined_type,
758 	enum linear_light_scaling *lls_pref)
759 {
760 	if (spl_is_yuv420(format)) {
761 		*lls_pref = LLS_PREF_NO;
762 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
763 			(tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
764 			return true;
765 	} else { /* RGB or YUV444 */
766 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
767 			(tf_type == SPL_TF_TYPE_BYPASS)) {
768 			*lls_pref = LLS_PREF_YES;
769 			return true;
770 		}
771 	}
772 	*lls_pref = LLS_PREF_NO;
773 	return false;
774 }
775 
776 /* Enable EASF ?*/
777 static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
778 {
779 	int vratio = 0;
780 	int hratio = 0;
781 	bool skip_easf = false;
782 	bool lls_enable_easf = true;
783 
784 	if (spl_in->disable_easf)
785 		skip_easf = true;
786 
787 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
788 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
789 
790 	/*
791 	 * No EASF support for downscaling > 2:1
792 	 * EASF support for upscaling or downscaling up to 2:1
793 	 */
794 	if ((vratio > 2) || (hratio > 2))
795 		skip_easf = true;
796 
797 	/*
798 	 * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
799 	 *  function to determine whether to use LINEAR or NONLINEAR scaling
800 	 */
801 	if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
802 		lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
803 			spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
804 			&spl_in->lls_pref);
805 
806 	if (!lls_enable_easf)
807 		skip_easf = true;
808 
809 	/* Check for linear scaling or EASF preferred */
810 	if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
811 		skip_easf = true;
812 
813 	return skip_easf;
814 }
815 
816 static bool spl_get_isharp_en(struct spl_in *spl_in,
817 	struct spl_scratch *spl_scratch)
818 {
819 	bool enable_isharp = false;
820 	int vratio = 0;
821 	int hratio = 0;
822 	struct spl_taps taps = spl_scratch->scl_data.taps;
823 
824 	/* Return if adaptive sharpness is disabled */
825 	if (spl_in->adaptive_sharpness.enable == false)
826 		return enable_isharp;
827 
828 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
829 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
830 
831 	/* No iSHARP support for downscaling */
832 	if (vratio > 1 || hratio > 1)
833 		return enable_isharp;
834 
835 	// Scaling is up to 1:1 (no scaling) or upscaling
836 
837 	/*
838 	 * Apply sharpness to all RGB surfaces and to
839 	 *  NV12/P010 surfaces
840 	 */
841 
842 	/*
843 	 * Apply sharpness if supports horizontal taps 4,6 AND
844 	 *  vertical taps 3, 4, 6
845 	 */
846 	if ((taps.h_taps == 4 || taps.h_taps == 6) &&
847 		(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
848 		enable_isharp = true;
849 
850 	return enable_isharp;
851 }
852 
853 /* Calculate optimal number of taps */
854 static bool spl_get_optimal_number_of_taps(
855 	  int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
856 	  const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
857 	  bool *enable_isharp)
858 {
859 	int num_part_y, num_part_c;
860 	int max_taps_y, max_taps_c;
861 	int min_taps_y, min_taps_c;
862 	enum lb_memory_config lb_config;
863 	bool skip_easf = false;
864 
865 	if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
866 		max_downscale_src_width != 0 &&
867 		spl_scratch->scl_data.viewport.width > max_downscale_src_width)
868 		return false;
869 
870 	/* Check if we are using EASF or not */
871 	skip_easf = enable_easf(spl_in, spl_scratch);
872 
873 	/*
874 	 * Set default taps if none are provided
875 	 * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
876 	 * taps = 4 for upscaling
877 	 */
878 	if (skip_easf) {
879 		if (in_taps->h_taps == 0) {
880 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
881 				spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
882 					spl_scratch->scl_data.ratios.horz), 8);
883 			else
884 				spl_scratch->scl_data.taps.h_taps = 4;
885 		} else
886 			spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
887 		if (in_taps->v_taps == 0) {
888 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
889 				spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
890 					spl_scratch->scl_data.ratios.vert, 2)), 8);
891 			else
892 				spl_scratch->scl_data.taps.v_taps = 4;
893 		} else
894 			spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
895 		if (in_taps->v_taps_c == 0) {
896 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
897 				spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
898 					spl_scratch->scl_data.ratios.vert_c, 2)), 8);
899 			else
900 				spl_scratch->scl_data.taps.v_taps_c = 4;
901 		} else
902 			spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
903 		if (in_taps->h_taps_c == 0) {
904 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
905 				spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
906 					spl_scratch->scl_data.ratios.horz_c), 8);
907 			else
908 				spl_scratch->scl_data.taps.h_taps_c = 4;
909 		} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
910 			/* Only 1 and even h_taps_c are supported by hw */
911 			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
912 		else
913 			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
914 	} else {
915 		if (spl_is_yuv420(spl_in->basic_in.format)) {
916 			spl_scratch->scl_data.taps.h_taps = 6;
917 			spl_scratch->scl_data.taps.v_taps = 6;
918 			spl_scratch->scl_data.taps.h_taps_c = 4;
919 			spl_scratch->scl_data.taps.v_taps_c = 4;
920 		} else { /* RGB */
921 			spl_scratch->scl_data.taps.h_taps = 6;
922 			spl_scratch->scl_data.taps.v_taps = 6;
923 			spl_scratch->scl_data.taps.h_taps_c = 6;
924 			spl_scratch->scl_data.taps.v_taps_c = 6;
925 		}
926 	}
927 
