xref: /linux/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: MIT
2 //
3 // Copyright 2024 Advanced Micro Devices, Inc.
4 
5 #include "dc_spl.h"
6 #include "dc_spl_scl_filters.h"
7 #include "dc_spl_scl_easf_filters.h"
8 #include "dc_spl_isharp_filters.h"
9 #include "spl_debug.h"
10 
11 #define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
12 #define MIN_VIEWPORT_SIZE 12
13 
14 static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
15 {
16 	struct spl_rect rec;
17 	int r0_x_end = r0->x + r0->width;
18 	int r1_x_end = r1->x + r1->width;
19 	int r0_y_end = r0->y + r0->height;
20 	int r1_y_end = r1->y + r1->height;
21 
22 	rec.x = r0->x > r1->x ? r0->x : r1->x;
23 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
24 	rec.y = r0->y > r1->y ? r0->y : r1->y;
25 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
26 
27 	/* in case that there is no intersection */
28 	if (rec.width < 0 || rec.height < 0)
29 		memset(&rec, 0, sizeof(rec));
30 
31 	return rec;
32 }
33 
34 static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
35 {
36 	struct spl_rect rec_out = *rec_in;
37 
38 	rec_out.x += x;
39 	rec_out.y += y;
40 
41 	return rec_out;
42 }
43 
44 static struct spl_rect calculate_plane_rec_in_timing_active(
45 		struct spl_in *spl_in,
46 		const struct spl_rect *rec_in)
47 {
48 	/*
49 	 * The following diagram shows an example where we map a 1920x1200
50 	 * desktop to a 2560x1440 timing with a plane rect in the middle
51 	 * of the screen. To map a plane rect from Stream Source to Timing
52 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
53 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
54 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
55 	 * This will give us a plane rect's position in Timing Active. However
56 	 * we have to remove the fractional. The rule is that we find left/right
57 	 * and top/bottom positions and round the value to the adjacent integer.
58 	 *
59 	 * Stream Source Space
60 	 * ------------
61 	 *        __________________________________________________
62 	 *       |Stream Source (1920 x 1200) ^                     |
63 	 *       |                            y                     |
64 	 *       |         <------- w --------|>                    |
65 	 *       |          __________________V                     |
66 	 *       |<-- x -->|Plane//////////////| ^                  |
67 	 *       |         |(pre scale)////////| |                  |
68 	 *       |         |///////////////////| |                  |
69 	 *       |         |///////////////////| h                  |
70 	 *       |         |///////////////////| |                  |
71 	 *       |         |///////////////////| |                  |
72 	 *       |         |///////////////////| V                  |
73 	 *       |                                                  |
74 	 *       |                                                  |
75 	 *       |__________________________________________________|
76 	 *
77 	 *
78 	 * Timing Active Space
79 	 * ---------------------------------
80 	 *
81 	 *       Timing Active (2560 x 1440)
82 	 *        __________________________________________________
83 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
84 	 *       |*****|                                      |*****|
85 	 *       |<128>|                                      |*****|
86 	 *       |*****|     __________________               |*****|
87 	 *       |*****|    |Plane/////////////|              |*****|
88 	 *       |*****|    |(post scale)//////|              |*****|
89 	 *       |*****|    |//////////////////|              |*****|
90 	 *       |*****|    |//////////////////|              |*****|
91 	 *       |*****|    |//////////////////|              |*****|
92 	 *       |*****|    |//////////////////|              |*****|
93 	 *       |*****|                                      |*****|
94 	 *       |*****|                                      |*****|
95 	 *       |*****|                                      |*****|
96 	 *       |*****|______________________________________|*****|
97 	 *
98 	 * So the resulting formulas are shown below:
99 	 *
100 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
101 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
102 	 * recout_y = 0 + round(plane_y * 1440 / 1280)
103 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
104 	 *
105 	 * NOTE: fixed point division is not error free. To reduce errors
106 	 * introduced by fixed point division, we divide only after
107 	 * multiplication is complete.
108 	 */
109 	const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
110 	const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
111 	struct spl_rect rec_out = {0};
112 	struct spl_fixed31_32 temp;
113 
114 
115 	temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
116 			stream_src->width);
117 	rec_out.x = stream_dst->x + spl_fixpt_round(temp);
118 
119 	temp = spl_fixpt_from_fraction(
120 			(rec_in->x + rec_in->width) * (long long)stream_dst->width,
121 			stream_src->width);
122 	rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
123 
124 	temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
125 			stream_src->height);
126 	rec_out.y = stream_dst->y + spl_fixpt_round(temp);
127 
128 	temp = spl_fixpt_from_fraction(
129 			(rec_in->y + rec_in->height) * (long long)stream_dst->height,
130 			stream_src->height);
131 	rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
132 
133 	return rec_out;
134 }
135 
136 static struct spl_rect calculate_mpc_slice_in_timing_active(
137 		struct spl_in *spl_in,
138 		struct spl_rect *plane_clip_rec)
139 {
140 	int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
141 	int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
142 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
143 	struct spl_rect mpc_rec;
144 
145 	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
146 	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
147 	mpc_rec.height = plane_clip_rec->height;
148 	mpc_rec.y = plane_clip_rec->y;
149 	SPL_ASSERT(mpc_slice_count == 1 ||
150 			spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
151 			mpc_rec.width % 2 == 0);
152 
153 	/* extra pixels in the division remainder need to go to pipes after
154 	 * the extra pixel index minus one(epimo) defined here as:
155 	 */
156 	if (mpc_slice_idx > epimo) {
157 		mpc_rec.x += mpc_slice_idx - epimo - 1;
158 		mpc_rec.width += 1;
159 	}
160 
161 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
162 		SPL_ASSERT(mpc_rec.height % 2 == 0);
163 		mpc_rec.height /= 2;
164 	}
165 	return mpc_rec;
166 }
167 
168 static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
169 {
170 	int odm_slice_count = spl_in->basic_out.odm_combine_factor;
171 	int odm_slice_idx = spl_in->odm_slice_index;
172 	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
173 	int h_active = spl_in->basic_out.output_size.width;
174 	int v_active = spl_in->basic_out.output_size.height;
175 	int odm_slice_width;
176 	struct spl_rect odm_rec;
177 
178 	if (spl_in->basic_out.odm_combine_factor > 0) {
179 		odm_slice_width = h_active / odm_slice_count;
180 		/*
181 		 * deprecated, caller must pass in odm slice rect i.e OPP input
182 		 * rect in timing active for the new interface.
183 		 */
184 		if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
185 			odm_slice_width++;
186 
187 		odm_rec.x = odm_slice_width * odm_slice_idx;
188 		odm_rec.width = is_last_odm_slice ?
189 				/* last slice width is the reminder of h_active */
190 				h_active - odm_slice_width * (odm_slice_count - 1) :
191 				/* odm slice width is the floor of h_active / count */
192 				odm_slice_width;
193 		odm_rec.y = 0;
194 		odm_rec.height = v_active;
195 
196 		return odm_rec;
197 	}
198 
199 	return spl_in->basic_out.odm_slice_rect;
200 }
201 
202 static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
203 {
204 	/*
205 	 * A plane clip represents the desired plane size and position in Stream
206 	 * Source Space. Stream Source is the destination where all planes are
207 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
208 	 * all planes associated with the current stream are drawn together.
209 	 * After Stream Source is completed, we will further scale and
210 	 * reposition the entire canvas of the stream source to Stream
211 	 * Destination in Timing Active Space. This could be due to display
212 	 * overscan adjustment where we will need to rescale and reposition all
213 	 * the planes so they can fit into a TV with overscan or downscale
214 	 * upscale features such as GPU scaling or VSR.
