xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision e619ac419174fdb6093b9e78b41bb5d0a97de9dd)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 
495 	if (dev->gpu) {
496 		log_max_watch_addr =
497 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
498 
499 		if (log_max_watch_addr) {
500 			dev->node_props.capability |=
501 					HSA_CAP_WATCH_POINTS_SUPPORTED;
502 
503 			dev->node_props.capability |=
504 				((log_max_watch_addr <<
505 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
506 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
507 		}
508 
509 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
510 			dev->node_props.capability |=
511 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
512 
513 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
514 			dev->node_props.max_engine_clk_fcompute);
515 
516 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
517 
518 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
519 				      dev->gpu->kfd->mec_fw_version);
520 		sysfs_show_32bit_prop(buffer, offs, "capability",
521 				      dev->node_props.capability);
522 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
523 				      dev->node_props.debug_prop);
524 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
525 				      dev->gpu->kfd->sdma_fw_version);
526 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
527 				      dev->gpu->adev->unique_id);
528 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
529 				      NUM_XCC(dev->gpu->xcc_mask));
530 	}
531 
532 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
533 				     cpufreq_quick_get_max(0)/1000);
534 }
535 
536 static const struct sysfs_ops node_ops = {
537 	.show = node_show,
538 };
539 
540 static const struct kobj_type node_type = {
541 	.release = kfd_topology_kobj_release,
542 	.sysfs_ops = &node_ops,
543 };
544 
545 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
546 {
547 	sysfs_remove_file(kobj, attr);
548 	kobject_del(kobj);
549 	kobject_put(kobj);
550 }
551 
552 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
553 {
554 	struct kfd_iolink_properties *p2plink;
555 	struct kfd_iolink_properties *iolink;
556 	struct kfd_cache_properties *cache;
557 	struct kfd_mem_properties *mem;
558 	struct kfd_perf_properties *perf;
559 
560 	if (dev->kobj_iolink) {
561 		list_for_each_entry(iolink, &dev->io_link_props, list)
562 			if (iolink->kobj) {
563 				kfd_remove_sysfs_file(iolink->kobj,
564 							&iolink->attr);
565 				iolink->kobj = NULL;
566 			}
567 		kobject_del(dev->kobj_iolink);
568 		kobject_put(dev->kobj_iolink);
569 		dev->kobj_iolink = NULL;
570 	}
571 
572 	if (dev->kobj_p2plink) {
573 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
574 			if (p2plink->kobj) {
575 				kfd_remove_sysfs_file(p2plink->kobj,
576 							&p2plink->attr);
577 				p2plink->kobj = NULL;
578 			}
579 		kobject_del(dev->kobj_p2plink);
580 		kobject_put(dev->kobj_p2plink);
581 		dev->kobj_p2plink = NULL;
582 	}
583 
584 	if (dev->kobj_cache) {
585 		list_for_each_entry(cache, &dev->cache_props, list)
586 			if (cache->kobj) {
587 				kfd_remove_sysfs_file(cache->kobj,
588 							&cache->attr);
589 				cache->kobj = NULL;
590 			}
591 		kobject_del(dev->kobj_cache);
592 		kobject_put(dev->kobj_cache);
593 		dev->kobj_cache = NULL;
594 	}
595 
596 	if (dev->kobj_mem) {
597 		list_for_each_entry(mem, &dev->mem_props, list)
598 			if (mem->kobj) {
599 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
600 				mem->kobj = NULL;
601 			}
602 		kobject_del(dev->kobj_mem);
603 		kobject_put(dev->kobj_mem);
604 		dev->kobj_mem = NULL;
605 	}
606 
607 	if (dev->kobj_perf) {
608 		list_for_each_entry(perf, &dev->perf_props, list) {
609 			kfree(perf->attr_group);
610 			perf->attr_group = NULL;
611 		}
612 		kobject_del(dev->kobj_perf);
613 		kobject_put(dev->kobj_perf);
614 		dev->kobj_perf = NULL;
615 	}
616 
617 	if (dev->kobj_node) {
618 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
619 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
620 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
621 		kobject_del(dev->kobj_node);
622 		kobject_put(dev->kobj_node);
623 		dev->kobj_node = NULL;
624 	}
625 }
626 
627 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
628 		uint32_t id)
629 {
630 	struct kfd_iolink_properties *p2plink;
631 	struct kfd_iolink_properties *iolink;
632 	struct kfd_cache_properties *cache;
633 	struct kfd_mem_properties *mem;
634 	struct kfd_perf_properties *perf;
635 	int ret;
636 	uint32_t i, num_attrs;
637 	struct attribute **attrs;
638 
639 	if (WARN_ON(dev->kobj_node))
640 		return -EEXIST;
641 
642 	/*
643 	 * Creating the sysfs folders
644 	 */
645 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
646 	if (!dev->kobj_node)
647 		return -ENOMEM;
648 
649 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
650 			sys_props.kobj_nodes, "%d", id);
651 	if (ret < 0) {
652 		kobject_put(dev->kobj_node);
653 		return ret;
654 	}
655 
656 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
657 	if (!dev->kobj_mem)
658 		return -ENOMEM;
659 
660 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
661 	if (!dev->kobj_cache)
662 		return -ENOMEM;
663 
664 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
665 	if (!dev->kobj_iolink)
666 		return -ENOMEM;
667 
668 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
669 	if (!dev->kobj_p2plink)
670 		return -ENOMEM;
671 
672 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
673 	if (!dev->kobj_perf)
674 		return -ENOMEM;
675 
676 	/*
677 	 * Creating sysfs files for node properties
678 	 */
679 	dev->attr_gpuid.name = "gpu_id";
680 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
681 	sysfs_attr_init(&dev->attr_gpuid);
682 	dev->attr_name.name = "name";
683 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
684 	sysfs_attr_init(&dev->attr_name);
685 	dev->attr_props.name = "properties";
686 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
687 	sysfs_attr_init(&dev->attr_props);
688 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
689 	if (ret < 0)
690 		return ret;
691 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
692 	if (ret < 0)
693 		return ret;
694 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
695 	if (ret < 0)
696 		return ret;
697 
698 	i = 0;
699 	list_for_each_entry(mem, &dev->mem_props, list) {
700 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
701 		if (!mem->kobj)
702 			return -ENOMEM;
703 		ret = kobject_init_and_add(mem->kobj, &mem_type,
704 				dev->kobj_mem, "%d", i);
705 		if (ret < 0) {
706 			kobject_put(mem->kobj);
707 			return ret;
708 		}
709 
710 		mem->attr.name = "properties";
711 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
712 		sysfs_attr_init(&mem->attr);
713 		ret = sysfs_create_file(mem->kobj, &mem->attr);
714 		if (ret < 0)
715 			return ret;
716 		i++;
717 	}
718 
719 	i = 0;
720 	list_for_each_entry(cache, &dev->cache_props, list) {
721 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
722 		if (!cache->kobj)
723 			return -ENOMEM;
724 		ret = kobject_init_and_add(cache->kobj, &cache_type,
725 				dev->kobj_cache, "%d", i);
726 		if (ret < 0) {
727 			kobject_put(cache->kobj);
728 			return ret;
729 		}
730 
731 		cache->attr.name = "properties";
732 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
733 		sysfs_attr_init(&cache->attr);
734 		ret = sysfs_create_file(cache->kobj, &cache->attr);
735 		if (ret < 0)
736 			return ret;
737 		i++;
738 	}
739 
740 	i = 0;
741 	list_for_each_entry(iolink, &dev->io_link_props, list) {
742 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
743 		if (!iolink->kobj)
744 			return -ENOMEM;
745 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
746 				dev->kobj_iolink, "%d", i);
747 		if (ret < 0) {
748 			kobject_put(iolink->kobj);
749 			return ret;
750 		}
751 
752 		iolink->attr.name = "properties";
753 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
754 		sysfs_attr_init(&iolink->attr);
755 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
756 		if (ret < 0)
757 			return ret;
758 		i++;
759 	}
760 
761 	i = 0;
762 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
763 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
764 		if (!p2plink->kobj)
765 			return -ENOMEM;
766 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
767 				dev->kobj_p2plink, "%d", i);
768 		if (ret < 0) {
769 			kobject_put(p2plink->kobj);
770 			return ret;
771 		}
772 
773 		p2plink->attr.name = "properties";
774 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
775 		sysfs_attr_init(&p2plink->attr);
776 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
777 		if (ret < 0)
778 			return ret;
779 		i++;
780 	}
781 
782 	/* All hardware blocks have the same number of attributes. */
783 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
784 	list_for_each_entry(perf, &dev->perf_props, list) {
785 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
786 			* num_attrs + sizeof(struct attribute_group),
787 			GFP_KERNEL);
788 		if (!perf->attr_group)
789 			return -ENOMEM;
790 
791 		attrs = (struct attribute **)(perf->attr_group + 1);
792 		if (!strcmp(perf->block_name, "iommu")) {
793 		/* Information of IOMMU's num_counters and counter_ids is shown
794 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
795 		 * duplicate here.
