xref: /linux/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: MIT
2 //
3 // Copyright 2024 Advanced Micro Devices, Inc.
4 
5 #include "dc_spl.h"
6 #include "dc_spl_scl_filters.h"
7 #include "dc_spl_scl_easf_filters.h"
8 #include "dc_spl_isharp_filters.h"
9 #include "spl_debug.h"
10 
11 #define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
12 #define MIN_VIEWPORT_SIZE 12
13 
14 static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
15 {
16 	struct spl_rect rec;
17 	int r0_x_end = r0->x + r0->width;
18 	int r1_x_end = r1->x + r1->width;
19 	int r0_y_end = r0->y + r0->height;
20 	int r1_y_end = r1->y + r1->height;
21 
22 	rec.x = r0->x > r1->x ? r0->x : r1->x;
23 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
24 	rec.y = r0->y > r1->y ? r0->y : r1->y;
25 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
26 
27 	/* in case that there is no intersection */
28 	if (rec.width < 0 || rec.height < 0)
29 		memset(&rec, 0, sizeof(rec));
30 
31 	return rec;
32 }
33 
34 static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
35 {
36 	struct spl_rect rec_out = *rec_in;
37 
38 	rec_out.x += x;
39 	rec_out.y += y;
40 
41 	return rec_out;
42 }
43 
44 static struct spl_rect calculate_plane_rec_in_timing_active(
45 		struct spl_in *spl_in,
46 		const struct spl_rect *rec_in)
47 {
48 	/*
49 	 * The following diagram shows an example where we map a 1920x1200
50 	 * desktop to a 2560x1440 timing with a plane rect in the middle
51 	 * of the screen. To map a plane rect from Stream Source to Timing
52 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
53 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
54 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
55 	 * This will give us a plane rect's position in Timing Active. However
56 	 * we have to remove the fractional. The rule is that we find left/right
57 	 * and top/bottom positions and round the value to the adjacent integer.
58 	 *
59 	 * Stream Source Space
60 	 * ------------
61 	 *        __________________________________________________
62 	 *       |Stream Source (1920 x 1200) ^                     |
63 	 *       |                            y                     |
64 	 *       |         <------- w --------|>                    |
65 	 *       |          __________________V                     |
66 	 *       |<-- x -->|Plane//////////////| ^                  |
67 	 *       |         |(pre scale)////////| |                  |
68 	 *       |         |///////////////////| |                  |
69 	 *       |         |///////////////////| h                  |
70 	 *       |         |///////////////////| |                  |
71 	 *       |         |///////////////////| |                  |
72 	 *       |         |///////////////////| V                  |
73 	 *       |                                                  |
74 	 *       |                                                  |
75 	 *       |__________________________________________________|
76 	 *
77 	 *
78 	 * Timing Active Space
79 	 * ---------------------------------
80 	 *
81 	 *       Timing Active (2560 x 1440)
82 	 *        __________________________________________________
83 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
84 	 *       |*****|                                      |*****|
85 	 *       |<128>|                                      |*****|
86 	 *       |*****|     __________________               |*****|
87 	 *       |*****|    |Plane/////////////|              |*****|
88 	 *       |*****|    |(post scale)//////|              |*****|
89 	 *       |*****|    |//////////////////|              |*****|
90 	 *       |*****|    |//////////////////|              |*****|
91 	 *       |*****|    |//////////////////|              |*****|
92 	 *       |*****|    |//////////////////|              |*****|
93 	 *       |*****|                                      |*****|
94 	 *       |*****|                                      |*****|
95 	 *       |*****|                                      |*****|
96 	 *       |*****|______________________________________|*****|
97 	 *
98 	 * So the resulting formulas are shown below:
99 	 *
100 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
101 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
102 	 * recout_y = 0 + round(plane_y * 1440 / 1200)
103 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
104 	 *
105 	 * NOTE: fixed point division is not error free. To reduce errors
106 	 * introduced by fixed point division, we divide only after
107 	 * multiplication is complete.
108 	 */
109 	const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
110 	const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
111 	struct spl_rect rec_out = {0};
112 	struct spl_fixed31_32 temp;
113 
114 
115 	temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
116 			stream_src->width);
117 	rec_out.x = stream_dst->x + spl_fixpt_round(temp);
118 
119 	temp = spl_fixpt_from_fraction(
120 			(rec_in->x + rec_in->width) * (long long)stream_dst->width,
121 			stream_src->width);
122 	rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
123 
124 	temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
125 			stream_src->height);
126 	rec_out.y = stream_dst->y + spl_fixpt_round(temp);
127 
128 	temp = spl_fixpt_from_fraction(
129 			(rec_in->y + rec_in->height) * (long long)stream_dst->height,
130 			stream_src->height);
131 	rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
132 
133 	return rec_out;
134 }
135 
136 static struct spl_rect calculate_mpc_slice_in_timing_active(
137 		struct spl_in *spl_in,
138 		struct spl_rect *plane_clip_rec)
139 {
140 	int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
141 	int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
142 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
143 	struct spl_rect mpc_rec;
144 
145 	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
146 	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
147 	mpc_rec.height = plane_clip_rec->height;
148 	mpc_rec.y = plane_clip_rec->y;
149 	SPL_ASSERT(mpc_slice_count == 1 ||
150 			spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
151 			mpc_rec.width % 2 == 0);
152 
153 	/* extra pixels in the division remainder need to go to pipes after
154 	 * the extra pixel index minus one(epimo) defined here as:
155 	 */
156 	if (mpc_slice_idx > epimo) {
157 		mpc_rec.x += mpc_slice_idx - epimo - 1;
158 		mpc_rec.width += 1;
159 	}
160 
161 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
162 		SPL_ASSERT(mpc_rec.height % 2 == 0);
163 		mpc_rec.height /= 2;
164 	}
165 	return mpc_rec;
166 }
167 
168 static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
169 {
170 	int odm_slice_count = spl_in->basic_out.odm_combine_factor;
171 	int odm_slice_idx = spl_in->odm_slice_index;
172 	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
173 	int h_active = spl_in->basic_out.output_size.width;
174 	int v_active = spl_in->basic_out.output_size.height;
175 	int odm_slice_width;
176 	struct spl_rect odm_rec;
177 
178 	if (spl_in->basic_out.odm_combine_factor > 0) {
179 		odm_slice_width = h_active / odm_slice_count;
180 		/*
181 		 * deprecated, caller must pass in odm slice rect i.e OPP input
182 		 * rect in timing active for the new interface.
183 		 */
184 		if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
185 			odm_slice_width++;
186 
187 		odm_rec.x = odm_slice_width * odm_slice_idx;
188 		odm_rec.width = is_last_odm_slice ?
189 				/* last slice width is the reminder of h_active */
190 				h_active - odm_slice_width * (odm_slice_count - 1) :
191 				/* odm slice width is the floor of h_active / count */
192 				odm_slice_width;
193 		odm_rec.y = 0;
194 		odm_rec.height = v_active;
195 
196 		return odm_rec;
197 	}
198 
199 	return spl_in->basic_out.odm_slice_rect;
200 }
201 
202 static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
203 {
204 	/*
205 	 * A plane clip represents the desired plane size and position in Stream
206 	 * Source Space. Stream Source is the destination where all planes are
207 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
208 	 * all planes associated with the current stream are drawn together.
209 	 * After Stream Source is completed, we will further scale and
210 	 * reposition the entire canvas of the stream source to Stream
211 	 * Destination in Timing Active Space. This could be due to display
212 	 * overscan adjustment where we will need to rescale and reposition all
213 	 * the planes so they can fit into a TV with overscan or downscale
214 	 * upscale features such as GPU scaling or VSR.
215 	 *
216 	 * This two step blending is a virtual procedure in software. In
217 	 * hardware there is no such thing as Stream Source. all planes are
218 	 * blended once in Timing Active Space. Software virtualizes a Stream
219 	 * Source space to decouple the math complicity so scaling param
220 	 * calculation focuses on one step at a time.
