xref: /linux/drivers/gpu/drm/amd/display/dc/dml2/dml2_policy.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright 2023 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dml2_policy.h"
28 
29 static void get_optimal_ntuple(
30 	const struct soc_bounding_box_st *socbb,
31 	struct soc_state_bounding_box_st *entry)
32 {
33 	if (entry->dcfclk_mhz > 0) {
34 		float bw_on_sdp = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
35 
36 		entry->fabricclk_mhz = bw_on_sdp / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
37 		entry->dram_speed_mts = bw_on_sdp / (socbb->num_chans *
38 			socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
39 	} else if (entry->fabricclk_mhz > 0) {
40 		float bw_on_fabric = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
41 
42 		entry->dcfclk_mhz = bw_on_fabric / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
43 		entry->dram_speed_mts = bw_on_fabric / (socbb->num_chans *
44 			socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
45 	} else if (entry->dram_speed_mts > 0) {
46 		float bw_on_dram = (float)(entry->dram_speed_mts * socbb->num_chans *
47 			socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
48 
49 		entry->fabricclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
50 		entry->dcfclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
51 	}
52 }
53 
54 static float calculate_net_bw_in_mbytes_sec(const struct soc_bounding_box_st *socbb,
55 	struct soc_state_bounding_box_st *entry)
56 {
57 	float memory_bw_mbytes_sec = (float)(entry->dram_speed_mts *  socbb->num_chans *
58 		socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
59 
60 	float fabric_bw_mbytes_sec = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
61 
62 	float sdp_bw_mbytes_sec = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
63 
64 	float limiting_bw_mbytes_sec = memory_bw_mbytes_sec;
65 
66 	if (fabric_bw_mbytes_sec < limiting_bw_mbytes_sec)
67 		limiting_bw_mbytes_sec = fabric_bw_mbytes_sec;
68 
69 	if (sdp_bw_mbytes_sec < limiting_bw_mbytes_sec)
70 		limiting_bw_mbytes_sec = sdp_bw_mbytes_sec;
71 
72 	return limiting_bw_mbytes_sec;
73 }
74 
75 static void insert_entry_into_table_sorted(const struct soc_bounding_box_st *socbb,
76 	struct soc_states_st *table,
77 	struct soc_state_bounding_box_st *entry)
78 {
79 	int index = 0;
80 	int i = 0;
81 	float net_bw_of_new_state = 0;
82 
83 	get_optimal_ntuple(socbb, entry);
84 
85 	if (table->num_states == 0) {
86 		index = 0;
87 	} else {
88 		net_bw_of_new_state = calculate_net_bw_in_mbytes_sec(socbb, entry);
89 		while (net_bw_of_new_state > calculate_net_bw_in_mbytes_sec(socbb, &table->state_array[index])) {
90 			index++;
91 			if (index >= (int) table->num_states)
92 				break;
93 		}
94 
95 		for (i = table->num_states; i > index; i--) {
96 			table->state_array[i] = table->state_array[i - 1];
97 		}
98 		//ASSERT(index < MAX_CLK_TABLE_SIZE);
99 	}
100 
101 	table->state_array[index] = *entry;
102 	table->state_array[index].dcfclk_mhz = (int)entry->dcfclk_mhz;
103 	table->state_array[index].fabricclk_mhz = (int)entry->fabricclk_mhz;
104 	table->state_array[index].dram_speed_mts = (int)entry->dram_speed_mts;
105 	table->num_states++;
106 }
107 
108 static void remove_entry_from_table_at_index(struct soc_states_st *table,
109 	unsigned int index)
110 {
111 	int i;
112 
113 	if (table->num_states == 0)
114 		return;
115 
116 	for (i = index; i < (int) table->num_states - 1; i++) {
117 		table->state_array[i] = table->state_array[i + 1];
118 	}
119 	memset(&table->state_array[--table->num_states], 0, sizeof(struct soc_state_bounding_box_st));
120 }
121 
122 int dml2_policy_build_synthetic_soc_states(struct dml2_policy_build_synthetic_soc_states_scratch *s,
123 	struct dml2_policy_build_synthetic_soc_states_params *p)
124 {
125 	int i, j;
126 	unsigned int min_fclk_mhz = p->in_states->state_array[0].fabricclk_mhz;
127 	unsigned int min_dcfclk_mhz = p->in_states->state_array[0].dcfclk_mhz;
128 	unsigned int min_socclk_mhz = p->in_states->state_array[0].socclk_mhz;
129 
130 	int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