796 		 */
797 			perf_attr_iommu[0].data = perf->max_concurrent;
798 			for (i = 0; i < num_attrs; i++)
799 				attrs[i] = &perf_attr_iommu[i].attr.attr;
800 		}
801 		perf->attr_group->name = perf->block_name;
802 		perf->attr_group->attrs = attrs;
803 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
804 		if (ret < 0)
805 			return ret;
806 	}
807 
808 	return 0;
809 }
810 
811 /* Called with write topology lock acquired */
812 static int kfd_build_sysfs_node_tree(void)
813 {
814 	struct kfd_topology_device *dev;
815 	int ret;
816 	uint32_t i = 0;
817 
818 	list_for_each_entry(dev, &topology_device_list, list) {
819 		ret = kfd_build_sysfs_node_entry(dev, i);
820 		if (ret < 0)
821 			return ret;
822 		i++;
823 	}
824 
825 	return 0;
826 }
827 
828 /* Called with write topology lock acquired */
829 static void kfd_remove_sysfs_node_tree(void)
830 {
831 	struct kfd_topology_device *dev;
832 
833 	list_for_each_entry(dev, &topology_device_list, list)
834 		kfd_remove_sysfs_node_entry(dev);
835 }
836 
837 static int kfd_topology_update_sysfs(void)
838 {
839 	int ret;
840 
841 	if (!sys_props.kobj_topology) {
842 		sys_props.kobj_topology =
843 				kfd_alloc_struct(sys_props.kobj_topology);
844 		if (!sys_props.kobj_topology)
845 			return -ENOMEM;
846 
847 		ret = kobject_init_and_add(sys_props.kobj_topology,
848 				&sysprops_type,  &kfd_device->kobj,
849 				"topology");
850 		if (ret < 0) {
851 			kobject_put(sys_props.kobj_topology);
852 			return ret;
853 		}
854 
855 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
856 				sys_props.kobj_topology);
857 		if (!sys_props.kobj_nodes)
858 			return -ENOMEM;
859 
860 		sys_props.attr_genid.name = "generation_id";
861 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
862 		sysfs_attr_init(&sys_props.attr_genid);
863 		ret = sysfs_create_file(sys_props.kobj_topology,
864 				&sys_props.attr_genid);
865 		if (ret < 0)
866 			return ret;
867 
868 		sys_props.attr_props.name = "system_properties";
869 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
870 		sysfs_attr_init(&sys_props.attr_props);
871 		ret = sysfs_create_file(sys_props.kobj_topology,
872 				&sys_props.attr_props);
873 		if (ret < 0)
874 			return ret;
875 	}
876 
877 	kfd_remove_sysfs_node_tree();
878 
879 	return kfd_build_sysfs_node_tree();
880 }
881 
882 static void kfd_topology_release_sysfs(void)
883 {
884 	kfd_remove_sysfs_node_tree();
885 	if (sys_props.kobj_topology) {
886 		sysfs_remove_file(sys_props.kobj_topology,
887 				&sys_props.attr_genid);
888 		sysfs_remove_file(sys_props.kobj_topology,
889 				&sys_props.attr_props);
890 		if (sys_props.kobj_nodes) {
891 			kobject_del(sys_props.kobj_nodes);
892 			kobject_put(sys_props.kobj_nodes);
893 			sys_props.kobj_nodes = NULL;
894 		}
895 		kobject_del(sys_props.kobj_topology);
896 		kobject_put(sys_props.kobj_topology);
897 		sys_props.kobj_topology = NULL;
898 	}
899 }
900 
901 /* Called with write topology_lock acquired */
902 static void kfd_topology_update_device_list(struct list_head *temp_list,
903 					struct list_head *master_list)
904 {
905 	while (!list_empty(temp_list)) {
906 		list_move_tail(temp_list->next, master_list);
907 		sys_props.num_devices++;
908 	}
909 }
910 
911 static void kfd_debug_print_topology(void)
912 {
913 	struct kfd_topology_device *dev;
914 
915 	down_read(&topology_lock);
916 
917 	dev = list_last_entry(&topology_device_list,
918 			struct kfd_topology_device, list);
919 	if (dev) {
920 		if (dev->node_props.cpu_cores_count &&
921 				dev->node_props.simd_count) {
922 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
923 				dev->node_props.device_id,
924 				dev->node_props.vendor_id);
925 		} else if (dev->node_props.cpu_cores_count)
926 			pr_info("Topology: Add CPU node\n");
927 		else if (dev->node_props.simd_count)
928 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
929 				dev->node_props.device_id,
930 				dev->node_props.vendor_id);
931 	}
932 	up_read(&topology_lock);
933 }
934 
935 /* Helper function for intializing platform_xx members of
936  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
937  */
938 static void kfd_update_system_properties(void)
939 {
940 	struct kfd_topology_device *dev;
941 
942 	down_read(&topology_lock);
943 	dev = list_last_entry(&topology_device_list,
944 			struct kfd_topology_device, list);
945 	if (dev) {
946 		sys_props.platform_id = dev->oem_id64;
947 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
948 		sys_props.platform_rev = dev->oem_revision;
949 	}
950 	up_read(&topology_lock);
951 }
952 
953 static void find_system_memory(const struct dmi_header *dm, void *private)
954 {
955 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
956 	struct kfd_mem_properties *mem;
957 	struct kfd_topology_device *kdev =
958 		(struct kfd_topology_device *)private;
959 
960 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
961 		return;
962 	if (memdev->header.length < sizeof(struct dmi_mem_device))
963 		return;
964 
965 	list_for_each_entry(mem, &kdev->mem_props, list) {
966 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
967 			mem->width = memdev->total_width;
968 		if (memdev->speed != 0)
969 			mem->mem_clk_max = memdev->speed;
970 	}
971 }
972 
973 /* kfd_add_non_crat_information - Add information that is not currently
974  *	defined in CRAT but is necessary for KFD topology
975  * @dev - topology device to which addition info is added
976  */
977 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
978 {
979 	/* Check if CPU only node. */