221 	 *
222 	 * In the following two diagrams, user applied 10% overscan adjustment
223 	 * so the Stream Source needs to be scaled down a little before mapping
224 	 * to Timing Active Space. As a result the Plane Clip is also scaled
225 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
226 	 * respect to Stream Source is also scaled down. To map it in Timing
227 	 * Active Space additional x and y offsets from Stream Destination are
228 	 * added to Plane Clip as well.
229 	 *
230 	 * Stream Source Space
231 	 * ------------
232 	 *        __________________________________________________
233 	 *       |Stream Source (3840 x 2160) ^                     |
234 	 *       |                            y                     |
235 	 *       |                            |                     |
236 	 *       |          __________________V                     |
237 	 *       |<-- x -->|Plane Clip/////////|                    |
238 	 *       |         |(pre scale)////////|                    |
239 	 *       |         |///////////////////|                    |
240 	 *       |         |///////////////////|                    |
241 	 *       |         |///////////////////|                    |
242 	 *       |         |///////////////////|                    |
243 	 *       |         |///////////////////|                    |
244 	 *       |                                                  |
245 	 *       |                                                  |
246 	 *       |__________________________________________________|
247 	 *
248 	 *
249 	 * Timing Active Space (3840 x 2160)
250 	 * ---------------------------------
251 	 *
252 	 *       Timing Active
253 	 *        __________________________________________________
254 	 *       | y_____________________________________________   |
255 	 *       |x |Stream Destination (3456 x 1944)            |  |
256 	 *       |  |                                            |  |
257 	 *       |  |        __________________                  |  |
258 	 *       |  |       |Plane Clip////////|                 |  |
259 	 *       |  |       |(post scale)//////|                 |  |
260 	 *       |  |       |//////////////////|                 |  |
261 	 *       |  |       |//////////////////|                 |  |
262 	 *       |  |       |//////////////////|                 |  |
263 	 *       |  |       |//////////////////|                 |  |
264 	 *       |  |                                            |  |
265 	 *       |  |                                            |  |
266 	 *       |  |____________________________________________|  |
267 	 *       |__________________________________________________|
268 	 *
269 	 *
270 	 * In Timing Active Space a plane clip could be further sliced into
271 	 * pieces called MPC slices. Each Pipe Context is responsible for
272 	 * processing only one MPC slice so the plane processing workload can be
273 	 * distributed to multiple DPP Pipes. MPC slices could be blended
274 	 * together to a single ODM slice. Each ODM slice is responsible for
275 	 * processing a portion of Timing Active divided horizontally so the
276 	 * output pixel processing workload can be distributed to multiple OPP
277 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
278 	 * slices belong to different ODM slices could be pieced together to
279 	 * form a single image in Timing Active. MPC slices must belong to
280 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
281 	 * needs to be divided into two MPC slices one for each ODM slice.
282 	 *
283 	 * In the following diagram the output pixel processing workload is
284 	 * divided horizontally into two ODM slices one for each OPP blend tree.
285 	 * OPP0 blend tree is responsible for processing left half of Timing
286 	 * Active, while OPP2 blend tree is responsible for processing right
287 	 * half.
288 	 *
289 	 * The plane has two MPC slices. However since the right MPC slice goes
290 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
291 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
292 	 *
293 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
294 	 * working on processing the plane in the diagram. We want to know the
295 	 * width and height of the shaded rectangle and its relative position
296 	 * with respect to the ODM slice0. This is called the recout of the pipe
297 	 * context.
298 	 *
299 	 * Planes can be at arbitrary size and position and there could be an
300 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
301 	 * all scenarios into account.
302 	 *
303 	 * Timing Active Space (3840 x 2160)
304 	 * ---------------------------------
305 	 *
306 	 *       Timing Active
307 	 *        __________________________________________________
308 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
309 	 *       |                y        |                        |
310 	 *       |                |  <- w ->                        |
311 	 *       |           _____V________|____                    |
312 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
313 	 *       |<------ x |-----|->|/////|    |                   |
314 	 *       |          |     |  |/////|    |                   |
315 	 *       |          |     h  |/////|    |                   |
316 	 *       |          |     |  |/////|    |                   |
317 	 *       |          |_____V__|/////|____|                   |
318 	 *       |                         |                        |
319 	 *       |                         |                        |
320 	 *       |                         |                        |
321 	 *       |_________________________|________________________|
322 	 *
323 	 *
324 	 */
325 	struct spl_rect plane_clip;
326 	struct spl_rect mpc_slice_of_plane_clip;
327 	struct spl_rect odm_slice;
328 	struct spl_rect overlapping_area;
329 
330 	plane_clip = calculate_plane_rec_in_timing_active(spl_in,
331 			&spl_in->basic_in.clip_rect);
332 	/* guard plane clip from drawing beyond stream dst here */
333 	plane_clip = intersect_rec(&plane_clip,
334 				&spl_in->basic_out.dst_rect);
335 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
336 			spl_in, &plane_clip);
337 	odm_slice = calculate_odm_slice_in_timing_active(spl_in);
338 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
339 
340 	if (overlapping_area.height > 0 &&
341 			overlapping_area.width > 0) {
342 		/* shift the overlapping area so it is with respect to current
343 		 * ODM slice's position
344 		 */
345 		spl_scratch->scl_data.recout = shift_rec(
346 				&overlapping_area,
347 				-odm_slice.x, -odm_slice.y);
348 		spl_scratch->scl_data.recout.height -=
349 			spl_in->debug.visual_confirm_base_offset;
350 		spl_scratch->scl_data.recout.height -=
351 			spl_in->debug.visual_confirm_dpp_offset;
352 	} else
353 		/* if there is no overlap, zero recout */
354 		memset(&spl_scratch->scl_data.recout, 0,
355 				sizeof(struct spl_rect));
356 }
357 
358 /* Calculate scaling ratios */
359 static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
360 		struct spl_scratch *spl_scratch,
361 		struct spl_out *spl_out)
362 {
363 	const int in_w = spl_in->basic_out.src_rect.width;
364 	const int in_h = spl_in->basic_out.src_rect.height;
365 	const int out_w = spl_in->basic_out.dst_rect.width;
366 	const int out_h = spl_in->basic_out.dst_rect.height;
367 	struct spl_rect surf_src = spl_in->basic_in.src_rect;
368 
369 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
370 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
371 		spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
372 		spl_swap(surf_src.height, surf_src.width);
373 
374 	spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
375 					surf_src.width,
376 					spl_in->basic_in.dst_rect.width);
377 	spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
378 					surf_src.height,
379 					spl_in->basic_in.dst_rect.height);
380 
381 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
382 		spl_scratch->scl_data.ratios.horz.value *= 2;
383 	else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
384 		spl_scratch->scl_data.ratios.vert.value *= 2;
385 
386 	spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
387 		spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
388 	spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
389 		spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
390 
391 	spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
392 	spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
393 
394 	if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
395 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
396 		spl_scratch->scl_data.ratios.horz_c.value /= 2;
397 		spl_scratch->scl_data.ratios.vert_c.value /= 2;
398 	}
399 	spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
400 			spl_scratch->scl_data.ratios.horz, 19);
401 	spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
402 			spl_scratch->scl_data.ratios.vert, 19);
403 	spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
404 			spl_scratch->scl_data.ratios.horz_c, 19);
405 	spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
406 			spl_scratch->scl_data.ratios.vert_c, 19);
407 
408 	/*
409 	 * Coefficient table and some registers are different based on ratio
410 	 * that is output/input.  Currently we calculate input/output
411 	 * Store 1/ratio in recip_ratio for those lookups
412 	 */
413 	spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
414 			spl_scratch->scl_data.ratios.horz);
415 	spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
416 			spl_scratch->scl_data.ratios.vert);
417 	spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
418 			spl_scratch->scl_data.ratios.horz_c);
419 	spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
420 			spl_scratch->scl_data.ratios.vert_c);
421 }
422 
423 /* Calculate Viewport size */
424 static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
425 {
426 	spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
427 							spl_scratch->scl_data.recout.width));
428 	spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
429 							spl_scratch->scl_data.recout.height));
430 	spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
431 						spl_scratch->scl_data.recout.width));
432 	spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
433 						spl_scratch->scl_data.recout.height));
434 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
435 			spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
436 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
437 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
438 	}
439 }
440 
441 static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
442 			   bool horizontal_mirror,
443 			   bool *orthogonal_rotation,
444 			   bool *flip_vert_scan_dir,
445 			   bool *flip_horz_scan_dir)
446 {
447 	*orthogonal_rotation = false;
448 	*flip_vert_scan_dir = false;
449 	*flip_horz_scan_dir = false;
450 	if (rotation == SPL_ROTATION_ANGLE_180) {
451 		*flip_vert_scan_dir = true;
452 		*flip_horz_scan_dir = true;
453 	} else if (rotation == SPL_ROTATION_ANGLE_90) {
454 		*orthogonal_rotation = true;
455 		*flip_horz_scan_dir = true;
456 	} else if (rotation == SPL_ROTATION_ANGLE_270) {
457 		*orthogonal_rotation = true;
458 		*flip_vert_scan_dir = true;
459 	}
460 
461 	if (horizontal_mirror)
462 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
463 }
464 
465 /*
466  * We completely calculate vp offset, size and inits here based entirely on scaling
467  * ratios and recout for pixel perfect pipe combine.
