xref: /linux/drivers/gpu/drm/amd/display/dc/basics/bw_fixed.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2023 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dm_services.h"
27 #include "bw_fixed.h"
28 
29 #define MAX_I64 \
30 	((int64_t)((1ULL << 63) - 1))
31 
32 #define MIN_I64 \
33 	(-MAX_I64 - 1)
34 
35 #define FRACTIONAL_PART_MASK \
36 	((1ULL << BW_FIXED_BITS_PER_FRACTIONAL_PART) - 1)
37 
38 #define GET_FRACTIONAL_PART(x) \
39 	(FRACTIONAL_PART_MASK & (x))
40 
41 static uint64_t abs_i64(int64_t arg)
42 {
43 	if (arg >= 0)
44 		return (uint64_t)(arg);
45 	else
46 		return (uint64_t)(-arg);
47 }
48 
49 struct bw_fixed bw_int_to_fixed_nonconst(int64_t value)
50 {
51 	struct bw_fixed res;
52 
53 	ASSERT(value < BW_FIXED_MAX_I32 && value > BW_FIXED_MIN_I32);
54 	res.value = value << BW_FIXED_BITS_PER_FRACTIONAL_PART;
55 	return res;
56 }
57 
58 struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator)
59 {
60 	struct bw_fixed res;
61 	bool arg1_negative = numerator < 0;
62 	bool arg2_negative = denominator < 0;
63 	uint64_t arg1_value;
64 	uint64_t arg2_value;
65 	uint64_t remainder;
66 
67 	/* determine integer part */
68 	uint64_t res_value;
69 
70 	ASSERT(denominator != 0);
71 
72 	arg1_value = abs_i64(numerator);
73 	arg2_value = abs_i64(denominator);
74 	res_value = div64_u64_rem(arg1_value, arg2_value, &remainder);
75 
76 	ASSERT(res_value <= BW_FIXED_MAX_I32);
77 
78 	/* determine fractional part */
79 	{
80 		uint32_t i = BW_FIXED_BITS_PER_FRACTIONAL_PART;
81 
82 		do {
83 			remainder <<= 1;
84 
85 			res_value <<= 1;
86 
87 			if (remainder >= arg2_value) {
88 				res_value |= 1;
89 				remainder -= arg2_value;
90 			}
91 		} while (--i != 0);
92 	}
93 
94 	/* round up LSB */
95 	{
96 		uint64_t summand = (remainder << 1) >= arg2_value;
97 
98 		ASSERT(res_value <= MAX_I64 - summand);
99 
100 		res_value += summand;
101 	}
102 
103 	res.value = (int64_t)(res_value);
104 
105 	if (arg1_negative ^ arg2_negative)
106 		res.value = -res.value;
107 	return res;
108 }
109 
110 struct bw_fixed bw_floor2(const struct bw_fixed arg,
111 			  const struct bw_fixed significance)
112 {
113 	struct bw_fixed result;
114 	int64_t multiplicand;
115 
116 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
117 	result.value = abs_i64(significance.value) * multiplicand;
118 	ASSERT(abs_i64(result.value) <= abs_i64(arg.value));
119 	return result;
120 }
121 
122 struct bw_fixed bw_ceil2(const struct bw_fixed arg,
123 			 const struct bw_fixed significance)
124 {
125 	struct bw_fixed result;
126 	int64_t multiplicand;
127 
128 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
129 	result.value = abs_i64(significance.value) * multiplicand;
130 	if (abs_i64(result.value) < abs_i64(arg.value)) {
131 		if (arg.value < 0)
132 			result.value -= abs_i64(significance.value);
133 		else
134 			result.value += abs_i64(significance.value);
135 	}
136 	return result;
137 }
138 
139 struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2)
140 {
141 	struct bw_fixed res;
142 
143 	bool arg1_negative = arg1.value < 0;
144 	bool arg2_negative = arg2.value < 0;
145 
146 	uint64_t arg1_value = abs_i64(arg1.value);
147 	uint64_t arg2_value = abs_i64(arg2.value);
148 
149 	uint64_t arg1_int = BW_FIXED_GET_INTEGER_PART(arg1_value);
150 	uint64_t arg2_int = BW_FIXED_GET_INTEGER_PART(arg2_value);
151 
152 	uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
153 	uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
154 
155 	uint64_t tmp;
156 
157 	res.value = arg1_int * arg2_int;
158 
159 	ASSERT(res.value <= BW_FIXED_MAX_I32);
160 
161 	res.value <<= BW_FIXED_BITS_PER_FRACTIONAL_PART;
162 
163 	tmp = arg1_int * arg2_fra;
164 
165 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
166 
167 	res.value += tmp;
168 
169 	tmp = arg2_int * arg1_fra;
170 
171 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
172 
173 	res.value += tmp;
174 
175 	tmp = arg1_fra * arg2_fra;
176 
177 	tmp = (tmp >> BW_FIXED_BITS_PER_FRACTIONAL_PART) +
178 		(tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value));
179 
180 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
181 
182 	res.value += tmp;
183 
184 	if (arg1_negative ^ arg2_negative)
185 		res.value = -res.value;
186 	return res;
187 }
188 
189