1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 #include "dc.h" 27 #include "dc_dmub_srv.h" 28 #include "../dmub/dmub_srv.h" 29 #include "dm_helpers.h" 30 #include "dc_hw_types.h" 31 #include "core_types.h" 32 #include "../basics/conversion.h" 33 #include "cursor_reg_cache.h" 34 #include "resource.h" 35 #include "clk_mgr.h" 36 #include "dc_state_priv.h" 37 38 #define CTX dc_dmub_srv->ctx 39 #define DC_LOGGER CTX->logger 40 41 static void dc_dmub_srv_construct(struct dc_dmub_srv *dc_srv, struct dc *dc, 42 struct dmub_srv *dmub) 43 { 44 dc_srv->dmub = dmub; 45 dc_srv->ctx = dc->ctx; 46 } 47 48 struct dc_dmub_srv *dc_dmub_srv_create(struct dc *dc, struct dmub_srv *dmub) 49 { 50 struct dc_dmub_srv *dc_srv = 51 kzalloc(sizeof(struct dc_dmub_srv), GFP_KERNEL); 52 53 if (dc_srv == NULL) { 54 BREAK_TO_DEBUGGER(); 55 return NULL; 56 } 57 58 dc_dmub_srv_construct(dc_srv, dc, dmub); 59 60 return dc_srv; 61 } 62 63 void dc_dmub_srv_destroy(struct dc_dmub_srv **dmub_srv) 64 { 65 if (*dmub_srv) { 66 kfree(*dmub_srv); 67 *dmub_srv = NULL; 68 } 69 } 70 71 void dc_dmub_srv_wait_idle(struct dc_dmub_srv *dc_dmub_srv) 72 { 73 struct dmub_srv *dmub = dc_dmub_srv->dmub; 74 struct dc_context *dc_ctx = dc_dmub_srv->ctx; 75 enum dmub_status status; 76 77 status = dmub_srv_wait_for_idle(dmub, 100000); 78 if (status != DMUB_STATUS_OK) { 79 DC_ERROR("Error waiting for DMUB idle: status=%d\n", status); 80 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 81 } 82 } 83 84 void dc_dmub_srv_clear_inbox0_ack(struct dc_dmub_srv *dc_dmub_srv) 85 { 86 struct dmub_srv *dmub = dc_dmub_srv->dmub; 87 struct dc_context *dc_ctx = dc_dmub_srv->ctx; 88 enum dmub_status status = DMUB_STATUS_OK; 89 90 status = dmub_srv_clear_inbox0_ack(dmub); 91 if (status != DMUB_STATUS_OK) { 92 DC_ERROR("Error clearing INBOX0 ack: status=%d\n", status); 93 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 94 } 95 } 96 97 void dc_dmub_srv_wait_for_inbox0_ack(struct dc_dmub_srv *dc_dmub_srv) 98 { 99 struct dmub_srv *dmub = dc_dmub_srv->dmub; 100 struct dc_context *dc_ctx = dc_dmub_srv->ctx; 101 enum dmub_status status = DMUB_STATUS_OK; 102 103 status = dmub_srv_wait_for_inbox0_ack(dmub, 100000); 104 if (status != DMUB_STATUS_OK) { 105 DC_ERROR("Error waiting for INBOX0 HW Lock Ack\n"); 106 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 107 } 108 } 109 110 void dc_dmub_srv_send_inbox0_cmd(struct dc_dmub_srv *dc_dmub_srv, 111 union dmub_inbox0_data_register data) 112 { 113 struct dmub_srv *dmub = dc_dmub_srv->dmub; 114 struct dc_context *dc_ctx = dc_dmub_srv->ctx; 115 enum dmub_status status = DMUB_STATUS_OK; 116 117 status = dmub_srv_send_inbox0_cmd(dmub, data); 118 if (status != DMUB_STATUS_OK) { 119 DC_ERROR("Error sending INBOX0 cmd\n"); 120 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 121 } 122 } 123 124 bool dc_dmub_srv_cmd_list_queue_execute(struct dc_dmub_srv *dc_dmub_srv, 125 unsigned int count, 126 union dmub_rb_cmd *cmd_list) 127 { 128 struct dc_context *dc_ctx; 129 struct dmub_srv *dmub; 130 enum dmub_status status; 131 int i; 132 133 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 134 return false; 135 136 dc_ctx = dc_dmub_srv->ctx; 137 dmub = dc_dmub_srv->dmub; 138 139 for (i = 0 ; i < count; i++) { 140 // Queue command 141 status = dmub_srv_cmd_queue(dmub, &cmd_list[i]); 142 143 if (status == DMUB_STATUS_QUEUE_FULL) { 144 /* Execute and wait for queue to become empty again. */ 145 status = dmub_srv_cmd_execute(dmub); 146 if (status == DMUB_STATUS_POWER_STATE_D3) 147 return false; 148 149 dmub_srv_wait_for_idle(dmub, 100000); 150 151 /* Requeue the command. */ 152 status = dmub_srv_cmd_queue(dmub, &cmd_list[i]); 153 } 154 155 if (status != DMUB_STATUS_OK) { 156 if (status != DMUB_STATUS_POWER_STATE_D3) { 157 DC_ERROR("Error queueing DMUB command: status=%d\n", status); 158 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 159 } 160 return false; 161 } 162 } 163 164 status = dmub_srv_cmd_execute(dmub); 165 if (status != DMUB_STATUS_OK) { 166 if (status != DMUB_STATUS_POWER_STATE_D3) { 167 DC_ERROR("Error starting DMUB execution: status=%d\n", status); 168 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 169 } 170 return false; 171 } 172 173 return true; 174 } 175 176 bool dc_dmub_srv_wait_for_idle(struct dc_dmub_srv *dc_dmub_srv, 177 enum dm_dmub_wait_type wait_type, 178 union dmub_rb_cmd *cmd_list) 179 { 180 struct dmub_srv *dmub; 181 enum dmub_status status; 182 183 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 184 return false; 185 186 dmub = dc_dmub_srv->dmub; 187 188 // Wait for DMUB to process command 189 if (wait_type != DM_DMUB_WAIT_TYPE_NO_WAIT) { 190 status = dmub_srv_wait_for_idle(dmub, 100000); 191 192 if (status != DMUB_STATUS_OK) { 193 DC_LOG_DEBUG("No reply for DMUB command: status=%d\n", status); 194 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 195 return false; 196 } 197 198 // Copy data back from ring buffer into command 199 if (wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) 200 dmub_rb_get_return_data(&dmub->inbox1_rb, cmd_list); 201 } 202 203 return true; 204 } 205 206 bool dc_dmub_srv_cmd_run(struct dc_dmub_srv *dc_dmub_srv, union dmub_rb_cmd *cmd, enum dm_dmub_wait_type wait_type) 207 { 208 return dc_dmub_srv_cmd_run_list(dc_dmub_srv, 1, cmd, wait_type); 209 } 210 211 bool dc_dmub_srv_cmd_run_list(struct dc_dmub_srv *dc_dmub_srv, unsigned int count, union dmub_rb_cmd *cmd_list, enum dm_dmub_wait_type wait_type) 212 { 213 struct dc_context *dc_ctx; 214 struct dmub_srv *dmub; 215 enum dmub_status status; 216 int i; 217 218 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 219 return false; 220 221 dc_ctx = dc_dmub_srv->ctx; 222 dmub = dc_dmub_srv->dmub; 223 224 for (i = 0 ; i < count; i++) { 225 // Queue command 226 status = dmub_srv_cmd_queue(dmub, &cmd_list[i]); 227 228 if (status == DMUB_STATUS_QUEUE_FULL) { 229 /* Execute and wait for queue to become empty again. */ 230 status = dmub_srv_cmd_execute(dmub); 231 if (status == DMUB_STATUS_POWER_STATE_D3) 232 return false; 233 234 dmub_srv_wait_for_idle(dmub, 100000); 235 236 /* Requeue the command. */ 237 status = dmub_srv_cmd_queue(dmub, &cmd_list[i]); 238 } 239 240 if (status != DMUB_STATUS_OK) { 241 if (status != DMUB_STATUS_POWER_STATE_D3) { 242 DC_ERROR("Error queueing DMUB command: status=%d\n", status); 243 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 244 } 245 return false; 246 } 247 } 248 249 status = dmub_srv_cmd_execute(dmub); 250 if (status != DMUB_STATUS_OK) { 251 if (status != DMUB_STATUS_POWER_STATE_D3) { 252 DC_ERROR("Error starting DMUB execution: status=%d\n", status); 253 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 254 } 255 return