468  */
469 static void spl_calculate_init_and_vp(bool flip_scan_dir,
470 				int recout_offset_within_recout_full,
471 				int recout_size,
472 				int src_size,
473 				int taps,
474 				struct spl_fixed31_32 ratio,
475 				struct spl_fixed31_32 init_adj,
476 				struct spl_fixed31_32 *init,
477 				int *vp_offset,
478 				int *vp_size)
479 {
480 	struct spl_fixed31_32 temp;
481 	int int_part;
482 
483 	/*
484 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
485 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
486 	 * All following calculations are based on this logic.
487 	 *
488 	 * Init calculated according to formula:
489 	 * init = (scaling_ratio + number_of_taps + 1) / 2
490 	 * init_bot = init + scaling_ratio
491 	 * to get pixel perfect combine add the fraction from calculating vp offset
492 	 */
493 	temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
494 	*vp_offset = spl_fixpt_floor(temp);
495 	temp.value &= 0xffffffff;
496 	*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
497 	*init = spl_fixpt_add(*init, init_adj);
498 	*init = spl_fixpt_truncate(*init, 19);
499 
500 	/*
501 	 * If viewport has non 0 offset and there are more taps than covered by init then
502 	 * we should decrease the offset and increase init so we are never sampling
503 	 * outside of viewport.
504 	 */
505 	int_part = spl_fixpt_floor(*init);
506 	if (int_part < taps) {
507 		int_part = taps - int_part;
508 		if (int_part > *vp_offset)
509 			int_part = *vp_offset;
510 		*vp_offset -= int_part;
511 		*init = spl_fixpt_add_int(*init, int_part);
512 	}
513 	/*
514 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
515 	 * available in the surface we should increase the viewport size, regardless set vp to
516 	 * only what is used.
517 	 */
518 	temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
519 	*vp_size = spl_fixpt_floor(temp);
520 	if (*vp_size + *vp_offset > src_size)
521 		*vp_size = src_size - *vp_offset;
522 
523 	/* We did all the math assuming we are scanning same direction as display does,
524 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
525 	 * is flipped we simply need to calculate offset from the other side of plane.
526 	 * Note that outside of viewport all scaling hardware works in recout space.
527 	 */
528 	if (flip_scan_dir)
529 		*vp_offset = src_size - *vp_offset - *vp_size;
530 }
531 
532 static bool spl_is_yuv420(enum spl_pixel_format format)
533 {
534 	if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
535 		(format <= SPL_PIXEL_FORMAT_420BPP10))
536 		return true;
537 
538 	return false;
539 }
540 
541 static bool spl_is_rgb8(enum spl_pixel_format format)
542 {
543 	if (format == SPL_PIXEL_FORMAT_ARGB8888)
544 		return true;
545 
546 	return false;
547 }
548 
549 /*Calculate inits and viewport */
550 static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
551 		struct spl_scratch *spl_scratch)
552 {
553 	struct spl_rect src = spl_in->basic_in.src_rect;
554 	struct spl_rect recout_dst_in_active_timing;
555 	struct spl_rect recout_clip_in_active_timing;
556 	struct spl_rect recout_clip_in_recout_dst;
557 	struct spl_rect overlap_in_active_timing;
558 	struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
559 	int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
560 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
561 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
562 	struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
563 	struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
564 
565 	recout_clip_in_active_timing = shift_rec(
566 			&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
567 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
568 			spl_in, &spl_in->basic_in.dst_rect);
569 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
570 			&recout_dst_in_active_timing);
571 	if (overlap_in_active_timing.width > 0 &&
572 			overlap_in_active_timing.height > 0)
573 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
574 				-recout_dst_in_active_timing.x,
575 				-recout_dst_in_active_timing.y);
576 	else
577 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
578 	/*
579 	 * Work in recout rotation since that requires less transformations
580 	 */
581 	spl_get_vp_scan_direction(
582 			spl_in->basic_in.rotation,
583 			spl_in->basic_in.horizontal_mirror,
584 			&orthogonal_rotation,
585 			&flip_vert_scan_dir,
586 			&flip_horz_scan_dir);
587 
588 	if (orthogonal_rotation) {
589 		spl_swap(src.width, src.height);
590 		spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
591 	}
592 
593 	if (spl_is_yuv420(spl_in->basic_in.format)) {
594 		/* this gives the direction of the cositing (negative will move
595 		 * left, right otherwise)
596 		 */
597 		int sign = 1;
598 
599 		switch (spl_in->basic_in.cositing) {
600 
601 		case CHROMA_COSITING_LEFT:
602 			init_adj_h = spl_fixpt_zero;
603 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
604 			break;
605 		case CHROMA_COSITING_NONE:
606 			init_adj_h = spl_fixpt_from_fraction(sign, 4);
607 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
608 			break;
609 		case CHROMA_COSITING_TOPLEFT:
610 		default:
611 			init_adj_h = spl_fixpt_zero;
612 			init_adj_v = spl_fixpt_zero;
613 			break;
614 		}
615 	}
616 
617 	spl_calculate_init_and_vp(
618 			flip_horz_scan_dir,
619 			recout_clip_in_recout_dst.x,
620 			spl_scratch->scl_data.recout.width,
621 			src.width,
622 			spl_scratch->scl_data.taps.h_taps,
623 			spl_scratch->scl_data.ratios.horz,
624 			spl_fixpt_zero,
625 			&spl_scratch->scl_data.inits.h,
626 			&spl_scratch->scl_data.viewport.x,
627 			&spl_scratch->scl_data.viewport.width);
628 	spl_calculate_init_and_vp(
629 			flip_horz_scan_dir,
630 			recout_clip_in_recout_dst.x,
631 			spl_scratch->scl_data.recout.width,
632 			src.width / vpc_div,
633 			spl_scratch->scl_data.taps.h_taps_c,
634 			spl_scratch->scl_data.ratios.horz_c,
635 			init_adj_h,
636 			&spl_scratch->scl_data.inits.h_c,
637 			&spl_scratch->scl_data.viewport_c.x,
638 			&spl_scratch->scl_data.viewport_c.width);
639 	spl_calculate_init_and_vp(
640 			flip_vert_scan_dir,
641 			recout_clip_in_recout_dst.y,
642 			spl_scratch->scl_data.recout.height,
643 			src.height,
644 			spl_scratch->scl_data.taps.v_taps,
645 			spl_scratch->scl_data.ratios.vert,
646 			spl_fixpt_zero,
647 			&spl_scratch->scl_data.inits.v,
648 			&spl_scratch->scl_data.viewport.y,
649 			&spl_scratch->scl_data.viewport.height);
650 	spl_calculate_init_and_vp(
651 			flip_vert_scan_dir,
652 			recout_clip_in_recout_dst.y,
653 			spl_scratch->scl_data.recout.height,
654 			src.height / vpc_div,
655 			spl_scratch->scl_data.taps.v_taps_c,
656 			spl_scratch->scl_data.ratios.vert_c,
657 			init_adj_v,
658 			&spl_scratch->scl_data.inits.v_c,
659 			&spl_scratch->scl_data.viewport_c.y,
660 			&spl_scratch->scl_data.viewport_c.height);
661 	if (orthogonal_rotation) {
662 		spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
663 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
664 		spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
665 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
666 	}
667 	spl_scratch->scl_data.viewport.x += src.x;
668 	spl_scratch->scl_data.viewport.y += src.y;
669 	SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
670 	spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
671 	spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
672 }
673 
674 static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
675 {
676 	/*
677 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
678 	 * since 3d is special and needs to calculate vp as if there is no recout offset
679 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
680 	 */
681 	if (spl_in->basic_in.mpc_combine_v) {
682 		SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
683 			(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
684 					spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
685 		if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
686 			recout->y += recout->height;
687 		else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
688 			recout->x += recout->width;
689 	}
690 }
691 
692 static void spl_clamp_viewport(struct spl_rect *viewport)
693 {
694 	/* Clamp minimum viewport size */
695 	if (viewport->height < MIN_VIEWPORT_SIZE)
696 		viewport->height = MIN_VIEWPORT_SIZE;
697 	if (viewport->width < MIN_VIEWPORT_SIZE)
698 		viewport->width = MIN_VIEWPORT_SIZE;
699 }
700 
701 static bool spl_dscl_is_420_format(enum spl_pixel_format format)
702 {
703 	if (format == SPL_PIXEL_FORMAT_420BPP8 ||
704 			format == SPL_PIXEL_FORMAT_420BPP10)
705 		return true;
706 	else
707 		return false;
708 }
709 
710 static bool spl_dscl_is_video_format(enum spl_pixel_format format)
711 {
712 	if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
713 			&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
714 		return true;
715 	else
716 		return false;
717 }
718 
719 static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
720 				const struct spl_scaler_data *data,
721 				bool enable_isharp, bool enable_easf)
722 {
723 	const long long one = spl_fixpt_one.value;
724 	enum spl_pixel_format pixel_format = spl_in->basic_in.format;
725 
726 	/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
727 	if (data->ratios.horz.value == one
728 			&& data->ratios.vert.value == one
729 			&& data->ratios.horz_c.value == one
730 			&& data->ratios.vert_c.value == one
731 			&& !spl_in->basic_out.always_scale
732 			&& !enable_isharp)
733 		return SCL_MODE_SCALING_444_BYPASS;
734 
735 	if (!spl_dscl_is_420_format(pixel_format)) {
736 		if (spl_dscl_is_video_format(pixel_format))
737 			return SCL_MODE_SCALING_444_YCBCR_ENABLE;
738 		else
739 			return SCL_MODE_SCALING_444_RGB_ENABLE;
740 	}
741 
742 	/*
743 	 * Bypass YUV if Y is 1:1 with no ISHARP
744 	 * Do not bypass UV at 1:1 for cositing to be applied
745 	 */
746 	if (!enable_isharp) {
747 		if (data->ratios.horz.value == one && data->ratios.vert.value == one)