928 	/*Ensure we can support the requested number of vtaps*/
929 	min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
930 	min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
931 
932 	/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
933 	if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
934 		|| (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
935 		lb_config = LB_MEMORY_CONFIG_3;
936 	else
937 		lb_config = LB_MEMORY_CONFIG_0;
938 	// Determine max vtap support by calculating how much line buffer can fit
939 	spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
940 			lb_config, &num_part_y, &num_part_c);
941 	/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
942 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
943 		max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
944 	else
945 		max_taps_y = num_part_y;
946 
947 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
948 		max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
949 	else
950 		max_taps_c = num_part_c;
951 
952 	if (max_taps_y < min_taps_y)
953 		return false;
954 	else if (max_taps_c < min_taps_c)
955 		return false;
956 
957 	if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
958 		spl_scratch->scl_data.taps.v_taps = max_taps_y;
959 
960 	if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
961 		spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
962 
963 	if (!skip_easf) {
964 		/*
965 		 * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
966 		 * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
967 		 *
968 		 * If LB does not support 3, 4, or 6 taps, then disable EASF_V
969 		 *  and only enable EASF_H.  So for RGB, support 6x2, 4x2
970 		 *  and for NL YUV420, support 6x2 for Y and 4x2 for UV
971 		 *
972 		 * All other cases, have to disable EASF_V and EASF_H
973 		 *
974 		 * If optimal no of taps is 5, then set it to 4
975 		 * If optimal no of taps is 7 or 8, then fine since max tap is 6
976 		 *
977 		 */
978 		if (spl_scratch->scl_data.taps.v_taps == 5)
979 			spl_scratch->scl_data.taps.v_taps = 4;
980 
981 		if (spl_scratch->scl_data.taps.v_taps_c == 5)
982 			spl_scratch->scl_data.taps.v_taps_c = 4;
983 
984 		if (spl_scratch->scl_data.taps.h_taps == 5)
985 			spl_scratch->scl_data.taps.h_taps = 4;
986 
987 		if (spl_scratch->scl_data.taps.h_taps_c == 5)
988 			spl_scratch->scl_data.taps.h_taps_c = 4;
989 
990 		if (spl_is_yuv420(spl_in->basic_in.format)) {
991 			if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
992 				(spl_scratch->scl_data.taps.h_taps_c <= 3)) {
993 				*enable_easf_v = false;
994 				*enable_easf_h = false;
995 			} else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
996 				(spl_scratch->scl_data.taps.v_taps_c <= 3)) {
997 				*enable_easf_v = false;
998 				*enable_easf_h = true;
999 			} else {
1000 				*enable_easf_v = true;
1001 				*enable_easf_h = true;
1002 			}
1003 			SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
1004 				(spl_scratch->scl_data.taps.v_taps_c > 1));
1005 		} else { /* RGB */
1006 			if (spl_scratch->scl_data.taps.h_taps <= 3) {
1007 				*enable_easf_v = false;
1008 				*enable_easf_h = false;
1009 			} else if (spl_scratch->scl_data.taps.v_taps < 3) {
1010 				*enable_easf_v = false;
1011 				*enable_easf_h = true;
1012 			} else {
1013 				*enable_easf_v = true;
1014 				*enable_easf_h = true;
1015 			}
1016 			SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
1017 		}
1018 	} else {
1019 		*enable_easf_v = false;
1020 		*enable_easf_h = false;
1021 	} // end of if prefer_easf
1022 
1023 	/* Sharpener requires scaler to be enabled, including for 1:1
1024 	 * Check if ISHARP can be enabled
1025 	 * If ISHARP is not enabled, for 1:1, set taps to 1 and disable
1026 	 *  EASF
1027 	 * For case of 2:1 YUV where chroma is 1:1, set taps to 1 if
1028 	 *  EASF is not enabled
1029 	 */
1030 
1031 	*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
1032 	if (!*enable_isharp && !spl_in->basic_out.always_scale)	{
1033 		if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
1034 			(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
1035 			spl_scratch->scl_data.taps.h_taps = 1;
1036 			spl_scratch->scl_data.taps.v_taps = 1;
1037 
1038 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
1039 				spl_scratch->scl_data.taps.h_taps_c = 1;
1040 
1041 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
1042 				spl_scratch->scl_data.taps.v_taps_c = 1;
1043 
1044 			*enable_easf_v = false;
1045 			*enable_easf_h = false;
1046 		} else {
1047 			if ((!*enable_easf_h) &&
1048 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
1049 				spl_scratch->scl_data.taps.h_taps_c = 1;
1050 
1051 			if ((!*enable_easf_v) &&
1052 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
1053 				spl_scratch->scl_data.taps.v_taps_c = 1;
1054 		}
1055 	}
1056 	return true;
1057 }
1058 
1059 static void spl_set_black_color_data(enum spl_pixel_format format,
1060 			struct scl_black_color *scl_black_color)
1061 {
1062 	bool ycbcr = format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
1063 					&& format <= SPL_PIXEL_FORMAT_VIDEO_END;
1064 	if (ycbcr)	{
1065 		scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
1066 		scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
1067 	}	else {
1068 		scl_black_color->offset_rgb_y = 0x0;
1069 		scl_black_color->offset_rgb_cbcr = 0x0;
1070 	}
1071 }
1072 
1073 static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
1074 		const struct spl_scaler_data *scl_data)
1075 {
1076 	struct spl_fixed31_32 bot;
1077 
1078 	dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
1079 	dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
1080 	dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