false; 256 } 257 258 // Wait for DMUB to process command 259 if (wait_type != DM_DMUB_WAIT_TYPE_NO_WAIT) { 260 if (dc_dmub_srv->ctx->dc->debug.disable_timeout) { 261 do { 262 status = dmub_srv_wait_for_idle(dmub, 100000); 263 } while (status != DMUB_STATUS_OK); 264 } else 265 status = dmub_srv_wait_for_idle(dmub, 100000); 266 267 if (status != DMUB_STATUS_OK) { 268 DC_LOG_DEBUG("No reply for DMUB command: status=%d\n", status); 269 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); 270 return false; 271 } 272 273 // Copy data back from ring buffer into command 274 if (wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) 275 dmub_rb_get_return_data(&dmub->inbox1_rb, cmd_list); 276 } 277 278 return true; 279 } 280 281 bool dc_dmub_srv_optimized_init_done(struct dc_dmub_srv *dc_dmub_srv) 282 { 283 struct dmub_srv *dmub; 284 struct dc_context *dc_ctx; 285 union dmub_fw_boot_status boot_status; 286 enum dmub_status status; 287 288 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 289 return false; 290 291 dmub = dc_dmub_srv->dmub; 292 dc_ctx = dc_dmub_srv->ctx; 293 294 status = dmub_srv_get_fw_boot_status(dmub, &boot_status); 295 if (status != DMUB_STATUS_OK) { 296 DC_ERROR("Error querying DMUB boot status: error=%d\n", status); 297 return false; 298 } 299 300 return boot_status.bits.optimized_init_done; 301 } 302 303 bool dc_dmub_srv_notify_stream_mask(struct dc_dmub_srv *dc_dmub_srv, 304 unsigned int stream_mask) 305 { 306 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 307 return false; 308 309 return dc_wake_and_execute_gpint(dc_dmub_srv->ctx, DMUB_GPINT__IDLE_OPT_NOTIFY_STREAM_MASK, 310 stream_mask, NULL, DM_DMUB_WAIT_TYPE_WAIT); 311 } 312 313 bool dc_dmub_srv_is_restore_required(struct dc_dmub_srv *dc_dmub_srv) 314 { 315 struct dmub_srv *dmub; 316 struct dc_context *dc_ctx; 317 union dmub_fw_boot_status boot_status; 318 enum dmub_status status; 319 320 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 321 return false; 322 323 dmub = dc_dmub_srv->dmub; 324 dc_ctx = dc_dmub_srv->ctx; 325 326 status = dmub_srv_get_fw_boot_status(dmub, &boot_status); 327 if (status != DMUB_STATUS_OK) { 328 DC_ERROR("Error querying DMUB boot status: error=%d\n", status); 329 return false; 330 } 331 332 return boot_status.bits.restore_required; 333 } 334 335 bool dc_dmub_srv_get_dmub_outbox0_msg(const struct dc *dc, struct dmcub_trace_buf_entry *entry) 336 { 337 struct dmub_srv *dmub = dc->ctx->dmub_srv->dmub; 338 return dmub_srv_get_outbox0_msg(dmub, entry); 339 } 340 341 void dc_dmub_trace_event_control(struct dc *dc, bool enable) 342 { 343 dm_helpers_dmub_outbox_interrupt_control(dc->ctx, enable); 344 } 345 346 void dc_dmub_srv_drr_update_cmd(struct dc *dc, uint32_t tg_inst, uint32_t vtotal_min, uint32_t vtotal_max) 347 { 348 union dmub_rb_cmd cmd = { 0 }; 349 350 cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; 351 cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_DRR_UPDATE; 352 cmd.drr_update.dmub_optc_state_req.v_total_max = vtotal_max; 353 cmd.drr_update.dmub_optc_state_req.v_total_min = vtotal_min; 354 cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst; 355 356 cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header); 357 358 // Send the command to the DMCUB. 359 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 360 } 361 362 void dc_dmub_srv_set_drr_manual_trigger_cmd(struct dc *dc, uint32_t tg_inst) 363 { 364 union dmub_rb_cmd cmd = { 0 }; 365 366 cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; 367 cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_SET_MANUAL_TRIGGER; 368 cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst; 369 370 cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header); 371 372 // Send the command to the DMCUB. 373 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 374 } 375 376 static uint8_t dc_dmub_srv_get_pipes_for_stream(struct dc *dc, struct dc_stream_state *stream) 377 { 378 uint8_t pipes = 0; 379 int i = 0; 380 381 for (i = 0; i < MAX_PIPES; i++) { 382 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 383 384 if (pipe->stream == stream && pipe->stream_res.tg) 385 pipes = i; 386 } 387 return pipes; 388 } 389 390 static void dc_dmub_srv_populate_fams_pipe_info(struct dc *dc, struct dc_state *context, 391 struct pipe_ctx *head_pipe, 392 struct dmub_cmd_fw_assisted_mclk_switch_pipe_data *fams_pipe_data) 393 { 394 int j; 395 int pipe_idx = 0; 396 397 fams_pipe_data->pipe_index[pipe_idx++] = head_pipe->plane_res.hubp->inst; 398 for (j = 0; j < dc->res_pool->pipe_count; j++) { 399 struct pipe_ctx *split_pipe = &context->res_ctx.pipe_ctx[j]; 400 401 if (split_pipe->stream == head_pipe->stream && (split_pipe->top_pipe || split_pipe->prev_odm_pipe)) { 402 fams_pipe_data->pipe_index[pipe_idx++] = split_pipe->plane_res.hubp->inst; 403 } 404 } 405 fams_pipe_data->pipe_count = pipe_idx; 406 } 407 408 bool dc_dmub_srv_p_state_delegate(struct dc *dc, bool should_manage_pstate, struct dc_state *context) 409 { 410 union dmub_rb_cmd cmd = { 0 }; 411 struct dmub_cmd_fw_assisted_mclk_switch_config *config_data = &cmd.fw_assisted_mclk_switch.config_data; 412 int i = 0, k = 0; 413 int ramp_up_num_steps = 1; // TODO: Ramp is currently disabled. Reenable it. 414 uint8_t visual_confirm_enabled; 415 int pipe_idx = 0; 416 417 if (dc == NULL) 418 return false; 419 420 visual_confirm_enabled = dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS; 421 422 // Format command. 423 cmd.fw_assisted_mclk_switch.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; 424 cmd.fw_assisted_mclk_switch.header.sub_type = DMUB_CMD__FAMS_SETUP_FW_CTRL; 425 cmd.fw_assisted_mclk_switch.config_data.fams_enabled = should_manage_pstate; 426 cmd.fw_assisted_mclk_switch.config_data.visual_confirm_enabled = visual_confirm_enabled; 427 428 if (should_manage_pstate) { 429 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 430 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 431 432 if (!pipe->stream) 433 continue; 434 435 /* If FAMS is being used to support P-State and there is a stream 436 * that does not use FAMS, we are in an FPO + VActive scenario. 