980 	if (!kdev->gpu) {
981 		/* Add system memory information */
982 		dmi_walk(find_system_memory, kdev);
983 	}
984 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
985 }
986 
987 int kfd_topology_init(void)
988 {
989 	void *crat_image = NULL;
990 	size_t image_size = 0;
991 	int ret;
992 	struct list_head temp_topology_device_list;
993 	int cpu_only_node = 0;
994 	struct kfd_topology_device *kdev;
995 	int proximity_domain;
996 
997 	/* topology_device_list - Master list of all topology devices
998 	 * temp_topology_device_list - temporary list created while parsing CRAT
999 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1000 	 * topology_device_list
1001 	 */
1002 
1003 	/* Initialize the head for the both the lists */
1004 	INIT_LIST_HEAD(&topology_device_list);
1005 	INIT_LIST_HEAD(&temp_topology_device_list);
1006 	init_rwsem(&topology_lock);
1007 
1008 	memset(&sys_props, 0, sizeof(sys_props));
1009 
1010 	/* Proximity domains in ACPI CRAT tables start counting at
1011 	 * 0. The same should be true for virtual CRAT tables created
1012 	 * at this stage. GPUs added later in kfd_topology_add_device
1013 	 * use a counter.
1014 	 */
1015 	proximity_domain = 0;
1016 
1017 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1018 					    COMPUTE_UNIT_CPU, NULL,
1019 					    proximity_domain);
1020 	cpu_only_node = 1;
1021 	if (ret) {
1022 		pr_err("Error creating VCRAT table for CPU\n");
1023 		return ret;
1024 	}
1025 
1026 	ret = kfd_parse_crat_table(crat_image,
1027 				   &temp_topology_device_list,
1028 				   proximity_domain);
1029 	if (ret) {
1030 		pr_err("Error parsing VCRAT table for CPU\n");
1031 		goto err;
1032 	}
1033 
1034 	kdev = list_first_entry(&temp_topology_device_list,
1035 				struct kfd_topology_device, list);
1036 
1037 	down_write(&topology_lock);
1038 	kfd_topology_update_device_list(&temp_topology_device_list,
1039 					&topology_device_list);
1040 	topology_crat_proximity_domain = sys_props.num_devices-1;
1041 	ret = kfd_topology_update_sysfs();
1042 	up_write(&topology_lock);
1043 
1044 	if (!ret) {
1045 		sys_props.generation_count++;
1046 		kfd_update_system_properties();
1047 		kfd_debug_print_topology();
1048 	} else
1049 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1050 
1051 	/* For nodes with GPU, this information gets added
1052 	 * when GPU is detected (kfd_topology_add_device).
1053 	 */
1054 	if (cpu_only_node) {
1055 		/* Add additional information to CPU only node created above */
1056 		down_write(&topology_lock);
1057 		kdev = list_first_entry(&topology_device_list,
1058 				struct kfd_topology_device, list);
1059 		up_write(&topology_lock);
1060 		kfd_add_non_crat_information(kdev);
1061 	}
1062 
1063 err:
1064 	kfd_destroy_crat_image(crat_image);
1065 	return ret;
1066 }
1067 
1068 void kfd_topology_shutdown(void)
1069 {
1070 	down_write(&topology_lock);
1071 	kfd_topology_release_sysfs();
1072 	kfd_release_live_view();
1073 	up_write(&topology_lock);
1074 }
1075 
1076 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1077 {
1078 	uint32_t gpu_id;
1079 	uint32_t buf[8];
1080 	uint64_t local_mem_size;
1081 	struct kfd_topology_device *dev;
1082 	bool is_unique;
1083 	uint8_t *crc_buf;
1084 
1085 	if (!gpu)
1086 		return 0;
1087 
1088 	crc_buf = (uint8_t *)&buf;
1089 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1090 			gpu->local_mem_info.local_mem_size_public;
1091 	buf[0] = gpu->adev->pdev->devfn;
1092 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1093 		(gpu->adev->pdev->subsystem_device << 16);
1094 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1095 	buf[3] = gpu->adev->pdev->device;
1096 	buf[4] = gpu->adev->pdev->bus->number;
1097 	buf[5] = lower_32_bits(local_mem_size);
1098 	buf[6] = upper_32_bits(local_mem_size);
1099 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1100 
1101 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1102 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1103 
1104 	/* There is a very small possibility when generating a
1105 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1106 	 * that the value could be 0 or non-unique. So, check if
1107 	 * it is unique and non-zero. If not unique increment till
1108 	 * unique one is found. In case of overflow, restart from 1
1109 	 */
1110 
1111 	down_read(&topology_lock);
1112 	do {
1113 		is_unique = true;
1114 		if (!gpu_id)
1115 			gpu_id = 1;
1116 		list_for_each_entry(dev, &topology_device_list, list) {
1117 			if (dev->gpu && dev->gpu_id == gpu_id) {
1118 				is_unique = false;
1119 				break;
1120 			}
1121 		}
1122 		if (unlikely(!is_unique))
1123 			gpu_id = (gpu_id + 1) &
1124 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1125 	} while (!is_unique);
1126 	up_read(&topology_lock);
1127 
1128 	return gpu_id;
1129 }
1130 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1131  *		the GPU device is not already present in the topology device
1132  *		list then return NULL. This means a new topology device has to
1133  *		be created for this GPU.
1134  */
1135 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1136 {
1137 	struct kfd_topology_device *dev;
1138 	struct kfd_topology_device *out_dev = NULL;
1139 	struct kfd_mem_properties *mem;
1140 	struct kfd_cache_properties *cache;
1141 	struct kfd_iolink_properties *iolink;
1142 	struct kfd_iolink_properties *p2plink;
1143 
1144 	list_for_each_entry(dev, &topology_device_list, list) {
1145 		/* Discrete GPUs need their own topology device list
1146 		 * entries. Don't assign them to CPU/APU nodes.
