xref: /linux/drivers/gpu/drm/amd/display/dc/basics/fixpt31_32.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "include/fixed31_32.h"
28 
29 static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
30 static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
31 static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
32 
33 static inline unsigned long long abs_i64(
34 	long long arg)
35 {
36 	if (arg > 0)
37 		return (unsigned long long)arg;
38 	else
39 		return (unsigned long long)(-arg);
40 }
41 
42 /*
43  * @brief
44  * result = dividend / divisor
45  * *remainder = dividend % divisor
46  */
47 static inline unsigned long long complete_integer_division_u64(
48 	unsigned long long dividend,
49 	unsigned long long divisor,
50 	unsigned long long *remainder)
51 {
52 	unsigned long long result;
53 
54 	ASSERT(divisor);
55 
56 	result = div64_u64_rem(dividend, divisor, remainder);
57 
58 	return result;
59 }
60 
61 
62 #define FRACTIONAL_PART_MASK \
63 	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
64 
65 #define GET_INTEGER_PART(x) \
66 	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
67 
68 #define GET_FRACTIONAL_PART(x) \
69 	(FRACTIONAL_PART_MASK & (x))
70 
71 struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
72 {
73 	struct fixed31_32 res;
74 
75 	bool arg1_negative = numerator < 0;
76 	bool arg2_negative = denominator < 0;
77 
78 	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
79 	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
80 
81 	unsigned long long remainder;
82 
83 	/* determine integer part */
84 
85 	unsigned long long res_value = complete_integer_division_u64(
86 		arg1_value, arg2_value, &remainder);
87 
88 	ASSERT(res_value <= LONG_MAX);
89 
90 	/* determine fractional part */
91 	{
92 		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
93 
94 		do {
95 			remainder <<= 1;
96 
97 			res_value <<= 1;
98 
99 			if (remainder >= arg2_value) {
100 				res_value |= 1;
101 				remainder -= arg2_value;
102 			}
103 		} while (--i != 0);
104 	}
105 
106 	/* round up LSB */
107 	{
108 		unsigned long long summand = (remainder << 1) >= arg2_value;
109 
110 		ASSERT(res_value <= LLONG_MAX - summand);
111 
112 		res_value += summand;
113 	}
114 
115 	res.value = (long long)res_value;
116 
117 	if (arg1_negative ^ arg2_negative)
118 		res.value = -res.value;
119 
120 	return res;
121 }
122 
123 struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
124 {
125 	struct fixed31_32 res;
126 
127 	bool arg1_negative = arg1.value < 0;
128 	bool arg2_negative = arg2.value < 0;
129 
130 	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
131 	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
132 
133 	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
134 	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
135 
136 	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
137 	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
138 
139 	unsigned long long tmp;
140 
141 	res.value = arg1_int * arg2_int;
142 
143 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
144 
145 	tmp = arg1_int * arg2_fra;
146 
147 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
148 
149 	res.value += tmp;
150 
151 	tmp = arg2_int * arg1_fra;
152 
153 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
154 
155 	res.value += tmp;
156 
157 	tmp = arg1_fra * arg2_fra;
158 
159 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
160 		(tmp >= (unsigned long long)dc_fixpt_half.value);
161 
162 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
163 
164 	res.value += tmp;
165 
166 	if (arg1_negative ^ arg2_negative)
167 		res.value = -res.value;
168 
169 	return res;
170 }
171 
172 struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
173 {
174 	struct fixed31_32 res;
175 
176 	unsigned long long arg_value = abs_i64(arg.value);
177 
178 	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
179 
180 	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
181 
182 	unsigned long long tmp;
183 
184 	res.value = arg_int * arg_int;
185 
186 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