215 	 *
216 	 * This two step blending is a virtual procedure in software. In
217 	 * hardware there is no such thing as Stream Source. all planes are
218 	 * blended once in Timing Active Space. Software virtualizes a Stream
219 	 * Source space to decouple the math complicity so scaling param
220 	 * calculation focuses on one step at a time.
221 	 *
222 	 * In the following two diagrams, user applied 10% overscan adjustment
223 	 * so the Stream Source needs to be scaled down a little before mapping
224 	 * to Timing Active Space. As a result the Plane Clip is also scaled
225 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
226 	 * respect to Stream Source is also scaled down. To map it in Timing
227 	 * Active Space additional x and y offsets from Stream Destination are
228 	 * added to Plane Clip as well.
229 	 *
230 	 * Stream Source Space
231 	 * ------------
232 	 *        __________________________________________________
233 	 *       |Stream Source (3840 x 2160) ^                     |
234 	 *       |                            y                     |
235 	 *       |                            |                     |
236 	 *       |          __________________V                     |
237 	 *       |<-- x -->|Plane Clip/////////|                    |
238 	 *       |         |(pre scale)////////|                    |
239 	 *       |         |///////////////////|                    |
240 	 *       |         |///////////////////|                    |
241 	 *       |         |///////////////////|                    |
242 	 *       |         |///////////////////|                    |
243 	 *       |         |///////////////////|                    |
244 	 *       |                                                  |
245 	 *       |                                                  |
246 	 *       |__________________________________________________|
247 	 *
248 	 *
249 	 * Timing Active Space (3840 x 2160)
250 	 * ---------------------------------
251 	 *
252 	 *       Timing Active
253 	 *        __________________________________________________
254 	 *       | y_____________________________________________   |
255 	 *       |x |Stream Destination (3456 x 1944)            |  |
256 	 *       |  |                                            |  |
257 	 *       |  |        __________________                  |  |
258 	 *       |  |       |Plane Clip////////|                 |  |
259 	 *       |  |       |(post scale)//////|                 |  |
260 	 *       |  |       |//////////////////|                 |  |
261 	 *       |  |       |//////////////////|                 |  |
262 	 *       |  |       |//////////////////|                 |  |
263 	 *       |  |       |//////////////////|                 |  |
264 	 *       |  |                                            |  |
265 	 *       |  |                                            |  |
266 	 *       |  |____________________________________________|  |
267 	 *       |__________________________________________________|
268 	 *
269 	 *
270 	 * In Timing Active Space a plane clip could be further sliced into
271 	 * pieces called MPC slices. Each Pipe Context is responsible for
272 	 * processing only one MPC slice so the plane processing workload can be
273 	 * distributed to multiple DPP Pipes. MPC slices could be blended
274 	 * together to a single ODM slice. Each ODM slice is responsible for
275 	 * processing a portion of Timing Active divided horizontally so the
276 	 * output pixel processing workload can be distributed to multiple OPP
277 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
278 	 * slices belong to different ODM slices could be pieced together to
279 	 * form a single image in Timing Active. MPC slices must belong to
280 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
281 	 * needs to be divided into two MPC slices one for each ODM slice.
282 	 *
283 	 * In the following diagram the output pixel processing workload is
284 	 * divided horizontally into two ODM slices one for each OPP blend tree.
285 	 * OPP0 blend tree is responsible for processing left half of Timing
286 	 * Active, while OPP2 blend tree is responsible for processing right
287 	 * half.
288 	 *
289 	 * The plane has two MPC slices. However since the right MPC slice goes
290 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
291 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
292 	 *
293 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
294 	 * working on processing the plane in the diagram. We want to know the
295 	 * width and height of the shaded rectangle and its relative position
296 	 * with respect to the ODM slice0. This is called the recout of the pipe
297 	 * context.
298 	 *
299 	 * Planes can be at arbitrary size and position and there could be an
300 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
301 	 * all scenarios into account.
302 	 *
303 	 * Timing Active Space (3840 x 2160)
304 	 * ---------------------------------
305 	 *
306 	 *       Timing Active
307 	 *        __________________________________________________
308 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
309 	 *       |                y        |                        |
310 	 *       |                |  <- w ->                        |
311 	 *       |           _____V________|____                    |
312 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
313 	 *       |<------ x |-----|->|/////|    |                   |
314 	 *       |          |     |  |/////|    |                   |
315 	 *       |          |     h  |/////|    |                   |
316 	 *       |          |     |  |/////|    |                   |
317 	 *       |          |_____V__|/////|____|                   |
318 	 *       |                         |                        |
319 	 *       |                         |                        |
320 	 *       |                         |                        |
321 	 *       |_________________________|________________________|
322 	 *
323 	 *
324 	 */
325 	struct spl_rect plane_clip;
326 	struct spl_rect mpc_slice_of_plane_clip;
327 	struct spl_rect odm_slice;
328 	struct spl_rect overlapping_area;
329 
330 	plane_clip = calculate_plane_rec_in_timing_active(spl_in,
331 			&spl_in->basic_in.clip_rect);
332 	/* guard plane clip from drawing beyond stream dst here */
333 	plane_clip = intersect_rec(&plane_clip,
334 				&spl_in->basic_out.dst_rect);
335 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
336 			spl_in, &plane_clip);
337 	odm_slice = calculate_odm_slice_in_timing_active(spl_in);
338 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
339 
340 	if (overlapping_area.height > 0 &&
341 			overlapping_area.width > 0) {
342 		/* shift the overlapping area so it is with respect to current
343 		 * ODM slice's position
344 		 */
345 		spl_scratch->scl_data.recout = shift_rec(
346 				&overlapping_area,
347 				-odm_slice.x, -odm_slice.y);
348 		spl_scratch->scl_data.recout.height -=
349 			spl_in->debug.visual_confirm_base_offset;
350 		spl_scratch->scl_data.recout.height -=
351 			spl_in->debug.visual_confirm_dpp_offset;
352 	} else
353 		/* if there is no overlap, zero recout */
354 		memset(&spl_scratch->scl_data.recout, 0,
355 				sizeof(struct spl_rect));
356 }
357 
358 /* Calculate scaling ratios */
359 static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
360 		struct spl_scratch *spl_scratch,
361 		struct spl_out *spl_out)
362 {
363 	const int in_w = spl_in->basic_out.src_rect.width;
364 	const int in_h = spl_in->basic_out.src_rect.height;
365 	const int out_w = spl_in->basic_out.dst_rect.width;
366 	const int out_h = spl_in->basic_out.dst_rect.height;
367 	struct spl_rect surf_src = spl_in->basic_in.src_rect;
368 
369 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
370 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
371 		spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
372 		spl_swap(surf_src.height, surf_src.width);
373 
374 	spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
375 					surf_src.width,
376 					spl_in->basic_in.dst_rect.width);
377 	spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
378 					surf_src.height,
379 					spl_in->basic_in.dst_rect.height);
380 
381 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
382 		spl_scratch->scl_data.ratios.horz.value *= 2;
383 	else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
384 		spl_scratch->scl_data.ratios.vert.value *= 2;
385 
386 	spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
387 		spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
388 	spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
389 		spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
390 
391 	spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
392 	spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
393 
394 	if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
395 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
396 		spl_scratch->scl_data.ratios.horz_c.value /= 2;
397 		spl_scratch->scl_data.ratios.vert_c.value /= 2;
398 	}
399 	spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
400 			spl_scratch->scl_data.ratios.horz, 19);
401 	spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
402 			spl_scratch->scl_data.ratios.vert, 19);
403 	spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
404 			spl_scratch->scl_data.ratios.horz_c, 19);
405 	spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
406 			spl_scratch->scl_data.ratios.vert_c, 19);
407 
408 	/*
409 	 * Coefficient table and some registers are different based on ratio
410 	 * that is output/input.  Currently we calculate input/output
411 	 * Store 1/ratio in recip_ratio for those lookups
412 	 */
413 	spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
414 			spl_scratch->scl_data.ratios.horz);
415 	spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
416 			spl_scratch->scl_data.ratios.vert);
417 	spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
418 			spl_scratch->scl_data.ratios.horz_c);
419 	spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
420 			spl_scratch->scl_data.ratios.vert_c);
421 }
422 
423 /* Calculate Viewport size */
424 static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
425 {
426 	spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
427 							spl_scratch->scl_data.recout.width));
428 	spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
429 							spl_scratch->scl_data.recout.height));
430 	spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
431 						spl_scratch->scl_data.recout.width));
432 	spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
433 						spl_scratch->scl_data.recout.height));
434 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
435 			spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
436 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
437 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
438 	}
439 }
440 
441 static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
442 			   bool horizontal_mirror,
443 			   bool *orthogonal_rotation,
444 			   bool *flip_vert_scan_dir,
445 			   bool *flip_horz_scan_dir)
446 {
447 	*orthogonal_rotation = false;
448 	*flip_vert_scan_dir = false;
449 	*flip_horz_scan_dir = false;
450 	if (rotation == SPL_ROTATION_ANGLE_180) {
451 		*flip_vert_scan_dir = true;
452 		*flip_horz_scan_dir = true;
453 	} else if (rotation == SPL_ROTATION_ANGLE_90) {
454 		*orthogonal_rotation = true;
455 		*flip_horz_scan_dir = true;
456 	} else if (rotation == SPL_ROTATION_ANGLE_270) {
457 		*orthogonal_rotation = true;
458 		*flip_vert_scan_dir = true;
459 	}
460 
461 	if (horizontal_mirror)
462 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
463 }
464 
465 /*
466  * We completely calculate vp offset, size and inits here based entirely on scaling
467  * ratios and recout for pixel perfect pipe combine.