437 * Assign vactive stretch margin in this case. 438 */ 439 if (!pipe->stream->fpo_in_use) { 440 cmd.fw_assisted_mclk_switch.config_data.vactive_stretch_margin_us = dc->debug.fpo_vactive_margin_us; 441 break; 442 } 443 pipe_idx++; 444 } 445 } 446 447 for (i = 0, k = 0; context && i < dc->res_pool->pipe_count; i++) { 448 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 449 450 if (resource_is_pipe_type(pipe, OTG_MASTER) && pipe->stream->fpo_in_use) { 451 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 452 uint8_t min_refresh_in_hz = (pipe->stream->timing.min_refresh_in_uhz + 999999) / 1000000; 453 454 config_data->pipe_data[k].pix_clk_100hz = pipe->stream->timing.pix_clk_100hz; 455 config_data->pipe_data[k].min_refresh_in_hz = min_refresh_in_hz; 456 config_data->pipe_data[k].max_ramp_step = ramp_up_num_steps; 457 config_data->pipe_data[k].pipes = dc_dmub_srv_get_pipes_for_stream(dc, pipe->stream); 458 dc_dmub_srv_populate_fams_pipe_info(dc, context, pipe, &config_data->pipe_data[k]); 459 k++; 460 } 461 } 462 cmd.fw_assisted_mclk_switch.header.payload_bytes = 463 sizeof(cmd.fw_assisted_mclk_switch) - sizeof(cmd.fw_assisted_mclk_switch.header); 464 465 // Send the command to the DMCUB. 466 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 467 468 return true; 469 } 470 471 void dc_dmub_srv_query_caps_cmd(struct dc_dmub_srv *dc_dmub_srv) 472 { 473 union dmub_rb_cmd cmd = { 0 }; 474 475 if (dc_dmub_srv->ctx->dc->debug.dmcub_emulation) 476 return; 477 478 memset(&cmd, 0, sizeof(cmd)); 479 480 /* Prepare fw command */ 481 cmd.query_feature_caps.header.type = DMUB_CMD__QUERY_FEATURE_CAPS; 482 cmd.query_feature_caps.header.sub_type = 0; 483 cmd.query_feature_caps.header.ret_status = 1; 484 cmd.query_feature_caps.header.payload_bytes = sizeof(struct dmub_cmd_query_feature_caps_data); 485 486 /* If command was processed, copy feature caps to dmub srv */ 487 if (dc_wake_and_execute_dmub_cmd(dc_dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) && 488 cmd.query_feature_caps.header.ret_status == 0) { 489 memcpy(&dc_dmub_srv->dmub->feature_caps, 490 &cmd.query_feature_caps.query_feature_caps_data, 491 sizeof(struct dmub_feature_caps)); 492 } 493 } 494 495 void dc_dmub_srv_get_visual_confirm_color_cmd(struct dc *dc, struct pipe_ctx *pipe_ctx) 496 { 497 union dmub_rb_cmd cmd = { 0 }; 498 unsigned int panel_inst = 0; 499 500 dc_get_edp_link_panel_inst(dc, pipe_ctx->stream->link, &panel_inst); 501 502 memset(&cmd, 0, sizeof(cmd)); 503 504 // Prepare fw command 505 cmd.visual_confirm_color.header.type = DMUB_CMD__GET_VISUAL_CONFIRM_COLOR; 506 cmd.visual_confirm_color.header.sub_type = 0; 507 cmd.visual_confirm_color.header.ret_status = 1; 508 cmd.visual_confirm_color.header.payload_bytes = sizeof(struct dmub_cmd_visual_confirm_color_data); 509 cmd.visual_confirm_color.visual_confirm_color_data.visual_confirm_color.panel_inst = panel_inst; 510 511 // If command was processed, copy feature caps to dmub srv 512 if (dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) && 513 cmd.visual_confirm_color.header.ret_status == 0) { 514 memcpy(&dc->ctx->dmub_srv->dmub->visual_confirm_color, 515 &cmd.visual_confirm_color.visual_confirm_color_data, 516 sizeof(struct dmub_visual_confirm_color)); 517 } 518 } 519 520 /** 521 * populate_subvp_cmd_drr_info - Helper to populate DRR pipe info for the DMCUB subvp command 522 * 523 * @dc: [in] pointer to dc object 524 * @subvp_pipe: [in] pipe_ctx for the SubVP pipe 525 * @vblank_pipe: [in] pipe_ctx for the DRR pipe 526 * @pipe_data: [in] Pipe data which stores the VBLANK/DRR info 527 * @context: [in] DC state for access to phantom stream 528 * 529 * Populate the DMCUB SubVP command with DRR pipe info. All the information 530 * required for calculating the SubVP + DRR microschedule is populated here. 531 * 532 * High level algorithm: 533 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe 534 * 2. Calculate the min and max vtotal which supports SubVP + DRR microschedule 535 * 3. Populate the drr_info with the min and max supported vtotal values 536 */ 537 static void populate_subvp_cmd_drr_info(struct dc *dc, 538 struct dc_state *context, 539 struct pipe_ctx *subvp_pipe, 540 struct pipe_ctx *vblank_pipe, 541 struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data) 542 { 543 struct dc_stream_state *phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); 544 struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing; 545 struct dc_crtc_timing *phantom_timing = &phantom_stream->timing; 546 struct dc_crtc_timing *drr_timing = &vblank_pipe->stream->timing; 547 uint16_t drr_frame_us = 0; 548 uint16_t min_drr_supported_us = 0; 549 uint16_t max_drr_supported_us = 0; 550 uint16_t max_drr_vblank_us = 0; 551 uint16_t max_drr_mallregion_us = 0; 552 uint16_t mall_region_us = 0; 553 uint16_t prefetch_us = 0; 554 uint16_t subvp_active_us = 0; 555 uint16_t drr_active_us = 0; 556 uint16_t min_vtotal_supported = 0; 557 uint16_t max_vtotal_supported = 0; 558 559 pipe_data->pipe_config.vblank_data.drr_info.drr_in_use = true; 560 pipe_data->pipe_config.vblank_data.drr_info.use_ramping = false; // for now don't use ramping 561 pipe_data->pipe_config.vblank_data.drr_info.drr_window_size_ms = 4; // hardcode 4ms DRR window for now 562 563 drr_frame_us = div64_u64(((uint64_t)drr_timing->v_total * drr_timing->h_total * 1000000), 564 (((uint64_t)drr_timing->pix_clk_100hz * 100))); 565 // P-State allow width and FW delays already included phantom_timing->v_addressable 566 mall_region_us = div64_u64(((uint64_t)phantom_timing->v_addressable * phantom_timing->h_total * 1000000), 567 (((uint64_t)phantom_timing->pix_clk_100hz * 100))); 568 min_drr_supported_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; 569 min_vtotal_supported = div64_u64(((uint64_t)drr_timing->pix_clk_100hz * 100 * min_drr_supported_us), 570 (((uint64_t)drr_timing->h_total * 1000000))); 571 572 prefetch_us = div64_u64(((uint64_t)(phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total * 1000000), 573 (((uint64_t)phantom_timing->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us)); 574 subvp_active_us = div64_u64(((uint64_t)main_timing->v_addressable * main_timing->h_total * 1000000), 575 (((uint64_t)main_timing->pix_clk_100hz * 100))); 576 drr_active_us = div64_u64(((uint64_t)drr_timing->v_addressable * drr_timing->h_total * 1000000), 577 (((uint64_t)drr_timing->pix_clk_100hz * 100))); 578 max_drr_vblank_us = div64_u64((subvp_active_us - prefetch_us - 579 dc->caps.subvp_fw_processing_delay_us - drr_active_us), 2) + drr_active_us; 580 max_drr_mallregion_us = subvp_active_us - prefetch_us - mall_region_us - dc->caps.subvp_fw_processing_delay_us; 581 max_drr_supported_us = max_drr_vblank_us > max_drr_mallregion_us ? max_drr_vblank_us : max_drr_mallregion_us; 582 max_vtotal_supported = div64_u64(((uint64_t)drr_timing->pix_clk_100hz * 100 * max_drr_supported_us), 583 (((uint64_t)drr_timing->h_total * 1000000))); 584 585 /* When calculating the max vtotal supported for SubVP + DRR cases, add 586 * margin due to possible rounding errors (being off by 1 line in the 587 * FW calculation can incorrectly push the P-State switch to wait 1 frame 588 * longer). 