187 
188 	tmp = arg_int * arg_fra;
189 
190 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
191 
192 	res.value += tmp;
193 
194 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195 
196 	res.value += tmp;
197 
198 	tmp = arg_fra * arg_fra;
199 
200 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
201 		(tmp >= (unsigned long long)dc_fixpt_half.value);
202 
203 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
204 
205 	res.value += tmp;
206 
207 	return res;
208 }
209 
210 struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
211 {
212 	/*
213 	 * @note
214 	 * Good idea to use Newton's method
215 	 */
216 
217 	ASSERT(arg.value);
218 
219 	return dc_fixpt_from_fraction(
220 		dc_fixpt_one.value,
221 		arg.value);
222 }
223 
224 struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
225 {
226 	struct fixed31_32 square;
227 
228 	struct fixed31_32 res = dc_fixpt_one;
229 
230 	int n = 27;
231 
232 	struct fixed31_32 arg_norm = arg;
233 
234 	if (dc_fixpt_le(
235 		dc_fixpt_two_pi,
236 		dc_fixpt_abs(arg))) {
237 		arg_norm = dc_fixpt_sub(
238 			arg_norm,
239 			dc_fixpt_mul_int(
240 				dc_fixpt_two_pi,
241 				(int)div64_s64(
242 					arg_norm.value,
243 					dc_fixpt_two_pi.value)));
244 	}
245 
246 	square = dc_fixpt_sqr(arg_norm);
247 
248 	do {
249 		res = dc_fixpt_sub(
250 			dc_fixpt_one,
251 			dc_fixpt_div_int(
252 				dc_fixpt_mul(
253 					square,
254 					res),
255 				n * (n - 1)));
256 
257 		n -= 2;
258 	} while (n > 2);
259 
260 	if (arg.value != arg_norm.value)
261 		res = dc_fixpt_div(
262 			dc_fixpt_mul(res, arg_norm),
263 			arg);
264 
265 	return res;
266 }
267 
268 struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
269 {
270 	return dc_fixpt_mul(
271 		arg,
272 		dc_fixpt_sinc(arg));
273 }
274 
275 struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
276 {
277 	/* TODO implement argument normalization */
278 
279 	const struct fixed31_32 square = dc_fixpt_sqr(arg);
280 
281 	struct fixed31_32 res = dc_fixpt_one;
282 
283 	int n = 26;
284 
285 	do {
286 		res = dc_fixpt_sub(
287 			dc_fixpt_one,
288 			dc_fixpt_div_int(
289 				dc_fixpt_mul(
290 					square,
291 					res),
292 				n * (n - 1)));
293 
294 		n -= 2;
295 	} while (n != 0);
296 
297 	return res;
298 }
299 
300 /*
301  * @brief
302  * result = exp(arg),
303  * where abs(arg) < 1
304  *
305  * Calculated as Taylor series.
306  */
307 static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
308 {
309 	unsigned int n = 9;
310 
311 	struct fixed31_32 res = dc_fixpt_from_fraction(
312 		n + 2,
313 		n + 1);
314 	/* TODO find correct res */
315 
316 	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
317 
318 	do
319 		res = dc_fixpt_add(
320 			dc_fixpt_one,
321 			dc_fixpt_div_int(
322 				dc_fixpt_mul(
323 					arg,
324 					res),
325 				n));
326 	while (--n != 1);
327 
328 	return dc_fixpt_add(
329 		dc_fixpt_one,
330 		dc_fixpt_mul(
331 			arg,
332 			res));
333 }
334 
335 struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
336 {
337 	/*
338 	 * @brief
339 	 * Main equation is:
340 	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
341 	 * where m = round(x / ln(2)), r = x - m * ln(2)
342 	 */
343 
344 	if (dc_fixpt_le(
345 		dc_fixpt_ln2_div_2,
346 		dc_fixpt_abs(arg))) {
347 		int m = dc_fixpt_round(
348 			dc_fixpt_div(
349 				arg,
350 				dc_fixpt_ln2));
351 
352 		struct fixed31_32 r = dc_fixpt_sub(
353 			arg,
354 			dc_fixpt_mul_int(
355 				dc_fixpt_ln2,
356 				m));
357 
358 		ASSERT(m != 0);
359 
360 		ASSERT(dc_fixpt_lt(
361 			dc_fixpt_abs(r),
362 			dc_fixpt_one));
363 
364 		if (m > 0)
365 			return dc_fixpt_shl(
366 				fixed31_32_exp_from_taylor_series(r),
367 				(unsigned char)m);
368 		else
369 			return dc_fixpt_div_int(
370 				fixed31_32_exp_from_taylor_series(r),
371 				1LL << -m);
372 	} else if (arg.value != 0)
373 		return fixed31_32_exp_from_taylor_series(arg);
374 	else
375 		return dc_fixpt_one;
376 }
377 
378 struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
379 {
380 	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
381 	/* TODO improve 1st estimation */