468  */
469 static void spl_calculate_init_and_vp(bool flip_scan_dir,
470 				int recout_offset_within_recout_full,
471 				int recout_size,
472 				int src_size,
473 				int taps,
474 				struct spl_fixed31_32 ratio,
475 				struct spl_fixed31_32 init_adj,
476 				struct spl_fixed31_32 *init,
477 				int *vp_offset,
478 				int *vp_size)
479 {
480 	struct spl_fixed31_32 temp;
481 	int int_part;
482 
483 	/*
484 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
485 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
486 	 * All following calculations are based on this logic.
487 	 *
488 	 * Init calculated according to formula:
489 	 * init = (scaling_ratio + number_of_taps + 1) / 2
490 	 * init_bot = init + scaling_ratio
491 	 * to get pixel perfect combine add the fraction from calculating vp offset
492 	 */
493 	temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
494 	*vp_offset = spl_fixpt_floor(temp);
495 	temp.value &= 0xffffffff;
496 	*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
497 	*init = spl_fixpt_add(*init, init_adj);
498 	*init = spl_fixpt_truncate(*init, 19);
499 
500 	/*
501 	 * If viewport has non 0 offset and there are more taps than covered by init then
502 	 * we should decrease the offset and increase init so we are never sampling
503 	 * outside of viewport.
504 	 */
505 	int_part = spl_fixpt_floor(*init);
506 	if (int_part < taps) {
507 		int_part = taps - int_part;
508 		if (int_part > *vp_offset)
509 			int_part = *vp_offset;
510 		*vp_offset -= int_part;
511 		*init = spl_fixpt_add_int(*init, int_part);
512 	}
513 	/*
514 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
515 	 * available in the surface we should increase the viewport size, regardless set vp to
516 	 * only what is used.
517 	 */
518 	temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
519 	*vp_size = spl_fixpt_floor(temp);
520 	if (*vp_size + *vp_offset > src_size)
521 		*vp_size = src_size - *vp_offset;
522 
523 	/* We did all the math assuming we are scanning same direction as display does,
524 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
525 	 * is flipped we simply need to calculate offset from the other side of plane.
526 	 * Note that outside of viewport all scaling hardware works in recout space.
527 	 */
528 	if (flip_scan_dir)
529 		*vp_offset = src_size - *vp_offset - *vp_size;
530 }
531 
532 static bool spl_is_yuv420(enum spl_pixel_format format)
533 {
534 	if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
535 		(format <= SPL_PIXEL_FORMAT_420BPP10))
536 		return true;
537 
538 	return false;
539 }
540 
541 static bool spl_is_rgb8(enum spl_pixel_format format)
542 {
543 	if (format == SPL_PIXEL_FORMAT_ARGB8888)
544 		return true;
545 
546 	return false;
547 }
548 
549 /*Calculate inits and viewport */
550 static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
551 		struct spl_scratch *spl_scratch)
552 {
553 	struct spl_rect src = spl_in->basic_in.src_rect;
554 	struct spl_rect recout_dst_in_active_timing;
555 	struct spl_rect recout_clip_in_active_timing;
556 	struct spl_rect recout_clip_in_recout_dst;
557 	struct spl_rect overlap_in_active_timing;
558 	struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
559 	int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
560 			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
561 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
562 	struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
563 	struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
564 
565 	recout_clip_in_active_timing = shift_rec(
566 			&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
567 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
568 			spl_in, &spl_in->basic_in.dst_rect);
569 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
570 			&recout_dst_in_active_timing);
571 	if (overlap_in_active_timing.width > 0 &&
572 			overlap_in_active_timing.height > 0)
573 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
574 				-recout_dst_in_active_timing.x,
575 				-recout_dst_in_active_timing.y);
576 	else
577 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
578 	/*
579 	 * Work in recout rotation since that requires less transformations
580 	 */
581 	spl_get_vp_scan_direction(
582 			spl_in->basic_in.rotation,
583 			spl_in->basic_in.horizontal_mirror,
584 			&orthogonal_rotation,
585 			&flip_vert_scan_dir,
586 			&flip_horz_scan_dir);
587 
588 	if (orthogonal_rotation) {
589 		spl_swap(src.width, src.height);
590 		spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
591 	}
592 
593 	if (spl_is_yuv420(spl_in->basic_in.format)) {
594 		/* this gives the direction of the cositing (negative will move
595 		 * left, right otherwise)
596 		 */
597 		int sign = 1;
598 
599 		switch (spl_in->basic_in.cositing) {
600 
601 		case CHROMA_COSITING_LEFT:
602 			init_adj_h = spl_fixpt_zero;
603 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
604 			break;
605 		case CHROMA_COSITING_NONE:
606 			init_adj_h = spl_fixpt_from_fraction(sign, 4);
607 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
608 			break;
609 		case CHROMA_COSITING_TOPLEFT:
610 		default:
611 			init_adj_h = spl_fixpt_zero;
612 			init_adj_v = spl_fixpt_zero;
613 			break;
614 		}
615 	}
616 
617 	spl_calculate_init_and_vp(
618 			flip_horz_scan_dir,
619 			recout_clip_in_recout_dst.x,
620 			spl_scratch->scl_data.recout.width,
621 			src.width,
622 			spl_scratch->scl_data.taps.h_taps,
623 			spl_scratch->scl_data.ratios.horz,
624 			spl_fixpt_zero,
625 			&spl_scratch->scl_data.inits.h,
626 			&spl_scratch->scl_data.viewport.x,
627 			&spl_scratch->scl_data.viewport.width);
628 	spl_calculate_init_and_vp(
629 			flip_horz_scan_dir,
630 			recout_clip_in_recout_dst.x,
631 			spl_scratch->scl_data.recout.width,
632 			src.width / vpc_div,
633 			spl_scratch->scl_data.taps.h_taps_c,
634 			spl_scratch->scl_data.ratios.horz_c,
635 			init_adj_h,
636 			&spl_scratch->scl_data.inits.h_c,
637 			&spl_scratch->scl_data.viewport_c.x,
638 			&spl_scratch->scl_data.viewport_c.width);
639 	spl_calculate_init_and_vp(
640 			flip_vert_scan_dir,
641 			recout_clip_in_recout_dst.y,
642 			spl_scratch->scl_data.recout.height,
643 			src.height,
644 			spl_scratch->scl_data.taps.v_taps,
645 			spl_scratch->scl_data.ratios.vert,
646 			spl_fixpt_zero,
647 			&spl_scratch->scl_data.inits.v,
648 			&spl_scratch->scl_data.viewport.y,
649 			&spl_scratch->scl_data.viewport.height);
650 	spl_calculate_init_and_vp(
651 			flip_vert_scan_dir,
652 			recout_clip_in_recout_dst.y,
653 			spl_scratch->scl_data.recout.height,
654 			src.height / vpc_div,
655 			spl_scratch->scl_data.taps.v_taps_c,
656 			spl_scratch->scl_data.ratios.vert_c,
657 			init_adj_v,
658 			&spl_scratch->scl_data.inits.v_c,
659 			&spl_scratch->scl_data.viewport_c.y,
660 			&spl_scratch->scl_data.viewport_c.height);
661 	if (orthogonal_rotation) {
662 		spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
663 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
664 		spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
665 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
666 	}
667 	spl_scratch->scl_data.viewport.x += src.x;
668 	spl_scratch->scl_data.viewport.y += src.y;
669 	SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
670 	spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
671 	spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
672 }
673 
674 static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
675 {
676 	/*
677 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
678 	 * since 3d is special and needs to calculate vp as if there is no recout offset
679 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
680 	 */
681 	if (spl_in->basic_in.mpc_combine_v) {
682 		SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
683 			(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
684 					spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
685 		if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
686 			recout->y += recout->height;
687 		else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
688 			recout->x += recout->width;
689 	}
690 }
691 
692 static void spl_clamp_viewport(struct spl_rect *viewport)
693 {
694 	/* Clamp minimum viewport size */
695 	if (viewport->height < MIN_VIEWPORT_SIZE)
696 		viewport->height = MIN_VIEWPORT_SIZE;
697 	if (viewport->width < MIN_VIEWPORT_SIZE)
698 		viewport->width = MIN_VIEWPORT_SIZE;
699 }
700 
701 static bool spl_dscl_is_420_format(enum spl_pixel_format format)
702 {
703 	if (format == SPL_PIXEL_FORMAT_420BPP8 ||
704 			format == SPL_PIXEL_FORMAT_420BPP10)
705 		return true;
706 	else
707 		return false;
708 }
709 
710 static bool spl_dscl_is_video_format(enum spl_pixel_format format)
711 {
712 	if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
713 			&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
714 		return true;
715 	else
716 		return false;
717 }
718 
719 static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
720 				const struct spl_scaler_data *data,
721 				bool enable_isharp, bool enable_easf)
722 {
723 	const long long one = spl_fixpt_one.value;
724 	enum spl_pixel_format pixel_format = spl_in->basic_in.format;
725 
726 	/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
727 	if (data->ratios.horz.value == one
728 			&& data->ratios.vert.value == one
729 			&& data->ratios.horz_c.value == one
730 			&& data->ratios.vert_c.value == one
731 			&& !spl_in->basic_out.always_scale
732 			&& !enable_isharp)
733 		return SCL_MODE_SCALING_444_BYPASS;
