xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 	return 0;
202 }
203 
204 static int
205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 		  unsigned long offset, unsigned long npages,
207 		  unsigned long *hmm_pfns)
208 {
209 	struct kfd_process *p;
210 	uint32_t gpuidx;
211 	int r;
212 
213 	p = container_of(prange->svms, struct kfd_process, svms);
214 
215 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 		struct kfd_process_device *pdd;
217 
218 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 		if (!pdd) {
221 			pr_debug("failed to find device idx %d\n", gpuidx);
222 			return -EINVAL;
223 		}
224 
225 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 					  hmm_pfns, gpuidx);
227 		if (r)
228 			break;
229 	}
230 
231 	return r;
232 }
233 
234 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
235 			 unsigned long offset, unsigned long npages)
236 {
237 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 	int i;
239 
240 	if (!dma_addr)
241 		return;
242 
243 	for (i = offset; i < offset + npages; i++) {
244 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 			continue;
246 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 		dma_addr[i] = 0;
249 	}
250 }
251 
252 void svm_range_dma_unmap(struct svm_range *prange)
253 {
254 	struct kfd_process_device *pdd;
255 	dma_addr_t *dma_addr;
256 	struct device *dev;
257 	struct kfd_process *p;
258 	uint32_t gpuidx;
259 
260 	p = container_of(prange->svms, struct kfd_process, svms);
261 
262 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 		dma_addr = prange->dma_addr[gpuidx];
264 		if (!dma_addr)
265 			continue;
266 
267 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 		if (!pdd) {
269 			pr_debug("failed to find device idx %d\n", gpuidx);
270 			continue;
271 		}
272 		dev = &pdd->dev->adev->pdev->dev;
273 
274 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
275 	}
276 }
277 
278 static void svm_range_free(struct svm_range *prange, bool do_unmap)
279 {
280 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
281 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
282 	uint32_t gpuidx;
283 
284 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
285 		 prange->start, prange->last);
286 
287 	svm_range_vram_node_free(prange);
288 	if (do_unmap)
289 		svm_range_dma_unmap(prange);
290 
291 	if (do_unmap && !p->xnack_enabled) {
292 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 	}
296 
297 	/* free dma_addr array for each gpu */
298 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
299 		if (prange->dma_addr[gpuidx]) {
300 			kvfree(prange->dma_addr[gpuidx]);
301 			prange->dma_addr[gpuidx] = NULL;
302 		}
303 	}
304 
305 	mutex_destroy(&prange->lock);
306 	mutex_destroy(&prange->migrate_mutex);
307 	kfree(prange);
308 }
309 
310 static void
311 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
312 				 uint8_t *granularity, uint32_t *flags)
313 {
314 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
315 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 	*granularity = 9;
317 	*flags =
318 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
319 }
320 
321 static struct
322 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
323 			 uint64_t last, bool update_mem_usage)
324 {
325 	uint64_t size = last - start + 1;
326 	struct svm_range *prange;
327 	struct kfd_process *p;
328 
329 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
330 	if (!prange)
331 		return NULL;
332 
333 	p = container_of(svms, struct kfd_process, svms);
334 	if (!p->xnack_enabled && update_mem_usage &&
335 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
336 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
337 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
338 		kfree(prange);
