1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/kernel.h> 26 #include <linux/pci.h> 27 #include <linux/errno.h> 28 #include <linux/acpi.h> 29 #include <linux/hash.h> 30 #include <linux/cpufreq.h> 31 #include <linux/log2.h> 32 #include <linux/dmi.h> 33 #include <linux/atomic.h> 34 #include <linux/crc16.h> 35 36 #include "kfd_priv.h" 37 #include "kfd_crat.h" 38 #include "kfd_topology.h" 39 #include "kfd_device_queue_manager.h" 40 #include "kfd_svm.h" 41 #include "kfd_debug.h" 42 #include "amdgpu_amdkfd.h" 43 #include "amdgpu_ras.h" 44 #include "amdgpu.h" 45 46 /* topology_device_list - Master list of all topology devices */ 47 static struct list_head topology_device_list; 48 static struct kfd_system_properties sys_props; 49 50 static DECLARE_RWSEM(topology_lock); 51 static uint32_t topology_crat_proximity_domain; 52 53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 54 uint32_t proximity_domain) 55 { 56 struct kfd_topology_device *top_dev; 57 struct kfd_topology_device *device = NULL; 58 59 list_for_each_entry(top_dev, &topology_device_list, list) 60 if (top_dev->proximity_domain == proximity_domain) { 61 device = top_dev; 62 break; 63 } 64 65 return device; 66 } 67 68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 69 uint32_t proximity_domain) 70 { 71 struct kfd_topology_device *device = NULL; 72 73 down_read(&topology_lock); 74 75 device = kfd_topology_device_by_proximity_domain_no_lock( 76 proximity_domain); 77 up_read(&topology_lock); 78 79 return device; 80 } 81 82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) 83 { 84 struct kfd_topology_device *top_dev = NULL; 85 struct kfd_topology_device *ret = NULL; 86 87 down_read(&topology_lock); 88 89 list_for_each_entry(top_dev, &topology_device_list, list) 90 if (top_dev->gpu_id == gpu_id) { 91 ret = top_dev; 92 break; 93 } 94 95 up_read(&topology_lock); 96 97 return ret; 98 } 99 100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id) 101 { 102 struct kfd_topology_device *top_dev; 103 104 top_dev = kfd_topology_device_by_id(gpu_id); 105 if (!top_dev) 106 return NULL; 107 108 return top_dev->gpu; 109 } 110 111 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev) 112 { 113 struct kfd_topology_device *top_dev; 114 struct kfd_node *device = NULL; 115 116 down_read(&topology_lock); 117 118 list_for_each_entry(top_dev, &topology_device_list, list) 119 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) { 120 device = top_dev->gpu; 121 break; 122 } 123 124 up_read(&topology_lock); 125 126 return device; 127 } 128 129 /* Called with write topology_lock acquired */ 130 static void kfd_release_topology_device(struct kfd_topology_device *dev) 131 { 132 struct kfd_mem_properties *mem; 133 struct kfd_cache_properties *cache; 134 struct kfd_iolink_properties *iolink; 135 struct kfd_iolink_properties *p2plink; 136 struct kfd_perf_properties *perf; 137 138 list_del(&dev->list); 139 140 while (dev->mem_props.next != &dev->mem_props) { 141 mem = container_of(dev->mem_props.next, 142 struct kfd_mem_properties, list); 143 list_del(&mem->list); 144 kfree(mem); 145 } 146 147 while (dev->cache_props.next != &dev->cache_props) { 148 cache = container_of(dev->cache_props.next, 149 struct kfd_cache_properties, list); 150 list_del(&cache->list); 151 kfree(cache); 152 } 153 154 while (dev->io_link_props.next != &dev->io_link_props) { 155 iolink = container_of(dev->io_link_props.next, 156 struct kfd_iolink_properties, list); 157 list_del(&iolink->list); 158 kfree(iolink); 159 } 160 161 while (dev->p2p_link_props.next != &dev->p2p_link_props) { 162 p2plink = container_of(dev->p2p_link_props.next, 163 struct kfd_iolink_properties, list); 164 list_del(&p2plink->list); 165 kfree(p2plink); 166 } 167 168 while (dev->perf_props.next != &dev->perf_props) { 169 perf = container_of(dev->perf_props.next, 170 struct kfd_perf_properties, list); 171 list_del(&perf->list); 172 kfree(perf); 173 } 174 175 kfree(dev); 176 } 177 178 void kfd_release_topology_device_list(struct list_head *device_list) 179 { 180 struct kfd_topology_device *dev; 181 182 while (!list_empty(device_list)) { 183 dev = list_first_entry(device_list, 184 struct kfd_topology_device, list); 185 kfd_release_topology_device(dev); 186 } 187 } 188 189 static void kfd_release_live_view(void) 190 { 191 kfd_release_topology_device_list(&topology_device_list); 192 memset(&sys_props, 0, sizeof(sys_props)); 193 } 194 195 struct kfd_topology_device *kfd_create_topology_device( 196 struct list_head *device_list) 197 { 198 struct kfd_topology_device *dev; 199 200 dev = kfd_alloc_struct(dev); 201 if (!dev) { 202 pr_err("No memory to allocate a topology device"); 203 return NULL; 204 } 205 206 INIT_LIST_HEAD(&dev->mem_props); 207 INIT_LIST_HEAD(&dev->cache_props); 208 INIT_LIST_HEAD(&dev->io_link_props); 209 INIT_LIST_HEAD(&dev->p2p_link_props); 210 INIT_LIST_HEAD(&dev->perf_props); 211 212 list_add_tail(&dev->list, device_list); 213 214 return dev; 215 } 216 217 218 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ 219 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ 220 fmt, __VA_ARGS__)) 221 #define sysfs_show_32bit_prop(buffer, offs, name, value) \ 222 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) 223 #define sysfs_show_64bit_prop(buffer, offs, name, value) \ 224 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) 225 #define sysfs_show_32bit_val(buffer, offs, value) \ 226 sysfs_show_gen_prop(buffer, offs, "%u\n", value) 227 #define sysfs_show_str_val(buffer, offs, value) \ 228 sysfs_show_gen_prop(buffer, offs, "%s\n", value) 229 230 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, 231 char *buffer) 232 { 233 int offs = 0; 234 235 /* Making sure that the buffer is an empty string */ 236 buffer[0] = 0; 237 238 if (attr == &sys_props.attr_genid) { 239 sysfs_show_32bit_val(buffer, offs, 240 sys_props.generation_count); 241 } else if (attr == &sys_props.attr_props) { 242 sysfs_show_64bit_prop(buffer, offs, "platform_oem", 243 sys_props.platform_oem); 244 sysfs_show_64bit_prop(buffer, offs, "platform_id", 245 sys_props.platform_id); 246 sysfs_show_64bit_prop(buffer, offs, "platform_rev", 247 sys_props.platform_rev); 248 } else { 249 offs = -EINVAL; 250 } 251 252 return offs; 253 } 254 255 static void kfd_topology_kobj_release(struct kobject *kobj) 256 { 257 kfree(kobj); 258 } 259 260 static const struct sysfs_ops sysprops_ops = { 261 .show = sysprops_show, 262 }; 263 264 static const struct kobj_type sysprops_type = { 265 .release = kfd_topology_kobj_release, 266 .sysfs_ops = &sysprops_ops, 267 }; 268 269 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, 270 char *buffer) 271 { 272 int offs = 0; 273 struct kfd_iolink_properties *iolink; 274 275 /* Making sure that the buffer is an empty string */ 276 buffer[0] = 0; 277 278 iolink = container_of(attr, struct kfd_iolink_properties, attr); 279 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) 280 return -EPERM; 281 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); 282 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); 283 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); 284 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); 285 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); 286 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); 287 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); 288 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); 289 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", 290 iolink->min_bandwidth); 291 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", 292 iolink->max_bandwidth); 293 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", 294 iolink->rec_transfer_size); 295 sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask", 296 iolink->rec_sdma_eng_id_mask); 297 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); 298 299 return offs; 300 } 301 302 static const struct sysfs_ops iolink_ops = { 303 .show = iolink_show, 304 }; 305 306 static const struct kobj_type iolink_type = { 307 .release = kfd_topology_kobj_release, 308 .sysfs_ops = &iolink_ops, 309 }; 310 311 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, 312 char *buffer) 313 { 314 int offs = 0; 315 struct kfd_mem_properties *mem; 316 317 /* Making sure that the buffer is an empty string */ 318 buffer[0] = 0; 319 320 mem = container_of(attr, struct kfd_mem_properties, attr); 321 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) 322 return -EPERM; 323 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); 324 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", 325 mem->size_in_bytes); 326 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); 327 sysfs_show_32bit_prop(buffer, offs, "width", mem->width); 328 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", 329 mem->mem_clk_max); 330 331 return offs; 332 } 333 334 static const struct sysfs_ops mem_ops = { 335 .show = mem_show, 336 }; 337 338 static const struct kobj_type mem_type = { 339 .release = kfd_topology_kobj_release, 340 .sysfs_ops = &mem_ops, 341 }; 342 343 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, 344 char *buffer) 345 { 346 int offs = 0; 347 uint32_t i, j; 348 struct kfd_cache_properties *cache; 349 350 /* Making sure that the buffer is an empty string */ 351 buffer[0] = 0; 352 cache = container_of(attr, struct kfd_cache_properties, attr); 353 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) 354 return -EPERM; 355 sysfs_show_32bit_prop(buffer, offs, "processor_id_low", 356 cache->processor_id_low); 357 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); 358 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); 359 sysfs_show_32bit_prop(buffer, offs, "cache_line_size", 360 cache->cacheline_size); 361 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", 362 cache->cachelines_per_tag); 363 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); 364 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); 365 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); 366 367 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); 368 for (i = 0; i < cache->sibling_map_size; i++) 369 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) 370 /* Check each bit */ 371 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", 372 (cache->sibling_map[i] >> j) & 1); 373 374 /* Replace the last "," with end of line */ 375 buffer[offs-1] = '\n'; 376 return offs; 377 } 378 379 static const struct sysfs_ops cache_ops = { 380 .show = kfd_cache_show, 381 }; 382 383 static const struct kobj_type cache_type = { 384 .release = kfd_topology_kobj_release, 385 .sysfs_ops = &cache_ops, 386 }; 387 388 /****** Sysfs of Performance Counters ******/ 389 390 struct kfd_perf_attr { 391 struct kobj_attribute attr; 392 uint32_t data; 393 }; 394 395 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, 396 char *buf) 397 { 398 int offs = 0; 399 struct kfd_perf_attr *attr; 400 401 buf[0] = 0; 402 attr = container_of(attrs, struct kfd_perf_attr, attr); 403 if (!attr->data) /* invalid data for PMC */ 404 return 0; 405 else 406 return sysfs_show_32bit_val(buf, offs, attr->data); 407 } 408 409 #define KFD_PERF_DESC(_name, _data) \ 410 { \ 411 .attr = __ATTR(_name, 0444, perf_show, NULL), \ 412 .data = _data, \ 413 } 414 415 static struct kfd_perf_attr perf_attr_iommu[] = { 416 KFD_PERF_DESC(max_concurrent, 0), 417 KFD_PERF_DESC(num_counters, 0), 418 KFD_PERF_DESC(counter_ids, 0), 419 }; 420 /****************************************/ 421 422 static ssize_t node_show(struct kobject *kobj, struct attribute *attr, 423 char *buffer) 424 { 425 int offs = 0; 426 struct kfd_topology_device *dev; 427 uint32_t log_max_watch_addr; 428 429 /* Making sure that the buffer is an empty string */ 430 buffer[0] = 0; 431 432 if (strcmp(attr->name, "gpu_id") == 0) { 433 dev = container_of(attr, struct kfd_topology_device, 434 attr_gpuid); 435 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 436 return -EPERM; 437 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); 438 } 439 440 if (strcmp(attr->name, "name") == 0) { 441 dev = container_of(attr, struct kfd_topology_device, 442 attr_name); 443 444 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 445 return -EPERM; 446 return sysfs_show_str_val(buffer, offs, dev->node_props.name); 447 } 448 449 dev = container_of(attr, struct kfd_topology_device, 450 attr_props); 451 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) 452 return -EPERM; 453 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", 454 dev->node_props.cpu_cores_count); 455 sysfs_show_32bit_prop(buffer, offs, "simd_count", 456 dev->gpu ? dev->node_props.simd_count : 0); 457 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", 458 dev->node_props.mem_banks_count); 459 sysfs_show_32bit_prop(buffer, offs, "caches_count", 460 dev->node_props.caches_count); 461 sysfs_show_32bit_prop(buffer, offs, "io_links_count", 462 dev->node_props.io_links_count); 463 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", 464 dev->node_props.p2p_links_count); 465 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", 466 dev->node_props.cpu_core_id_base); 467 sysfs_show_32bit_prop(buffer, offs, "simd_id_base", 468 dev->node_props.simd_id_base); 469 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", 470 dev->node_props.max_waves_per_simd); 471 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", 472 dev->node_props.lds_size_in_kb); 473 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", 474 dev->node_props.gds_size_in_kb); 475 sysfs_show_32bit_prop(buffer, offs, "num_gws", 476 dev->node_props.num_gws); 477 sysfs_show_32bit_prop(buffer, offs, "wave_front_size", 478 dev->node_props.wave_front_size); 479 sysfs_show_32bit_prop(buffer, offs, "array_count", 480 dev->gpu ? (dev->node_props.array_count * 481 NUM_XCC(dev->gpu->xcc_mask)) : 0); 482 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", 483 dev->node_props.simd_arrays_per_engine); 484 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", 485 dev->node_props.cu_per_simd_array); 486 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", 487 dev->node_props.simd_per_cu); 488 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", 489 dev->node_props.max_slots_scratch_cu); 490 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", 491 dev->node_props.gfx_target_version); 492 sysfs_show_32bit_prop(buffer, offs, "vendor_id", 493 dev->node_props.vendor_id); 494 sysfs_show_32bit_prop(buffer, offs, "device_id", 495 dev->node_props.device_id); 496 sysfs_show_32bit_prop(buffer, offs, "location_id", 497 dev->node_props.location_id); 498 sysfs_show_32bit_prop(buffer, offs, "domain", 499 dev->node_props.domain); 500 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", 501 dev->node_props.drm_render_minor); 502 sysfs_show_64bit_prop(buffer, offs, "hive_id", 503 dev->node_props.hive_id); 504 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", 505 dev->node_props.num_sdma_engines); 506 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", 507 dev->node_props.num_sdma_xgmi_engines); 508 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", 509 dev->node_props.num_sdma_queues_per_engine); 510 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", 511 dev->node_props.num_cp_queues); 512 513 if (dev->gpu) { 514 log_max_watch_addr = 515 __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points); 516 517 if (log_max_watch_addr) { 518 dev->node_props.capability |= 519 HSA_CAP_WATCH_POINTS_SUPPORTED; 520 521 dev->node_props.capability |= 522 ((log_max_watch_addr << 523 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & 524 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); 525 } 526 527 if (dev->gpu->adev->asic_type == CHIP_TONGA) 528 dev->node_props.capability |= 529 HSA_CAP_AQL_QUEUE_DOUBLE_MAP; 530 531 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", 532 dev->node_props.max_engine_clk_fcompute); 533 534 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); 535 536 sysfs_show_32bit_prop(buffer, offs, "fw_version", 537 dev->gpu->kfd->mec_fw_version); 538 sysfs_show_32bit_prop(buffer, offs, "capability", 539 dev->node_props.capability); 540 sysfs_show_64bit_prop(buffer, offs, "debug_prop", 541 dev->node_props.debug_prop); 542 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", 543 dev->gpu->kfd->sdma_fw_version); 544 sysfs_show_64bit_prop(buffer, offs, "unique_id", 545 dev->gpu->adev->unique_id); 546 sysfs_show_32bit_prop(buffer, offs, "num_xcc", 547 NUM_XCC(dev->gpu->xcc_mask)); 548 } 549 550 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", 551 cpufreq_quick_get_max(0)/1000); 552 } 553 554 static const struct sysfs_ops node_ops = { 555 .show = node_show, 556 }; 557 558 static const struct kobj_type node_type = { 559 .release = kfd_topology_kobj_release, 560 .sysfs_ops = &node_ops, 561 }; 562 563 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) 564 { 565 sysfs_remove_file(kobj, attr); 566 kobject_del(kobj); 567 kobject_put(kobj); 568 } 569 570 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) 571 { 572 struct kfd_iolink_properties *p2plink; 573 struct kfd_iolink_properties *iolink; 574 struct kfd_cache_properties *cache; 575 struct kfd_mem_properties *mem; 576 struct kfd_perf_properties *perf; 577 578 if (dev->kobj_iolink) { 579 list_for_each_entry(iolink, &dev->io_link_props, list) 580 if (iolink->kobj) { 581 kfd_remove_sysfs_file(iolink->kobj, 582 &iolink->attr); 583 iolink->kobj = NULL; 584 } 585 kobject_del(dev->kobj_iolink); 586 kobject_put(dev->kobj_iolink); 587 dev->kobj_iolink = NULL; 588 } 589 590 if (dev->kobj_p2plink) { 591 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 592 if (p2plink->kobj) { 593 kfd_remove_sysfs_file(p2plink->kobj, 594 &p2plink->attr); 595 p2plink->kobj = NULL; 596 } 597 kobject_del(dev->kobj_p2plink); 598 kobject_put(dev->kobj_p2plink); 599 dev->kobj_p2plink = NULL; 600 } 601 602 if (dev->kobj_cache) { 603 list_for_each_entry(cache, &dev->cache_props, list) 604 if (cache->kobj) { 605 kfd_remove_sysfs_file(cache->kobj, 606 &cache->attr); 607 cache->kobj = NULL; 608 } 609 kobject_del(dev->kobj_cache); 610 kobject_put(dev->kobj_cache); 611 dev->kobj_cache = NULL; 612 } 613 614 if (dev->kobj_mem) { 615 list_for_each_entry(mem, &dev->mem_props, list) 616 if (mem->kobj) { 617 kfd_remove_sysfs_file(mem->kobj, &mem->attr); 618 mem->kobj = NULL; 619 } 620 kobject_del(dev->kobj_mem); 621 kobject_put(dev->kobj_mem); 622 