734 
735 	if (!spl_dscl_is_420_format(pixel_format)) {
736 		if (spl_dscl_is_video_format(pixel_format))
737 			return SCL_MODE_SCALING_444_YCBCR_ENABLE;
738 		else
739 			return SCL_MODE_SCALING_444_RGB_ENABLE;
740 	}
741 
742 	/* Bypass YUV if at 1:1 with no ISHARP or if doing 2:1 YUV
743 	 *  downscale without EASF
744 	 */
745 	if ((!enable_isharp) && (!enable_easf)) {
746 		if (data->ratios.horz.value == one && data->ratios.vert.value == one)
747 			return SCL_MODE_SCALING_420_LUMA_BYPASS;
748 		if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
749 			return SCL_MODE_SCALING_420_CHROMA_BYPASS;
750 	}
751 
752 	return SCL_MODE_SCALING_420_YCBCR_ENABLE;
753 }
754 
755 static bool spl_choose_lls_policy(enum spl_pixel_format format,
756 	enum spl_transfer_func_type tf_type,
757 	enum spl_transfer_func_predefined tf_predefined_type,
758 	enum linear_light_scaling *lls_pref)
759 {
760 	if (spl_is_yuv420(format)) {
761 		*lls_pref = LLS_PREF_NO;
762 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
763 			(tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
764 			return true;
765 	} else { /* RGB or YUV444 */
766 		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
767 			(tf_type == SPL_TF_TYPE_BYPASS)) {
768 			*lls_pref = LLS_PREF_YES;
769 			return true;
770 		}
771 	}
772 	*lls_pref = LLS_PREF_NO;
773 	return false;
774 }
775 
776 /* Enable EASF ?*/
777 static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
778 {
779 	int vratio = 0;
780 	int hratio = 0;
781 	bool skip_easf = false;
782 	bool lls_enable_easf = true;
783 
784 	if (spl_in->disable_easf)
785 		skip_easf = true;
786 
787 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
788 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
789 
790 	/*
791 	 * No EASF support for downscaling > 2:1
792 	 * EASF support for upscaling or downscaling up to 2:1
793 	 */
794 	if ((vratio > 2) || (hratio > 2))
795 		skip_easf = true;
796 
797 	/*
798 	 * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
799 	 *  function to determine whether to use LINEAR or NONLINEAR scaling
800 	 */
801 	if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
802 		lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
803 			spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
804 			&spl_in->lls_pref);
805 
806 	if (!lls_enable_easf)
807 		skip_easf = true;
808 
809 	/* Check for linear scaling or EASF preferred */
810 	if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
811 		skip_easf = true;
812 
813 	return skip_easf;
814 }
815 
816 /* Check if video is in fullscreen mode */
817 static bool spl_is_video_fullscreen(struct spl_in *spl_in)
818 {
819 	if (spl_is_yuv420(spl_in->basic_in.format) && spl_in->is_fullscreen)
820 		return true;
821 	return false;
822 }
823 
824 static bool spl_get_isharp_en(struct spl_in *spl_in,
825 	struct spl_scratch *spl_scratch)
826 {
827 	bool enable_isharp = false;
828 	int vratio = 0;
829 	int hratio = 0;
830 	struct spl_taps taps = spl_scratch->scl_data.taps;
831 	bool fullscreen = spl_is_video_fullscreen(spl_in);
832 
833 	/* Return if adaptive sharpness is disabled */
834 	if (spl_in->adaptive_sharpness.enable == false)
835 		return enable_isharp;
836 
837 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
838 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
839 
840 	/* No iSHARP support for downscaling */
841 	if (vratio > 1 || hratio > 1)
842 		return enable_isharp;
843 
844 	// Scaling is up to 1:1 (no scaling) or upscaling
845 
846 	/*
847 	 * Apply sharpness to RGB and YUV (NV12/P010)
848 	 *  surfaces based on policy setting
849 	 */
850 	if (!spl_is_yuv420(spl_in->basic_in.format) &&
851 		(spl_in->debug.sharpen_policy == SHARPEN_YUV))
852 		return enable_isharp;
853 	else if ((spl_is_yuv420(spl_in->basic_in.format) && !fullscreen) &&
854 		(spl_in->debug.sharpen_policy == SHARPEN_RGB_FULLSCREEN_YUV))
855 		return enable_isharp;
856 	else if (!spl_in->is_fullscreen &&
857 			spl_in->debug.sharpen_policy == SHARPEN_FULLSCREEN_ALL)
858 		return enable_isharp;
859 
860 	/*
861 	 * Apply sharpness if supports horizontal taps 4,6 AND
862 	 *  vertical taps 3, 4, 6
863 	 */
864 	if ((taps.h_taps == 4 || taps.h_taps == 6) &&
865 		(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
866 		enable_isharp = true;
867 
868 	return enable_isharp;
869 }
870 
871 /* Calculate optimal number of taps */
872 static bool spl_get_optimal_number_of_taps(
873 	  int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
874 	  const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
875 	  bool *enable_isharp)
876 {
877 	int num_part_y, num_part_c;
878 	int max_taps_y, max_taps_c;
879 	int min_taps_y, min_taps_c;
880 	enum lb_memory_config lb_config;
881 	bool skip_easf = false;
882 
883 	if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
884 		max_downscale_src_width != 0 &&
885 		spl_scratch->scl_data.viewport.width > max_downscale_src_width)
886 		return false;
887 
888 	/* Check if we are using EASF or not */
889 	skip_easf = enable_easf(spl_in, spl_scratch);
890 
891 	/*
892 	 * Set default taps if none are provided
893 	 * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
894 	 * taps = 4 for upscaling
895 	 */
896 	if (skip_easf) {
897 		if (in_taps->h_taps == 0) {
898 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
899 				spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
900 					spl_scratch->scl_data.ratios.horz), 8);
901 			else
902 				spl_scratch->scl_data.taps.h_taps = 4;
903 		} else
904 			spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
905 		if (in_taps->v_taps == 0) {
906 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
907 				spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
908 					spl_scratch->scl_data.ratios.vert, 2)), 8);
909 			else
910 				spl_scratch->scl_data.taps.v_taps = 4;
911 		} else
912 			spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
913 		if (in_taps->v_taps_c == 0) {
914 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
915 				spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
916 					spl_scratch->scl_data.ratios.vert_c, 2)), 8);
917 			else
918 				spl_scratch->scl_data.taps.v_taps_c = 4;
919 		} else
920 			spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
921 		if (in_taps->h_taps_c == 0) {
922 			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
923 				spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
924 					spl_scratch->scl_data.ratios.horz_c), 8);
925 			else
926 				spl_scratch->scl_data.taps.h_taps_c = 4;
927 		} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
928 			/* Only 1 and even h_taps_c are supported by hw */
929 			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
930 		else
931 			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
932 	} else {
933 		if (spl_is_yuv420(spl_in->basic_in.format)) {
934 			spl_scratch->scl_data.taps.h_taps = 6;
935 			spl_scratch->scl_data.taps.v_taps = 6;
936 			spl_scratch->scl_data.taps.h_taps_c = 4;
937 			spl_scratch->scl_data.taps.v_taps_c = 4;
938 		} else { /* RGB */
939 			spl_scratch->scl_data.taps.h_taps = 6;
940 			spl_scratch->scl_data.taps.v_taps = 6;
941 			spl_scratch->scl_data.taps.h_taps_c = 6;
942 			spl_scratch->scl_data.taps.v_taps_c = 6;
943 		}
944 	}
945 
946 	/*Ensure we can support the requested number of vtaps*/
947 	min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
948 	min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
949 
950 	/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
951 	if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
952 		|| (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
953 		lb_config = LB_MEMORY_CONFIG_3;
954 	else
955 		lb_config = LB_MEMORY_CONFIG_0;
956 	// Determine max vtap support by calculating how much line buffer can fit
957 	spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
958 			lb_config, &num_part_y, &num_part_c);
959 	/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
960 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
961 		max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
962 	else
963 		max_taps_y = num_part_y;
964 
965 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
966 		max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
967 	else
968 		max_taps_c = num_part_c;
969 
970 	if (max_taps_y < min_taps_y)
971 		return false;
972 	else if (max_taps_c < min_taps_c)
973 		return false;
974 
975 	if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
976 		spl_scratch->scl_data.taps.v_taps = max_taps_y;
977 
978 	if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
979 		spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
980 
981 	if (!skip_easf) {
982 		/*
983 		 * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
984 		 * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
985 		 *
986 		 * If LB does not support 3, 4, or 6 taps, then disable EASF_V
987 		 *  and only enable EASF_H.  So for RGB, support 6x2, 4x2
988 		 *  and for NL YUV420, support 6x2 for Y and 4x2 for UV
989 		 *
990 		 * All other cases, have to disable EASF_V and EASF_H
991 		 *
992 		 * If optimal no of taps is 5, then set it to 4
993 		 * If optimal no of taps is 7 or 8, then fine since max tap is 6
994 		 *
995 		 */
996 		if (spl_scratch->scl_data.taps.v_taps == 5)
997 			spl_scratch->scl_data.taps.v_taps = 4;
998 
999 		if (spl_scratch->scl_data.taps.v_taps_c == 5)
1000 			spl_scratch->scl_data.taps.v_taps_c = 4;
1001 
1002 		if (spl_scratch->scl_data.taps.h_taps == 5)
1003 			spl_scratch->scl_data.taps.h_taps = 4;