589 */ 590 max_vtotal_supported = max_vtotal_supported - dc->caps.subvp_drr_max_vblank_margin_us; 591 592 pipe_data->pipe_config.vblank_data.drr_info.min_vtotal_supported = min_vtotal_supported; 593 pipe_data->pipe_config.vblank_data.drr_info.max_vtotal_supported = max_vtotal_supported; 594 pipe_data->pipe_config.vblank_data.drr_info.drr_vblank_start_margin = dc->caps.subvp_drr_vblank_start_margin_us; 595 } 596 597 /** 598 * populate_subvp_cmd_vblank_pipe_info - Helper to populate VBLANK pipe info for the DMUB subvp command 599 * 600 * @dc: [in] current dc state 601 * @context: [in] new dc state 602 * @cmd: [in] DMUB cmd to be populated with SubVP info 603 * @vblank_pipe: [in] pipe_ctx for the VBLANK pipe 604 * @cmd_pipe_index: [in] index for the pipe array in DMCUB SubVP cmd 605 * 606 * Populate the DMCUB SubVP command with VBLANK pipe info. All the information 607 * required to calculate the microschedule for SubVP + VBLANK case is stored in 608 * the pipe_data (subvp_data and vblank_data). Also check if the VBLANK pipe 609 * is a DRR display -- if it is make a call to populate drr_info. 610 */ 611 static void populate_subvp_cmd_vblank_pipe_info(struct dc *dc, 612 struct dc_state *context, 613 union dmub_rb_cmd *cmd, 614 struct pipe_ctx *vblank_pipe, 615 uint8_t cmd_pipe_index) 616 { 617 uint32_t i; 618 struct pipe_ctx *pipe = NULL; 619 struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = 620 &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index]; 621 622 // Find the SubVP pipe 623 for (i = 0; i < dc->res_pool->pipe_count; i++) { 624 pipe = &context->res_ctx.pipe_ctx[i]; 625 626 // We check for master pipe, but it shouldn't matter since we only need 627 // the pipe for timing info (stream should be same for any pipe splits) 628 if (!resource_is_pipe_type(pipe, OTG_MASTER) || 629 !resource_is_pipe_type(pipe, DPP_PIPE)) 630 continue; 631 632 // Find the SubVP pipe 633 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) 634 break; 635 } 636 637 pipe_data->mode = VBLANK; 638 pipe_data->pipe_config.vblank_data.pix_clk_100hz = vblank_pipe->stream->timing.pix_clk_100hz; 639 pipe_data->pipe_config.vblank_data.vblank_start = vblank_pipe->stream->timing.v_total - 640 vblank_pipe->stream->timing.v_front_porch; 641 pipe_data->pipe_config.vblank_data.vtotal = vblank_pipe->stream->timing.v_total; 642 pipe_data->pipe_config.vblank_data.htotal = vblank_pipe->stream->timing.h_total; 643 pipe_data->pipe_config.vblank_data.vblank_pipe_index = vblank_pipe->pipe_idx; 644 pipe_data->pipe_config.vblank_data.vstartup_start = vblank_pipe->pipe_dlg_param.vstartup_start; 645 pipe_data->pipe_config.vblank_data.vblank_end = 646 vblank_pipe->stream->timing.v_total - vblank_pipe->stream->timing.v_front_porch - vblank_pipe->stream->timing.v_addressable; 647 648 if (vblank_pipe->stream->ignore_msa_timing_param && 649 (vblank_pipe->stream->allow_freesync || vblank_pipe->stream->vrr_active_variable || vblank_pipe->stream->vrr_active_fixed)) 650 populate_subvp_cmd_drr_info(dc, context, pipe, vblank_pipe, pipe_data); 651 } 652 653 /** 654 * update_subvp_prefetch_end_to_mall_start - Helper for SubVP + SubVP case 655 * 656 * @dc: [in] current dc state 657 * @context: [in] new dc state 658 * @cmd: [in] DMUB cmd to be populated with SubVP info 659 * @subvp_pipes: [in] Array of SubVP pipes (should always be length 2) 660 * 661 * For SubVP + SubVP, we use a single vertical interrupt to start the 662 * microschedule for both SubVP pipes. In order for this to work correctly, the 663 * MALL REGION of both SubVP pipes must start at the same time. This function 664 * lengthens the prefetch end to mall start delay of the SubVP pipe that has 665 * the shorter prefetch so that both MALL REGION's will start at the same time. 666 */ 667 static void update_subvp_prefetch_end_to_mall_start(struct dc *dc, 668 struct dc_state *context, 669 union dmub_rb_cmd *cmd, 670 struct pipe_ctx *subvp_pipes[]) 671 { 672 uint32_t subvp0_prefetch_us = 0; 673 uint32_t subvp1_prefetch_us = 0; 674 uint32_t prefetch_delta_us = 0; 675 struct dc_stream_state *phantom_stream0 = NULL; 676 struct dc_stream_state *phantom_stream1 = NULL; 677 struct dc_crtc_timing *phantom_timing0 = NULL; 678 struct dc_crtc_timing *phantom_timing1 = NULL; 679 struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = NULL; 680 681 phantom_stream0 = dc_state_get_paired_subvp_stream(context, subvp_pipes[0]->stream); 682 phantom_stream1 = dc_state_get_paired_subvp_stream(context, subvp_pipes[1]->stream); 683 phantom_timing0 = &phantom_stream0->timing; 684 phantom_timing1 = &phantom_stream1->timing; 685 686 subvp0_prefetch_us = div64_u64(((uint64_t)(phantom_timing0->v_total - phantom_timing0->v_front_porch) * 687 (uint64_t)phantom_timing0->h_total * 1000000), 688 (((uint64_t)phantom_timing0->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us)); 689 subvp1_prefetch_us = div64_u64(((uint64_t)(phantom_timing1->v_total - phantom_timing1->v_front_porch) * 690 (uint64_t)phantom_timing1->h_total * 1000000), 691 (((uint64_t)phantom_timing1->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us)); 692 693 // Whichever SubVP PIPE has the smaller prefetch (including the prefetch end to mall start time) 694 // should increase it's prefetch time to match the other 695 if (subvp0_prefetch_us > subvp1_prefetch_us) { 696 pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[1]; 697 prefetch_delta_us = subvp0_prefetch_us - subvp1_prefetch_us; 698 pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = 699 div64_u64(((uint64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us) * 700 ((uint64_t)phantom_timing1->pix_clk_100hz * 100) + ((uint64_t)phantom_timing1->h_total * 1000000 - 1)), 701 ((uint64_t)phantom_timing1->h_total * 1000000)); 702 703 } else if (subvp1_prefetch_us > subvp0_prefetch_us) { 704 pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[0]; 705 prefetch_delta_us = subvp1_prefetch_us - subvp0_prefetch_us; 706 pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = 707 div64_u64(((uint64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us) * 708 ((uint64_t)phantom_timing0->pix_clk_100hz * 100) + ((uint64_t)phantom_timing0->h_total * 1000000 - 1)), 709 ((uint64_t)phantom_timing0->h_total * 1000000)); 710 } 711 } 712 713 /** 714 * populate_subvp_cmd_pipe_info - Helper to populate the SubVP pipe info for the DMUB subvp command 715 * 716 * @dc: [in] current dc state 717 * @context: [in] new dc state 718 * @cmd: [in] DMUB cmd to be populated with SubVP info 719 * @subvp_pipe: [in] pipe_ctx for the SubVP pipe 720 * @cmd_pipe_index: [in] index for the pipe array in DMCUB SubVP cmd 721 * 722 * Populate the DMCUB SubVP command with SubVP pipe info. All the information 723 * required to calculate the microschedule for the SubVP pipe is stored in the 724 * pipe_data of the DMCUB SubVP command. 