dev->kobj_mem = NULL; 623 } 624 625 if (dev->kobj_perf) { 626 list_for_each_entry(perf, &dev->perf_props, list) { 627 kfree(perf->attr_group); 628 perf->attr_group = NULL; 629 } 630 kobject_del(dev->kobj_perf); 631 kobject_put(dev->kobj_perf); 632 dev->kobj_perf = NULL; 633 } 634 635 if (dev->kobj_node) { 636 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); 637 sysfs_remove_file(dev->kobj_node, &dev->attr_name); 638 sysfs_remove_file(dev->kobj_node, &dev->attr_props); 639 kobject_del(dev->kobj_node); 640 kobject_put(dev->kobj_node); 641 dev->kobj_node = NULL; 642 } 643 } 644 645 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, 646 uint32_t id) 647 { 648 struct kfd_iolink_properties *p2plink; 649 struct kfd_iolink_properties *iolink; 650 struct kfd_cache_properties *cache; 651 struct kfd_mem_properties *mem; 652 struct kfd_perf_properties *perf; 653 int ret; 654 uint32_t i, num_attrs; 655 struct attribute **attrs; 656 657 if (WARN_ON(dev->kobj_node)) 658 return -EEXIST; 659 660 /* 661 * Creating the sysfs folders 662 */ 663 dev->kobj_node = kfd_alloc_struct(dev->kobj_node); 664 if (!dev->kobj_node) 665 return -ENOMEM; 666 667 ret = kobject_init_and_add(dev->kobj_node, &node_type, 668 sys_props.kobj_nodes, "%d", id); 669 if (ret < 0) { 670 kobject_put(dev->kobj_node); 671 return ret; 672 } 673 674 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); 675 if (!dev->kobj_mem) 676 return -ENOMEM; 677 678 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); 679 if (!dev->kobj_cache) 680 return -ENOMEM; 681 682 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); 683 if (!dev->kobj_iolink) 684 return -ENOMEM; 685 686 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); 687 if (!dev->kobj_p2plink) 688 return -ENOMEM; 689 690 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); 691 if (!dev->kobj_perf) 692 return -ENOMEM; 693 694 /* 695 * Creating sysfs files for node properties 696 */ 697 dev->attr_gpuid.name = "gpu_id"; 698 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; 699 sysfs_attr_init(&dev->attr_gpuid); 700 dev->attr_name.name = "name"; 701 dev->attr_name.mode = KFD_SYSFS_FILE_MODE; 702 sysfs_attr_init(&dev->attr_name); 703 dev->attr_props.name = "properties"; 704 dev->attr_props.mode = KFD_SYSFS_FILE_MODE; 705 sysfs_attr_init(&dev->attr_props); 706 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); 707 if (ret < 0) 708 return ret; 709 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); 710 if (ret < 0) 711 return ret; 712 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); 713 if (ret < 0) 714 return ret; 715 716 i = 0; 717 list_for_each_entry(mem, &dev->mem_props, list) { 718 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 719 if (!mem->kobj) 720 return -ENOMEM; 721 ret = kobject_init_and_add(mem->kobj, &mem_type, 722 dev->kobj_mem, "%d", i); 723 if (ret < 0) { 724 kobject_put(mem->kobj); 725 return ret; 726 } 727 728 mem->attr.name = "properties"; 729 mem->attr.mode = KFD_SYSFS_FILE_MODE; 730 sysfs_attr_init(&mem->attr); 731 ret = sysfs_create_file(mem->kobj, &mem->attr); 732 if (ret < 0) 733 return ret; 734 i++; 735 } 736 737 i = 0; 738 list_for_each_entry(cache, &dev->cache_props, list) { 739 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 740 if (!cache->kobj) 741 return -ENOMEM; 742 ret = kobject_init_and_add(cache->kobj, &cache_type, 743 dev->kobj_cache, "%d", i); 744 if (ret < 0) { 745 kobject_put(cache->kobj); 746 return ret; 747 } 748 749 cache->attr.name = "properties"; 750 cache->attr.mode = KFD_SYSFS_FILE_MODE; 751 sysfs_attr_init(&cache->attr); 752 ret = sysfs_create_file(cache->kobj, &cache->attr); 753 if (ret < 0) 754 return ret; 755 i++; 756 } 757 758 i = 0; 759 list_for_each_entry(iolink, &dev->io_link_props, list) { 760 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 761 if (!iolink->kobj) 762 return -ENOMEM; 763 ret = kobject_init_and_add(iolink->kobj, &iolink_type, 764 dev->kobj_iolink, "%d", i); 765 if (ret < 0) { 766 kobject_put(iolink->kobj); 767 return ret; 768 } 769 770 iolink->attr.name = "properties"; 771 iolink->attr.mode = KFD_SYSFS_FILE_MODE; 772 sysfs_attr_init(&iolink->attr); 773 ret = sysfs_create_file(iolink->kobj, &iolink->attr); 774 if (ret < 0) 775 return ret; 776 i++; 777 } 778 779 i = 0; 780 list_for_each_entry(p2plink, &dev->p2p_link_props, list) { 781 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 782 if (!p2plink->kobj) 783 return -ENOMEM; 784 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 785 dev->kobj_p2plink, "%d", i); 786 if (ret < 0) { 787 kobject_put(p2plink->kobj); 788 return ret; 789 } 790 791 p2plink->attr.name = "properties"; 792 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 793 sysfs_attr_init(&p2plink->attr); 794 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 795 if (ret < 0) 796 return ret; 797 i++; 798 } 799 800 /* All hardware blocks have the same number of attributes. */ 801 num_attrs = ARRAY_SIZE(perf_attr_iommu); 802 list_for_each_entry(perf, &dev->perf_props, list) { 803 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) 804 * num_attrs + sizeof(struct attribute_group), 805 GFP_KERNEL); 806 if (!perf->attr_group) 807 return -ENOMEM; 808 809 attrs = (struct attribute **)(perf->attr_group + 1); 810 if (!strcmp(perf->block_name, "iommu")) { 811 /* Information of IOMMU's num_counters and counter_ids is shown 812 * under /sys/bus/event_source/devices/amd_iommu. We don't 813 * duplicate here. 814 */ 815 perf_attr_iommu[0].data = perf->max_concurrent; 816 for (i = 0; i < num_attrs; i++) 817 attrs[i] = &perf_attr_iommu[i].attr.attr; 818 } 819 perf->attr_group->name = perf->block_name; 820 perf->attr_group->attrs = attrs; 821 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); 822 if (ret < 0) 823 return ret; 824 } 825 826 return 0; 827 } 828 829 /* Called with write topology lock acquired */ 830 static int kfd_build_sysfs_node_tree(void) 831 { 832 struct kfd_topology_device *dev; 833 int ret; 834 uint32_t i = 0; 835 836 list_for_each_entry(dev, &topology_device_list, list) { 837 ret = kfd_build_sysfs_node_entry(dev, i); 838 if (ret < 0) 839 return ret; 840 i++; 841 } 842 843 return 0; 844 } 845 846 /* Called with write topology lock acquired */ 847 static void kfd_remove_sysfs_node_tree(void) 848 { 849 struct kfd_topology_device *dev; 850 851 list_for_each_entry(dev, &topology_device_list, list) 852 kfd_remove_sysfs_node_entry(dev); 853 } 854 855 static int kfd_topology_update_sysfs(void) 856 { 857 int ret; 858 859 if (!sys_props.kobj_topology) { 860 sys_props.kobj_topology = 861 kfd_alloc_struct(sys_props.kobj_topology); 862 if (!sys_props.kobj_topology) 863 return -ENOMEM; 864 865 ret = kobject_init_and_add(sys_props.kobj_topology, 866 &sysprops_type, &kfd_device->kobj, 867 "topology"); 868 if (ret < 0) { 869 kobject_put(sys_props.kobj_topology); 870 return ret; 871 } 872 873 sys_props.kobj_nodes = kobject_create_and_add("nodes", 874 sys_props.kobj_topology); 875 if (!sys_props.kobj_nodes) 876 return -ENOMEM; 877 878 sys_props.attr_genid.name = "generation_id"; 879 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; 880 sysfs_attr_init(&sys_props.attr_genid); 881 ret = sysfs_create_file(sys_props.kobj_topology, 882 &sys_props.attr_genid); 883 if (ret < 0) 884 return ret; 885 886 sys_props.attr_props.name = "system_properties"; 887 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; 888 sysfs_attr_init(&sys_props.attr_props); 889 ret = sysfs_create_file(sys_props.kobj_topology, 890 &sys_props.attr_props); 891 if (ret < 0) 892 return ret; 893 } 894 895 kfd_remove_sysfs_node_tree(); 896 897 return kfd_build_sysfs_node_tree(); 898 } 899 900 static void kfd_topology_release_sysfs(void) 901 { 902 kfd_remove_sysfs_node_tree(); 903 if (sys_props.kobj_topology) { 904 sysfs_remove_file(sys_props.kobj_topology, 905 &sys_props.attr_genid); 906 sysfs_remove_file(sys_props.kobj_topology, 907 &sys_props.attr_props); 908 if (sys_props.kobj_nodes) { 909 kobject_del(sys_props.kobj_nodes); 910 kobject_put(sys_props.kobj_nodes); 911 sys_props.kobj_nodes = NULL; 912 } 913 kobject_del(sys_props.kobj_topology); 914 kobject_put(sys_props.kobj_topology); 915 sys_props.kobj_topology = NULL; 916 } 917 } 918 919 /* Called with write topology_lock acquired */ 920 static void kfd_topology_update_device_list(struct list_head *temp_list, 921 struct list_head *master_list) 922 { 923 while (!list_empty(temp_list)) { 924 list_move_tail(temp_list->next, master_list); 925 sys_props.num_devices++; 926 } 927 } 928 929 static void kfd_debug_print_topology(void) 930 { 931 struct kfd_topology_device *dev; 932 933 down_read(&topology_lock); 934 935 dev = list_last_entry(&topology_device_list, 936 struct kfd_topology_device, list); 937 if (dev) { 938 if (dev->node_props.cpu_cores_count && 939 dev->node_props.simd_count) { 940 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", 941 dev->node_props.device_id, 942 dev->node_props.vendor_id); 943 } else if (dev->node_props.cpu_cores_count) 944 pr_info("Topology: Add CPU node\n"); 945 else if (dev->node_props.simd_count) 946 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", 947 dev->node_props.device_id, 948 dev->node_props.vendor_id); 949 } 