1081 	dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
1082 	/*
1083 	 * 0.24 format for fraction, first five bits zeroed
1084 	 */
1085 	dscl_prog_data->init.h_filter_init_frac =
1086 			spl_fixpt_u0d19(scl_data->inits.h) << 5;
1087 	dscl_prog_data->init.h_filter_init_int =
1088 			spl_fixpt_floor(scl_data->inits.h);
1089 	dscl_prog_data->init.h_filter_init_frac_c =
1090 			spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
1091 	dscl_prog_data->init.h_filter_init_int_c =
1092 			spl_fixpt_floor(scl_data->inits.h_c);
1093 	dscl_prog_data->init.v_filter_init_frac =
1094 			spl_fixpt_u0d19(scl_data->inits.v) << 5;
1095 	dscl_prog_data->init.v_filter_init_int =
1096 			spl_fixpt_floor(scl_data->inits.v);
1097 	dscl_prog_data->init.v_filter_init_frac_c =
1098 			spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
1099 	dscl_prog_data->init.v_filter_init_int_c =
1100 			spl_fixpt_floor(scl_data->inits.v_c);
1101 
1102 	bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
1103 	dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
1104 	dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
1105 	bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
1106 	dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
1107 	dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
1108 }
1109 
1110 static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
1111 		const struct spl_scaler_data *scl_data)
1112 {
1113 	dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
1114 	dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
1115 	dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
1116 	dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
1117 }
1118 
1119 /* Populate dscl prog data structure from scaler data calculated by SPL */
1120 static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
1121 	struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
1122 {
1123 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1124 
1125 	const struct spl_scaler_data *data = &spl_scratch->scl_data;
1126 
1127 	struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
1128 
1129 	bool enable_easf = enable_easf_v || enable_easf_h;
1130 
1131 	// Set values for recout
1132 	dscl_prog_data->recout = spl_scratch->scl_data.recout;
1133 	// Set values for MPC Size
1134 	dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
1135 	dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
1136 
1137 	// SCL_MODE - Set SCL_MODE data
1138 	dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
1139 		enable_easf);
1140 
1141 	// SCL_BLACK_COLOR
1142 	spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
1143 
1144 	/* Manually calculate scale ratio and init values */
1145 	spl_set_manual_ratio_init_data(dscl_prog_data, data);
1146 
1147 	// Set HTaps/VTaps
1148 	spl_set_taps_data(dscl_prog_data, data);
1149 	// Set viewport
1150 	dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
1151 	// Set viewport_c
1152 	dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
1153 	// Set filters data
1154 	spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
1155 }
1156 
1157 /* Calculate C0-C3 coefficients based on HDR_mult */
1158 static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t hdr_multx100)
1159 {
1160 	struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
1161 	struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
1162 	struct spl_custom_float_format fmt;
1163 
1164 	SPL_ASSERT(hdr_multx100);
1165 	hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100, 100LL);
1166 	c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
1167 	c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
1168 	c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
1169 
1170 	c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
1171 		16384LL, 125LL)));
1172 	c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
1173 		16384LL, 125LL)));
1174 	c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
1175 		16384LL, 125LL)));
1176 
1177 	fmt.exponenta_bits = 5;
1178 	fmt.mantissa_bits = 10;
1179 	fmt.sign = true;
1180 
1181 	// fp1.5.10, C0 coefficient (LN_rec709:  HDR_MULT * 0.212600 * 2^14/125)
1182 	spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
1183 	// fp1.5.10, C1 coefficient (LN_rec709:  HDR_MULT * 0.715200 * 2^14/125)
1184 	spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
1185 	// fp1.5.10, C2 coefficient (LN_rec709:  HDR_MULT * 0.072200 * 2^14/125)
1186 	spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
1187 	dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
1188 }
1189 
1190 /* Set EASF data */
1191 static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
1192 	bool enable_easf_h, enum linear_light_scaling lls_pref,
1193 	enum spl_pixel_format format, enum system_setup setup,
1194 	uint32_t hdr_multx100)
1195 {
1196 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1197 	if (enable_easf_v) {
1198 		dscl_prog_data->easf_v_en = true;
1199 		dscl_prog_data->easf_v_ring = 0;
1200 		dscl_prog_data->easf_v_sharp_factor = 0;
1201 		dscl_prog_data->easf_v_bf1_en = 1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1202 		dscl_prog_data->easf_v_bf2_mode = 0xF;	// 4-bit, BF2 calculation mode
1203 		/* 2-bit, BF3 chroma mode correction calculation mode */
1204 		dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
1205 			spl_scratch->scl_data.recip_ratios.vert);
1206 		/* FP1.5.10 [ minCoef ]*/
1207 		dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
1208 			spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
1209 				spl_scratch->scl_data.recip_ratios.vert);
1210 		/* FP1.5.10 [ upTiltMaxVal ]*/
1211 		dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
1212 			spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