725 */ 726 static void populate_subvp_cmd_pipe_info(struct dc *dc, 727 struct dc_state *context, 728 union dmub_rb_cmd *cmd, 729 struct pipe_ctx *subvp_pipe, 730 uint8_t cmd_pipe_index) 731 { 732 uint32_t j; 733 struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = 734 &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index]; 735 struct dc_stream_state *phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream); 736 struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing; 737 struct dc_crtc_timing *phantom_timing = &phantom_stream->timing; 738 uint32_t out_num_stream, out_den_stream, out_num_plane, out_den_plane, out_num, out_den; 739 740 pipe_data->mode = SUBVP; 741 pipe_data->pipe_config.subvp_data.pix_clk_100hz = subvp_pipe->stream->timing.pix_clk_100hz; 742 pipe_data->pipe_config.subvp_data.htotal = subvp_pipe->stream->timing.h_total; 743 pipe_data->pipe_config.subvp_data.vtotal = subvp_pipe->stream->timing.v_total; 744 pipe_data->pipe_config.subvp_data.main_vblank_start = 745 main_timing->v_total - main_timing->v_front_porch; 746 pipe_data->pipe_config.subvp_data.main_vblank_end = 747 main_timing->v_total - main_timing->v_front_porch - main_timing->v_addressable; 748 pipe_data->pipe_config.subvp_data.mall_region_lines = phantom_timing->v_addressable; 749 pipe_data->pipe_config.subvp_data.main_pipe_index = subvp_pipe->stream_res.tg->inst; 750 pipe_data->pipe_config.subvp_data.is_drr = subvp_pipe->stream->ignore_msa_timing_param && 751 (subvp_pipe->stream->allow_freesync || subvp_pipe->stream->vrr_active_variable || subvp_pipe->stream->vrr_active_fixed); 752 753 /* Calculate the scaling factor from the src and dst height. 754 * e.g. If 3840x2160 being downscaled to 1920x1080, the scaling factor is 1/2. 755 * Reduce the fraction 1080/2160 = 1/2 for the "scaling factor" 756 * 757 * Make sure to combine stream and plane scaling together. 758 */ 759 reduce_fraction(subvp_pipe->stream->src.height, subvp_pipe->stream->dst.height, 760 &out_num_stream, &out_den_stream); 761 reduce_fraction(subvp_pipe->plane_state->src_rect.height, subvp_pipe->plane_state->dst_rect.height, 762 &out_num_plane, &out_den_plane); 763 reduce_fraction(out_num_stream * out_num_plane, out_den_stream * out_den_plane, &out_num, &out_den); 764 pipe_data->pipe_config.subvp_data.scale_factor_numerator = out_num; 765 pipe_data->pipe_config.subvp_data.scale_factor_denominator = out_den; 766 767 // Prefetch lines is equal to VACTIVE + BP + VSYNC 768 pipe_data->pipe_config.subvp_data.prefetch_lines = 769 phantom_timing->v_total - phantom_timing->v_front_porch; 770 771 // Round up 772 pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = 773 div64_u64(((uint64_t)dc->caps.subvp_prefetch_end_to_mall_start_us * ((uint64_t)phantom_timing->pix_clk_100hz * 100) + 774 ((uint64_t)phantom_timing->h_total * 1000000 - 1)), ((uint64_t)phantom_timing->h_total * 1000000)); 775 pipe_data->pipe_config.subvp_data.processing_delay_lines = 776 div64_u64(((uint64_t)(dc->caps.subvp_fw_processing_delay_us) * ((uint64_t)phantom_timing->pix_clk_100hz * 100) + 777 ((uint64_t)phantom_timing->h_total * 1000000 - 1)), ((uint64_t)phantom_timing->h_total * 1000000)); 778 779 if (subvp_pipe->bottom_pipe) { 780 pipe_data->pipe_config.subvp_data.main_split_pipe_index = subvp_pipe->bottom_pipe->pipe_idx; 781 } else if (subvp_pipe->next_odm_pipe) { 782 pipe_data->pipe_config.subvp_data.main_split_pipe_index = subvp_pipe->next_odm_pipe->pipe_idx; 783 } else { 784 pipe_data->pipe_config.subvp_data.main_split_pipe_index = 0; 785 } 786 787 // Find phantom pipe index based on phantom stream 788 for (j = 0; j < dc->res_pool->pipe_count; j++) { 789 struct pipe_ctx *phantom_pipe = &context->res_ctx.pipe_ctx[j]; 790 791 if (phantom_pipe->stream == dc_state_get_paired_subvp_stream(context, subvp_pipe->stream)) { 792 pipe_data->pipe_config.subvp_data.phantom_pipe_index = phantom_pipe->stream_res.tg->inst; 793 if (phantom_pipe->bottom_pipe) { 794 pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = phantom_pipe->bottom_pipe->plane_res.hubp->inst; 795 } else if (phantom_pipe->next_odm_pipe) { 796 pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = phantom_pipe->next_odm_pipe->plane_res.hubp->inst; 797 } else { 798 pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = 0; 799 } 800 break; 801 } 802 } 803 } 804 805 /** 806 * dc_dmub_setup_subvp_dmub_command - Populate the DMCUB SubVP command 807 * 808 * @dc: [in] current dc state 809 * @context: [in] new dc state 810 * @enable: [in] if true enables the pipes population 811 * 812 * This function loops through each pipe and populates the DMUB SubVP CMD info 813 * based on the pipe (e.g. SubVP, VBLANK). 814 */ 815 void dc_dmub_setup_subvp_dmub_command(struct dc *dc, 816 struct dc_state *context, 817 bool enable) 818 { 819 uint8_t cmd_pipe_index = 0; 820 uint32_t i, pipe_idx; 821 uint8_t subvp_count = 0; 822 union dmub_rb_cmd cmd; 823 struct pipe_ctx *subvp_pipes[2]; 824 uint32_t wm_val_refclk = 0; 825 enum mall_stream_type pipe_mall_type; 826 827 memset(&cmd, 0, sizeof(cmd)); 828 // FW command for SUBVP 829 cmd.fw_assisted_mclk_switch_v2.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; 830 cmd.fw_assisted_mclk_switch_v2.header.sub_type = DMUB_CMD__HANDLE_SUBVP_CMD; 831 cmd.fw_assisted_mclk_switch_v2.header.payload_bytes = 832 sizeof(cmd.fw_assisted_mclk_switch_v2) - sizeof(cmd.fw_assisted_mclk_switch_v2.header); 833 834 for (i = 0; i < dc->res_pool->pipe_count; i++) { 835 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 836 837 /* For SubVP pipe count, only count the top most (ODM / MPC) pipe 838 */ 839 if (resource_is_pipe_type(pipe, OTG_MASTER) && 840 resource_is_pipe_type(pipe, DPP_PIPE) && 841 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) 842 subvp_pipes[subvp_count++] = pipe; 843 } 844 845 if (enable) { 846 // For each pipe that is a "main" SUBVP pipe, fill in pipe data for DMUB SUBVP cmd 847 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 848 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 849 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); 850 851 if (!pipe->stream) 852 continue; 853 854 /* When populating subvp cmd info, only pass in the top most (ODM / MPC) pipe. 855 * Any ODM or MPC splits being used in SubVP will be handled internally in 856 * populate_subvp_cmd_pipe_info 857 */ 858 if (resource_is_pipe_type(pipe, OTG_MASTER) && 859 resource_is_pipe_type(pipe, DPP_PIPE) && 860 pipe_mall_type == SUBVP_MAIN) { 861 populate_subvp_cmd_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++); 862 } else if (resource_is_pipe_type(pipe, OTG_MASTER) && 863 