950 up_read(&topology_lock); 951 } 952 953 /* Helper function for intializing platform_xx members of 954 * kfd_system_properties. Uses OEM info from the last CPU/APU node. 955 */ 956 static void kfd_update_system_properties(void) 957 { 958 struct kfd_topology_device *dev; 959 960 down_read(&topology_lock); 961 dev = list_last_entry(&topology_device_list, 962 struct kfd_topology_device, list); 963 if (dev) { 964 sys_props.platform_id = dev->oem_id64; 965 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); 966 sys_props.platform_rev = dev->oem_revision; 967 } 968 up_read(&topology_lock); 969 } 970 971 static void find_system_memory(const struct dmi_header *dm, 972 void *private) 973 { 974 struct kfd_mem_properties *mem; 975 u16 mem_width, mem_clock; 976 struct kfd_topology_device *kdev = 977 (struct kfd_topology_device *)private; 978 const u8 *dmi_data = (const u8 *)(dm + 1); 979 980 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { 981 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); 982 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); 983 list_for_each_entry(mem, &kdev->mem_props, list) { 984 if (mem_width != 0xFFFF && mem_width != 0) 985 mem->width = mem_width; 986 if (mem_clock != 0) 987 mem->mem_clk_max = mem_clock; 988 } 989 } 990 } 991 992 /* kfd_add_non_crat_information - Add information that is not currently 993 * defined in CRAT but is necessary for KFD topology 994 * @dev - topology device to which addition info is added 995 */ 996 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) 997 { 998 /* Check if CPU only node. */ 999 if (!kdev->gpu) { 1000 /* Add system memory information */ 1001 dmi_walk(find_system_memory, kdev); 1002 } 1003 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ 1004 } 1005 1006 int kfd_topology_init(void) 1007 { 1008 void *crat_image = NULL; 1009 size_t image_size = 0; 1010 int ret; 1011 struct list_head temp_topology_device_list; 1012 int cpu_only_node = 0; 1013 struct kfd_topology_device *kdev; 1014 int proximity_domain; 1015 1016 /* topology_device_list - Master list of all topology devices 1017 * temp_topology_device_list - temporary list created while parsing CRAT 1018 * or VCRAT. Once parsing is complete the contents of list is moved to 1019 * topology_device_list 1020 */ 1021 1022 /* Initialize the head for the both the lists */ 1023 INIT_LIST_HEAD(&topology_device_list); 1024 INIT_LIST_HEAD(&temp_topology_device_list); 1025 init_rwsem(&topology_lock); 1026 1027 memset(&sys_props, 0, sizeof(sys_props)); 1028 1029 /* Proximity domains in ACPI CRAT tables start counting at 1030 * 0. The same should be true for virtual CRAT tables created 1031 * at this stage. GPUs added later in kfd_topology_add_device 1032 * use a counter. 1033 */ 1034 proximity_domain = 0; 1035 1036 ret = kfd_create_crat_image_virtual(&crat_image, &image_size, 1037 COMPUTE_UNIT_CPU, NULL, 1038 proximity_domain); 1039 cpu_only_node = 1; 1040 if (ret) { 1041 pr_err("Error creating VCRAT table for CPU\n"); 1042 return ret; 1043 } 1044 1045 ret = kfd_parse_crat_table(crat_image, 1046 &temp_topology_device_list, 1047 proximity_domain); 1048 if (ret) { 1049 pr_err("Error parsing VCRAT table for CPU\n"); 1050 goto err; 1051 } 1052 1053 kdev = list_first_entry(&temp_topology_device_list, 1054 struct kfd_topology_device, list); 1055 1056 down_write(&topology_lock); 1057 kfd_topology_update_device_list(&temp_topology_device_list, 1058 &topology_device_list); 1059 topology_crat_proximity_domain = sys_props.num_devices-1; 1060 ret = kfd_topology_update_sysfs(); 1061 up_write(&topology_lock); 1062 1063 if (!ret) { 1064 sys_props.generation_count++; 1065 kfd_update_system_properties(); 1066 kfd_debug_print_topology(); 1067 } else 1068 pr_err("Failed to update topology in sysfs ret=%d\n", ret); 1069 1070 /* For nodes with GPU, this information gets added 1071 * when GPU is detected (kfd_topology_add_device). 1072 */ 1073 if (cpu_only_node) { 1074 /* Add additional information to CPU only node created above */ 1075 down_write(&topology_lock); 1076 kdev = list_first_entry(&topology_device_list, 1077 struct kfd_topology_device, list); 1078 up_write(&topology_lock); 1079 kfd_add_non_crat_information(kdev); 1080 } 1081 1082 err: 1083 kfd_destroy_crat_image(crat_image); 1084 return ret; 1085 } 1086 1087 void kfd_topology_shutdown(void) 1088 { 1089 down_write(&topology_lock); 1090 kfd_topology_release_sysfs(); 1091 kfd_release_live_view(); 1092 up_write(&topology_lock); 1093 } 1094 1095 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu) 1096 { 1097 uint32_t gpu_id; 1098 uint32_t buf[8]; 1099 uint64_t local_mem_size; 1100 struct kfd_topology_device *dev; 1101 bool is_unique; 1102 uint8_t *crc_buf; 1103 1104 if (!gpu) 1105 return 0; 1106 1107 crc_buf = (uint8_t *)&buf; 1108 local_mem_size = gpu->local_mem_info.local_mem_size_private + 1109 gpu->local_mem_info.local_mem_size_public; 1110 buf[0] = gpu->adev->pdev->devfn; 1111 buf[1] = gpu->adev->pdev->subsystem_vendor | 1112 (gpu->adev->pdev->subsystem_device << 16); 1113 buf[2] = pci_domain_nr(gpu->adev->pdev->bus); 1114 buf[3] = gpu->adev->pdev->device; 1115 buf[4] = gpu->adev->pdev->bus->number; 1116 buf[5] = lower_32_bits(local_mem_size); 1117 buf[6] = upper_32_bits(local_mem_size); 1118 buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16); 1119 1120 gpu_id = crc16(0, crc_buf, sizeof(buf)) & 1121 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1); 1122 1123 /* There is a very small possibility when generating a 1124 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer 1125 * that the value could be 0 or non-unique. So, check if 1126 * it is unique and non-zero. If not unique increment till 1127 * unique one is found. In case of overflow, restart from 1 1128 */ 1129 1130 down_read(&topology_lock); 1131 do { 1132 is_unique = true; 1133 if (!gpu_id) 1134 gpu_id = 1; 1135 list_for_each_entry(dev, &topology_device_list, list) { 1136 if (dev->gpu && dev->gpu_id == gpu_id) { 1137 is_unique = false; 1138 break; 1139 } 1140 } 1141 if (unlikely(!is_unique)) 1142 gpu_id = (gpu_id + 1) & 1143 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1); 1144 } while (!is_unique); 1145 up_read(&topology_lock); 1146 1147 return gpu_id; 1148 } 1149 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If 1150 * the GPU device is not already present in the topology device 1151 * list then return NULL. This means a new topology device has to 1152 * be created for this GPU. 1153 */ 1154 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu) 1155 { 1156 struct kfd_topology_device *dev; 1157 struct kfd_topology_device *out_dev = NULL; 1158 struct kfd_mem_properties *mem; 1159 struct kfd_cache_properties *cache; 1160 struct kfd_iolink_properties *iolink; 1161 struct kfd_iolink_properties *p2plink; 1162 1163 list_for_each_entry(dev, &topology_device_list, list) { 1164 /* Discrete GPUs need their own topology device list 1165 * entries. Don't assign them to CPU/APU nodes. 1166 */ 1167 if (dev->node_props.cpu_cores_count) 1168 continue; 1169 1170 if (!dev->gpu && (dev->node_props.simd_count > 0)) { 1171 dev->gpu = gpu; 1172 out_dev = dev; 1173 1174 list_for_each_entry(mem, &dev->mem_props, list) 1175 mem->gpu = dev->gpu; 1176 list_for_each_entry(cache, &dev->cache_props, list) 1177 cache->gpu = dev->gpu; 1178 list_for_each_entry(iolink, &dev->io_link_props, list) 1179 iolink->gpu = dev->gpu; 1180 list_for_each_entry(p2plink, &dev->p2p_link_props, list) 1181 p2plink->gpu = dev->gpu; 1182 break; 1183 } 1184 } 1185 return out_dev; 1186 } 1187 1188 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) 1189 { 1190 /* 1191 * TODO: Generate an event for thunk about the arrival/removal 1192 * of the GPU 1193 */ 1194 } 1195 1196 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, 1197 * patch this after CRAT parsing. 1198 */ 1199 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) 1200 { 1201 struct kfd_mem_properties *mem; 1202 struct kfd_local_mem_info local_mem_info; 1203 1204 if (!dev) 1205 return; 1206 1207 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with 1208 * single bank of VRAM local memory. 