748 			return SCL_MODE_SCALING_420_LUMA_BYPASS;
749 	}
750 
751 	return SCL_MODE_SCALING_420_YCBCR_ENABLE;
752 }
753 
754 static bool spl_choose_lls_policy(enum spl_pixel_format format,
755 	enum spl_transfer_func_type tf_type,
756 	enum spl_transfer_func_predefined tf_predefined_type,
757 	enum linear_light_scaling *lls_pref)
758 {
759 	if (spl_is_yuv420(format)) {
760 		*lls_pref = LLS_PREF_NO;
761 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
762 			(tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
763 			return true;
764 	} else { /* RGB or YUV444 */
765 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
766 			(tf_type == SPL_TF_TYPE_BYPASS)) {
767 			*lls_pref = LLS_PREF_YES;
768 			return true;
769 		}
770 	}
771 	*lls_pref = LLS_PREF_NO;
772 	return false;
773 }
774 
775 /* Enable EASF ?*/
776 static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
777 {
778 	int vratio = 0;
779 	int hratio = 0;
780 	bool skip_easf = false;
781 	bool lls_enable_easf = true;
782 
783 	if (spl_in->disable_easf)
784 		skip_easf = true;
785 
786 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
787 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
788 
789 	/*
790 	 * No EASF support for downscaling > 2:1
791 	 * EASF support for upscaling or downscaling up to 2:1
792 	 */
793 	if ((vratio > 2) || (hratio > 2))
794 		skip_easf = true;
795 
796 	/*
797 	 * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
798 	 *  function to determine whether to use LINEAR or NONLINEAR scaling
799 	 */
800 	if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
801 		lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
802 			spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
803 			&spl_in->lls_pref);
804 
805 	if (!lls_enable_easf)
806 		skip_easf = true;
807 
808 	/* Check for linear scaling or EASF preferred */
809 	if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
810 		skip_easf = true;
811 
812 	return skip_easf;
813 }
814 
815 /* Check if video is in fullscreen mode */
816 static bool spl_is_video_fullscreen(struct spl_in *spl_in)
817 {
818 	if (spl_is_yuv420(spl_in->basic_in.format) && spl_in->is_fullscreen)
819 		return true;
820 	return false;
821 }
822 
823 static bool spl_get_isharp_en(struct spl_in *spl_in,
824 	struct spl_scratch *spl_scratch)
825 {
826 	bool enable_isharp = false;
827 	int vratio = 0;
828 	int hratio = 0;
829 	struct spl_taps taps = spl_scratch->scl_data.taps;
830 	bool fullscreen = spl_is_video_fullscreen(spl_in);
831 
832 	/* Return if adaptive sharpness is disabled */
833 	if (spl_in->adaptive_sharpness.enable == false)
834 		return enable_isharp;
835 
836 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
837 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
838 
839 	/* No iSHARP support for downscaling */
840 	if (vratio > 1 || hratio > 1)
841 		return enable_isharp;
842 
843 	// Scaling is up to 1:1 (no scaling) or upscaling
844 
845 	/*
846 	 * Apply sharpness to RGB and YUV (NV12/P010)
847 	 *  surfaces based on policy setting
848 	 */
849 	if (!spl_is_yuv420(spl_in->basic_in.format) &&
850 		(spl_in->sharpen_policy == SHARPEN_YUV))
851 		return enable_isharp;
852 	else if ((spl_is_yuv420(spl_in->basic_in.format) && !fullscreen) &&
853 		(spl_in->sharpen_policy == SHARPEN_RGB_FULLSCREEN_YUV))
854 		return enable_isharp;
855 	else if (!spl_in->is_fullscreen &&
856 			spl_in->sharpen_policy == SHARPEN_FULLSCREEN_ALL)
857 		return enable_isharp;
858 
859 	/*
860 	 * Apply sharpness if supports horizontal taps 4,6 AND
861 	 *  vertical taps 3, 4, 6
862 	 */
863 	if ((taps.h_taps == 4 || taps.h_taps == 6) &&
864 		(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
865 		enable_isharp = true;
866 
867 	return enable_isharp;
868 }
869 
870 /* Calculate number of tap with adaptive scaling off */
871 static void spl_get_taps_non_adaptive_scaler(
872 	  struct spl_scratch *spl_scratch, const struct spl_taps *in_taps)
873 {
874 	if (in_taps->h_taps == 0) {
875 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
876 			spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
877 				spl_scratch->scl_data.ratios.horz), 8);
878 		else
879 			spl_scratch->scl_data.taps.h_taps = 4;
880 	} else
881 		spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
882 
883 	if (in_taps->v_taps == 0) {
884 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
885 			spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
886 				spl_scratch->scl_data.ratios.vert, 2)), 8);
887 		else
888 			spl_scratch->scl_data.taps.v_taps = 4;
889 	} else
890 		spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
891 
892 	if (in_taps->v_taps_c == 0) {
893 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
894 			spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
895 				spl_scratch->scl_data.ratios.vert_c, 2)), 8);
896 		else
897 			spl_scratch->scl_data.taps.v_taps_c = 4;
898 	} else
899 		spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
900 
901 	if (in_taps->h_taps_c == 0) {
902 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
903 			spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
904 				spl_scratch->scl_data.ratios.horz_c), 8);
905 		else
906 			spl_scratch->scl_data.taps.h_taps_c = 4;
907 	} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
908 		/* Only 1 and even h_taps_c are supported by hw */
909 		spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
910 	else
911 		spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
912 
913 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz))
914 		spl_scratch->scl_data.taps.h_taps = 1;
915 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))
916 		spl_scratch->scl_data.taps.v_taps = 1;
917 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
918 		spl_scratch->scl_data.taps.h_taps_c = 1;
919 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
920 		spl_scratch->scl_data.taps.v_taps_c = 1;
921 
922 }
923 
924 /* Calculate optimal number of taps */
925 static bool spl_get_optimal_number_of_taps(
926 	  int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
927 	  const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
928 	  bool *enable_isharp)
929 {
930 	int num_part_y, num_part_c;
931 	int max_taps_y, max_taps_c;
932 	int min_taps_y, min_taps_c;
933 	enum lb_memory_config lb_config;
934 	bool skip_easf = false;
935 	bool is_ycbcr = spl_dscl_is_video_format(spl_in->basic_in.format);
936 
937 	if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
938 		max_downscale_src_width != 0 &&
939 		spl_scratch->scl_data.viewport.width > max_downscale_src_width) {
940 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
941 		*enable_easf_v = false;
942 		*enable_easf_h = false;
943 		*enable_isharp = false;
944 		return false;
945 	}
946 
947 	/* Disable adaptive scaler and sharpener when integer scaling is enabled */
948 	if (spl_in->scaling_quality.integer_scaling) {
949 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
950 		*enable_easf_v = false;
951 		*enable_easf_h = false;
952 		*enable_isharp = false;
953 		return true;
954 	}
955 
956 	/* Check if we are using EASF or not */
957 	skip_easf = enable_easf(spl_in, spl_scratch);
958 
959 	/*
960 	 * Set default taps if none are provided
961 	 * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
962 	 * taps = 4 for upscaling
963 	 */
964 	if (skip_easf)
965 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps);
966 	else {
967 		if (spl_is_yuv420(spl_in->basic_in.format)) {
968 			spl_scratch->scl_data.taps.h_taps = 6;
969 			spl_scratch->scl_data.taps.v_taps = 6;
970 			spl_scratch->scl_data.taps.h_taps_c = 4;
971 			spl_scratch->scl_data.taps.v_taps_c = 4;
972 		} else { /* RGB */
973 			spl_scratch->scl_data.taps.h_taps = 6;
974 			spl_scratch->scl_data.taps.v_taps = 6;
975 			spl_scratch->scl_data.taps.h_taps_c = 6;
976 			spl_scratch->scl_data.taps.v_taps_c = 6;
977 		}
978 	}
979 
980 	/*Ensure we can support the requested number of vtaps*/
981 	min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
982 	min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
983 
984 	/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
985 	if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
986 		|| (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
987 		lb_config = LB_MEMORY_CONFIG_3;
988 	else
989 		lb_config = LB_MEMORY_CONFIG_0;
990 	// Determine max vtap support by calculating how much line buffer can fit
991 	spl_in->callbacks.spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
992 			lb_config, &num_part_y, &num_part_c);
993 	/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
994 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
995 		max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
996 	else
997 		max_taps_y = num_part_y;
998 
999 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
1000 		max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
1001 	else
1002 		max_taps_c = num_part_c;
1003 
1004 	if (max_taps_y < min_taps_y)
1005 		return false;
1006 	else if (max_taps_c < min_taps_c)
1007 		return false;
1008 
1009 	if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
1010 		spl_scratch->scl_data.taps.v_taps = max_taps_y;
1011 
1012 	if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
1013 		spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
1014 
1015 	if (!skip_easf) {
1016 		/*
1017 		 * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
1018 		 * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
1019 		 *
1020 		 * If LB does not support 3, 4, or 6 taps, then disable EASF_V
1021 		 *  and only enable EASF_H.  So for RGB, support 6x2, 4x2
1022 		 *  and for NL YUV420, support 6x2 for Y and 4x2 for UV
1023 		 *
1024 		 * All other cases, have to disable EASF_V and EASF_H
1025 		 *
1026 		 * If optimal no of taps is 5, then set it to 4
1027 		 * If optimal no of taps is 7 or 8, then fine since max tap is 6
1028 		 *
1029 		 */