1147 		 */
1148 		if (dev->node_props.cpu_cores_count)
1149 			continue;
1150 
1151 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1152 			dev->gpu = gpu;
1153 			out_dev = dev;
1154 
1155 			list_for_each_entry(mem, &dev->mem_props, list)
1156 				mem->gpu = dev->gpu;
1157 			list_for_each_entry(cache, &dev->cache_props, list)
1158 				cache->gpu = dev->gpu;
1159 			list_for_each_entry(iolink, &dev->io_link_props, list)
1160 				iolink->gpu = dev->gpu;
1161 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1162 				p2plink->gpu = dev->gpu;
1163 			break;
1164 		}
1165 	}
1166 	return out_dev;
1167 }
1168 
1169 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1170 {
1171 	/*
1172 	 * TODO: Generate an event for thunk about the arrival/removal
1173 	 * of the GPU
1174 	 */
1175 }
1176 
1177 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1178  *		patch this after CRAT parsing.
1179  */
1180 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1181 {
1182 	struct kfd_mem_properties *mem;
1183 	struct kfd_local_mem_info local_mem_info;
1184 
1185 	if (!dev)
1186 		return;
1187 
1188 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1189 	 * single bank of VRAM local memory.
1190 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1191 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1192 	 *	all the banks will report the same mem_clk_max information
1193 	 */
1194 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1195 					 dev->gpu->xcp);
1196 
1197 	list_for_each_entry(mem, &dev->mem_props, list)
1198 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1199 }
1200 
1201 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1202 					struct kfd_topology_device *target_gpu_dev,
1203 					struct kfd_iolink_properties *link)
1204 {
1205 	/* xgmi always supports atomics between links. */
1206 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1207 		return;
1208 
1209 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1210 	if (target_gpu_dev) {
1211 		uint32_t cap;
1212 
1213 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1214 				PCI_EXP_DEVCAP2, &cap);
1215 
1216 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1217 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1218 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1219 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1220 	/* set gpu (dev) flags. */
1221 	} else {
1222 		if (!dev->gpu->kfd->pci_atomic_requested ||
1223 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1224 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1225 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1226 	}
1227 }
1228 
1229 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1230 		struct kfd_iolink_properties *outbound_link,
1231 		struct kfd_iolink_properties *inbound_link)
1232 {
1233 	/* CPU -> GPU with PCIe */
1234 	if (!to_dev->gpu &&
1235 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1236 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237 
1238 	if (to_dev->gpu) {
1239 		/* GPU <-> GPU with PCIe and
1240 		 * Vega20 with XGMI
1241 		 */
1242 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1243 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1244 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1245 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1246 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1247 		}
1248 	}
1249 }
1250 
1251 #define REC_SDMA_NUM_GPU	8
1252 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1253 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1254 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1255 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1256 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1257 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1258 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1259 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1260 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1261 
1262 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1263 					     struct kfd_iolink_properties *outbound_link,
1264 					     struct kfd_iolink_properties *inbound_link)
1265 {
1266 	struct kfd_node *gpu = outbound_link->gpu;
1267 	struct amdgpu_device *adev = gpu->adev;
1268 	int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1269 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1270 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1271 		kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
1272 		(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
1273 
1274 	if (support_rec_eng) {
1275 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1276 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1277 
1278 		outbound_link->rec_sdma_eng_id_mask =
1279 			1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
1280 		inbound_link->rec_sdma_eng_id_mask =
1281 			1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
1282 	} else {
1283 		int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
1284 		int i, eng_offset = 0;
1285 
1286 		if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1287 		    kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
1288 			eng_offset = num_sdma_eng;
1289 			num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
1290 		}
1291 
1292 		for (i = 0; i < num_sdma_eng; i++) {
1293 			outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1294 			inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1295 		}
1296 	}
1297 }
1298 
1299 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1300 {
1301 	struct kfd_iolink_properties *link, *inbound_link;
1302 	struct kfd_topology_device *peer_dev;
1303 
1304 	if (!dev || !dev->gpu)
1305 		return;
1306 
1307 	/* GPU only creates direct links so apply flags setting to all */
1308 	list_for_each_entry(link, &dev->io_link_props, list) {
1309 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1310 		kfd_set_iolink_no_atomics(dev, NULL, link);
1311 		peer_dev = kfd_topology_device_by_proximity_domain(
1312 				link->node_to);
1313 
1314 		if (!peer_dev)
1315 			continue;
1316 
1317 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1318 		if (!peer_dev->gpu &&
1319 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1320 			/*
1321 			 * If the GPU is not part of a GPU hive, use its pci
1322 			 * device location as the hive ID to bind with the CPU.
1323 			 */
1324 			if (!dev->node_props.hive_id)
1325 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1326 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1327 		}
1328 
1329 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1330 									list) {
1331 			if (inbound_link->node_to != link->node_from)
1332 				continue;
1333 
1334 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1335 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1336 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1337 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1338 		}
1339 	}
1340 
1341 	/* Create indirect links so apply flags setting to all */
1342 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1343 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1344 		kfd_set_iolink_no_atomics(dev, NULL, link);
1345 		peer_dev = kfd_topology_device_by_proximity_domain(
1346 				link->node_to);
1347 
1348 		if (!peer_dev)
1349 			continue;
1350 
1351 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1352 									list) {
1353 			if (inbound_link->node_to != link->node_from)
1354 				continue;
1355 
1356 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1357 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1358 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1359 		}
1360 	}
1361 }
1362 
1363 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1364 				struct kfd_iolink_properties *p2plink)
1365 {
1366 	int ret;
1367 
1368 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1369 	if (!p2plink->kobj)
1370 		return -ENOMEM;
1371 
1372 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1373 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1374 	if (ret < 0) {
1375 		kobject_put(p2plink->kobj);
1376 		return ret;
1377 	}
1378 
1379 	p2plink->attr.name = "properties";
1380 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1381 	sysfs_attr_init(&p2plink->attr);
1382 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1383 	if (ret < 0)
1384 		return ret;
1385 
1386 	return 0;
1387 }
1388 
1389 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1390 {
1391 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1392 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1393 	struct kfd_topology_device *cpu_dev;
1394 	int ret = 0;
1395 	int i, num_cpu;
1396 
1397 	num_cpu = 0;
1398 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1399 		if (cpu_dev->gpu)
1400 			break;
1401 		num_cpu++;
1402 	}
1403 
1404 	if (list_empty(&kdev->io_link_props))
1405 		return -ENODATA;