1209 * for dGPUs - VCRAT reports only one bank of Local Memory 1210 * for APUs - If CRAT from ACPI reports more than one bank, then 1211 * all the banks will report the same mem_clk_max information 1212 */ 1213 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info, 1214 dev->gpu->xcp); 1215 1216 list_for_each_entry(mem, &dev->mem_props, list) 1217 mem->mem_clk_max = local_mem_info.mem_clk_max; 1218 } 1219 1220 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, 1221 struct kfd_topology_device *target_gpu_dev, 1222 struct kfd_iolink_properties *link) 1223 { 1224 /* xgmi always supports atomics between links. */ 1225 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) 1226 return; 1227 1228 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ 1229 if (target_gpu_dev) { 1230 uint32_t cap; 1231 1232 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev, 1233 PCI_EXP_DEVCAP2, &cap); 1234 1235 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1236 PCI_EXP_DEVCAP2_ATOMIC_COMP64))) 1237 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1238 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1239 /* set gpu (dev) flags. */ 1240 } else { 1241 if (!dev->gpu->kfd->pci_atomic_requested || 1242 dev->gpu->adev->asic_type == CHIP_HAWAII) 1243 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | 1244 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; 1245 } 1246 } 1247 1248 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, 1249 struct kfd_iolink_properties *outbound_link, 1250 struct kfd_iolink_properties *inbound_link) 1251 { 1252 /* CPU -> GPU with PCIe */ 1253 if (!to_dev->gpu && 1254 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 1255 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1256 1257 if (to_dev->gpu) { 1258 /* GPU <-> GPU with PCIe and 1259 * Vega20 with XGMI 1260 */ 1261 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || 1262 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && 1263 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { 1264 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1265 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; 1266 } 1267 } 1268 } 1269 1270 #define REC_SDMA_NUM_GPU 8 1271 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = { 1272 { -1, 14, 12, 2, 4, 8, 10, 6 }, 1273 { 14, -1, 2, 10, 8, 4, 6, 12 }, 1274 { 10, 2, -1, 12, 14, 6, 4, 8 }, 1275 { 2, 12, 10, -1, 6, 14, 8, 4 }, 1276 { 4, 8, 14, 6, -1, 10, 12, 2 }, 1277 { 8, 4, 6, 14, 12, -1, 2, 10 }, 1278 { 10, 6, 4, 8, 12, 2, -1, 14 }, 1279 { 6, 12, 8, 4, 2, 10, 14, -1 }}; 1280 1281 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev, 1282 struct kfd_iolink_properties *outbound_link, 1283 struct kfd_iolink_properties *inbound_link) 1284 { 1285 struct kfd_node *gpu = outbound_link->gpu; 1286 struct amdgpu_device *adev = gpu->adev; 1287 int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes; 1288 bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu && 1289 adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 && 1290 kfd_get_num_xgmi_sdma_engines(gpu) >= 14 && 1291 (!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8); 1292 1293 if (support_rec_eng) { 1294 int src_socket_id = adev->gmc.xgmi.physical_node_id; 1295 int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id; 1296 1297 outbound_link->rec_sdma_eng_id_mask = 1298 1 << rec_sdma_eng_map[src_socket_id][dst_socket_id]; 1299 inbound_link->rec_sdma_eng_id_mask = 1300 1 << rec_sdma_eng_map[dst_socket_id][src_socket_id]; 1301 } else { 1302 int num_sdma_eng = kfd_get_num_sdma_engines(gpu); 1303 int i, eng_offset = 0; 1304 1305 if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && 1306 kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) { 1307 eng_offset = num_sdma_eng; 1308 num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu); 1309 } 1310 1311 for (i = 0; i < num_sdma_eng; i++) { 1312 outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset)); 1313 inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset)); 1314 } 1315 } 1316 } 1317 1318 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) 1319 { 1320 struct kfd_iolink_properties *link, *inbound_link; 1321 struct kfd_topology_device *peer_dev; 1322 1323 if (!dev || !dev->gpu) 1324 return; 1325 1326 /* GPU only creates direct links so apply flags setting to all */ 1327 list_for_each_entry(link, &dev->io_link_props, list) { 1328 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1329 kfd_set_iolink_no_atomics(dev, NULL, link); 1330 peer_dev = kfd_topology_device_by_proximity_domain( 1331 link->node_to); 1332 1333 if (!peer_dev) 1334 continue; 1335 1336 /* Include the CPU peer in GPU hive if connected over xGMI. */ 1337 if (!peer_dev->gpu && 1338 link->iolink_type == CRAT_IOLINK_TYPE_XGMI) { 1339 /* 1340 * If the GPU is not part of a GPU hive, use its pci 1341 * device location as the hive ID to bind with the CPU. 1342 */ 1343 if (!dev->node_props.hive_id) 1344 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev); 1345 peer_dev->node_props.hive_id = dev->node_props.hive_id; 1346 } 1347 1348 list_for_each_entry(inbound_link, &peer_dev->io_link_props, 1349 list) { 1350 if (inbound_link->node_to != link->node_from) 1351 continue; 1352 1353 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1354 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1355 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1356 kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link); 1357 } 1358 } 1359 1360 /* Create indirect links so apply flags setting to all */ 1361 list_for_each_entry(link, &dev->p2p_link_props, list) { 1362 link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1363 kfd_set_iolink_no_atomics(dev, NULL, link); 1364 peer_dev = kfd_topology_device_by_proximity_domain( 1365 link->node_to); 1366 1367 if (!peer_dev) 1368 continue; 1369 1370 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, 1371 list) { 1372 if (inbound_link->node_to != link->node_from) 1373 continue; 1374 1375 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; 1376 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); 1377 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); 1378 } 1379 } 1380 } 1381 1382 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, 1383 struct kfd_iolink_properties *p2plink) 1384 { 1385 int ret; 1386 1387 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 1388 if (!p2plink->kobj) 1389 return -ENOMEM; 1390 1391 ret = kobject_init_and_add(p2plink->kobj, &iolink_type, 1392 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); 1393 if (ret < 0) { 1394 kobject_put(p2plink->kobj); 1395 return ret; 1396 } 1397 1398 p2plink->attr.name = "properties"; 1399 p2plink->attr.mode = KFD_SYSFS_FILE_MODE; 1400 sysfs_attr_init(&p2plink->attr); 1401 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); 1402 if (ret < 0) 1403 return ret; 1404 1405 return 0; 1406 } 1407 1408 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) 1409 { 1410 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; 1411 struct kfd_iolink_properties *props = NULL, *props2 = NULL; 1412 struct kfd_topology_device *cpu_dev; 1413 int ret = 0; 1414 int i, num_cpu; 1415 1416 num_cpu = 0; 1417 list_for_each_entry(cpu_dev, &topology_device_list, list) { 1418 if (cpu_dev->gpu) 1419 break; 1420 num_cpu++; 1421 } 1422 1423 if (list_empty(&kdev->io_link_props)) 1424 return -ENODATA; 1425 1426 gpu_link = list_first_entry(&kdev->io_link_props, 1427 struct kfd_iolink_properties, list); 1428 1429 for (i = 0; i < num_cpu; i++) { 1430 /* CPU <--> GPU */ 1431 if (gpu_link->node_to == i) 1432 continue; 1433 1434 /* find CPU <--> CPU links */ 1435 cpu_link = NULL; 1436 cpu_dev = kfd_topology_device_by_proximity_domain(i); 1437 if (cpu_dev) { 1438 list_for_each_entry(tmp_link, 1439 &cpu_dev->io_link_props, list) { 1440 if (tmp_link->node_to == gpu_link->node_to) { 1441 cpu_link = tmp_link; 1442 break; 1443 } 1444 } 1445 } 1446 1447 if (!cpu_link) 1448 return -ENOMEM; 1449 1450 /* CPU <--> CPU <--> GPU, GPU node*/ 1451 props = kfd_alloc_struct(props); 1452 if (!props) 1453 return -ENOMEM; 1454 1455 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); 1456 props->weight = gpu_link->weight + cpu_link->weight; 1457 props->min_latency = gpu_link->min_latency + cpu_link->min_latency; 1458 props->max_latency = gpu_link->max_latency + cpu_link->max_latency; 1459 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); 1460 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); 1461 1462 props->node_from = gpu_node; 1463 props->node_to = i; 1464 kdev->node_props.p2p_links_count++; 1465 list_add_tail(&props->list, &kdev->p2p_link_props); 1466 ret = kfd_build_p2p_node_entry(kdev, props); 1467 if (ret < 0) 1468 return ret; 1469 1470 /* for small Bar, no CPU --> GPU in-direct links */ 1471 if (kfd_dev_is_large_bar(kdev->gpu)) { 1472 /* CPU <--> CPU <--> GPU, CPU node*/ 1473 props2 = kfd_alloc_struct(props2); 1474 if (!props2) 1475 return -ENOMEM; 1476 1477 memcpy(props2, props, sizeof(struct kfd_iolink_properties)); 1478 props2->node_from = i; 1479 props2->node_to = gpu_node; 1480 props2->kobj = NULL; 1481 cpu_dev->node_props.p2p_links_count++; 1482 list_add_tail(&props2->list, &cpu_dev->p2p_link_props); 1483 ret = kfd_build_p2p_node_entry(cpu_dev, props2); 1484 if (ret < 0) 1485 return ret; 1486 } 1487 } 1488 return ret; 1489 } 1490 1491 #if defined(CONFIG_HSA_AMD_P2P) 1492 static int kfd_add_peer_prop(struct kfd_topology_device *kdev, 1493 struct kfd_topology_device *peer, int from, int to) 1494 { 1495 struct kfd_iolink_properties *props = NULL; 1496 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; 1497 struct kfd_topology_device *cpu_dev; 1498 int ret = 0; 1499 1500 if (!amdgpu_device_is_peer_accessible( 1501 kdev->gpu->adev, 1502 peer->gpu->adev)) 1503 return ret; 1504 1505 if (list_empty(&kdev->io_link_props)) 1506 return -ENODATA; 1507 1508 iolink1 = list_first_entry(&kdev->io_link_props, 1509 struct kfd_iolink_properties, list); 1510 1511 if (list_empty(&peer->io_link_props)) 1512 return -ENODATA; 1513 1514 iolink2 = list_first_entry(&peer->io_link_props, 1515 struct kfd_iolink_properties, list); 1516 1517 props = kfd_alloc_struct(props); 1518 if (!props) 1519 return -ENOMEM; 1520 1521 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); 