1213 				spl_scratch->scl_data.recip_ratios.vert);
1214 		/* FP1.5.10 [ dnTiltSlope ]*/
1215 		dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
1216 			spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
1217 				spl_scratch->scl_data.recip_ratios.vert);
1218 		/* FP1.5.10 [ upTilt1Slope ]*/
1219 		dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
1220 			spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
1221 				spl_scratch->scl_data.recip_ratios.vert);
1222 		/* FP1.5.10 [ upTilt2Slope ]*/
1223 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
1224 			spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
1225 				spl_scratch->scl_data.recip_ratios.vert);
1226 		/* FP1.5.10 [ upTilt2Offset ]*/
1227 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
1228 			spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
1229 				spl_scratch->scl_data.recip_ratios.vert);
1230 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1231 		dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
1232 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
1233 				spl_scratch->scl_data.recip_ratios.vert);
1234 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1235 		dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
1236 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
1237 				spl_scratch->scl_data.recip_ratios.vert);
1238 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1239 		dscl_prog_data->easf_v_ringest_eventap_gain1 =
1240 			spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
1241 				spl_scratch->scl_data.recip_ratios.vert);
1242 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1243 		dscl_prog_data->easf_v_ringest_eventap_gain2 =
1244 			spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
1245 				spl_scratch->scl_data.recip_ratios.vert);
1246 		dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
1247 		dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
1248 		dscl_prog_data->easf_v_bf_mina = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
1249 		dscl_prog_data->easf_v_bf_minb = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
1250 		if (lls_pref == LLS_PREF_YES)	{
1251 			dscl_prog_data->easf_v_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1252 			dscl_prog_data->easf_v_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1253 			dscl_prog_data->easf_v_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1254 
1255 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1256 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1257 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1258 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1259 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1260 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1261 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1262 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1263 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1264 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1265 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1266 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1267 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1268 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1269 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1270 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1271 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1272 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1273 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1274 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1275 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1276 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1277 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1278 
1279 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1280 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1281 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1282 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1283 				0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1284 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1285 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
1286 				0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1287 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1288 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1289 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1290 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
1291 				0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1292 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1293 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1294 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1295 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1296 				0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1297 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1298 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1299 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1300 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
1301 				0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1302 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1303 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1304 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1305 		}	else	{
1306 			dscl_prog_data->easf_v_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1307 			dscl_prog_data->easf_v_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1308 			dscl_prog_data->easf_v_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1309 