1406 
1407 	gpu_link = list_first_entry(&kdev->io_link_props,
1408 				    struct kfd_iolink_properties, list);
1409 
1410 	for (i = 0; i < num_cpu; i++) {
1411 		/* CPU <--> GPU */
1412 		if (gpu_link->node_to == i)
1413 			continue;
1414 
1415 		/* find CPU <-->  CPU links */
1416 		cpu_link = NULL;
1417 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1418 		if (cpu_dev) {
1419 			list_for_each_entry(tmp_link,
1420 					&cpu_dev->io_link_props, list) {
1421 				if (tmp_link->node_to == gpu_link->node_to) {
1422 					cpu_link = tmp_link;
1423 					break;
1424 				}
1425 			}
1426 		}
1427 
1428 		if (!cpu_link)
1429 			return -ENOMEM;
1430 
1431 		/* CPU <--> CPU <--> GPU, GPU node*/
1432 		props = kfd_alloc_struct(props);
1433 		if (!props)
1434 			return -ENOMEM;
1435 
1436 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1437 		props->weight = gpu_link->weight + cpu_link->weight;
1438 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1439 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1440 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1441 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1442 
1443 		props->node_from = gpu_node;
1444 		props->node_to = i;
1445 		kdev->node_props.p2p_links_count++;
1446 		list_add_tail(&props->list, &kdev->p2p_link_props);
1447 		ret = kfd_build_p2p_node_entry(kdev, props);
1448 		if (ret < 0)
1449 			return ret;
1450 
1451 		/* for small Bar, no CPU --> GPU in-direct links */
1452 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1453 			/* CPU <--> CPU <--> GPU, CPU node*/
1454 			props2 = kfd_alloc_struct(props2);
1455 			if (!props2)
1456 				return -ENOMEM;
1457 
1458 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1459 			props2->node_from = i;
1460 			props2->node_to = gpu_node;
1461 			props2->kobj = NULL;
1462 			cpu_dev->node_props.p2p_links_count++;
1463 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1464 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1465 			if (ret < 0)
1466 				return ret;
1467 		}
1468 	}
1469 	return ret;
1470 }
1471 
1472 #if defined(CONFIG_HSA_AMD_P2P)
1473 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1474 		struct kfd_topology_device *peer, int from, int to)
1475 {
1476 	struct kfd_iolink_properties *props = NULL;
1477 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1478 	struct kfd_topology_device *cpu_dev;
1479 	int ret = 0;
1480 
1481 	if (!amdgpu_device_is_peer_accessible(
1482 				kdev->gpu->adev,
1483 				peer->gpu->adev))
1484 		return ret;
1485 
1486 	if (list_empty(&kdev->io_link_props))
1487 		return -ENODATA;
1488 
1489 	iolink1 = list_first_entry(&kdev->io_link_props,
1490 				   struct kfd_iolink_properties, list);
1491 
1492 	if (list_empty(&peer->io_link_props))
1493 		return -ENODATA;
1494 
1495 	iolink2 = list_first_entry(&peer->io_link_props,
1496 				   struct kfd_iolink_properties, list);
1497 
1498 	props = kfd_alloc_struct(props);
1499 	if (!props)
1500 		return -ENOMEM;
1501 
1502 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1503 
1504 	props->weight = iolink1->weight + iolink2->weight;
1505 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1506 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1507 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1508 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1509 
1510 	if (iolink1->node_to != iolink2->node_to) {
1511 		/* CPU->CPU  link*/
1512 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1513 		if (cpu_dev) {
1514 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1515 				if (iolink3->node_to != iolink2->node_to)
1516 					continue;
1517 
1518 				props->weight += iolink3->weight;
1519 				props->min_latency += iolink3->min_latency;
1520 				props->max_latency += iolink3->max_latency;
1521 				props->min_bandwidth = min(props->min_bandwidth,
1522 							   iolink3->min_bandwidth);
1523 				props->max_bandwidth = min(props->max_bandwidth,
1524 							   iolink3->max_bandwidth);
1525 				break;
1526 			}
1527 		} else {
1528 			WARN(1, "CPU node not found");
1529 		}
1530 	}
1531 
1532 	props->node_from = from;
1533 	props->node_to = to;
1534 	peer->node_props.p2p_links_count++;
1535 	list_add_tail(&props->list, &peer->p2p_link_props);
1536 	ret = kfd_build_p2p_node_entry(peer, props);
1537 
1538 	return ret;
1539 }
1540 #endif
1541 
1542 static int kfd_dev_create_p2p_links(void)
1543 {
1544 	struct kfd_topology_device *dev;
1545 	struct kfd_topology_device *new_dev;
1546 #if defined(CONFIG_HSA_AMD_P2P)
1547 	uint32_t i;
1548 #endif
1549 	uint32_t k;
1550 	int ret = 0;
1551 
1552 	k = 0;
1553 	list_for_each_entry(dev, &topology_device_list, list)
1554 		k++;
1555 	if (k < 2)
1556 		return 0;
1557 
1558 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1559 	if (WARN_ON(!new_dev->gpu))
1560 		return 0;
1561 
1562 	k--;
1563 
1564 	/* create in-direct links */
1565 	ret = kfd_create_indirect_link_prop(new_dev, k);
1566 	if (ret < 0)
1567 		goto out;
1568 
1569 	/* create p2p links */
1570 #if defined(CONFIG_HSA_AMD_P2P)
1571 	i = 0;
1572 	list_for_each_entry(dev, &topology_device_list, list) {
1573 		if (dev == new_dev)
1574 			break;
1575 		if (!dev->gpu || !dev->gpu->adev ||
1576 		    (dev->gpu->kfd->hive_id &&
1577 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1578 			goto next;
1579 
1580 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1581 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1582 		if (ret < 0)
1583 			goto out;
1584 
1585 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1586 		if (ret < 0)
1587 			goto out;
1588 next:
1589 		i++;
1590 	}
1591 #endif
1592 
1593 out:
1594 	return ret;
1595 }
1596 
1597 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1598 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1599 				struct kfd_gpu_cache_info *pcache_info,
1600 				int cu_bitmask,
1601 				int cache_type, unsigned int cu_processor_id,
1602 				int cu_block)
1603 {
1604 	unsigned int cu_sibling_map_mask;
1605 	int first_active_cu;
1606 	struct kfd_cache_properties *pcache = NULL;
1607 
1608 	cu_sibling_map_mask = cu_bitmask;
1609 	cu_sibling_map_mask >>= cu_block;
1610 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1611 	first_active_cu = ffs(cu_sibling_map_mask);
1612 
1613 	/* CU could be inactive. In case of shared cache find the first active
1614 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1615 	 * inactive active skip it
1616 	 */
1617 	if (first_active_cu) {
1618 		pcache = kfd_alloc_struct(pcache);
1619 		if (!pcache)
1620 			return -ENOMEM;
1621 
1622 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1623 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1624 		pcache->cache_level = pcache_info[cache_type].cache_level;
1625 		pcache->cache_size = pcache_info[cache_type].cache_size;
1626 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1627 
1628 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1629 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1630 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1631 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1632 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1633 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1634 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1635 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1636 
1637 		/* Sibling map is w.r.t processor_id_low, so shift out
1638 		 * inactive CU
1639 		 */
1640 		cu_sibling_map_mask =
1641 			cu_sibling_map_mask >> (first_active_cu - 1);
1642 
1643 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1644 		pcache->sibling_map[1] =
1645 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1646 		pcache->sibling_map[2] =
1647 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1648 		pcache->sibling_map[3] =
1649 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1650 
1651 		pcache->sibling_map_size = 4;
1652 		*props_ext = pcache;
1653 
1654 		return 0;
1655 	}
1656 	return 1;
1657 }
1658 
1659 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1660 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1661 				struct kfd_gpu_cache_info *pcache_info,
1662 				struct amdgpu_cu_info *cu_info,
1663 				struct amdgpu_gfx_config *gfx_info,
1664 				int cache_type, unsigned int cu_processor_id,
1665 				struct kfd_node *knode)
1666 {
1667 	unsigned int cu_sibling_map_mask = 0;
1668 	int first_active_cu;
1669 	int i, j, k, xcc, start, end;
1670 	int num_xcc = NUM_XCC(knode->xcc_mask);
1671 	struct kfd_cache_properties *pcache = NULL;
1672 	enum amdgpu_memory_partition mode;
1673 	struct amdgpu_device *adev = knode->adev;
1674 	bool found = false;
1675 
1676 	start = ffs(knode->xcc_mask) - 1;
1677 	end = start + num_xcc;
1678 
1679 	/* To find the bitmap in the first active cu in the first
1680 	 * xcc, it is based on the assumption that evrey xcc must
1681 	 * have at least one active cu.