382 
383 	struct fixed31_32 error;
384 
385 	ASSERT(arg.value > 0);
386 	/* TODO if arg is negative, return NaN */
387 	/* TODO if arg is zero, return -INF */
388 
389 	do {
390 		struct fixed31_32 res1 = dc_fixpt_add(
391 			dc_fixpt_sub(
392 				res,
393 				dc_fixpt_one),
394 			dc_fixpt_div(
395 				arg,
396 				dc_fixpt_exp(res)));
397 
398 		error = dc_fixpt_sub(
399 			res,
400 			res1);
401 
402 		res = res1;
403 		/* TODO determine max_allowed_error based on quality of exp() */
404 	} while (abs_i64(error.value) > 100ULL);
405 
406 	return res;
407 }
408 
409 
410 /* this function is a generic helper to translate fixed point value to
411  * specified integer format that will consist of integer_bits integer part and
412  * fractional_bits fractional part. For example it is used in
413  * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
414  * part in 32 bits. It is used in hw programming (scaler)
415  */
416 
417 static inline unsigned int ux_dy(
418 	long long value,
419 	unsigned int integer_bits,
420 	unsigned int fractional_bits)
421 {
422 	/* 1. create mask of integer part */
423 	unsigned int result = (1 << integer_bits) - 1;
424 	/* 2. mask out fractional part */
425 	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
426 	/* 3. shrink fixed point integer part to be of integer_bits width*/
427 	result &= GET_INTEGER_PART(value);
428 	/* 4. make space for fractional part to be filled in after integer */
429 	result <<= fractional_bits;
430 	/* 5. shrink fixed point fractional part to of fractional_bits width*/
431 	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
432 	/* 6. merge the result */
433 	return result | fractional_part;
434 }
435 
436 static inline unsigned int clamp_ux_dy(
437 	long long value,
438 	unsigned int integer_bits,
439 	unsigned int fractional_bits,
440 	unsigned int min_clamp)
441 {
442 	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
443 
444 	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
445 		return (1 << (integer_bits + fractional_bits)) - 1;
446 	else if (truncated_val > min_clamp)
447 		return truncated_val;
448 	else
449 		return min_clamp;
450 }
451 
452 unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
453 {
454 	return ux_dy(arg.value, 4, 19);
455 }
456 
457 unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
458 {
459 	return ux_dy(arg.value, 3, 19);
460 }
461 
462 unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
463 {
464 	return ux_dy(arg.value, 2, 19);
465 }
466 
467 unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
468 {
469 	return ux_dy(arg.value, 0, 19);
470 }
471 
472 unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
473 {
474 	return clamp_ux_dy(arg.value, 0, 14, 1);
475 }
476 
477 unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
478 {
479 	return clamp_ux_dy(arg.value, 0, 10, 1);
480 }
481 
482 int dc_fixpt_s4d19(struct fixed31_32 arg)
483 {
484 	if (arg.value < 0)
485 		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
486 	else
487 		return ux_dy(arg.value, 4, 19);
488 }
489 
490 struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value,
491 	unsigned int integer_bits,
492 	unsigned int fractional_bits)
493 {
494 	struct fixed31_32 fixpt_value = dc_fixpt_zero;
495 	struct fixed31_32 fixpt_int_value = dc_fixpt_zero;
496 	long long frac_mask = ((long long)1 << (long long)integer_bits) - 1;
497 
498 	fixpt_value.value = (long long)value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
499 	frac_mask = frac_mask << fractional_bits;
500 	fixpt_int_value.value = value & frac_mask;
501 	fixpt_int_value.value <<= (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
502 	fixpt_value.value |= fixpt_int_value.value;
503 	return fixpt_value;
504 }
505 
506 struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
507 	unsigned int frac_value,
508 	unsigned int integer_bits,
509 	unsigned int fractional_bits)
510 {
511 	struct fixed31_32 fixpt_value = dc_fixpt_from_int(int_value);
512 
513 	fixpt_value.value |= (long long)frac_value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
514 	return fixpt_value;
515 }
516