1004 
1005 		if (spl_scratch->scl_data.taps.h_taps_c == 5)
1006 			spl_scratch->scl_data.taps.h_taps_c = 4;
1007 
1008 		if (spl_is_yuv420(spl_in->basic_in.format)) {
1009 			if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
1010 				(spl_scratch->scl_data.taps.h_taps_c <= 3)) {
1011 				*enable_easf_v = false;
1012 				*enable_easf_h = false;
1013 			} else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
1014 				(spl_scratch->scl_data.taps.v_taps_c <= 3)) {
1015 				*enable_easf_v = false;
1016 				*enable_easf_h = true;
1017 			} else {
1018 				*enable_easf_v = true;
1019 				*enable_easf_h = true;
1020 			}
1021 			SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
1022 				(spl_scratch->scl_data.taps.v_taps_c > 1));
1023 		} else { /* RGB */
1024 			if (spl_scratch->scl_data.taps.h_taps <= 3) {
1025 				*enable_easf_v = false;
1026 				*enable_easf_h = false;
1027 			} else if (spl_scratch->scl_data.taps.v_taps < 3) {
1028 				*enable_easf_v = false;
1029 				*enable_easf_h = true;
1030 			} else {
1031 				*enable_easf_v = true;
1032 				*enable_easf_h = true;
1033 			}
1034 			SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
1035 		}
1036 	} else {
1037 		*enable_easf_v = false;
1038 		*enable_easf_h = false;
1039 	} // end of if prefer_easf
1040 
1041 	/* Sharpener requires scaler to be enabled, including for 1:1
1042 	 * Check if ISHARP can be enabled
1043 	 * If ISHARP is not enabled, for 1:1, set taps to 1 and disable
1044 	 *  EASF
1045 	 * For case of 2:1 YUV where chroma is 1:1, set taps to 1 if
1046 	 *  EASF is not enabled
1047 	 */
1048 
1049 	*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
1050 	if (!*enable_isharp && !spl_in->basic_out.always_scale)	{
1051 		if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
1052 			(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
1053 			spl_scratch->scl_data.taps.h_taps = 1;
1054 			spl_scratch->scl_data.taps.v_taps = 1;
1055 
1056 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
1057 				spl_scratch->scl_data.taps.h_taps_c = 1;
1058 
1059 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
1060 				spl_scratch->scl_data.taps.v_taps_c = 1;
1061 
1062 			*enable_easf_v = false;
1063 			*enable_easf_h = false;
1064 		} else {
1065 			if ((!*enable_easf_h) &&
1066 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
1067 				spl_scratch->scl_data.taps.h_taps_c = 1;
1068 
1069 			if ((!*enable_easf_v) &&
1070 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
1071 				spl_scratch->scl_data.taps.v_taps_c = 1;
1072 		}
1073 	}
1074 	return true;
1075 }
1076 
1077 static void spl_set_black_color_data(enum spl_pixel_format format,
1078 			struct scl_black_color *scl_black_color)
1079 {
1080 	bool ycbcr = format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
1081 					&& format <= SPL_PIXEL_FORMAT_VIDEO_END;
1082 	if (ycbcr)	{
1083 		scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
1084 		scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
1085 	}	else {
1086 		scl_black_color->offset_rgb_y = 0x0;
1087 		scl_black_color->offset_rgb_cbcr = 0x0;
1088 	}
1089 }
1090 
1091 static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
1092 		const struct spl_scaler_data *scl_data)
1093 {
1094 	struct spl_fixed31_32 bot;
1095 
1096 	dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
1097 	dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
1098 	dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
1099 	dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
1100 	/*
1101 	 * 0.24 format for fraction, first five bits zeroed
1102 	 */
1103 	dscl_prog_data->init.h_filter_init_frac =
1104 			spl_fixpt_u0d19(scl_data->inits.h) << 5;
1105 	dscl_prog_data->init.h_filter_init_int =
1106 			spl_fixpt_floor(scl_data->inits.h);
1107 	dscl_prog_data->init.h_filter_init_frac_c =
1108 			spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
1109 	dscl_prog_data->init.h_filter_init_int_c =
1110 			spl_fixpt_floor(scl_data->inits.h_c);
1111 	dscl_prog_data->init.v_filter_init_frac =
1112 			spl_fixpt_u0d19(scl_data->inits.v) << 5;
1113 	dscl_prog_data->init.v_filter_init_int =
1114 			spl_fixpt_floor(scl_data->inits.v);
1115 	dscl_prog_data->init.v_filter_init_frac_c =
1116 			spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
1117 	dscl_prog_data->init.v_filter_init_int_c =
1118 			spl_fixpt_floor(scl_data->inits.v_c);
1119 
1120 	bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
1121 	dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
1122 	dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
1123 	bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
1124 	dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
1125 	dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
1126 }
1127 
1128 static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
1129 		const struct spl_scaler_data *scl_data)
1130 {
1131 	dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
1132 	dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
1133 	dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
1134 	dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
1135 }
1136 
1137 /* Populate dscl prog data structure from scaler data calculated by SPL */
1138 static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
1139 	struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
1140 {
1141 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1142 
1143 	const struct spl_scaler_data *data = &spl_scratch->scl_data;
1144 
1145 	struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
1146 
1147 	bool enable_easf = enable_easf_v || enable_easf_h;
1148 
1149 	// Set values for recout
1150 	dscl_prog_data->recout = spl_scratch->scl_data.recout;
1151 	// Set values for MPC Size
1152 	dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
1153 	dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
1154 
1155 	// SCL_MODE - Set SCL_MODE data
1156 	dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
1157 		enable_easf);
1158 
1159 	// SCL_BLACK_COLOR
1160 	spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
1161 
1162 	/* Manually calculate scale ratio and init values */
1163 	spl_set_manual_ratio_init_data(dscl_prog_data, data);
1164 
1165 	// Set HTaps/VTaps
1166 	spl_set_taps_data(dscl_prog_data, data);
1167 	// Set viewport
1168 	dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
1169 	// Set viewport_c
1170 	dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
1171 	// Set filters data
1172 	spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
1173 }
1174 
1175 /* Calculate C0-C3 coefficients based on HDR_mult */
1176 static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t sdr_white_level_nits)
1177 {
1178 	struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
1179 	struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
1180 	struct spl_custom_float_format fmt;
1181 	uint32_t hdr_multx100_int;
1182 
1183 	if ((sdr_white_level_nits >= 80) && (sdr_white_level_nits <= 480))
1184 		hdr_multx100_int = sdr_white_level_nits * 100 / 80;
1185 	else
1186 		hdr_multx100_int = 100; /* default for 80 nits otherwise */
1187 
1188 	hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100_int, 100LL);
1189 	c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
1190 	c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
1191 	c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
1192 
1193 	c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
1194 		16384LL, 125LL)));
1195 	c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
1196 		16384LL, 125LL)));
1197 	c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
1198 		16384LL, 125LL)));
1199 
1200 	fmt.exponenta_bits = 5;
1201 	fmt.mantissa_bits = 10;
1202 	fmt.sign = true;
1203 
1204 	// fp1.5.10, C0 coefficient (LN_rec709:  HDR_MULT * 0.212600 * 2^14/125)
1205 	spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
1206 	// fp1.5.10, C1 coefficient (LN_rec709:  HDR_MULT * 0.715200 * 2^14/125)
1207 	spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
1208 	// fp1.5.10, C2 coefficient (LN_rec709:  HDR_MULT * 0.072200 * 2^14/125)
1209 	spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
1210 	dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
1211 }
1212 
1213 /* Set EASF data */
1214 static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
1215 	bool enable_easf_h, enum linear_light_scaling lls_pref,
1216 	enum spl_pixel_format format, enum system_setup setup,
1217 	uint32_t sdr_white_level_nits)
1218 {
1219 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1220 	if (enable_easf_v) {
1221 		dscl_prog_data->easf_v_en = true;
1222 		dscl_prog_data->easf_v_ring = 0;
1223 		dscl_prog_data->easf_v_sharp_factor = 0;
1224 		dscl_prog_data->easf_v_bf1_en = 1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1225 		dscl_prog_data->easf_v_bf2_mode = 0xF;	// 4-bit, BF2 calculation mode
1226 		/* 2-bit, BF3 chroma mode correction calculation mode */
1227 		dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
1228 			spl_scratch->scl_data.recip_ratios.vert);
1229 		/* FP1.5.10 [ minCoef ]*/
1230 		dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
1231 			spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
1232 				spl_scratch->scl_data.recip_ratios.vert);
1233 		/* FP1.5.10 [ upTiltMaxVal ]*/
1234 		dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
1235 			spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
1236 				spl_scratch->scl_data.recip_ratios.vert);
1237 		/* FP1.5.10 [ dnTiltSlope ]*/