1682 	 */
1683 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1684 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1685 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1686 				cu_sibling_map_mask =
1687 					cu_info->bitmap[start][i % 4][j % 4];
1688 				found = true;
1689 			}
1690 		}
1691 	}
1692 
1693 	cu_sibling_map_mask &=
1694 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1695 	first_active_cu = ffs(cu_sibling_map_mask);
1696 
1697 	/* CU could be inactive. In case of shared cache find the first active
1698 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1699 	 * inactive active skip it
1700 	 */
1701 	if (first_active_cu) {
1702 		pcache = kfd_alloc_struct(pcache);
1703 		if (!pcache)
1704 			return -ENOMEM;
1705 
1706 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1707 		pcache->processor_id_low = cu_processor_id
1708 					+ (first_active_cu - 1);
1709 		pcache->cache_level = pcache_info[cache_type].cache_level;
1710 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1711 
1712 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1713 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1714 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1715 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1716 		else
1717 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1718 
1719 		pcache->cache_size = pcache_info[cache_type].cache_size;
1720 		/* Partition mode only affects L3 cache size */
1721 		if (mode && pcache->cache_level == 3)
1722 			pcache->cache_size /= mode;
1723 
1724 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1725 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1726 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1727 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1728 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1729 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1730 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1731 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1732 
1733 		/* Sibling map is w.r.t processor_id_low, so shift out
1734 		 * inactive CU
1735 		 */
1736 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1737 		k = 0;
1738 
1739 		for (xcc = start; xcc < end; xcc++) {
1740 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1741 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1742 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1743 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1744 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1745 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1746 					k += 4;
1747 
1748 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1749 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1750 				}
1751 			}
1752 		}
1753 		pcache->sibling_map_size = k;
1754 		*props_ext = pcache;
1755 		return 0;
1756 	}
1757 	return 1;
1758 }
1759 
1760 #define KFD_MAX_CACHE_TYPES 6
1761 
1762 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1763  * tables
1764  */
1765 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1766 {
1767 	struct kfd_gpu_cache_info *pcache_info = NULL;
1768 	int i, j, k, xcc, start, end;
1769 	int ct = 0;
1770 	unsigned int cu_processor_id;
1771 	int ret;
1772 	unsigned int num_cu_shared;
1773 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1774 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1775 	int gpu_processor_id;
1776 	struct kfd_cache_properties *props_ext = NULL;
1777 	int num_of_entries = 0;
1778 	int num_of_cache_types = 0;
1779 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1780 
1781 
1782 	gpu_processor_id = dev->node_props.simd_id_base;
1783 
1784 	memset(cache_info, 0, sizeof(cache_info));
1785 	pcache_info = cache_info;
1786 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1787 	if (!num_of_cache_types) {
1788 		pr_warn("no cache info found\n");
1789 		return;
1790 	}
1791 
1792 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1793 	 * go through all available Compute Units.
1794 	 * The [i,j,k] loop will
1795 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1796 	 *			will parse through all available CU
1797 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1798 	 *			then it will consider only one CU from
1799 	 *			the shared unit
1800 	 */
1801 	start = ffs(kdev->xcc_mask) - 1;
1802 	end = start + NUM_XCC(kdev->xcc_mask);
1803 
1804 	for (ct = 0; ct < num_of_cache_types; ct++) {
1805 		cu_processor_id = gpu_processor_id;
1806 		if (pcache_info[ct].cache_level == 1) {
1807 			for (xcc = start; xcc < end; xcc++) {
1808 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1809 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1810 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1811 
1812 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1813 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1814 										cu_processor_id, k);
1815 
1816 							if (ret < 0)
1817 								break;
1818 
1819 							if (!ret) {
1820 								num_of_entries++;
1821 								list_add_tail(&props_ext->list, &dev->cache_props);
1822 							}
1823 
1824 							/* Move to next CU block */
1825 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1826 								gfx_info->max_cu_per_sh) ?
1827 								pcache_info[ct].num_cu_shared :
1828 								(gfx_info->max_cu_per_sh - k);
1829 							cu_processor_id += num_cu_shared;
1830 						}
1831 					}
1832 				}
1833 			}
1834 		} else {
1835 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1836 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1837 
1838 			if (ret < 0)
1839 				break;
1840 
1841 			if (!ret) {
1842 				num_of_entries++;
1843 				list_add_tail(&props_ext->list, &dev->cache_props);
1844 			}
1845 		}
1846 	}
1847 	dev->node_props.caches_count += num_of_entries;
1848 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1849 }
1850 
1851 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1852 					  struct kfd_topology_device **dev)
1853 {
1854 	int proximity_domain = ++topology_crat_proximity_domain;
1855 	struct list_head temp_topology_device_list;
1856 	void *crat_image = NULL;
1857 	size_t image_size = 0;
1858 	int res;
1859 
1860 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1861 					    COMPUTE_UNIT_GPU, gpu,
1862 					    proximity_domain);
1863 	if (res) {
1864 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1865 		topology_crat_proximity_domain--;
1866 		goto err;
1867 	}
1868 
1869 	INIT_LIST_HEAD(&temp_topology_device_list);
1870 
1871 	res = kfd_parse_crat_table(crat_image,
1872 				   &temp_topology_device_list,
1873 				   proximity_domain);
1874 	if (res) {
1875 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1876 		topology_crat_proximity_domain--;
1877 		goto err;
1878 	}
1879 
1880 	kfd_topology_update_device_list(&temp_topology_device_list,
1881 					&topology_device_list);
1882 
1883 	*dev = kfd_assign_gpu(gpu);
1884 	if (WARN_ON(!*dev)) {
1885 		res = -ENODEV;
1886 		goto err;
1887 	}
1888 
1889 	/* Fill the cache affinity information here for the GPUs
1890 	 * using VCRAT
1891 	 */
1892 	kfd_fill_cache_non_crat_info(*dev, gpu);
1893 
1894 	/* Update the SYSFS tree, since we added another topology
1895 	 * device
1896 	 */
1897 	res = kfd_topology_update_sysfs();
1898 	if (!res)
1899 		sys_props.generation_count++;
1900 	else
1901 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1902 			res);
1903 
1904 err:
1905 	kfd_destroy_crat_image(crat_image);
1906 	return res;
1907 }
1908 
1909 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1910 {
1911 	bool firmware_supported = true;
1912 
1913 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1914 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1915 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1916 						AMDGPU_MES_API_VERSION_MASK) >>
1917 						AMDGPU_MES_API_VERSION_SHIFT;
1918 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1919 						AMDGPU_MES_VERSION_MASK;
1920 
1921 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1922 		goto out;
1923 	}
1924 
1925 	/*
1926 	 * Note: Any unlisted devices here are assumed to support exception handling.