resource_is_pipe_type(pipe, DPP_PIPE) && 864 pipe_mall_type == SUBVP_NONE) { 865 // Don't need to check for ActiveDRAMClockChangeMargin < 0, not valid in cases where 866 // we run through DML without calculating "natural" P-state support 867 populate_subvp_cmd_vblank_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++); 868 869 } 870 pipe_idx++; 871 } 872 if (subvp_count == 2) { 873 update_subvp_prefetch_end_to_mall_start(dc, context, &cmd, subvp_pipes); 874 } 875 cmd.fw_assisted_mclk_switch_v2.config_data.pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us; 876 cmd.fw_assisted_mclk_switch_v2.config_data.vertical_int_margin_us = dc->caps.subvp_vertical_int_margin_us; 877 878 // Store the original watermark value for this SubVP config so we can lower it when the 879 // MCLK switch starts 880 wm_val_refclk = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns * 881 (dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000) / 1000; 882 883 cmd.fw_assisted_mclk_switch_v2.config_data.watermark_a_cache = wm_val_refclk < 0xFFFF ? wm_val_refclk : 0xFFFF; 884 } 885 886 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); 887 } 888 889 bool dc_dmub_srv_get_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv, struct dmub_diagnostic_data *diag_data) 890 { 891 if (!dc_dmub_srv || !dc_dmub_srv->dmub || !diag_data) 892 return false; 893 return dmub_srv_get_diagnostic_data(dc_dmub_srv->dmub, diag_data); 894 } 895 896 void dc_dmub_srv_log_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv) 897 { 898 struct dmub_diagnostic_data diag_data = {0}; 899 900 if (!dc_dmub_srv || !dc_dmub_srv->dmub) { 901 DC_LOG_ERROR("%s: invalid parameters.", __func__); 902 return; 903 } 904 905 if (!dc_dmub_srv_get_diagnostic_data(dc_dmub_srv, &diag_data)) { 906 DC_LOG_ERROR("%s: dc_dmub_srv_get_diagnostic_data failed.", __func__); 907 return; 908 } 909 910 DC_LOG_DEBUG("DMCUB STATE:"); 911 DC_LOG_DEBUG(" dmcub_version : %08x", diag_data.dmcub_version); 912 DC_LOG_DEBUG(" scratch [0] : %08x", diag_data.scratch[0]); 913 DC_LOG_DEBUG(" scratch [1] : %08x", diag_data.scratch[1]); 914 DC_LOG_DEBUG(" scratch [2] : %08x", diag_data.scratch[2]); 915 DC_LOG_DEBUG(" scratch [3] : %08x", diag_data.scratch[3]); 916 DC_LOG_DEBUG(" scratch [4] : %08x", diag_data.scratch[4]); 917 DC_LOG_DEBUG(" scratch [5] : %08x", diag_data.scratch[5]); 918 DC_LOG_DEBUG(" scratch [6] : %08x", diag_data.scratch[6]); 919 DC_LOG_DEBUG(" scratch [7] : %08x", diag_data.scratch[7]); 920 DC_LOG_DEBUG(" scratch [8] : %08x", diag_data.scratch[8]); 921 DC_LOG_DEBUG(" scratch [9] : %08x", diag_data.scratch[9]); 922 DC_LOG_DEBUG(" scratch [10] : %08x", diag_data.scratch[10]); 923 DC_LOG_DEBUG(" scratch [11] : %08x", diag_data.scratch[11]); 924 DC_LOG_DEBUG(" scratch [12] : %08x", diag_data.scratch[12]); 925 DC_LOG_DEBUG(" scratch [13] : %08x", diag_data.scratch[13]); 926 DC_LOG_DEBUG(" scratch [14] : %08x", diag_data.scratch[14]); 927 DC_LOG_DEBUG(" scratch [15] : %08x", diag_data.scratch[15]); 928 DC_LOG_DEBUG(" pc : %08x", diag_data.pc); 929 DC_LOG_DEBUG(" unk_fault_addr : %08x", diag_data.undefined_address_fault_addr); 930 DC_LOG_DEBUG(" inst_fault_addr : %08x", diag_data.inst_fetch_fault_addr); 931 DC_LOG_DEBUG(" data_fault_addr : %08x", diag_data.data_write_fault_addr); 932 DC_LOG_DEBUG(" inbox1_rptr : %08x", diag_data.inbox1_rptr); 933 DC_LOG_DEBUG(" inbox1_wptr : %08x", diag_data.inbox1_wptr); 934 DC_LOG_DEBUG(" inbox1_size : %08x", diag_data.inbox1_size); 935 DC_LOG_DEBUG(" inbox0_rptr : %08x", diag_data.inbox0_rptr); 936 DC_LOG_DEBUG(" inbox0_wptr : %08x", diag_data.inbox0_wptr); 937 DC_LOG_DEBUG(" inbox0_size : %08x", diag_data.inbox0_size); 938 DC_LOG_DEBUG(" is_enabled : %d", diag_data.is_dmcub_enabled); 939 DC_LOG_DEBUG(" is_soft_reset : %d", diag_data.is_dmcub_soft_reset); 940 DC_LOG_DEBUG(" is_secure_reset : %d", diag_data.is_dmcub_secure_reset); 941 DC_LOG_DEBUG(" is_traceport_en : %d", diag_data.is_traceport_en); 942 DC_LOG_DEBUG(" is_cw0_en : %d", diag_data.is_cw0_enabled); 943 DC_LOG_DEBUG(" is_cw6_en : %d", diag_data.is_cw6_enabled); 944 } 945 946 static bool dc_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx) 947 { 948 struct pipe_ctx *test_pipe, *split_pipe; 949 const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data; 950 struct rect r1 = scl_data->recout, r2, r2_half; 951 int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b; 952 int cur_layer = pipe_ctx->plane_state->layer_index; 953 954 /** 955 * Disable the cursor if there's another pipe above this with a 956 * plane that contains this pipe's viewport to prevent double cursor 957 * and incorrect scaling artifacts. 958 */ 959 for (test_pipe = pipe_ctx->top_pipe; test_pipe; 960 test_pipe = test_pipe->top_pipe) { 961 // Skip invisible layer and pipe-split plane on same layer 962 if (!test_pipe->plane_state->visible || test_pipe->plane_state->layer_index == cur_layer) 963 continue; 964 965 r2 = test_pipe->plane_res.scl_data.recout; 966 r2_r = r2.x + r2.width; 967 r2_b = r2.y + r2.height; 968 split_pipe = test_pipe; 969 970 /** 971 * There is another half plane on same layer because of 972 * pipe-split, merge together per same height. 973 */ 974 for (split_pipe = pipe_ctx->top_pipe; split_pipe; 975 split_pipe = split_pipe->top_pipe) 976 if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) { 977 r2_half = split_pipe->plane_res.scl_data.recout; 978 r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x; 979 r2.width = r2.width + r2_half.width; 980 r2_r = r2.x + r2.width; 981 break; 982 } 983 984 if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b) 985 return true; 986 } 987 988 return false; 989 } 990 991 static bool dc_dmub_should_update_cursor_data(struct pipe_ctx *pipe_ctx) 992 { 993 if (pipe_ctx->plane_state != NULL) { 994 if (pipe_ctx->plane_state->address.type == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE) 995 return false; 996 997 if (dc_can_pipe_disable_cursor(pipe_ctx)) 998 return false; 999 } 1000 1001 if ((pipe_ctx->stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1 || 1002 pipe_ctx->stream->link->psr_settings.psr_version == DC_PSR_VERSION_1) && 1003 pipe_ctx->stream->ctx->dce_version >= DCN_VERSION_3_1) 1004 return true; 1005 1006 if (pipe_ctx->stream->link->replay_settings.config.replay_supported) 1007 return true; 1008 1009 return false; 1010 } 1011 1012 static void dc_build_cursor_update_payload0( 1013 struct pipe_ctx *pipe_ctx, uint8_t p_idx, 1014 struct dmub_cmd_update_cursor_payload0 *payload) 1015 { 1016 struct hubp *hubp = pipe_ctx->plane_res.hubp; 1017 unsigned int panel_inst = 0; 1018 1019 if (!dc_get_edp_link_panel_inst(hubp->ctx->dc, 1020 pipe_ctx->stream->link, &panel_inst)) 1021 