339 		return NULL;
340 	}
341 	prange->npages = size;
342 	prange->svms = svms;
343 	prange->start = start;
344 	prange->last = last;
345 	INIT_LIST_HEAD(&prange->list);
346 	INIT_LIST_HEAD(&prange->update_list);
347 	INIT_LIST_HEAD(&prange->svm_bo_list);
348 	INIT_LIST_HEAD(&prange->deferred_list);
349 	INIT_LIST_HEAD(&prange->child_list);
350 	atomic_set(&prange->invalid, 0);
351 	prange->validate_timestamp = 0;
352 	mutex_init(&prange->migrate_mutex);
353 	mutex_init(&prange->lock);
354 
355 	if (p->xnack_enabled)
356 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
357 			    MAX_GPU_INSTANCE);
358 
359 	svm_range_set_default_attributes(&prange->preferred_loc,
360 					 &prange->prefetch_loc,
361 					 &prange->granularity, &prange->flags);
362 
363 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
364 
365 	return prange;
366 }
367 
368 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
369 {
370 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
371 		return false;
372 
373 	return true;
374 }
375 
376 static void svm_range_bo_release(struct kref *kref)
377 {
378 	struct svm_range_bo *svm_bo;
379 
380 	svm_bo = container_of(kref, struct svm_range_bo, kref);
381 	pr_debug("svm_bo 0x%p\n", svm_bo);
382 
383 	spin_lock(&svm_bo->list_lock);
384 	while (!list_empty(&svm_bo->range_list)) {
385 		struct svm_range *prange =
386 				list_first_entry(&svm_bo->range_list,
387 						struct svm_range, svm_bo_list);
388 		/* list_del_init tells a concurrent svm_range_vram_node_new when
389 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
390 		 */
391 		list_del_init(&prange->svm_bo_list);
392 		spin_unlock(&svm_bo->list_lock);
393 
394 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
395 			 prange->start, prange->last);
396 		mutex_lock(&prange->lock);
397 		prange->svm_bo = NULL;
398 		mutex_unlock(&prange->lock);
399 
400 		spin_lock(&svm_bo->list_lock);
401 	}
402 	spin_unlock(&svm_bo->list_lock);
403 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
404 		/* We're not in the eviction worker.
405 		 * Signal the fence and synchronize with any
406 		 * pending eviction work.
407 		 */
408 		dma_fence_signal(&svm_bo->eviction_fence->base);
409 		cancel_work_sync(&svm_bo->eviction_work);
410 	}
411 	dma_fence_put(&svm_bo->eviction_fence->base);
412 	amdgpu_bo_unref(&svm_bo->bo);
413 	kfree(svm_bo);
414 }
415 
416 static void svm_range_bo_wq_release(struct work_struct *work)
417 {
418 	struct svm_range_bo *svm_bo;
419 
420 	svm_bo = container_of(work, struct svm_range_bo, release_work);
421 	svm_range_bo_release(&svm_bo->kref);
422 }
423 
424 static void svm_range_bo_release_async(struct kref *kref)
425 {
426 	struct svm_range_bo *svm_bo;
427 
428 	svm_bo = container_of(kref, struct svm_range_bo, kref);
429 	pr_debug("svm_bo 0x%p\n", svm_bo);
430 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
431 	schedule_work(&svm_bo->release_work);
432 }
433 
434 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
435 {
436 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
437 }
438 
439 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
440 {
441 	if (svm_bo)
442 		kref_put(&svm_bo->kref, svm_range_bo_release);
443 }
444 
445 static bool
446 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
447 {
448 	mutex_lock(&prange->lock);
449 	if (!prange->svm_bo) {
450 		mutex_unlock(&prange->lock);
451 		return false;
452 	}
453 	if (prange->ttm_res) {
454 		/* We still have a reference, all is well */
455 		mutex_unlock(&prange->lock);
456 		return true;
457 	}
458 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
459 		/*
460 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
461 		 * range list, and return false to allocate svm_bo from destination
462 		 * node.