1522 1523 props->weight = iolink1->weight + iolink2->weight; 1524 props->min_latency = iolink1->min_latency + iolink2->min_latency; 1525 props->max_latency = iolink1->max_latency + iolink2->max_latency; 1526 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); 1527 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); 1528 1529 if (iolink1->node_to != iolink2->node_to) { 1530 /* CPU->CPU link*/ 1531 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); 1532 if (cpu_dev) { 1533 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) { 1534 if (iolink3->node_to != iolink2->node_to) 1535 continue; 1536 1537 props->weight += iolink3->weight; 1538 props->min_latency += iolink3->min_latency; 1539 props->max_latency += iolink3->max_latency; 1540 props->min_bandwidth = min(props->min_bandwidth, 1541 iolink3->min_bandwidth); 1542 props->max_bandwidth = min(props->max_bandwidth, 1543 iolink3->max_bandwidth); 1544 break; 1545 } 1546 } else { 1547 WARN(1, "CPU node not found"); 1548 } 1549 } 1550 1551 props->node_from = from; 1552 props->node_to = to; 1553 peer->node_props.p2p_links_count++; 1554 list_add_tail(&props->list, &peer->p2p_link_props); 1555 ret = kfd_build_p2p_node_entry(peer, props); 1556 1557 return ret; 1558 } 1559 #endif 1560 1561 static int kfd_dev_create_p2p_links(void) 1562 { 1563 struct kfd_topology_device *dev; 1564 struct kfd_topology_device *new_dev; 1565 #if defined(CONFIG_HSA_AMD_P2P) 1566 uint32_t i; 1567 #endif 1568 uint32_t k; 1569 int ret = 0; 1570 1571 k = 0; 1572 list_for_each_entry(dev, &topology_device_list, list) 1573 k++; 1574 if (k < 2) 1575 return 0; 1576 1577 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); 1578 if (WARN_ON(!new_dev->gpu)) 1579 return 0; 1580 1581 k--; 1582 1583 /* create in-direct links */ 1584 ret = kfd_create_indirect_link_prop(new_dev, k); 1585 if (ret < 0) 1586 goto out; 1587 1588 /* create p2p links */ 1589 #if defined(CONFIG_HSA_AMD_P2P) 1590 i = 0; 1591 list_for_each_entry(dev, &topology_device_list, list) { 1592 if (dev == new_dev) 1593 break; 1594 if (!dev->gpu || !dev->gpu->adev || 1595 (dev->gpu->kfd->hive_id && 1596 dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id)) 1597 goto next; 1598 1599 /* check if node(s) is/are peer accessible in one direction or bi-direction */ 1600 ret = kfd_add_peer_prop(new_dev, dev, i, k); 1601 if (ret < 0) 1602 goto out; 1603 1604 ret = kfd_add_peer_prop(dev, new_dev, k, i); 1605 if (ret < 0) 1606 goto out; 1607 next: 1608 i++; 1609 } 1610 #endif 1611 1612 out: 1613 return ret; 1614 } 1615 1616 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1617 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext, 1618 struct kfd_gpu_cache_info *pcache_info, 1619 int cu_bitmask, 1620 int cache_type, unsigned int cu_processor_id, 1621 int cu_block) 1622 { 1623 unsigned int cu_sibling_map_mask; 1624 int first_active_cu; 1625 struct kfd_cache_properties *pcache = NULL; 1626 1627 cu_sibling_map_mask = cu_bitmask; 1628 cu_sibling_map_mask >>= cu_block; 1629 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1630 first_active_cu = ffs(cu_sibling_map_mask); 1631 1632 /* CU could be inactive. In case of shared cache find the first active 1633 * CU. and incase of non-shared cache check if the CU is inactive. If 1634 * inactive active skip it 1635 */ 1636 if (first_active_cu) { 1637 pcache = kfd_alloc_struct(pcache); 1638 if (!pcache) 1639 return -ENOMEM; 1640 1641 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1642 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); 1643 pcache->cache_level = pcache_info[cache_type].cache_level; 1644 pcache->cache_size = pcache_info[cache_type].cache_size; 1645 pcache->cacheline_size = pcache_info[cache_type].cache_line_size; 1646 1647 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1648 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1649 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1650 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1651 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1652 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1653 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1654 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1655 1656 /* Sibling map is w.r.t processor_id_low, so shift out 1657 * inactive CU 1658 */ 1659 cu_sibling_map_mask = 1660 cu_sibling_map_mask >> (first_active_cu - 1); 1661 1662 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1663 pcache->sibling_map[1] = 1664 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1665 pcache->sibling_map[2] = 1666 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1667 pcache->sibling_map[3] = 1668 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1669 1670 pcache->sibling_map_size = 4; 1671 *props_ext = pcache; 1672 1673 return 0; 1674 } 1675 return 1; 1676 } 1677 1678 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1679 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext, 1680 struct kfd_gpu_cache_info *pcache_info, 1681 struct amdgpu_cu_info *cu_info, 1682 struct amdgpu_gfx_config *gfx_info, 1683 int cache_type, unsigned int cu_processor_id, 1684 struct kfd_node *knode) 1685 { 1686 unsigned int cu_sibling_map_mask; 1687 int first_active_cu; 1688 int i, j, k, xcc, start, end; 1689 int num_xcc = NUM_XCC(knode->xcc_mask); 1690 struct kfd_cache_properties *pcache = NULL; 1691 enum amdgpu_memory_partition mode; 1692 struct amdgpu_device *adev = knode->adev; 1693 1694 start = ffs(knode->xcc_mask) - 1; 1695 end = start + num_xcc; 1696 cu_sibling_map_mask = cu_info->bitmap[start][0][0]; 1697 cu_sibling_map_mask &= 1698 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1699 first_active_cu = ffs(cu_sibling_map_mask); 1700 1701 /* CU could be inactive. In case of shared cache find the first active 1702 * CU. and incase of non-shared cache check if the CU is inactive. If 1703 * inactive active skip it 1704 */ 1705 if (first_active_cu) { 1706 pcache = kfd_alloc_struct(pcache); 1707 if (!pcache) 1708 return -ENOMEM; 1709 1710 memset(pcache, 0, sizeof(struct kfd_cache_properties)); 1711 pcache->processor_id_low = cu_processor_id 1712 + (first_active_cu - 1); 1713 pcache->cache_level = pcache_info[cache_type].cache_level; 1714 pcache->cacheline_size = pcache_info[cache_type].cache_line_size; 1715 1716 if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) || 1717 KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4)) 1718 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1719 else 1720 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1721 1722 pcache->cache_size = pcache_info[cache_type].cache_size; 1723 /* Partition mode only affects L3 cache size */ 1724 if (mode && pcache->cache_level == 3) 1725 pcache->cache_size /= mode; 1726 1727 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) 1728 pcache->cache_type |= HSA_CACHE_TYPE_DATA; 1729 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) 1730 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 1731 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) 1732 pcache->cache_type |= HSA_CACHE_TYPE_CPU; 1733 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 1734 pcache->cache_type |= HSA_CACHE_TYPE_HSACU; 1735 1736 /* Sibling map is w.r.t processor_id_low, so shift out 1737 * inactive CU 1738 */ 1739 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); 1740 k = 0; 1741 1742 for (xcc = start; xcc < end; xcc++) { 1743 for (i = 0; i < gfx_info->max_shader_engines; i++) { 1744 for (j = 0; j < gfx_info->max_sh_per_se; j++) { 1745 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1746 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1747 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1748 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1749 k += 4; 1750 1751 cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4]; 1752 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1753 } 1754 } 1755 } 1756 pcache->sibling_map_size = k; 1757 *props_ext = pcache; 1758 return 0; 1759 } 1760 return 1; 1761 } 1762 1763 #define KFD_MAX_CACHE_TYPES 6 1764 1765 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info 1766 * tables 1767 */ 1768 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev) 1769 { 1770 struct kfd_gpu_cache_info *pcache_info = NULL; 1771 int i, j, k, xcc, start, end; 1772 int ct = 0; 1773 unsigned int cu_processor_id; 1774 int ret; 1775 unsigned int num_cu_shared; 1776 struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info; 1777 struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config; 1778 int gpu_processor_id; 1779 struct kfd_cache_properties *props_ext; 1780 int num_of_entries = 0; 1781 int num_of_cache_types = 0; 1782 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; 1783 1784 1785 gpu_processor_id = dev->node_props.simd_id_base; 1786 1787 memset(cache_info, 0, sizeof(cache_info)); 1788 pcache_info = cache_info; 1789 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info); 1790 if (!num_of_cache_types) { 1791 pr_warn("no cache info found\n"); 1792 return; 1793 } 1794 1795 /* For each type of cache listed in the kfd_gpu_cache_info table, 1796 * go through all available Compute Units. 