1030 		if (spl_scratch->scl_data.taps.v_taps == 5)
1031 			spl_scratch->scl_data.taps.v_taps = 4;
1032 
1033 		if (spl_scratch->scl_data.taps.v_taps_c == 5)
1034 			spl_scratch->scl_data.taps.v_taps_c = 4;
1035 
1036 		if (spl_scratch->scl_data.taps.h_taps == 5)
1037 			spl_scratch->scl_data.taps.h_taps = 4;
1038 
1039 		if (spl_scratch->scl_data.taps.h_taps_c == 5)
1040 			spl_scratch->scl_data.taps.h_taps_c = 4;
1041 
1042 		if (spl_is_yuv420(spl_in->basic_in.format)) {
1043 			if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
1044 				(spl_scratch->scl_data.taps.h_taps_c <= 3)) {
1045 				*enable_easf_v = false;
1046 				*enable_easf_h = false;
1047 			} else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
1048 				(spl_scratch->scl_data.taps.v_taps_c <= 3)) {
1049 				*enable_easf_v = false;
1050 				*enable_easf_h = true;
1051 			} else {
1052 				*enable_easf_v = true;
1053 				*enable_easf_h = true;
1054 			}
1055 			SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
1056 				(spl_scratch->scl_data.taps.v_taps_c > 1));
1057 		} else { /* RGB */
1058 			if (spl_scratch->scl_data.taps.h_taps <= 3) {
1059 				*enable_easf_v = false;
1060 				*enable_easf_h = false;
1061 			} else if (spl_scratch->scl_data.taps.v_taps < 3) {
1062 				*enable_easf_v = false;
1063 				*enable_easf_h = true;
1064 			} else {
1065 				*enable_easf_v = true;
1066 				*enable_easf_h = true;
1067 			}
1068 			SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
1069 		}
1070 	} else {
1071 		*enable_easf_v = false;
1072 		*enable_easf_h = false;
1073 	} // end of if prefer_easf
1074 
1075 	/* Sharpener requires scaler to be enabled, including for 1:1
1076 	 * Check if ISHARP can be enabled
1077 	 * If ISHARP is not enabled, set taps to 1 if ratio is 1:1
1078 	 *  except for chroma taps.  Keep previous taps so it can
1079 	 *  handle cositing
1080 	 */
1081 
1082 	*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
1083 	if (!*enable_isharp && !spl_in->basic_out.always_scale)	{
1084 		if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
1085 			(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
1086 			spl_scratch->scl_data.taps.h_taps = 1;
1087 			spl_scratch->scl_data.taps.v_taps = 1;
1088 
1089 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c) && !is_ycbcr)
1090 				spl_scratch->scl_data.taps.h_taps_c = 1;
1091 
1092 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c) && !is_ycbcr)
1093 				spl_scratch->scl_data.taps.v_taps_c = 1;
1094 
1095 			*enable_easf_v = false;
1096 			*enable_easf_h = false;
1097 		} else {
1098 			if ((!*enable_easf_h) &&
1099 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)))
1100 				spl_scratch->scl_data.taps.h_taps = 1;
1101 
1102 			if ((!*enable_easf_v) &&
1103 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert)))
1104 				spl_scratch->scl_data.taps.v_taps = 1;
1105 
1106 			if ((!*enable_easf_h) && !is_ycbcr &&
1107 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
1108 				spl_scratch->scl_data.taps.h_taps_c = 1;
1109 
1110 			if ((!*enable_easf_v) && !is_ycbcr &&
1111 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
1112 				spl_scratch->scl_data.taps.v_taps_c = 1;
1113 		}
1114 	}
1115 	return true;
1116 }
1117 
1118 static void spl_set_black_color_data(enum spl_pixel_format format,
1119 			struct scl_black_color *scl_black_color)
1120 {
1121 	bool ycbcr = spl_dscl_is_video_format(format);
1122 	if (ycbcr)	{
1123 		scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
1124 		scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
1125 	}	else {
1126 		scl_black_color->offset_rgb_y = 0x0;
1127 		scl_black_color->offset_rgb_cbcr = 0x0;
1128 	}
1129 }
1130 
1131 static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
1132 		const struct spl_scaler_data *scl_data)
1133 {
1134 	struct spl_fixed31_32 bot;
1135 
1136 	dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
1137 	dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
1138 	dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
1139 	dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
1140 	/*
1141 	 * 0.24 format for fraction, first five bits zeroed
1142 	 */
1143 	dscl_prog_data->init.h_filter_init_frac =
1144 			spl_fixpt_u0d19(scl_data->inits.h) << 5;
1145 	dscl_prog_data->init.h_filter_init_int =
1146 			spl_fixpt_floor(scl_data->inits.h);
1147 	dscl_prog_data->init.h_filter_init_frac_c =
1148 			spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
1149 	dscl_prog_data->init.h_filter_init_int_c =
1150 			spl_fixpt_floor(scl_data->inits.h_c);
1151 	dscl_prog_data->init.v_filter_init_frac =
1152 			spl_fixpt_u0d19(scl_data->inits.v) << 5;
1153 	dscl_prog_data->init.v_filter_init_int =
1154 			spl_fixpt_floor(scl_data->inits.v);
1155 	dscl_prog_data->init.v_filter_init_frac_c =
1156 			spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
1157 	dscl_prog_data->init.v_filter_init_int_c =
1158 			spl_fixpt_floor(scl_data->inits.v_c);
1159 
1160 	bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
1161 	dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
1162 	dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
1163 	bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
1164 	dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
1165 	dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
1166 }
1167 
1168 static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
1169 		const struct spl_scaler_data *scl_data)
1170 {
1171 	dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
1172 	dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
1173 	dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
1174 	dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
1175 }
1176 
1177 /* Populate dscl prog data structure from scaler data calculated by SPL */
1178 static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
1179 	struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
1180 {
1181 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1182 
1183 	const struct spl_scaler_data *data = &spl_scratch->scl_data;
1184 
1185 	struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
1186 
1187 	bool enable_easf = enable_easf_v || enable_easf_h;
1188 
1189 	// Set values for recout
1190 	dscl_prog_data->recout = spl_scratch->scl_data.recout;
1191 	// Set values for MPC Size
1192 	dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
1193 	dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
1194 
1195 	// SCL_MODE - Set SCL_MODE data
1196 	dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
1197 		enable_easf);
1198 
1199 	// SCL_BLACK_COLOR
1200 	spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
1201 
1202 	/* Manually calculate scale ratio and init values */
1203 	spl_set_manual_ratio_init_data(dscl_prog_data, data);
1204 
1205 	// Set HTaps/VTaps
1206 	spl_set_taps_data(dscl_prog_data, data);
1207 	// Set viewport
1208 	dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
1209 	// Set viewport_c
1210 	dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
1211 	// Set filters data
1212 	spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
1213 }
1214 
1215 /* Calculate C0-C3 coefficients based on HDR_mult */
1216 static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t sdr_white_level_nits)
1217 {
1218 	struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
1219 	struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
1220 	struct spl_custom_float_format fmt;
1221 	uint32_t hdr_multx100_int;
1222 
1223 	if ((sdr_white_level_nits >= 80) && (sdr_white_level_nits <= 480))
1224 		hdr_multx100_int = sdr_white_level_nits * 100 / 80;
1225 	else
1226 		hdr_multx100_int = 100; /* default for 80 nits otherwise */
1227 
1228 	hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100_int, 100LL);
1229 	c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
1230 	c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
1231 	c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
1232 
1233 	c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
1234 		16384LL, 125LL)));
1235 	c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
1236 		16384LL, 125LL)));
1237 	c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
1238 		16384LL, 125LL)));
1239 
1240 	fmt.exponenta_bits = 5;
1241 	fmt.mantissa_bits = 10;
1242 	fmt.sign = true;
1243 
1244 	// fp1.5.10, C0 coefficient (LN_rec709:  HDR_MULT * 0.212600 * 2^14/125)
1245 	spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
1246 	// fp1.5.10, C1 coefficient (LN_rec709:  HDR_MULT * 0.715200 * 2^14/125)
1247 	spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
1248 	// fp1.5.10, C2 coefficient (LN_rec709:  HDR_MULT * 0.072200 * 2^14/125)
1249 	spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
1250 	dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
1251 }
1252 
1253 /* Set EASF data */
1254 static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
1255 	bool enable_easf_h, enum linear_light_scaling lls_pref,
1256 	enum spl_pixel_format format, enum system_setup setup,
1257 	uint32_t sdr_white_level_nits)
1258 {
1259 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1260 	if (enable_easf_v) {
1261 		dscl_prog_data->easf_v_en = true;
1262 		dscl_prog_data->easf_v_ring = 0;
1263 		dscl_prog_data->easf_v_sharp_factor = 0;
1264 		dscl_prog_data->easf_v_bf1_en = 1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1265 		dscl_prog_data->easf_v_bf2_mode = 0xF;	// 4-bit, BF2 calculation mode
1266 		/* 2-bit, BF3 chroma mode correction calculation mode */
1267 		dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
1268 			spl_scratch->scl_data.recip_ratios.vert);
1269 		/* FP1.5.10 [ minCoef ]*/
1270 		dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
1271 			spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
1272 				spl_scratch->scl_data.recip_ratios.vert);
1273 		/* FP1.5.10 [ upTiltMaxVal ]*/
1274 		dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