return; 1022 1023 /* Payload: Cursor Rect is built from position & attribute 1024 * x & y are obtained from postion 1025 */ 1026 payload->cursor_rect.x = hubp->cur_rect.x; 1027 payload->cursor_rect.y = hubp->cur_rect.y; 1028 /* w & h are obtained from attribute */ 1029 payload->cursor_rect.width = hubp->cur_rect.w; 1030 payload->cursor_rect.height = hubp->cur_rect.h; 1031 1032 payload->enable = hubp->pos.cur_ctl.bits.cur_enable; 1033 payload->pipe_idx = p_idx; 1034 payload->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1; 1035 payload->panel_inst = panel_inst; 1036 } 1037 1038 static void dc_build_cursor_position_update_payload0( 1039 struct dmub_cmd_update_cursor_payload0 *pl, const uint8_t p_idx, 1040 const struct hubp *hubp, const struct dpp *dpp) 1041 { 1042 /* Hubp */ 1043 pl->position_cfg.pHubp.cur_ctl.raw = hubp->pos.cur_ctl.raw; 1044 pl->position_cfg.pHubp.position.raw = hubp->pos.position.raw; 1045 pl->position_cfg.pHubp.hot_spot.raw = hubp->pos.hot_spot.raw; 1046 pl->position_cfg.pHubp.dst_offset.raw = hubp->pos.dst_offset.raw; 1047 1048 /* dpp */ 1049 pl->position_cfg.pDpp.cur0_ctl.raw = dpp->pos.cur0_ctl.raw; 1050 pl->position_cfg.pipe_idx = p_idx; 1051 } 1052 1053 static void dc_build_cursor_attribute_update_payload1( 1054 struct dmub_cursor_attributes_cfg *pl_A, const uint8_t p_idx, 1055 const struct hubp *hubp, const struct dpp *dpp) 1056 { 1057 /* Hubp */ 1058 pl_A->aHubp.SURFACE_ADDR_HIGH = hubp->att.SURFACE_ADDR_HIGH; 1059 pl_A->aHubp.SURFACE_ADDR = hubp->att.SURFACE_ADDR; 1060 pl_A->aHubp.cur_ctl.raw = hubp->att.cur_ctl.raw; 1061 pl_A->aHubp.size.raw = hubp->att.size.raw; 1062 pl_A->aHubp.settings.raw = hubp->att.settings.raw; 1063 1064 /* dpp */ 1065 pl_A->aDpp.cur0_ctl.raw = dpp->att.cur0_ctl.raw; 1066 } 1067 1068 /** 1069 * dc_send_update_cursor_info_to_dmu - Populate the DMCUB Cursor update info command 1070 * 1071 * @pCtx: [in] pipe context 1072 * @pipe_idx: [in] pipe index 1073 * 1074 * This function would store the cursor related information and pass it into 1075 * dmub 1076 */ 1077 void dc_send_update_cursor_info_to_dmu( 1078 struct pipe_ctx *pCtx, uint8_t pipe_idx) 1079 { 1080 union dmub_rb_cmd cmd[2]; 1081 union dmub_cmd_update_cursor_info_data *update_cursor_info_0 = 1082 &cmd[0].update_cursor_info.update_cursor_info_data; 1083 1084 memset(cmd, 0, sizeof(cmd)); 1085 1086 if (!dc_dmub_should_update_cursor_data(pCtx)) 1087 return; 1088 /* 1089 * Since we use multi_cmd_pending for dmub command, the 2nd command is 1090 * only assigned to store cursor attributes info. 1091 * 1st command can view as 2 parts, 1st is for PSR/Replay data, the other 1092 * is to store cursor position info. 1093 * 1094 * Command heaer type must be the same type if using multi_cmd_pending. 1095 * Besides, while process 2nd command in DMU, the sub type is useless. 1096 * So it's meanless to pass the sub type header with different type. 1097 */ 1098 1099 { 1100 /* Build Payload#0 Header */ 1101 cmd[0].update_cursor_info.header.type = DMUB_CMD__UPDATE_CURSOR_INFO; 1102 cmd[0].update_cursor_info.header.payload_bytes = 1103 sizeof(cmd[0].update_cursor_info.update_cursor_info_data); 1104 cmd[0].update_cursor_info.header.multi_cmd_pending = 1; //To combine multi dmu cmd, 1st cmd 1105 1106 /* Prepare Payload */ 1107 dc_build_cursor_update_payload0(pCtx, pipe_idx, &update_cursor_info_0->payload0); 1108 1109 dc_build_cursor_position_update_payload0(&update_cursor_info_0->payload0, pipe_idx, 1110 pCtx->plane_res.hubp, pCtx->plane_res.dpp); 1111 } 1112 { 1113 /* Build Payload#1 Header */ 1114 cmd[1].update_cursor_info.header.type = DMUB_CMD__UPDATE_CURSOR_INFO; 1115 cmd[1].update_cursor_info.header.payload_bytes = sizeof(struct cursor_attributes_cfg); 1116 cmd[1].update_cursor_info.header.multi_cmd_pending = 0; //Indicate it's the last command. 1117 1118 dc_build_cursor_attribute_update_payload1( 1119 &cmd[1].update_cursor_info.update_cursor_info_data.payload1.attribute_cfg, 1120 pipe_idx, pCtx->plane_res.hubp, pCtx->plane_res.dpp); 1121 1122 /* Combine 2nd cmds update_curosr_info to DMU */ 1123 dc_wake_and_execute_dmub_cmd_list(pCtx->stream->ctx, 2, cmd, DM_DMUB_WAIT_TYPE_WAIT); 1124 } 1125 } 1126 1127 bool dc_dmub_check_min_version(struct dmub_srv *srv) 1128 { 1129 if (!srv->hw_funcs.is_psrsu_supported) 1130 return true; 1131 return srv->hw_funcs.is_psrsu_supported(srv); 1132 } 1133 1134 void dc_dmub_srv_enable_dpia_trace(const struct dc *dc) 1135 { 1136 struct dc_dmub_srv *dc_dmub_srv = dc->ctx->dmub_srv; 1137 1138 if (!dc_dmub_srv || !dc_dmub_srv->dmub) { 1139 DC_LOG_ERROR("%s: invalid parameters.", __func__); 1140 return; 1141 } 1142 1143 if (!dc_wake_and_execute_gpint(dc->ctx, DMUB_GPINT__SET_TRACE_BUFFER_MASK_WORD1, 1144 0x0010, NULL, DM_DMUB_WAIT_TYPE_WAIT)) { 1145 DC_LOG_ERROR("timeout updating trace buffer mask word\n"); 1146 return; 1147 } 1148 1149 if (!dc_wake_and_execute_gpint(dc->ctx, DMUB_GPINT__UPDATE_TRACE_BUFFER_MASK, 1150 0x0000, NULL, DM_DMUB_WAIT_TYPE_WAIT)) { 1151 DC_LOG_ERROR("timeout updating trace buffer mask word\n"); 1152 return; 1153 } 1154 1155 DC_LOG_DEBUG("Enabled DPIA trace\n"); 1156 } 1157 1158 void dc_dmub_srv_subvp_save_surf_addr(const struct dc_dmub_srv *dc_dmub_srv, const struct dc_plane_address *addr, uint8_t subvp_index) 1159 { 1160 dmub_srv_subvp_save_surf_addr(dc_dmub_srv->dmub, addr, subvp_index); 1161 } 1162 1163 bool dc_dmub_srv_is_hw_pwr_up(struct dc_dmub_srv *dc_dmub_srv, bool wait) 1164 { 1165 struct dc_context *dc_ctx; 1166 enum dmub_status status; 1167 1168 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 1169 return true; 1170 1171 if (dc_dmub_srv->ctx->dc->debug.dmcub_emulation) 1172 return true; 1173 1174 dc_ctx = dc_dmub_srv->ctx; 1175 1176 if (wait) { 1177 if (dc_dmub_srv->ctx->dc->debug.disable_timeout) { 1178 do { 1179 status = dmub_srv_wait_for_hw_pwr_up(dc_dmub_srv->dmub, 500000); 1180 } while (status != DMUB_STATUS_OK); 1181 } else { 1182 status = dmub_srv_wait_for_hw_pwr_up(dc_dmub_srv->dmub, 500000); 1183 if (status != DMUB_STATUS_OK) { 1184 DC_ERROR("Error querying DMUB hw power up status: error=%d\n", status); 1185 return false; 1186 } 1187 } 1188 } else 1189 return dmub_srv_is_hw_pwr_up(dc_dmub_srv->dmub); 1190 1191 return true; 1192 } 1193 1194 static void dc_dmub_srv_notify_idle(const struct dc *dc, bool allow_idle) 1195 { 1196 union dmub_rb_cmd cmd = {0}; 1197 1198 if (dc->debug.dmcub_emulation) 1199 return; 1200 1201 memset(&cmd, 0, sizeof(cmd)); 1202 cmd.idle_opt_notify_idle.header.type = DMUB_CMD__IDLE_OPT; 1203 cmd.idle_opt_notify_idle.header.sub_type = DMUB_CMD__IDLE_OPT_DCN_NOTIFY_IDLE; 1204 cmd.idle_opt_notify_idle.header.payload_bytes = 1205 sizeof(cmd.idle_opt_notify_idle) - 1206 sizeof(cmd.idle_opt_notify_idle.header); 1207 1208 cmd.idle_opt_notify_idle.cntl_data.driver_idle = allow_idle; 1209 1210 if (allow_idle) { 1211 if (dc->hwss.set_idle_state) 1212 dc->hwss.set_idle_state(dc, true); 1213 } 1214 1215 /* NOTE: This does not use the "wake" interface since this is part of the wake path. */ 1216 /* We also do not perform a wait since DMCUB could enter idle after the notification. */ 1217 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); 1218 } 1219 1220 static void dc_dmub_srv_exit_low_power_state(const struct dc *dc) 1221 { 1222 uint32_t allow_state = 0; 1223 uint32_t commit_state = 0; 1224 1225 if (dc->debug.dmcub_emulation) 1226 return; 1227 1228 if (!dc->ctx->dmub_srv || !dc->ctx->dmub_srv->dmub) 1229 return; 1230 1231 if (dc->hwss.get_idle_state && 1232 dc->hwss.set_idle_state && 1233 dc->clk_mgr->funcs->exit_low_power_state) { 1234 1235 allow_state = dc->hwss.get_idle_state(dc); 1236 dc->hwss.set_idle_state(dc, false); 1237 1238 if (!