1797 * The [i,j,k] loop will 1798 * if kfd_gpu_cache_info.num_cu_shared = 1 1799 * will parse through all available CU 1800 * If (kfd_gpu_cache_info.num_cu_shared != 1) 1801 * then it will consider only one CU from 1802 * the shared unit 1803 */ 1804 start = ffs(kdev->xcc_mask) - 1; 1805 end = start + NUM_XCC(kdev->xcc_mask); 1806 1807 for (ct = 0; ct < num_of_cache_types; ct++) { 1808 cu_processor_id = gpu_processor_id; 1809 if (pcache_info[ct].cache_level == 1) { 1810 for (xcc = start; xcc < end; xcc++) { 1811 for (i = 0; i < gfx_info->max_shader_engines; i++) { 1812 for (j = 0; j < gfx_info->max_sh_per_se; j++) { 1813 for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) { 1814 1815 ret = fill_in_l1_pcache(&props_ext, pcache_info, 1816 cu_info->bitmap[xcc][i % 4][j + i / 4], ct, 1817 cu_processor_id, k); 1818 1819 if (ret < 0) 1820 break; 1821 1822 if (!ret) { 1823 num_of_entries++; 1824 list_add_tail(&props_ext->list, &dev->cache_props); 1825 } 1826 1827 /* Move to next CU block */ 1828 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= 1829 gfx_info->max_cu_per_sh) ? 1830 pcache_info[ct].num_cu_shared : 1831 (gfx_info->max_cu_per_sh - k); 1832 cu_processor_id += num_cu_shared; 1833 } 1834 } 1835 } 1836 } 1837 } else { 1838 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info, 1839 cu_info, gfx_info, ct, cu_processor_id, kdev); 1840 1841 if (ret < 0) 1842 break; 1843 1844 if (!ret) { 1845 num_of_entries++; 1846 list_add_tail(&props_ext->list, &dev->cache_props); 1847 } 1848 } 1849 } 1850 dev->node_props.caches_count += num_of_entries; 1851 pr_debug("Added [%d] GPU cache entries\n", num_of_entries); 1852 } 1853 1854 static int kfd_topology_add_device_locked(struct kfd_node *gpu, 1855 struct kfd_topology_device **dev) 1856 { 1857 int proximity_domain = ++topology_crat_proximity_domain; 1858 struct list_head temp_topology_device_list; 1859 void *crat_image = NULL; 1860 size_t image_size = 0; 1861 int res; 1862 1863 res = kfd_create_crat_image_virtual(&crat_image, &image_size, 1864 COMPUTE_UNIT_GPU, gpu, 1865 proximity_domain); 1866 if (res) { 1867 dev_err(gpu->adev->dev, "Error creating VCRAT\n"); 1868 topology_crat_proximity_domain--; 1869 goto err; 1870 } 1871 1872 INIT_LIST_HEAD(&temp_topology_device_list); 1873 1874 res = kfd_parse_crat_table(crat_image, 1875 &temp_topology_device_list, 1876 proximity_domain); 1877 if (res) { 1878 dev_err(gpu->adev->dev, "Error parsing VCRAT\n"); 1879 topology_crat_proximity_domain--; 1880 goto err; 1881 } 1882 1883 kfd_topology_update_device_list(&temp_topology_device_list, 1884 &topology_device_list); 1885 1886 *dev = kfd_assign_gpu(gpu); 1887 if (WARN_ON(!*dev)) { 1888 res = -ENODEV; 1889 goto err; 1890 } 1891 1892 /* Fill the cache affinity information here for the GPUs 1893 * using VCRAT 1894 */ 1895 kfd_fill_cache_non_crat_info(*dev, gpu); 1896 1897 /* Update the SYSFS tree, since we added another topology 1898 * device 1899 */ 1900 res = kfd_topology_update_sysfs(); 1901 if (!res) 1902 sys_props.generation_count++; 1903 else 1904 dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n", 1905 res); 1906 1907 err: 1908 kfd_destroy_crat_image(crat_image); 1909 return res; 1910 } 1911 1912 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev) 1913 { 1914 bool firmware_supported = true; 1915 1916 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) && 1917 KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) { 1918 uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version & 1919 AMDGPU_MES_API_VERSION_MASK) >> 1920 AMDGPU_MES_API_VERSION_SHIFT; 1921 uint32_t mes_rev = dev->gpu->adev->mes.sched_version & 1922 AMDGPU_MES_VERSION_MASK; 1923 1924 firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64); 1925 goto out; 1926 } 1927 1928 /* 1929 * Note: Any unlisted devices here are assumed to support exception handling. 1930 * Add additional checks here as needed. 1931 */ 1932 switch (KFD_GC_VERSION(dev->gpu)) { 1933 case IP_VERSION(9, 0, 1): 1934 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768; 1935 break; 1936 case IP_VERSION(9, 1, 0): 1937 case IP_VERSION(9, 2, 1): 1938 case IP_VERSION(9, 2, 2): 1939 case IP_VERSION(9, 3, 0): 1940 case IP_VERSION(9, 4, 0): 1941 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459; 1942 break; 1943 case IP_VERSION(9, 4, 1): 1944 firmware_supported = dev->gpu->kfd->mec_fw_version >= 60; 1945 break; 1946 case IP_VERSION(9, 4, 2): 1947 firmware_supported = dev->gpu->kfd->mec_fw_version >= 51; 1948 break; 1949 case IP_VERSION(10, 1, 10): 1950 case IP_VERSION(10, 1, 2): 1951 case IP_VERSION(10, 1, 1): 1952 firmware_supported = dev->gpu->kfd->mec_fw_version >= 144; 1953 break; 1954 case IP_VERSION(10, 3, 0): 1955 case IP_VERSION(10, 3, 2): 1956 case IP_VERSION(10, 3, 1): 1957 case IP_VERSION(10, 3, 4): 1958 case IP_VERSION(10, 3, 5): 1959 firmware_supported = dev->gpu->kfd->mec_fw_version >= 89; 1960 break; 1961 case IP_VERSION(10, 1, 3): 1962 case IP_VERSION(10, 3, 3): 1963 firmware_supported = false; 1964 break; 1965 default: 1966 break; 1967 } 1968 1969 out: 1970 if (firmware_supported) 1971 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED; 1972 } 1973 1974 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev) 1975 { 1976 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << 1977 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 1978 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 1979 1980 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT | 1981 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED | 1982 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED; 1983 1984 if (kfd_dbg_has_ttmps_always_setup(dev->gpu)) 1985 dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID; 1986 1987 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) { 1988 if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) || 1989 KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4)) 1990 dev->node_props.debug_prop |= 1991 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 | 1992 HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3; 1993 else 1994 dev->node_props.debug_prop |= 1995 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 | 1996 HSA_DBG_WATCH_ADDR_MASK_HI_BIT; 1997 1998 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2)) 1999 dev->node_props.capability |= 2000 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED; 2001 2002 dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED; 2003 } else { 2004 dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 | 2005 HSA_DBG_WATCH_ADDR_MASK_HI_BIT; 2006 2007 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0)) 2008 dev->node_props.capability |= 2009 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED; 2010 2011 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0)) 2012 dev->node_props.capability |= 2013 HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED; 2014 } 2015 2016 kfd_topology_set_dbg_firmware_support(dev); 2017 } 2018 2019 int kfd_topology_add_device(struct kfd_node *gpu) 2020 { 2021 uint32_t gpu_id; 2022 struct kfd_topology_device *dev; 2023 int res = 0; 2024 int i; 2025 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; 2026 struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config; 2027 struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info; 2028 2029 if (gpu->xcp && !gpu->xcp->ddev) { 2030 dev_warn(gpu->adev->dev, 2031 "Won't add GPU to topology since it has no drm node assigned."); 2032 return 0; 2033 } else { 2034 dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n"); 2035 } 2036 2037 /* Check to see if this gpu device exists in the topology_device_list. 2038 * If so, assign the gpu to that device, 2039 * else create a Virtual CRAT for this gpu device and then parse that 2040 * CRAT to create a new topology device. Once created assign the gpu to 2041 * that topology device 2042 */ 2043 down_write(&topology_lock); 2044 dev = kfd_assign_gpu(gpu); 2045 if (!dev) 2046 res = kfd_topology_add_device_locked(gpu, &dev); 2047 up_write(&topology_lock); 2048 if (res) 2049 return res; 2050 2051 gpu_id = kfd_generate_gpu_id(gpu); 2052 dev->gpu_id = gpu_id; 2053 gpu->id = gpu_id; 2054 2055 kfd_dev_create_p2p_links(); 2056 2057 /* TODO: Move the following lines to function 2058 * kfd_add_non_crat_information 2059 */ 2060 2061 /* Fill-in additional information that is not available in CRAT but 2062 * needed for the topology 2063 */ 2064 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { 2065 dev->node_props.name[i] = __tolower(asic_name[i]); 2066 if (asic_name[i] == '\0') 2067 break; 2068 } 2069 dev->node_props.name[i] = '\0'; 2070 2071 dev->node_props.simd_arrays_per_engine = 2072 gfx_info->max_sh_per_se; 2073 2074 dev->node_props.gfx_target_version = 2075 gpu->kfd->device_info.gfx_target_version; 2076 dev->node_props.vendor_id = gpu->adev->pdev->vendor; 2077 dev->node_props.device_id = gpu->adev->pdev->device; 2078 dev->node_props.capability |= 2079 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & 2080 HSA_CAP_ASIC_REVISION_MASK); 2081 2082 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev); 2083 if (gpu->kfd->num_nodes > 1) 2084 dev->node_props.location_id |= dev->gpu->node_id; 2085 2086 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus); 2087 dev->node_props.max_engine_clk_fcompute = 2088 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); 2089 dev->node_props.max_engine_clk_ccompute = 2090 cpufreq_quick_get_max(0) / 1000; 2091 2092 if (gpu->xcp) 2093 dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index; 2094 else 2095 dev->node_props.drm_render_minor = 2096 gpu->kfd->shared_resources.drm_render_minor; 2097 2098 dev->node_props.hive_id = gpu->kfd->hive_id; 2099 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); 2100 dev->node_props.num_sdma_xgmi_engines = 2101 kfd_get_num_xgmi_sdma_engines(gpu); 2102 dev->node_props.num_sdma_queues_per_engine = 2103 gpu->kfd->device_info.num_sdma_queues_per_engine - 2104 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine; 2105 dev->node_props.num_gws = (dev->gpu->gws && 2106 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? 