1275 			spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
1276 				spl_scratch->scl_data.recip_ratios.vert);
1277 		/* FP1.5.10 [ dnTiltSlope ]*/
1278 		dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
1279 			spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
1280 				spl_scratch->scl_data.recip_ratios.vert);
1281 		/* FP1.5.10 [ upTilt1Slope ]*/
1282 		dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
1283 			spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
1284 				spl_scratch->scl_data.recip_ratios.vert);
1285 		/* FP1.5.10 [ upTilt2Slope ]*/
1286 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
1287 			spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
1288 				spl_scratch->scl_data.recip_ratios.vert);
1289 		/* FP1.5.10 [ upTilt2Offset ]*/
1290 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
1291 			spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
1292 				spl_scratch->scl_data.recip_ratios.vert);
1293 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1294 		dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
1295 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
1296 				spl_scratch->scl_data.recip_ratios.vert);
1297 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1298 		dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
1299 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
1300 				spl_scratch->scl_data.recip_ratios.vert);
1301 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1302 		dscl_prog_data->easf_v_ringest_eventap_gain1 =
1303 			spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
1304 				spl_scratch->scl_data.recip_ratios.vert);
1305 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1306 		dscl_prog_data->easf_v_ringest_eventap_gain2 =
1307 			spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
1308 				spl_scratch->scl_data.recip_ratios.vert);
1309 		dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
1310 		dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
1311 		dscl_prog_data->easf_v_bf_mina = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
1312 		dscl_prog_data->easf_v_bf_minb = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
1313 		if (lls_pref == LLS_PREF_YES)	{
1314 			dscl_prog_data->easf_v_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1315 			dscl_prog_data->easf_v_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1316 			dscl_prog_data->easf_v_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1317 
1318 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1319 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1320 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1321 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1322 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1323 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1324 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1325 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1326 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1327 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1328 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1329 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1330 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1331 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1332 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1333 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1334 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1335 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1336 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1337 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1338 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1339 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1340 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1341 
1342 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1343 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1344 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1345 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1346 				0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1347 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1348 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
1349 				0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1350 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1351 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1352 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1353 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
1354 				0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1355 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1356 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1357 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1358 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1359 				0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1360 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1361 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1362 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1363 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
1364 				0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1365 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1366 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1367 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1368 		}	else	{
1369 			dscl_prog_data->easf_v_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1370 			dscl_prog_data->easf_v_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1371 			dscl_prog_data->easf_v_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1372 
1373 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1374 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1375 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1376 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1377 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1378 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1379 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1380 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1381 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1382 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1383 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1384 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1385 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1386 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1387 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1388 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1389 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1390 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1391 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1392 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1393 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1394 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1395 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1396 
1397 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1398 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1399 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1400 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1401 				0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1402 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1403 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1404 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1405 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1406 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1407 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1408 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1409 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1410 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1411 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1412 				0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1413 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1414 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1415 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1416 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1417 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1418 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1419 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1420 		}
1421 	} else
1422 		dscl_prog_data->easf_v_en = false;
1423 
1424 	if (enable_easf_h) {
1425 		dscl_prog_data->easf_h_en = true;
1426 		dscl_prog_data->easf_h_ring = 0;
1427 		dscl_prog_data->easf_h_sharp_factor = 0;
1428 		dscl_prog_data->easf_h_bf1_en =
1429 			1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1430 		dscl_prog_data->easf_h_bf2_mode =
1431 			0xF;	// 4-bit, BF2 calculation mode
1432 		/* 2-bit, BF3 chroma mode correction calculation mode */
1433 		dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
1434 			spl_scratch->scl_data.recip_ratios.horz);
1435 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1436 		dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
1437 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
1438 				spl_scratch->scl_data.recip_ratios.horz);
1439 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1440 		dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
1441 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
1442 				spl_scratch->scl_data.recip_ratios.horz);
1443 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1444 		dscl_prog_data->easf_h_ringest_eventap_gain1 =
1445 			spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
1446 				spl_scratch->scl_data.recip_ratios.horz);
1447 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1448 		dscl_prog_data->easf_h_ringest_eventap_gain2 =
1449 			spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
1450 				spl_scratch->scl_data.recip_ratios.horz);
1451 		dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
1452 		dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
1453 		dscl_prog_data->easf_h_bf_mina = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