1238 		dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
1239 			spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
1240 				spl_scratch->scl_data.recip_ratios.vert);
1241 		/* FP1.5.10 [ upTilt1Slope ]*/
1242 		dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
1243 			spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
1244 				spl_scratch->scl_data.recip_ratios.vert);
1245 		/* FP1.5.10 [ upTilt2Slope ]*/
1246 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
1247 			spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
1248 				spl_scratch->scl_data.recip_ratios.vert);
1249 		/* FP1.5.10 [ upTilt2Offset ]*/
1250 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
1251 			spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
1252 				spl_scratch->scl_data.recip_ratios.vert);
1253 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1254 		dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
1255 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
1256 				spl_scratch->scl_data.recip_ratios.vert);
1257 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1258 		dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
1259 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
1260 				spl_scratch->scl_data.recip_ratios.vert);
1261 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1262 		dscl_prog_data->easf_v_ringest_eventap_gain1 =
1263 			spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
1264 				spl_scratch->scl_data.recip_ratios.vert);
1265 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1266 		dscl_prog_data->easf_v_ringest_eventap_gain2 =
1267 			spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
1268 				spl_scratch->scl_data.recip_ratios.vert);
1269 		dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
1270 		dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
1271 		dscl_prog_data->easf_v_bf_mina = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
1272 		dscl_prog_data->easf_v_bf_minb = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
1273 		if (lls_pref == LLS_PREF_YES)	{
1274 			dscl_prog_data->easf_v_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1275 			dscl_prog_data->easf_v_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1276 			dscl_prog_data->easf_v_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1277 
1278 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1279 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1280 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1281 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1282 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1283 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1284 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1285 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1286 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1287 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1288 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1289 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1290 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1291 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1292 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1293 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1294 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1295 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1296 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1297 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1298 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1299 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1300 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1301 
1302 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1303 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1304 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1305 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1306 				0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1307 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1308 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
1309 				0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1310 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1311 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1312 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1313 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
1314 				0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1315 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1316 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1317 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1318 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1319 				0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1320 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1321 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1322 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1323 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
1324 				0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1325 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1326 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1327 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1328 		}	else	{
1329 			dscl_prog_data->easf_v_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1330 			dscl_prog_data->easf_v_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1331 			dscl_prog_data->easf_v_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1332 
1333 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1334 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1335 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1336 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1337 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1338 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1339 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1340 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1341 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1342 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1343 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1344 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1345 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1346 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1347 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1348 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1349 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1350 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1351 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1352 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1353 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1354 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1355 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1356 
1357 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1358 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1359 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1360 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1361 				0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1362 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1363 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1364 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1365 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1366 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1367 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1368 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1369 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1370 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1371 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1372 				0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1373 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1374 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1375 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1376 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1377 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1378 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1379 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1380 		}
1381 	} else
1382 		dscl_prog_data->easf_v_en = false;
1383 
1384 	if (enable_easf_h) {
1385 		dscl_prog_data->easf_h_en = true;
1386 		dscl_prog_data->easf_h_ring = 0;
1387 		dscl_prog_data->easf_h_sharp_factor = 0;
1388 		dscl_prog_data->easf_h_bf1_en =
1389 			1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1390 		dscl_prog_data->easf_h_bf2_mode =
1391 			0xF;	// 4-bit, BF2 calculation mode
1392 		/* 2-bit, BF3 chroma mode correction calculation mode */
1393 		dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
1394 			spl_scratch->scl_data.recip_ratios.horz);
1395 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1396 		dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
1397 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
1398 				spl_scratch->scl_data.recip_ratios.horz);
1399 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1400 		dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
1401 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
1402 				spl_scratch->scl_data.recip_ratios.horz);
1403 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1404 		dscl_prog_data->easf_h_ringest_eventap_gain1 =
1405 			spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
1406 				spl_scratch->scl_data.recip_ratios.horz);
1407 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1408 		dscl_prog_data->easf_h_ringest_eventap_gain2 =