(allow_state & DMUB_IPS2_ALLOW_MASK)) { 1239 // Wait for evaluation time 1240 for (;;) { 1241 udelay(dc->debug.ips2_eval_delay_us); 1242 commit_state = dc->hwss.get_idle_state(dc); 1243 if (commit_state & DMUB_IPS2_ALLOW_MASK) 1244 break; 1245 1246 /* allow was still set, retry eval delay */ 1247 dc->hwss.set_idle_state(dc, false); 1248 } 1249 1250 if (!(commit_state & DMUB_IPS2_COMMIT_MASK)) { 1251 // Tell PMFW to exit low power state 1252 dc->clk_mgr->funcs->exit_low_power_state(dc->clk_mgr); 1253 1254 // Wait for IPS2 entry upper bound 1255 udelay(dc->debug.ips2_entry_delay_us); 1256 dc->clk_mgr->funcs->exit_low_power_state(dc->clk_mgr); 1257 1258 for (;;) { 1259 commit_state = dc->hwss.get_idle_state(dc); 1260 if (commit_state & DMUB_IPS2_COMMIT_MASK) 1261 break; 1262 1263 udelay(1); 1264 } 1265 1266 if (!dc_dmub_srv_is_hw_pwr_up(dc->ctx->dmub_srv, true)) 1267 ASSERT(0); 1268 1269 /* TODO: See if we can return early here - IPS2 should go 1270 * back directly to IPS0 and clear the flags, but it will 1271 * be safer to directly notify DMCUB of this. 1272 */ 1273 allow_state = dc->hwss.get_idle_state(dc); 1274 } 1275 } 1276 1277 dc_dmub_srv_notify_idle(dc, false); 1278 if (!(allow_state & DMUB_IPS1_ALLOW_MASK)) { 1279 for (;;) { 1280 commit_state = dc->hwss.get_idle_state(dc); 1281 if (commit_state & DMUB_IPS1_COMMIT_MASK) 1282 break; 1283 1284 udelay(1); 1285 } 1286 } 1287 } 1288 1289 if (!dc_dmub_srv_is_hw_pwr_up(dc->ctx->dmub_srv, true)) 1290 ASSERT(0); 1291 } 1292 1293 void dc_dmub_srv_set_power_state(struct dc_dmub_srv *dc_dmub_srv, enum dc_acpi_cm_power_state powerState) 1294 { 1295 struct dmub_srv *dmub; 1296 1297 if (!dc_dmub_srv) 1298 return; 1299 1300 dmub = dc_dmub_srv->dmub; 1301 1302 if (powerState == DC_ACPI_CM_POWER_STATE_D0) 1303 dmub_srv_set_power_state(dmub, DMUB_POWER_STATE_D0); 1304 else 1305 dmub_srv_set_power_state(dmub, DMUB_POWER_STATE_D3); 1306 } 1307 1308 void dc_dmub_srv_apply_idle_power_optimizations(const struct dc *dc, bool allow_idle) 1309 { 1310 struct dc_dmub_srv *dc_dmub_srv = dc->ctx->dmub_srv; 1311 1312 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 1313 return; 1314 1315 if (dc_dmub_srv->idle_allowed == allow_idle) 1316 return; 1317 1318 /* 1319 * Entering a low power state requires a driver notification. 1320 * Powering up the hardware requires notifying PMFW and DMCUB. 1321 * Clearing the driver idle allow requires a DMCUB command. 1322 * DMCUB commands requires the DMCUB to be powered up and restored. 1323 * 1324 * Exit out early to prevent an infinite loop of DMCUB commands 1325 * triggering exit low power - use software state to track this. 1326 */ 1327 dc_dmub_srv->idle_allowed = allow_idle; 1328 1329 if (!allow_idle) 1330 dc_dmub_srv_exit_low_power_state(dc); 1331 else 1332 dc_dmub_srv_notify_idle(dc, allow_idle); 1333 } 1334 1335 bool dc_wake_and_execute_dmub_cmd(const struct dc_context *ctx, union dmub_rb_cmd *cmd, 1336 enum dm_dmub_wait_type wait_type) 1337 { 1338 return dc_wake_and_execute_dmub_cmd_list(ctx, 1, cmd, wait_type); 1339 } 1340 1341 bool dc_wake_and_execute_dmub_cmd_list(const struct dc_context *ctx, unsigned int count, 1342 union dmub_rb_cmd *cmd, enum dm_dmub_wait_type wait_type) 1343 { 1344 struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv; 1345 bool result = false, reallow_idle = false; 1346 1347 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 1348 return false; 1349 1350 if (count == 0) 1351 return true; 1352 1353 if (dc_dmub_srv->idle_allowed) { 1354 dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, false); 1355 reallow_idle = true; 1356 } 1357 1358 /* 1359 * These may have different implementations in DM, so ensure 1360 * that we guide it to the expected helper. 1361 */ 1362 if (count > 1) 1363 result = dm_execute_dmub_cmd_list(ctx, count, cmd, wait_type); 1364 else 1365 result = dm_execute_dmub_cmd(ctx, cmd, wait_type); 1366 1367 if (result && reallow_idle) 1368 dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, true); 1369 1370 return result; 1371 } 1372 1373 static bool dc_dmub_execute_gpint(const struct dc_context *ctx, enum dmub_gpint_command command_code, 1374 uint16_t param, uint32_t *response, enum dm_dmub_wait_type wait_type) 1375 { 1376 struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv; 1377 const uint32_t wait_us = wait_type == DM_DMUB_WAIT_TYPE_NO_WAIT ? 0 : 30; 1378 enum dmub_status status; 1379 1380 if (response) 1381 *response = 0; 1382 1383 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 1384 return false; 1385 1386 status = dmub_srv_send_gpint_command(dc_dmub_srv->dmub, command_code, param, wait_us); 1387 if (status != DMUB_STATUS_OK) { 1388 if (status == DMUB_STATUS_TIMEOUT && wait_type == DM_DMUB_WAIT_TYPE_NO_WAIT) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 if (response && wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) 1395 dmub_srv_get_gpint_response(dc_dmub_srv->dmub, response); 1396 1397 return true; 1398 } 1399 1400 bool dc_wake_and_execute_gpint(const struct dc_context *ctx, enum dmub_gpint_command command_code, 1401 uint16_t param, uint32_t *response, enum dm_dmub_wait_type wait_type) 1402 { 1403 struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv; 1404 bool result = false, reallow_idle = false; 1405 1406 if (!dc_dmub_srv || !dc_dmub_srv->dmub) 1407 return false; 1408 1409 if (dc_dmub_srv->idle_allowed) { 1410 dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, false); 1411 reallow_idle = true; 1412 } 1413 1414 result = dc_dmub_execute_gpint(ctx, command_code, param, response, wait_type); 1415 1416 if (result && reallow_idle) 1417 dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, true); 1418 1419 return result; 1420 } 1421