1927 	 * Add additional checks here as needed.
1928 	 */
1929 	switch (KFD_GC_VERSION(dev->gpu)) {
1930 	case IP_VERSION(9, 0, 1):
1931 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1932 		break;
1933 	case IP_VERSION(9, 1, 0):
1934 	case IP_VERSION(9, 2, 1):
1935 	case IP_VERSION(9, 2, 2):
1936 	case IP_VERSION(9, 3, 0):
1937 	case IP_VERSION(9, 4, 0):
1938 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1939 		break;
1940 	case IP_VERSION(9, 4, 1):
1941 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1942 		break;
1943 	case IP_VERSION(9, 4, 2):
1944 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1945 		break;
1946 	case IP_VERSION(10, 1, 10):
1947 	case IP_VERSION(10, 1, 2):
1948 	case IP_VERSION(10, 1, 1):
1949 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1950 		break;
1951 	case IP_VERSION(10, 3, 0):
1952 	case IP_VERSION(10, 3, 2):
1953 	case IP_VERSION(10, 3, 1):
1954 	case IP_VERSION(10, 3, 4):
1955 	case IP_VERSION(10, 3, 5):
1956 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1957 		break;
1958 	case IP_VERSION(10, 1, 3):
1959 	case IP_VERSION(10, 3, 3):
1960 		firmware_supported = false;
1961 		break;
1962 	default:
1963 		break;
1964 	}
1965 
1966 out:
1967 	if (firmware_supported)
1968 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1969 }
1970 
1971 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1972 {
1973 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1974 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1975 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1976 
1977 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1978 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1979 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1980 
1981 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1982 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1983 
1984 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1985 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1986 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
1987 			dev->node_props.debug_prop |=
1988 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1989 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1990 		else
1991 			dev->node_props.debug_prop |=
1992 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1993 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1994 
1995 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1996 			dev->node_props.capability |=
1997 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1998 
1999 		dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2000 	} else {
2001 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2002 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2003 
2004 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
2005 			dev->node_props.capability |=
2006 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2007 
2008 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2009 			dev->node_props.capability |=
2010 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2011 	}
2012 
2013 	kfd_topology_set_dbg_firmware_support(dev);
2014 }
2015 
2016 int kfd_topology_add_device(struct kfd_node *gpu)
2017 {
2018 	uint32_t gpu_id;
2019 	struct kfd_topology_device *dev;
2020 	int res = 0;
2021 	int i;
2022 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2023 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2024 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2025 
2026 	if (gpu->xcp && !gpu->xcp->ddev) {
2027 		dev_warn(gpu->adev->dev,
2028 			 "Won't add GPU to topology since it has no drm node assigned.");
2029 		return 0;
2030 	} else {
2031 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2032 	}
2033 
2034 	/* Check to see if this gpu device exists in the topology_device_list.
2035 	 * If so, assign the gpu to that device,
2036 	 * else create a Virtual CRAT for this gpu device and then parse that
2037 	 * CRAT to create a new topology device. Once created assign the gpu to
2038 	 * that topology device
2039 	 */
2040 	down_write(&topology_lock);
2041 	dev = kfd_assign_gpu(gpu);
2042 	if (!dev)
2043 		res = kfd_topology_add_device_locked(gpu, &dev);
2044 	up_write(&topology_lock);
2045 	if (res)
2046 		return res;
2047 
2048 	gpu_id = kfd_generate_gpu_id(gpu);
2049 	dev->gpu_id = gpu_id;
2050 	gpu->id = gpu_id;
2051 
2052 	kfd_dev_create_p2p_links();
2053 
2054 	/* TODO: Move the following lines to function
2055 	 *	kfd_add_non_crat_information
2056 	 */
2057 
2058 	/* Fill-in additional information that is not available in CRAT but
2059 	 * needed for the topology
2060 	 */
2061 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2062 		dev->node_props.name[i] = __tolower(asic_name[i]);
2063 		if (asic_name[i] == '\0')
2064 			break;
2065 	}
2066 	dev->node_props.name[i] = '\0';
2067 
2068 	dev->node_props.simd_arrays_per_engine =
2069 		gfx_info->max_sh_per_se;
2070 
2071 	dev->node_props.gfx_target_version =
2072 				gpu->kfd->device_info.gfx_target_version;
2073 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2074 	dev->node_props.device_id = gpu->adev->pdev->device;
2075 	dev->node_props.capability |=
2076 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2077 			HSA_CAP_ASIC_REVISION_MASK);
2078 
2079 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2080 	if (gpu->kfd->num_nodes > 1)
2081 		dev->node_props.location_id |= dev->gpu->node_id;
2082 
2083 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2084 	dev->node_props.max_engine_clk_fcompute =
2085 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2086 	dev->node_props.max_engine_clk_ccompute =
2087 		cpufreq_quick_get_max(0) / 1000;
2088 
2089 	if (gpu->xcp)
2090 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2091 	else
2092 		dev->node_props.drm_render_minor =
2093 				gpu->kfd->shared_resources.drm_render_minor;
2094 
2095 	dev->node_props.hive_id = gpu->kfd->hive_id;
2096 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2097 	dev->node_props.num_sdma_xgmi_engines =
2098 					kfd_get_num_xgmi_sdma_engines(gpu);
2099 	dev->node_props.num_sdma_queues_per_engine =
2100 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2101 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2102 	dev->node_props.num_gws = (dev->gpu->gws &&
2103 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2104 		dev->gpu->adev->gds.gws_size : 0;
2105 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2106 
2107 	kfd_fill_mem_clk_max_info(dev);
2108 	kfd_fill_iolink_non_crat_info(dev);
2109 
2110 	switch (dev->gpu->adev->asic_type) {
2111 	case CHIP_KAVERI:
2112 	case CHIP_HAWAII:
2113 	case CHIP_TONGA:
2114 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2115 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2116 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2117 		break;
2118 	case CHIP_CARRIZO:
2119 	case CHIP_FIJI:
2120 	case CHIP_POLARIS10:
2121 	case CHIP_POLARIS11:
2122 	case CHIP_POLARIS12:
2123 	case CHIP_VEGAM:
2124 		pr_debug("Adding doorbell packet type capability\n");
2125 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2126 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2127 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2128 		break;
2129 	default:
2130 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2131 			WARN(1, "Unexpected ASIC family %u",
2132 			     dev->gpu->adev->asic_type);
2133 		else
2134 			kfd_topology_set_capabilities(dev);
2135 	}
2136 
2137 	/*
2138 	 * Overwrite ATS capability according to needs_iommu_device to fix
2139 	 * potential missing corresponding bit in CRAT of BIOS.