1409 			spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
1410 				spl_scratch->scl_data.recip_ratios.horz);
1411 		dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
1412 		dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
1413 		dscl_prog_data->easf_h_bf_mina = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
1414 		dscl_prog_data->easf_h_bf_minb = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
1415 		if (lls_pref == LLS_PREF_YES)	{
1416 			dscl_prog_data->easf_h_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1417 			dscl_prog_data->easf_h_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1418 			dscl_prog_data->easf_h_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1419 
1420 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1421 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1422 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1423 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1424 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1425 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1426 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1427 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1428 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1429 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1430 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1431 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1432 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1433 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1434 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1435 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1436 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1437 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1438 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1439 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1440 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1441 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1442 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1443 
1444 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1445 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1446 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1447 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1448 				0x0B37;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1449 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1450 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 =	0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1451 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1452 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1453 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1454 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 =	0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1455 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1456 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1457 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1458 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 =	0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1459 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1460 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1461 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1462 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1463 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1464 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1465 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1466 		} else {
1467 			dscl_prog_data->easf_h_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1468 			dscl_prog_data->easf_h_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1469 			dscl_prog_data->easf_h_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1470 
1471 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1472 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1473 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1474 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1475 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1476 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1477 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1478 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1479 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1480 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1481 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1482 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1483 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1484 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1485 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1486 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1487 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1488 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1489 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1490 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1491 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1492 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1493 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1494 
1495 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1496 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1497 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1498 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1499 				0x06C0;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1500 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1501 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1502 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1503 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1504 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1505 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1506 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1507 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1508 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1509 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1510 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1511 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1512 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1513 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1514 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1515 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1516 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1517 		} // if (lls_pref == LLS_PREF_YES)
1518 	} else
1519 		dscl_prog_data->easf_h_en = false;
1520 
1521 	if (lls_pref == LLS_PREF_YES)	{
1522 		dscl_prog_data->easf_ltonl_en = 1;	// Linear input
1523 		if ((setup == HDR_L) && (spl_is_rgb8(format))) {
1524 			/* Calculate C0-C3 coefficients based on HDR multiplier */
1525 			spl_calculate_c0_c3_hdr(dscl_prog_data, sdr_white_level_nits);
1526 		} else { // HDR_L ( DWM ) and SDR_L
1527 			dscl_prog_data->easf_matrix_c0 =
1528 				0x4EF7;	// fp1.5.10, C0 coefficient (LN_rec709:  0.2126 * (2^14)/125 = 27.86590720)
1529 			dscl_prog_data->easf_matrix_c1 =
1530 				0x55DC;	// fp1.5.10, C1 coefficient (LN_rec709:  0.7152 * (2^14)/125 = 93.74269440)
1531 			dscl_prog_data->easf_matrix_c2 =
1532 				0x48BB;	// fp1.5.10, C2 coefficient (LN_rec709:  0.0722 * (2^14)/125 = 9.46339840)
1533 			dscl_prog_data->easf_matrix_c3 =
1534 				0x0;	// fp1.5.10, C3 coefficient
1535 		}
1536 	}	else	{
1537 		dscl_prog_data->easf_ltonl_en = 0;	// Non-Linear input
1538 		dscl_prog_data->easf_matrix_c0 =
1539 			0x3434;	// fp1.5.10, C0 coefficient (LN_BT2020:  0.262695312500000)
1540 		dscl_prog_data->easf_matrix_c1 =
1541 			0x396D;	// fp1.5.10, C1 coefficient (LN_BT2020:  0.678222656250000)
1542 		dscl_prog_data->easf_matrix_c2 =
1543 			0x2B97;	// fp1.5.10, C2 coefficient (LN_BT2020:  0.059295654296875)
1544 		dscl_prog_data->easf_matrix_c3 =
1545 			0x0;	// fp1.5.10, C3 coefficient
1546 	}
1547 
1548 	if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
1549 		dscl_prog_data->easf_matrix_mode = 1;
1550 		/*
1551 		 * 2-bit, BF3 chroma mode correction calculation mode
1552 		 * Needs to be disabled for YUV420 mode
1553 		 * Override lookup value
1554 		 */
1555 		dscl_prog_data->easf_v_bf3_mode = 0;
1556 		dscl_prog_data->easf_h_bf3_mode = 0;
1557 	} else
1558 		dscl_prog_data->easf_matrix_mode = 0;
1559 
1560 }
1561 
1562 /*Set isharp noise detection */
1563 static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
1564 	const struct spl_scaler_data *data)
1565 {
1566 	// ISHARP_NOISEDET_MODE
1567 	// 0: 3x5 as VxH
1568 	// 1: 4x5 as VxH
1569 	// 2:
1570 	// 3: 5x5 as VxH
1571 	if (data->taps.v_taps == 6)
1572 		dscl_prog_data->isharp_noise_det.mode = 3;
1573 	else if (data->taps.v_taps == 4)
1574 		dscl_prog_data->isharp_noise_det.mode = 1;
1575 	else if (data->taps.v_taps == 3)
1576 		dscl_prog_data->isharp_noise_det.mode = 0;
1577 };
1578 /* Set Sharpener data */
1579 static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
1580 		struct adaptive_sharpness adp_sharpness, bool enable_isharp,
1581 		enum linear_light_scaling lls_pref, enum spl_pixel_format format,
1582 		const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
1583 		enum system_setup setup, enum scale_to_sharpness_policy scale_to_sharpness_policy)
1584 {
1585 	/* Turn off sharpener if not required */
1586 	if (!enable_isharp) {
1587 		dscl_prog_data->isharp_en = 0;
1588 		return;
1589 	}
1590 
1591 	spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness,
1592 		scale_to_sharpness_policy);
1593 	dscl_prog_data->isharp_delta = spl_get_pregen_filter_isharp_1D_lut(setup);