1310 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1311 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1312 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1313 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1314 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1315 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1316 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1317 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1318 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1319 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1320 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1321 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1322 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1323 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1324 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1325 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1326 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1327 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1328 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1329 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1330 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1331 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1332 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1333 
1334 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1335 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1336 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1337 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1338 				0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1339 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1340 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1341 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1342 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1343 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1344 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1345 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1346 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1347 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1348 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1349 				0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1350 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1351 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1352 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1353 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1354 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1355 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1356 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1357 		}
1358 	} else
1359 		dscl_prog_data->easf_v_en = false;
1360 
1361 	if (enable_easf_h) {
1362 		dscl_prog_data->easf_h_en = true;
1363 		dscl_prog_data->easf_h_ring = 0;
1364 		dscl_prog_data->easf_h_sharp_factor = 0;
1365 		dscl_prog_data->easf_h_bf1_en =
1366 			1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1367 		dscl_prog_data->easf_h_bf2_mode =
1368 			0xF;	// 4-bit, BF2 calculation mode
1369 		/* 2-bit, BF3 chroma mode correction calculation mode */
1370 		dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
1371 			spl_scratch->scl_data.recip_ratios.horz);
1372 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1373 		dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
1374 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
1375 				spl_scratch->scl_data.recip_ratios.horz);
1376 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1377 		dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
1378 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
1379 				spl_scratch->scl_data.recip_ratios.horz);
1380 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1381 		dscl_prog_data->easf_h_ringest_eventap_gain1 =
1382 			spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
1383 				spl_scratch->scl_data.recip_ratios.horz);
1384 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1385 		dscl_prog_data->easf_h_ringest_eventap_gain2 =
1386 			spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
1387 				spl_scratch->scl_data.recip_ratios.horz);
1388 		dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
1389 		dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
1390 		dscl_prog_data->easf_h_bf_mina = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
1391 		dscl_prog_data->easf_h_bf_minb = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
1392 		if (lls_pref == LLS_PREF_YES)	{
1393 			dscl_prog_data->easf_h_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1394 			dscl_prog_data->easf_h_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1395 			dscl_prog_data->easf_h_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1396 
1397 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1398 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1399 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1400 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1401 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1402 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1403 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1404 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1405 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1406 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1407 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1408 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1409 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1410 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1411 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1412 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1413 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1414 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1415 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1416 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1417 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1418 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1419 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1420 