2140 	 */
2141 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2142 
2143 	/* Fix errors in CZ CRAT.
2144 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2145 	 *		because it doesn't consider masked out CUs
2146 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2147 	 */
2148 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2149 		dev->node_props.simd_count =
2150 			cu_info->simd_per_cu * cu_info->number;
2151 		dev->node_props.max_waves_per_simd = 10;
2152 	}
2153 
2154 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2155 	dev->node_props.capability |=
2156 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2157 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2158 	dev->node_props.capability |=
2159 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2160 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2161 
2162 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2163 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2164 			HSA_CAP_RASEVENTNOTIFY : 0;
2165 
2166 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2167 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2168 
2169 	if (dev->gpu->adev->gmc.is_app_apu ||
2170 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2171 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2172 
2173 	kfd_queue_ctx_save_restore_size(dev);
2174 
2175 	kfd_debug_print_topology();
2176 
2177 	kfd_notify_gpu_change(gpu_id, 1);
2178 
2179 	return 0;
2180 }
2181 
2182 /**
2183  * kfd_topology_update_io_links() - Update IO links after device removal.
2184  * @proximity_domain: Proximity domain value of the dev being removed.
2185  *
2186  * The topology list currently is arranged in increasing order of
2187  * proximity domain.
2188  *
2189  * Two things need to be done when a device is removed:
2190  * 1. All the IO links to this device need to be removed.
2191  * 2. All nodes after the current device node need to move
2192  *    up once this device node is removed from the topology
2193  *    list. As a result, the proximity domain values for
2194  *    all nodes after the node being deleted reduce by 1.
2195  *    This would also cause the proximity domain values for
2196  *    io links to be updated based on new proximity domain
2197  *    values.
2198  *
2199  * Context: The caller must hold write topology_lock.
2200  */
2201 static void kfd_topology_update_io_links(int proximity_domain)
2202 {
2203 	struct kfd_topology_device *dev;
2204 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2205 
2206 	list_for_each_entry(dev, &topology_device_list, list) {
2207 		if (dev->proximity_domain > proximity_domain)
2208 			dev->proximity_domain--;
2209 
2210 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2211 			/*
2212 			 * If there is an io link to the dev being deleted
2213 			 * then remove that IO link also.
2214 			 */
2215 			if (iolink->node_to == proximity_domain) {
2216 				list_del(&iolink->list);
2217 				dev->node_props.io_links_count--;
2218 			} else {
2219 				if (iolink->node_from > proximity_domain)
2220 					iolink->node_from--;
2221 				if (iolink->node_to > proximity_domain)
2222 					iolink->node_to--;
2223 			}
2224 		}
2225 
2226 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2227 			/*
2228 			 * If there is a p2p link to the dev being deleted
2229 			 * then remove that p2p link also.
2230 			 */
2231 			if (p2plink->node_to == proximity_domain) {
2232 				list_del(&p2plink->list);
2233 				dev->node_props.p2p_links_count--;
2234 			} else {
2235 				if (p2plink->node_from > proximity_domain)
2236 					p2plink->node_from--;
2237 				if (p2plink->node_to > proximity_domain)
2238 					p2plink->node_to--;
2239 			}
2240 		}
2241 	}
2242 }
2243 
2244 int kfd_topology_remove_device(struct kfd_node *gpu)
2245 {
2246 	struct kfd_topology_device *dev, *tmp;
2247 	uint32_t gpu_id;
2248 	int res = -ENODEV;
2249 	int i = 0;
2250 
2251 	down_write(&topology_lock);
2252 
2253 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2254 		if (dev->gpu == gpu) {
2255 			gpu_id = dev->gpu_id;
2256 			kfd_remove_sysfs_node_entry(dev);
2257 			kfd_release_topology_device(dev);
2258 			sys_props.num_devices--;
2259 			kfd_topology_update_io_links(i);
2260 			topology_crat_proximity_domain = sys_props.num_devices-1;
2261 			sys_props.generation_count++;
2262 			res = 0;
2263 			if (kfd_topology_update_sysfs() < 0)
2264 				kfd_topology_release_sysfs();
2265 			break;
2266 		}
2267 		i++;
2268 	}
2269 
2270 	up_write(&topology_lock);
2271 
2272 	if (!res)
2273 		kfd_notify_gpu_change(gpu_id, 0);
2274 
2275 	return res;
2276 }
2277 
2278 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2279  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2280  *	returned through @kdev
2281  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2282  *		-1: If end of list
2283  */
2284 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2285 {
2286 
2287 	struct kfd_topology_device *top_dev;
2288 	uint8_t device_idx = 0;
2289 
2290 	*kdev = NULL;
2291 	down_read(&topology_lock);
2292 
2293 	list_for_each_entry(top_dev, &topology_device_list, list) {
2294 		if (device_idx == idx) {
2295 			*kdev = top_dev->gpu;
2296 			up_read(&topology_lock);
2297 			return 0;
2298 		}
2299 
2300 		device_idx++;
2301 	}
2302 
2303 	up_read(&topology_lock);
2304 
2305 	return -1;
2306 
2307 }
2308 
2309 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2310 {
2311 	int first_cpu_of_numa_node;
2312 
2313 	if (!cpumask || cpumask == cpu_none_mask)
2314 		return -1;
2315 	first_cpu_of_numa_node = cpumask_first(cpumask);
2316 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2317 		return -1;
2318 #ifdef CONFIG_X86_64
2319 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2320 #else
2321 	return first_cpu_of_numa_node;
2322 #endif
2323 }
2324 
2325 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2326  *	of the given NUMA node (numa_node_id)
2327  * Return -1 on failure
2328  */
2329 int kfd_numa_node_to_apic_id(int numa_node_id)
2330 {
2331 	if (numa_node_id == -1) {
2332 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2333 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2334 	}
2335 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2336 }
2337 
2338 #if defined(CONFIG_DEBUG_FS)
2339 
2340 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2341 {
2342 	struct kfd_topology_device *dev;
2343 	unsigned int i = 0;
2344 	int r = 0;
2345 
2346 	down_read(&topology_lock);
2347 
2348 	list_for_each_entry(dev, &topology_device_list, list) {
2349 		if (!dev->gpu) {
2350 			i++;
2351 			continue;
2352 		}
2353 
2354 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2355 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2356 		if (r)
2357 			break;
2358 	}
2359 
2360 	up_read(&topology_lock);
2361 
2362 	return r;
2363 }
2364 
2365 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2366 {
2367 	struct kfd_topology_device *dev;
2368 	unsigned int i = 0;
2369 	int r = 0;
2370 
2371 	down_read(&topology_lock);
2372 
2373 	list_for_each_entry(dev, &topology_device_list, list) {
2374 		if (!dev->gpu) {
2375 			i++;
2376 			continue;
2377 		}
2378 
2379 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2380 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2381 		if (r)
2382 			break;
2383 	}
2384 
2385 	up_read(&topology_lock);
2386 
2387 	return r;
2388 }
2389 
2390 #endif
2391