1454 		dscl_prog_data->easf_h_bf_minb = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
1455 		if (lls_pref == LLS_PREF_YES)	{
1456 			dscl_prog_data->easf_h_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1457 			dscl_prog_data->easf_h_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1458 			dscl_prog_data->easf_h_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1459 
1460 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1461 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1462 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1463 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1464 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1465 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1466 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1467 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1468 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1469 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1470 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1471 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1472 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1473 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1474 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1475 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1476 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1477 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1478 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1479 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1480 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1481 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1482 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1483 
1484 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1485 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1486 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1487 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1488 				0x0B37;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1489 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1490 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 =	0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1491 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1492 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1493 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1494 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 =	0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1495 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1496 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1497 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1498 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 =	0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1499 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1500 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1501 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1502 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1503 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1504 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1505 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1506 		} else {
1507 			dscl_prog_data->easf_h_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1508 			dscl_prog_data->easf_h_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1509 			dscl_prog_data->easf_h_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1510 
1511 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1512 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1513 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1514 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1515 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1516 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1517 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1518 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1519 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1520 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1521 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1522 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1523 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1524 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1525 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1526 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1527 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1528 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1529 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1530 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1531 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1532 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1533 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1534 
1535 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1536 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1537 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1538 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1539 				0x06C0;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1540 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1541 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1542 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1543 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1544 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1545 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1546 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1547 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1548 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1549 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1550 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1551 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1552 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1553 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1554 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1555 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1556 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1557 		} // if (lls_pref == LLS_PREF_YES)
1558 	} else
1559 		dscl_prog_data->easf_h_en = false;
1560 
1561 	if (lls_pref == LLS_PREF_YES)	{
1562 		dscl_prog_data->easf_ltonl_en = 1;	// Linear input
1563 		if ((setup == HDR_L) && (spl_is_rgb8(format))) {
1564 			/* Calculate C0-C3 coefficients based on HDR multiplier */
1565 			spl_calculate_c0_c3_hdr(dscl_prog_data, sdr_white_level_nits);
1566 		} else { // HDR_L ( DWM ) and SDR_L
1567 			dscl_prog_data->easf_matrix_c0 =
1568 				0x4EF7;	// fp1.5.10, C0 coefficient (LN_rec709:  0.2126 * (2^14)/125 = 27.86590720)
1569 			dscl_prog_data->easf_matrix_c1 =
1570 				0x55DC;	// fp1.5.10, C1 coefficient (LN_rec709:  0.7152 * (2^14)/125 = 93.74269440)
1571 			dscl_prog_data->easf_matrix_c2 =
1572 				0x48BB;	// fp1.5.10, C2 coefficient (LN_rec709:  0.0722 * (2^14)/125 = 9.46339840)
1573 			dscl_prog_data->easf_matrix_c3 =
1574 				0x0;	// fp1.5.10, C3 coefficient
1575 		}
1576 	}	else	{
1577 		dscl_prog_data->easf_ltonl_en = 0;	// Non-Linear input
1578 		dscl_prog_data->easf_matrix_c0 =
1579 			0x3434;	// fp1.5.10, C0 coefficient (LN_BT2020:  0.262695312500000)
1580 		dscl_prog_data->easf_matrix_c1 =
1581 			0x396D;	// fp1.5.10, C1 coefficient (LN_BT2020:  0.678222656250000)
1582 		dscl_prog_data->easf_matrix_c2 =
1583 			0x2B97;	// fp1.5.10, C2 coefficient (LN_BT2020:  0.059295654296875)
1584 		dscl_prog_data->easf_matrix_c3 =
1585 			0x0;	// fp1.5.10, C3 coefficient
1586 	}
1587 
1588 	if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
1589 		dscl_prog_data->easf_matrix_mode = 1;
1590 		/*
1591 		 * 2-bit, BF3 chroma mode correction calculation mode
1592 		 * Needs to be disabled for YUV420 mode
1593 		 * Override lookup value
1594 		 */
1595 		dscl_prog_data->easf_v_bf3_mode = 0;
1596 		dscl_prog_data->easf_h_bf3_mode = 0;
1597 	} else
1598 		dscl_prog_data->easf_matrix_mode = 0;
1599 
1600 }
1601 
1602 /*Set isharp noise detection */
1603 static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
1604 	const struct spl_scaler_data *data)
1605 {
1606 	// ISHARP_NOISEDET_MODE
1607 	// 0: 3x5 as VxH
1608 	// 1: 4x5 as VxH
1609 	// 2:
1610 	// 3: 5x5 as VxH
1611 	if (data->taps.v_taps == 6)
1612 		dscl_prog_data->isharp_noise_det.mode = 3;
1613 	else if (data->taps.v_taps == 4)
1614 		dscl_prog_data->isharp_noise_det.mode = 1;
1615 	else if (data->taps.v_taps == 3)
1616 		dscl_prog_data->isharp_noise_det.mode = 0;
1617 };
1618 /* Set Sharpener data */
1619 static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
1620 		struct adaptive_sharpness adp_sharpness, bool enable_isharp,
1621 		enum linear_light_scaling lls_pref, enum spl_pixel_format format,
1622 		const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
1623 		enum system_setup setup, enum scale_to_sharpness_policy scale_to_sharpness_policy)
1624 {
1625 	/* Turn off sharpener if not required */
1626 	if (!enable_isharp) {
1627 		dscl_prog_data->isharp_en = 0;
1628 		return;
1629 	}
1630 
1631 	spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness,
1632 		scale_to_sharpness_policy);
1633 	memcpy(dscl_prog_data->isharp_delta, spl_get_pregen_filter_isharp_1D_lut(setup),
1634 		sizeof(uint32_t) * ISHARP_LUT_TABLE_SIZE);
1635 	dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;
1636 
1637 	dscl_prog_data->isharp_en = 1;	// ISHARP_EN
1638 	// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
1639 	if (data->taps.h_taps == 6) {
1640 		dscl_prog_data->isharp_noise_det.enable = 1;	/* ISHARP_NOISEDET_EN */
1641 		spl_set_isharp_noise_det_mode(dscl_prog_data, data);	/* ISHARP_NOISEDET_MODE */
1642 	} else
1643 		dscl_prog_data->isharp_noise_det.enable = 0;	// ISHARP_NOISEDET_EN
1644 	// Program noise detection threshold
1645 	dscl_prog_data->isharp_noise_det.uthreshold = 24;	// ISHARP_NOISEDET_UTHRE
1646 	dscl_prog_data->isharp_noise_det.dthreshold = 4;	// ISHARP_NOISEDET_DTHRE