1421 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1422 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1423 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1424 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1425 				0x0B37;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1426 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1427 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 =	0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1428 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1429 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1430 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1431 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 =	0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1432 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1433 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1434 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1435 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 =	0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1436 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1437 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1438 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1439 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1440 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1441 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1442 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1443 		} else {
1444 			dscl_prog_data->easf_h_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1445 			dscl_prog_data->easf_h_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1446 			dscl_prog_data->easf_h_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1447 
1448 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1449 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1450 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1451 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1452 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1453 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1454 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1455 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1456 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1457 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1458 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1459 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1460 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1461 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1462 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1463 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1464 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1465 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1466 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1467 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1468 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1469 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1470 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1471 
1472 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1473 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1474 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1475 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1476 				0x06C0;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1477 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1478 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1479 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1480 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1481 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1482 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1483 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1484 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1485 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1486 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1487 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1488 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1489 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1490 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1491 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1492 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1493 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1494 		} // if (lls_pref == LLS_PREF_YES)
1495 	} else
1496 		dscl_prog_data->easf_h_en = false;
1497 
1498 	if (lls_pref == LLS_PREF_YES)	{
1499 		dscl_prog_data->easf_ltonl_en = 1;	// Linear input
1500 		if ((setup == HDR_L) && (spl_is_rgb8(format))) {
1501 			/* Calculate C0-C3 coefficients based on HDR multiplier */
1502 			spl_calculate_c0_c3_hdr(dscl_prog_data, hdr_multx100);
1503 		} else { // HDR_L ( DWM ) and SDR_L
1504 			dscl_prog_data->easf_matrix_c0 =
1505 				0x4EF7;	// fp1.5.10, C0 coefficient (LN_rec709:  0.2126 * (2^14)/125 = 27.86590720)
1506 			dscl_prog_data->easf_matrix_c1 =
1507 				0x55DC;	// fp1.5.10, C1 coefficient (LN_rec709:  0.7152 * (2^14)/125 = 93.74269440)
1508 			dscl_prog_data->easf_matrix_c2 =
1509 				0x48BB;	// fp1.5.10, C2 coefficient (LN_rec709:  0.0722 * (2^14)/125 = 9.46339840)
1510 			dscl_prog_data->easf_matrix_c3 =
1511 				0x0;	// fp1.5.10, C3 coefficient
1512 		}
1513 	}	else	{
1514 		dscl_prog_data->easf_ltonl_en = 0;	// Non-Linear input
1515 		dscl_prog_data->easf_matrix_c0 =
1516 			0x3434;	// fp1.5.10, C0 coefficient (LN_BT2020:  0.262695312500000)