1594 	dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;
1595 
1596 	dscl_prog_data->isharp_en = 1;	// ISHARP_EN
1597 	// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
1598 	if (data->taps.h_taps == 6) {
1599 		dscl_prog_data->isharp_noise_det.enable = 1;	/* ISHARP_NOISEDET_EN */
1600 		spl_set_isharp_noise_det_mode(dscl_prog_data, data);	/* ISHARP_NOISEDET_MODE */
1601 	} else
1602 		dscl_prog_data->isharp_noise_det.enable = 0;	// ISHARP_NOISEDET_EN
1603 	// Program noise detection threshold
1604 	dscl_prog_data->isharp_noise_det.uthreshold = 24;	// ISHARP_NOISEDET_UTHRE
1605 	dscl_prog_data->isharp_noise_det.dthreshold = 4;	// ISHARP_NOISEDET_DTHRE
1606 	// Program noise detection gain
1607 	dscl_prog_data->isharp_noise_det.pwl_start_in = 3;	// ISHARP_NOISEDET_PWL_START_IN
1608 	dscl_prog_data->isharp_noise_det.pwl_end_in = 13;	// ISHARP_NOISEDET_PWL_END_IN
1609 	dscl_prog_data->isharp_noise_det.pwl_slope = 1623;	// ISHARP_NOISEDET_PWL_SLOPE
1610 
1611 	if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
1612 		dscl_prog_data->isharp_fmt.mode = 1;
1613 	else
1614 		dscl_prog_data->isharp_fmt.mode = 0;
1615 
1616 	dscl_prog_data->isharp_fmt.norm = 0x3C00;	// ISHARP_FMT_NORM
1617 	dscl_prog_data->isharp_lba.mode = 0;	// ISHARP_LBA_MODE
1618 
1619 	if (setup == SDR_L) {
1620 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1621 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1622 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1623 		dscl_prog_data->isharp_lba.slope_seg[0] = 62;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1624 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1625 		dscl_prog_data->isharp_lba.in_seg[1] = 130;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1626 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1627 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1628 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1629 		dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1630 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1631 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
1632 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1633 		dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1634 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1635 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1636 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1637 		dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1638 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1639 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1640 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1641 		dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1642 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1643 	} else if (setup == HDR_L) {
1644 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1645 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1646 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1647 		dscl_prog_data->isharp_lba.slope_seg[0] = 32;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1648 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1649 		dscl_prog_data->isharp_lba.in_seg[1] = 254;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1650 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1651 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1652 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1653 		dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1654 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1655 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
1656 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1657 		dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1658 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1659 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1660 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1661 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1662 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1663 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1664 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1665 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1666 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1667 	} else {
1668 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1669 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1670 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1671 		dscl_prog_data->isharp_lba.slope_seg[0] = 40;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1672 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1673 		dscl_prog_data->isharp_lba.in_seg[1] = 204;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1674 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1675 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1676 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1677 		dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1678 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1679 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
1680 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1681 		dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1682 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1683 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1684 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1685 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1686 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1687 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1688 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1689 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1690 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1691 	}
1692 
1693 	// Program the nldelta soft clip values
1694 	if (lls_pref == LLS_PREF_YES) {
1695 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 0;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1696 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1697 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 0;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1698 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1699 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1700 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 16;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1701 	} else {
1702 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 1;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1703 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1704 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1705 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1706 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1707 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1708 	}
1709 
1710 	// Set the values as per lookup table
1711 	spl_set_blur_scale_data(dscl_prog_data, data);
1712 }
1713 
1714 /* Calculate scaler parameters */
1715 bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
1716 {
1717 	bool res = false;
1718 	bool enable_easf_v = false;
1719 	bool enable_easf_h = false;
1720 	int vratio = 0;
1721 	int hratio = 0;
1722 	struct spl_scratch spl_scratch;
1723 	struct spl_fixed31_32 isharp_scale_ratio;
1724 	enum system_setup setup;
1725 	bool enable_isharp = false;
1726 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1727 
1728 	memset(&spl_scratch, 0, sizeof(struct spl_scratch));
1729 	spl_scratch.scl_data.h_active = spl_in->h_active;
1730 	spl_scratch.scl_data.v_active = spl_in->v_active;
1731 
1732 	// All SPL calls
1733 	/* recout calculation */
1734 	/* depends on h_active */
1735 	spl_calculate_recout(spl_in, &spl_scratch, spl_out);
1736 	/* depends on pixel format */
1737 	spl_calculate_scaling_ratios(spl_in, &spl_scratch, spl_out);
1738 	/* depends on scaling ratios and recout, does not calculate offset yet */
1739 	spl_calculate_viewport_size(spl_in, &spl_scratch);
1740 
1741 	res = spl_get_optimal_number_of_taps(
1742 			  spl_in->basic_out.max_downscale_src_width, spl_in,
1743 			  &spl_scratch, &spl_in->scaling_quality, &enable_easf_v,
1744 			  &enable_easf_h, &enable_isharp);
1745 	/*
1746 	 * Depends on recout, scaling ratios, h_active and taps
1747 	 * May need to re-check lb size after this in some obscure scenario
1748 	 */
1749 	if (res)
1750 		spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
1751 	// Handle 3d recout
1752 	spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
1753 	// Clamp
1754 	spl_clamp_viewport(&spl_scratch.scl_data.viewport);
1755 
1756 	if (!res)
1757 		return res;
1758 
1759 	// Save all calculated parameters in dscl_prog_data structure to program hw registers
1760 	spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
1761 
1762 	if (spl_in->lls_pref == LLS_PREF_YES) {
1763 		if (spl_in->is_hdr_on)
1764 			setup = HDR_L;
1765 		else
1766 			setup = SDR_L;
1767 	} else {
1768 		if (spl_in->is_hdr_on)
1769 			setup = HDR_NL;
1770 		else
1771 			setup = SDR_NL;
1772 	}
1773 
1774 	// Set EASF
1775 	spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
1776 		spl_in->basic_in.format, setup, spl_in->sdr_white_level_nits);
1777 
1778 	// Set iSHARP
1779 	vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
1780 	hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
1781 	if (vratio <= hratio)
1782 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
1783 	else
1784 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
1785 
1786 	spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
1787 		spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup,
1788 		spl_in->debug.scale_to_sharpness_policy);
1789 
1790 	return res;
1791 }
1792