131 		max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0,
132 		max_uclk_mhz = 0, max_socclk_mhz = 0;
133 
134 	int num_uclk_dpms = 0, num_fclk_dpms = 0;
135 
136 	for (i = 0; i < __DML_MAX_STATE_ARRAY_SIZE__; i++) {
137 		if (p->in_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz)
138 			max_dcfclk_mhz = (int) p->in_states->state_array[i].dcfclk_mhz;
139 		if (p->in_states->state_array[i].fabricclk_mhz > max_fclk_mhz)
140 			max_fclk_mhz = (int) p->in_states->state_array[i].fabricclk_mhz;
141 		if (p->in_states->state_array[i].socclk_mhz > max_socclk_mhz)
142 			max_socclk_mhz = (int) p->in_states->state_array[i].socclk_mhz;
143 		if (p->in_states->state_array[i].dram_speed_mts > max_uclk_mhz)
144 			max_uclk_mhz = (int) p->in_states->state_array[i].dram_speed_mts;
145 		if (p->in_states->state_array[i].dispclk_mhz > max_dispclk_mhz)
146 			max_dispclk_mhz = (int) p->in_states->state_array[i].dispclk_mhz;
147 		if (p->in_states->state_array[i].dppclk_mhz > max_dppclk_mhz)
148 			max_dppclk_mhz = (int) p->in_states->state_array[i].dppclk_mhz;
149 		if (p->in_states->state_array[i].phyclk_mhz > max_phyclk_mhz)
150 			max_phyclk_mhz = (int)p->in_states->state_array[i].phyclk_mhz;
151 		if (p->in_states->state_array[i].dtbclk_mhz > max_dtbclk_mhz)
152 			max_dtbclk_mhz = (int)p->in_states->state_array[i].dtbclk_mhz;
153 
154 		if (p->in_states->state_array[i].fabricclk_mhz > 0)
155 			num_fclk_dpms++;
156 		if (p->in_states->state_array[i].dram_speed_mts > 0)
157 			num_uclk_dpms++;
158 	}
159 
160 	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dppclk_mhz || !max_phyclk_mhz || !max_dtbclk_mhz)
161 		return -1;
162 
163 	p->out_states->num_states = 0;
164 
165 	s->entry = p->in_states->state_array[0];
166 
167 	s->entry.dispclk_mhz = max_dispclk_mhz;
168 	s->entry.dppclk_mhz = max_dppclk_mhz;
169 	s->entry.dtbclk_mhz = max_dtbclk_mhz;
170 	s->entry.phyclk_mhz = max_phyclk_mhz;
171 
172 	s->entry.dscclk_mhz = max_dispclk_mhz / 3;
173 	s->entry.phyclk_mhz = max_phyclk_mhz;
174 	s->entry.dtbclk_mhz = max_dtbclk_mhz;
175 
176 	// Insert all the DCFCLK STAs first
177 	for (i = 0; i < p->num_dcfclk_stas; i++) {
178 		s->entry.dcfclk_mhz = p->dcfclk_stas_mhz[i];
179 		s->entry.fabricclk_mhz = 0;
180 		s->entry.dram_speed_mts = 0;
181 		if (i > 0)
182 			s->entry.socclk_mhz = max_socclk_mhz;
183 
184 		insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
185 	}
186 
187 	// Insert the UCLK DPMS
188 	for (i = 0; i < num_uclk_dpms; i++) {
189 		s->entry.dcfclk_mhz = 0;
190 		s->entry.fabricclk_mhz = 0;
191 		s->entry.dram_speed_mts = p->in_states->state_array[i].dram_speed_mts;
192 		if (i == 0) {
193 			s->entry.socclk_mhz = min_socclk_mhz;
194 		} else {
195 			s->entry.socclk_mhz = max_socclk_mhz;
196 		}
197 
198 		insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
199 	}
200 
201 	// Insert FCLK DPMs (if present)
202 	if (num_fclk_dpms > 2) {
203 		for (i = 0; i < num_fclk_dpms; i++) {
204 			s->entry.dcfclk_mhz = 0;
205 			s->entry.fabricclk_mhz = p->in_states->state_array[i].fabricclk_mhz;
206 			s->entry.dram_speed_mts = 0;
207 
208 		insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
209 		}
210 	}
211 	// Add max FCLK
212 	else {
213 		s->entry.dcfclk_mhz = 0;
214 		s->entry.fabricclk_mhz = p->in_states->state_array[num_fclk_dpms - 1].fabricclk_mhz;
215 		s->entry.dram_speed_mts = 0;
216 
217 		insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
218 	}
219 
220 	// Remove states that require higher clocks than are supported
221 	for (i = p->out_states->num_states - 1; i >= 0; i--) {
222 		if (p->out_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz ||
223 			p->out_states->state_array[i].fabricclk_mhz > max_fclk_mhz ||
224 			p->out_states->state_array[i].dram_speed_mts > max_uclk_mhz)
225 			remove_entry_from_table_at_index(p->out_states, i);
226 	}
227 
228 	// At this point, the table contains all "points of interest" based on
229 	// DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
230 	// ratios (by derate, are exact).