1517 		dscl_prog_data->easf_matrix_c1 =
1518 			0x396D;	// fp1.5.10, C1 coefficient (LN_BT2020:  0.678222656250000)
1519 		dscl_prog_data->easf_matrix_c2 =
1520 			0x2B97;	// fp1.5.10, C2 coefficient (LN_BT2020:  0.059295654296875)
1521 		dscl_prog_data->easf_matrix_c3 =
1522 			0x0;	// fp1.5.10, C3 coefficient
1523 	}
1524 
1525 	if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
1526 		dscl_prog_data->easf_matrix_mode = 1;
1527 		/*
1528 		 * 2-bit, BF3 chroma mode correction calculation mode
1529 		 * Needs to be disabled for YUV420 mode
1530 		 * Override lookup value
1531 		 */
1532 		dscl_prog_data->easf_v_bf3_mode = 0;
1533 		dscl_prog_data->easf_h_bf3_mode = 0;
1534 	} else
1535 		dscl_prog_data->easf_matrix_mode = 0;
1536 
1537 }
1538 
1539 /*Set isharp noise detection */
1540 static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
1541 	const struct spl_scaler_data *data)
1542 {
1543 	// ISHARP_NOISEDET_MODE
1544 	// 0: 3x5 as VxH
1545 	// 1: 4x5 as VxH
1546 	// 2:
1547 	// 3: 5x5 as VxH
1548 	if (data->taps.v_taps == 6)
1549 		dscl_prog_data->isharp_noise_det.mode = 3;
1550 	else if (data->taps.v_taps == 4)
1551 		dscl_prog_data->isharp_noise_det.mode = 1;
1552 	else if (data->taps.v_taps == 3)
1553 		dscl_prog_data->isharp_noise_det.mode = 0;
1554 };
1555 /* Set Sharpener data */
1556 static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
1557 		struct adaptive_sharpness adp_sharpness, bool enable_isharp,
1558 		enum linear_light_scaling lls_pref, enum spl_pixel_format format,
1559 		const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
1560 		enum system_setup setup)
1561 {
1562 	/* Turn off sharpener if not required */
1563 	if (!enable_isharp) {
1564 		dscl_prog_data->isharp_en = 0;
1565 		return;
1566 	}
1567 
1568 	dscl_prog_data->isharp_en = 1;	// ISHARP_EN
1569 	// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
1570 	if (data->taps.h_taps == 6) {
1571 		dscl_prog_data->isharp_noise_det.enable = 1;	/* ISHARP_NOISEDET_EN */
1572 		spl_set_isharp_noise_det_mode(dscl_prog_data, data);	/* ISHARP_NOISEDET_MODE */
1573 	} else
1574 		dscl_prog_data->isharp_noise_det.enable = 0;	// ISHARP_NOISEDET_EN
1575 	// Program noise detection threshold
1576 	dscl_prog_data->isharp_noise_det.uthreshold = 24;	// ISHARP_NOISEDET_UTHRE
1577 	dscl_prog_data->isharp_noise_det.dthreshold = 4;	// ISHARP_NOISEDET_DTHRE
1578 	// Program noise detection gain
1579 	dscl_prog_data->isharp_noise_det.pwl_start_in = 3;	// ISHARP_NOISEDET_PWL_START_IN
1580 	dscl_prog_data->isharp_noise_det.pwl_end_in = 13;	// ISHARP_NOISEDET_PWL_END_IN
1581 	dscl_prog_data->isharp_noise_det.pwl_slope = 1623;	// ISHARP_NOISEDET_PWL_SLOPE
1582 
1583 	if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
1584 		dscl_prog_data->isharp_fmt.mode = 1;
1585 	else
1586 		dscl_prog_data->isharp_fmt.mode = 0;
1587 
1588 	dscl_prog_data->isharp_fmt.norm = 0x3C00;	// ISHARP_FMT_NORM
1589 	dscl_prog_data->isharp_lba.mode = 0;	// ISHARP_LBA_MODE
1590 
1591 	if (setup == SDR_L) {
1592 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1593 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1594 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1595 		dscl_prog_data->isharp_lba.slope_seg[0] = 62;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1596 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1597 		dscl_prog_data->isharp_lba.in_seg[1] = 130;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1598 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1599 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1600 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1601 		dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1602 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1603 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
1604 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1605 		dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1606 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1607 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1608 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1609 		dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1610 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1611 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1612 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1613 		dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1614 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1615 	} else if (setup == HDR_L) {
1616 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1617 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1618 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1619 		dscl_prog_data->isharp_lba.slope_seg[0] = 32;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1620 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1621 		dscl_prog_data->isharp_lba.in_seg[1] = 254;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1622 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1623 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1624 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1625 		dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1626 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1627 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
1628 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1629 		dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1630 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1631 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1632 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1633 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1634 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1635 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1636 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1637 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1638 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1639 	} else {