2107 dev->gpu->adev->gds.gws_size : 0; 2108 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); 2109 2110 kfd_fill_mem_clk_max_info(dev); 2111 kfd_fill_iolink_non_crat_info(dev); 2112 2113 switch (dev->gpu->adev->asic_type) { 2114 case CHIP_KAVERI: 2115 case CHIP_HAWAII: 2116 case CHIP_TONGA: 2117 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << 2118 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 2119 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 2120 break; 2121 case CHIP_CARRIZO: 2122 case CHIP_FIJI: 2123 case CHIP_POLARIS10: 2124 case CHIP_POLARIS11: 2125 case CHIP_POLARIS12: 2126 case CHIP_VEGAM: 2127 pr_debug("Adding doorbell packet type capability\n"); 2128 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << 2129 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & 2130 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); 2131 break; 2132 default: 2133 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1)) 2134 WARN(1, "Unexpected ASIC family %u", 2135 dev->gpu->adev->asic_type); 2136 else 2137 kfd_topology_set_capabilities(dev); 2138 } 2139 2140 /* 2141 * Overwrite ATS capability according to needs_iommu_device to fix 2142 * potential missing corresponding bit in CRAT of BIOS. 2143 */ 2144 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; 2145 2146 /* Fix errors in CZ CRAT. 2147 * simd_count: Carrizo CRAT reports wrong simd_count, probably 2148 * because it doesn't consider masked out CUs 2149 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd 2150 */ 2151 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { 2152 dev->node_props.simd_count = 2153 cu_info->simd_per_cu * cu_info->number; 2154 dev->node_props.max_waves_per_simd = 10; 2155 } 2156 2157 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ 2158 dev->node_props.capability |= 2159 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? 2160 HSA_CAP_SRAM_EDCSUPPORTED : 0; 2161 dev->node_props.capability |= 2162 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? 2163 HSA_CAP_MEM_EDCSUPPORTED : 0; 2164 2165 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) 2166 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? 2167 HSA_CAP_RASEVENTNOTIFY : 0; 2168 2169 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev)) 2170 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; 2171 2172 if (dev->gpu->adev->gmc.is_app_apu || 2173 dev->gpu->adev->gmc.xgmi.connected_to_cpu) 2174 dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS; 2175 2176 kfd_queue_ctx_save_restore_size(dev); 2177 2178 kfd_debug_print_topology(); 2179 2180 kfd_notify_gpu_change(gpu_id, 1); 2181 2182 return 0; 2183 } 2184 2185 /** 2186 * kfd_topology_update_io_links() - Update IO links after device removal. 2187 * @proximity_domain: Proximity domain value of the dev being removed. 2188 * 2189 * The topology list currently is arranged in increasing order of 2190 * proximity domain. 2191 * 2192 * Two things need to be done when a device is removed: 2193 * 1. All the IO links to this device need to be removed. 2194 * 2. All nodes after the current device node need to move 2195 * up once this device node is removed from the topology 2196 * list. As a result, the proximity domain values for 2197 * all nodes after the node being deleted reduce by 1. 2198 * This would also cause the proximity domain values for 2199 * io links to be updated based on new proximity domain 2200 * values. 2201 * 2202 * Context: The caller must hold write topology_lock. 2203 */ 2204 static void kfd_topology_update_io_links(int proximity_domain) 2205 { 2206 struct kfd_topology_device *dev; 2207 struct kfd_iolink_properties *iolink, *p2plink, *tmp; 2208 2209 list_for_each_entry(dev, &topology_device_list, list) { 2210 if (dev->proximity_domain > proximity_domain) 2211 dev->proximity_domain--; 2212 2213 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { 2214 /* 2215 * If there is an io link to the dev being deleted 2216 * then remove that IO link also. 2217 */ 2218 if (iolink->node_to == proximity_domain) { 2219 list_del(&iolink->list); 2220 dev->node_props.io_links_count--; 2221 } else { 2222 if (iolink->node_from > proximity_domain) 2223 iolink->node_from--; 2224 if (iolink->node_to > proximity_domain) 2225 iolink->node_to--; 2226 } 2227 } 2228 2229 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { 2230 /* 2231 * If there is a p2p link to the dev being deleted 2232 * then remove that p2p link also. 2233 */ 2234 if (p2plink->node_to == proximity_domain) { 2235 list_del(&p2plink->list); 2236 dev->node_props.p2p_links_count--; 2237 } else { 2238 if (p2plink->node_from > proximity_domain) 2239 p2plink->node_from--; 2240 if (p2plink->node_to > proximity_domain) 2241 p2plink->node_to--; 2242 } 2243 } 2244 } 2245 } 2246 2247 int kfd_topology_remove_device(struct kfd_node *gpu) 2248 { 2249 struct kfd_topology_device *dev, *tmp; 2250 uint32_t gpu_id; 2251 int res = -ENODEV; 2252 int i = 0; 2253 2254 down_write(&topology_lock); 2255 2256 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { 2257 if (dev->gpu == gpu) { 2258 gpu_id = dev->gpu_id; 2259 kfd_remove_sysfs_node_entry(dev); 2260 kfd_release_topology_device(dev); 2261 sys_props.num_devices--; 2262 kfd_topology_update_io_links(i); 2263 topology_crat_proximity_domain = sys_props.num_devices-1; 2264 sys_props.generation_count++; 2265 res = 0; 2266 if (kfd_topology_update_sysfs() < 0) 2267 kfd_topology_release_sysfs(); 2268 break; 2269 } 2270 i++; 2271 } 2272 2273 up_write(&topology_lock); 2274 2275 if (!res) 2276 kfd_notify_gpu_change(gpu_id, 0); 2277 2278 return res; 2279 } 2280 2281 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD 2282 * topology. If GPU device is found @idx, then valid kfd_dev pointer is 2283 * returned through @kdev 2284 * Return - 0: On success (@kdev will be NULL for non GPU nodes) 2285 * -1: If end of list 2286 */ 2287 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev) 2288 { 2289 2290 struct kfd_topology_device *top_dev; 2291 uint8_t device_idx = 0; 2292 2293 *kdev = NULL; 2294 down_read(&topology_lock); 2295 2296 list_for_each_entry(top_dev, &topology_device_list, list) { 2297 if (device_idx == idx) { 2298 *kdev = top_dev->gpu; 2299 up_read(&topology_lock); 2300 return 0; 2301 } 2302 2303 device_idx++; 2304 } 2305 2306 up_read(&topology_lock); 2307 2308 return -1; 2309 2310 } 2311 2312 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) 2313 { 2314 int first_cpu_of_numa_node; 2315 2316 if (!cpumask || cpumask == cpu_none_mask) 2317 return -1; 2318 first_cpu_of_numa_node = cpumask_first(cpumask); 2319 if (first_cpu_of_numa_node >= nr_cpu_ids) 2320 return -1; 2321 #ifdef CONFIG_X86_64 2322 return cpu_data(first_cpu_of_numa_node).topo.apicid; 2323 #else 2324 return first_cpu_of_numa_node; 2325 #endif 2326 } 2327 2328 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor 2329 * of the given NUMA node (numa_node_id) 2330 * Return -1 on failure 2331 */ 2332 int kfd_numa_node_to_apic_id(int numa_node_id) 2333 { 2334 if (numa_node_id == -1) { 2335 pr_warn("Invalid NUMA Node. Use online CPU mask\n"); 2336 return kfd_cpumask_to_apic_id(cpu_online_mask); 2337 } 2338 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); 2339 } 2340 2341 #if defined(CONFIG_DEBUG_FS) 2342 2343 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) 2344 { 2345 struct kfd_topology_device *dev; 2346 unsigned int i = 0; 2347 int r = 0; 2348 2349 down_read(&topology_lock); 2350 2351 list_for_each_entry(dev, &topology_device_list, list) { 2352 if (!dev->gpu) { 2353 i++; 2354 continue; 2355 } 2356 2357 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2358 r = dqm_debugfs_hqds(m, dev->gpu->dqm); 2359 if (r) 2360 break; 2361 } 2362 2363 up_read(&topology_lock); 2364 2365 return r; 2366 } 2367 2368 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) 2369 { 2370 struct kfd_topology_device *dev; 2371 unsigned int i = 0; 2372 int r = 0; 2373 2374 down_read(&topology_lock); 2375 2376 list_for_each_entry(dev, &topology_device_list, list) { 2377 if (!dev->gpu) { 2378 i++; 2379 continue; 2380 } 2381 2382 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); 2383 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); 2384 if (r) 2385 break; 2386 } 2387 2388 up_read(&topology_lock); 2389 2390 return r; 2391 } 2392 2393 #endif 2394