231 
232 	// Round up UCLK to DPMs
233 	for (i = p->out_states->num_states - 1; i >= 0; i--) {
234 		for (j = 0; j < num_uclk_dpms; j++) {
235 			if (p->in_states->state_array[j].dram_speed_mts >= p->out_states->state_array[i].dram_speed_mts) {
236 				p->out_states->state_array[i].dram_speed_mts = p->in_states->state_array[j].dram_speed_mts;
237 				break;
238 			}
239 		}
240 	}
241 
242 	// If FCLK is coarse grained, round up to next DPMs
243 	if (num_fclk_dpms > 2) {
244 		for (i = p->out_states->num_states - 1; i >= 0; i--) {
245 			for (j = 0; j < num_fclk_dpms; j++) {
246 				if (p->in_states->state_array[j].fabricclk_mhz >= p->out_states->state_array[i].fabricclk_mhz) {
247 					p->out_states->state_array[i].fabricclk_mhz = p->in_states->state_array[j].fabricclk_mhz;
248 					break;
249 				}
250 			}
251 		}
252 	}
253 
254 	// Clamp to min FCLK/DCFCLK
255 	for (i = p->out_states->num_states - 1; i >= 0; i--) {
256 		if (p->out_states->state_array[i].fabricclk_mhz < min_fclk_mhz) {
257 			p->out_states->state_array[i].fabricclk_mhz = min_fclk_mhz;
258 		}
259 		if (p->out_states->state_array[i].dcfclk_mhz < min_dcfclk_mhz) {
260 			p->out_states->state_array[i].dcfclk_mhz = min_dcfclk_mhz;
261 		}
262 	}
263 
264 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
265 	i = 0;
266 	while (i < (int) p->out_states->num_states - 1) {
267 		if (p->out_states->state_array[i].dcfclk_mhz == p->out_states->state_array[i + 1].dcfclk_mhz &&
268 			p->out_states->state_array[i].fabricclk_mhz == p->out_states->state_array[i + 1].fabricclk_mhz &&
269 			p->out_states->state_array[i].dram_speed_mts == p->out_states->state_array[i + 1].dram_speed_mts)
270 			remove_entry_from_table_at_index(p->out_states, i);
271 	else
272 		i++;
273 	}
274 
275 	return 0;
276 }
277 
278 void build_unoptimized_policy_settings(enum dml_project_id project, struct dml_mode_eval_policy_st *policy)
279 {
280 	for (int i = 0; i < __DML_NUM_PLANES__; i++) {
281 		policy->MPCCombineUse[i] = dml_mpc_as_needed_for_voltage; // TOREVIEW: Is this still needed?  When is MPCC useful for pstate given CRB?
282 		policy->ODMUse[i] = dml_odm_use_policy_combine_as_needed;
283 		policy->ImmediateFlipRequirement[i] = dml_immediate_flip_required;
284 		policy->AllowForPStateChangeOrStutterInVBlank[i] = dml_prefetch_support_uclk_fclk_and_stutter_if_possible;
285 	}
286 
287 	/* Change the default policy initializations as per spreadsheet. We might need to
288 	 * review and change them later on as per Jun's earlier comments.
289 	 */
290 	policy->UseUnboundedRequesting = dml_unbounded_requesting_enable;
291 	policy->UseMinimumRequiredDCFCLK = false;
292 	policy->DRAMClockChangeRequirementFinal = true; // TOREVIEW: What does this mean?
293 	policy->FCLKChangeRequirementFinal = true; // TOREVIEW: What does this mean?
294 	policy->USRRetrainingRequiredFinal = true;
295 	policy->EnhancedPrefetchScheduleAccelerationFinal = true; // TOREVIEW: What does this mean?
296 	policy->NomDETInKByteOverrideEnable = false;
297 	policy->NomDETInKByteOverrideValue = 0;
298 	policy->DCCProgrammingAssumesScanDirectionUnknownFinal = true;
299 	policy->SynchronizeTimingsFinal = true;
300 	policy->SynchronizeDRRDisplaysForUCLKPStateChangeFinal = true;
301 	policy->AssumeModeSupportAtMaxPwrStateEvenDRAMClockChangeNotSupported = true; // TOREVIEW: What does this mean?
302 	policy->AssumeModeSupportAtMaxPwrStateEvenFClockChangeNotSupported = true; // TOREVIEW: What does this mean?
303 	if (project == dml_project_dcn35 ||
304 		project == dml_project_dcn351) {
305 		policy->DCCProgrammingAssumesScanDirectionUnknownFinal = false;
306 		policy->AllowForPStateChangeOrStutterInVBlankFinal = dml_prefetch_support_uclk_fclk_and_stutter_if_possible; /*new*/
307 		policy->UseOnlyMaxPrefetchModes = 1;
308 	}
309 }
310