1640 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1641 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1642 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1643 		dscl_prog_data->isharp_lba.slope_seg[0] = 40;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1644 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1645 		dscl_prog_data->isharp_lba.in_seg[1] = 204;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1646 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1647 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1648 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1649 		dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1650 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1651 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
1652 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1653 		dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1654 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1655 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1656 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1657 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1658 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1659 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1660 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1661 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1662 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1663 	}
1664 
1665 
1666 	spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness);
1667 	dscl_prog_data->isharp_delta = spl_get_pregen_filter_isharp_1D_lut(setup);
1668 	dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;
1669 
1670 	// Program the nldelta soft clip values
1671 	if (lls_pref == LLS_PREF_YES) {
1672 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 0;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1673 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1674 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 0;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1675 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1676 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1677 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 16;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1678 	} else {
1679 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 1;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1680 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1681 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1682 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1683 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1684 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1685 	}
1686 
1687 	// Set the values as per lookup table
1688 	spl_set_blur_scale_data(dscl_prog_data, data);
1689 }
1690 
1691 /* Calculate scaler parameters */
1692 bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
1693 {
1694 	bool res = false;
1695 	bool enable_easf_v = false;
1696 	bool enable_easf_h = false;
1697 	int vratio = 0;
1698 	int hratio = 0;
1699 	struct spl_scratch spl_scratch;
1700 	struct spl_fixed31_32 isharp_scale_ratio;
1701 	enum system_setup setup;
1702 	bool enable_isharp = false;
1703 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1704 
1705 	memset(&spl_scratch, 0, sizeof(struct spl_scratch));
1706 	spl_scratch.scl_data.h_active = spl_in->h_active;
1707 	spl_scratch.scl_data.v_active = spl_in->v_active;
1708 
1709 	// All SPL calls
1710 	/* recout calculation */
1711 	/* depends on h_active */
1712 	spl_calculate_recout(spl_in, &spl_scratch, spl_out);
1713 	/* depends on pixel format */
1714 	spl_calculate_scaling_ratios(spl_in, &spl_scratch, spl_out);
1715 	/* depends on scaling ratios and recout, does not calculate offset yet */
1716 	spl_calculate_viewport_size(spl_in, &spl_scratch);
1717 
1718 	res = spl_get_optimal_number_of_taps(
1719 			  spl_in->basic_out.max_downscale_src_width, spl_in,
1720 			  &spl_scratch, &spl_in->scaling_quality, &enable_easf_v,
1721 			  &enable_easf_h, &enable_isharp);
1722 	/*
1723 	 * Depends on recout, scaling ratios, h_active and taps
1724 	 * May need to re-check lb size after this in some obscure scenario
1725 	 */
1726 	if (res)
1727 		spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
1728 	// Handle 3d recout
1729 	spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
1730 	// Clamp
1731 	spl_clamp_viewport(&spl_scratch.scl_data.viewport);
1732 
1733 	if (!res)
1734 		return res;
1735 
1736 	// Save all calculated parameters in dscl_prog_data structure to program hw registers
1737 	spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
1738 
1739 	if (spl_in->lls_pref == LLS_PREF_YES) {
1740 		if (spl_in->is_hdr_on)
1741 			setup = HDR_L;
1742 		else
1743 			setup = SDR_L;
1744 	} else {
1745 		if (spl_in->is_hdr_on)
1746 			setup = HDR_NL;
1747 		else
1748 			setup = SDR_NL;
1749 	}
1750 
1751 	// Set EASF
1752 	spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
1753 		spl_in->basic_in.format, setup, spl_in->hdr_multx100);
1754 
1755 	// Set iSHARP
1756 	vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
1757 	hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
1758 	if (vratio <= hratio)
1759 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
1760 	else
1761 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
1762 
1763 	spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
1764 		spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup);
1765 
1766 	return res;
1767 }
1768