1647 	// Program noise detection gain
1648 	dscl_prog_data->isharp_noise_det.pwl_start_in = 3;	// ISHARP_NOISEDET_PWL_START_IN
1649 	dscl_prog_data->isharp_noise_det.pwl_end_in = 13;	// ISHARP_NOISEDET_PWL_END_IN
1650 	dscl_prog_data->isharp_noise_det.pwl_slope = 1623;	// ISHARP_NOISEDET_PWL_SLOPE
1651 
1652 	if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
1653 		dscl_prog_data->isharp_fmt.mode = 1;
1654 	else
1655 		dscl_prog_data->isharp_fmt.mode = 0;
1656 
1657 	dscl_prog_data->isharp_fmt.norm = 0x3C00;	// ISHARP_FMT_NORM
1658 	dscl_prog_data->isharp_lba.mode = 0;	// ISHARP_LBA_MODE
1659 
1660 	if (setup == SDR_L) {
1661 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1662 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1663 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1664 		dscl_prog_data->isharp_lba.slope_seg[0] = 62;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1665 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1666 		dscl_prog_data->isharp_lba.in_seg[1] = 130;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1667 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1668 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1669 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1670 		dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1671 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1672 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
1673 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1674 		dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1675 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1676 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1677 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1678 		dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1679 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1680 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1681 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1682 		dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1683 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1684 	} else if (setup == HDR_L) {
1685 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1686 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1687 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1688 		dscl_prog_data->isharp_lba.slope_seg[0] = 32;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1689 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1690 		dscl_prog_data->isharp_lba.in_seg[1] = 254;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1691 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1692 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1693 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1694 		dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1695 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1696 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
1697 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1698 		dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1699 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1700 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1701 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1702 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1703 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1704 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1705 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1706 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1707 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1708 	} else {
1709 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1710 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1711 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1712 		dscl_prog_data->isharp_lba.slope_seg[0] = 40;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1713 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1714 		dscl_prog_data->isharp_lba.in_seg[1] = 204;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1715 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1716 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1717 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1718 		dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1719 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1720 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
1721 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1722 		dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1723 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1724 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1725 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1726 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1727 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1728 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1729 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1730 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1731 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1732 	}
1733 
1734 	// Program the nldelta soft clip values
1735 	if (lls_pref == LLS_PREF_YES) {
1736 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 0;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1737 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1738 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 0;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1739 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1740 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1741 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 16;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1742 	} else {
1743 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 1;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1744 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1745 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1746 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1747 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1748 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1749 	}
1750 
1751 	// Set the values as per lookup table
1752 	spl_set_blur_scale_data(dscl_prog_data, data);
1753 }
1754 
1755 /* Calculate recout, scaling ratio, and viewport, then get optimal number of taps */
1756 static bool spl_calculate_number_of_taps(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out,
1757 	bool *enable_easf_v, bool *enable_easf_h, bool *enable_isharp)
1758 {
1759 	bool res = false;
1760 
1761 	memset(spl_scratch, 0, sizeof(struct spl_scratch));
1762 	spl_scratch->scl_data.h_active = spl_in->h_active;
1763 	spl_scratch->scl_data.v_active = spl_in->v_active;
1764 
1765 	// All SPL calls
1766 	/* recout calculation */
1767 	/* depends on h_active */
1768 	spl_calculate_recout(spl_in, spl_scratch, spl_out);
1769 	/* depends on pixel format */
1770 	spl_calculate_scaling_ratios(spl_in, spl_scratch, spl_out);
1771 	/* depends on scaling ratios and recout, does not calculate offset yet */
1772 	spl_calculate_viewport_size(spl_in, spl_scratch);
1773 
1774 	res = spl_get_optimal_number_of_taps(
1775 			  spl_in->basic_out.max_downscale_src_width, spl_in,
1776 			  spl_scratch, &spl_in->scaling_quality, enable_easf_v,
1777 			  enable_easf_h, enable_isharp);
1778 	return res;
1779 }
1780 
1781 /* Calculate scaler parameters */
1782 bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
1783 {
1784 	bool res = false;
1785 	bool enable_easf_v = false;
1786 	bool enable_easf_h = false;
1787 	int vratio = 0;
1788 	int hratio = 0;
1789 	struct spl_scratch spl_scratch;
1790 	struct spl_fixed31_32 isharp_scale_ratio;
1791 	enum system_setup setup;
1792 	bool enable_isharp = false;
1793 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1794 
1795 	res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
1796 		&enable_easf_v, &enable_easf_h, &enable_isharp);
1797 
1798 	/*
1799 	 * Depends on recout, scaling ratios, h_active and taps
1800 	 * May need to re-check lb size after this in some obscure scenario
1801 	 */
1802 	if (res)
1803 		spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
1804 	// Handle 3d recout
1805 	spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
1806 	// Clamp
1807 	spl_clamp_viewport(&spl_scratch.scl_data.viewport);
1808 
1809 	// Save all calculated parameters in dscl_prog_data structure to program hw registers
1810 	spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
1811 
1812 	if (!res)
1813 		return res;
1814 
1815 	if (spl_in->lls_pref == LLS_PREF_YES) {
1816 		if (spl_in->is_hdr_on)
1817 			setup = HDR_L;
1818 		else
1819 			setup = SDR_L;
1820 	} else {
1821 		if (spl_in->is_hdr_on)
1822 			setup = HDR_NL;
1823 		else
1824 			setup = SDR_NL;
1825 	}
1826 
1827 	// Set EASF
1828 	spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
1829 		spl_in->basic_in.format, setup, spl_in->sdr_white_level_nits);
1830 
1831 	// Set iSHARP
1832 	vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
1833 	hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
1834 	if (vratio <= hratio)
1835 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
1836 	else
1837 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
1838 
1839 	spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
1840 		spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup,
1841 		spl_in->debug.scale_to_sharpness_policy);
1842 
1843 	return res;
1844 }
1845 
1846 /* External interface to get number of taps only */
1847 bool spl_get_number_of_taps(struct spl_in *spl_in, struct spl_out *spl_out)
1848 {
1849 	bool res = false;
1850 	bool enable_easf_v = false;
1851 	bool enable_easf_h = false;
1852 	bool enable_isharp = false;
1853 	struct spl_scratch spl_scratch;
1854 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1855 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1856 
1857 	res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
1858 		&enable_easf_v, &enable_easf_h, &enable_isharp);
1859 	spl_set_taps_data(dscl_prog_data, data);
1860 	return res;
1861 }
1862