463 		 */
464 		if (prange->svm_bo->node != node) {
465 			mutex_unlock(&prange->lock);
466 
467 			spin_lock(&prange->svm_bo->list_lock);
468 			list_del_init(&prange->svm_bo_list);
469 			spin_unlock(&prange->svm_bo->list_lock);
470 
471 			svm_range_bo_unref(prange->svm_bo);
472 			return false;
473 		}
474 		if (READ_ONCE(prange->svm_bo->evicting)) {
475 			struct dma_fence *f;
476 			struct svm_range_bo *svm_bo;
477 			/* The BO is getting evicted,
478 			 * we need to get a new one
479 			 */
480 			mutex_unlock(&prange->lock);
481 			svm_bo = prange->svm_bo;
482 			f = dma_fence_get(&svm_bo->eviction_fence->base);
483 			svm_range_bo_unref(prange->svm_bo);
484 			/* wait for the fence to avoid long spin-loop
485 			 * at list_empty_careful
486 			 */
487 			dma_fence_wait(f, false);
488 			dma_fence_put(f);
489 		} else {
490 			/* The BO was still around and we got
491 			 * a new reference to it
492 			 */
493 			mutex_unlock(&prange->lock);
494 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
495 				 prange->svms, prange->start, prange->last);
496 
497 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
498 			return true;
499 		}
500 
501 	} else {
502 		mutex_unlock(&prange->lock);
503 	}
504 
505 	/* We need a new svm_bo. Spin-loop to wait for concurrent
506 	 * svm_range_bo_release to finish removing this range from
507 	 * its range list and set prange->svm_bo to null. After this,
508 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
509 	 */
510 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
511 		cond_resched();
512 
513 	return false;
514 }
515 
516 static struct svm_range_bo *svm_range_bo_new(void)
517 {
518 	struct svm_range_bo *svm_bo;
519 
520 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
521 	if (!svm_bo)
522 		return NULL;
523 
524 	kref_init(&svm_bo->kref);
525 	INIT_LIST_HEAD(&svm_bo->range_list);
526 	spin_lock_init(&svm_bo->list_lock);
527 
528 	return svm_bo;
529 }
530 
531 int
532 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
533 			bool clear)
534 {
535 	struct amdgpu_bo_param bp;
536 	struct svm_range_bo *svm_bo;
537 	struct amdgpu_bo_user *ubo;
538 	struct amdgpu_bo *bo;
539 	struct kfd_process *p;
540 	struct mm_struct *mm;
541 	int r;
542 
543 	p = container_of(prange->svms, struct kfd_process, svms);
544 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
545 		 prange->start, prange->last);
546 
547 	if (svm_range_validate_svm_bo(node, prange))
548 		return 0;
549 
550 	svm_bo = svm_range_bo_new();
551 	if (!svm_bo) {
552 		pr_debug("failed to alloc svm bo\n");
553 		return -ENOMEM;
554 	}
555 	mm = get_task_mm(p->lead_thread);
556 	if (!mm) {
557 		pr_debug("failed to get mm\n");
558 		kfree(svm_bo);
559 		return -ESRCH;
560 	}
561 	svm_bo->node = node;
562 	svm_bo->eviction_fence =
563 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
564 					   mm,
565 					   svm_bo);
566 	mmput(mm);
567 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
568 	svm_bo->evicting = 0;
569 	memset(&bp, 0, sizeof(bp));
570 	bp.size = prange->npages * PAGE_SIZE;
571 	bp.byte_align = PAGE_SIZE;
572 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
573 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
574 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
575 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
576 	bp.type = ttm_bo_type_device;
577 	bp.resv = NULL;
578 	if (node->xcp)
579 		bp.xcp_id_plus1 = node->xcp->id + 1;
580 
581 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
582 	if (r) {
583 		pr_debug("failed %d to create bo\n", r);
584 		goto create_bo_failed;
585 	}
586 	bo = &ubo->bo;
587 
588 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
589 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
590 		 bp.xcp_id_plus1 - 1);
591 
592 	r = amdgpu_bo_reserve(bo, true);
593 	if (r) {
594 		pr_debug("failed %d to reserve bo\n", r);
595 		goto reserve_bo_failed;
596 	}
597 
598 	if (clear) {
599 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
600 		if (r) {
601 			pr_debug("failed %d to sync bo\n", r);
602 			amdgpu_bo_unreserve(bo);
603 			goto reserve_bo_failed;
604 		}
605 	}
606 
607 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
608 	if (r) {
609 		pr_debug("failed %d to reserve bo\n", r);
610 		amdgpu_bo_unreserve(bo);
611 		goto reserve_bo_failed;
612 	}
613 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
614 
615 	amdgpu_bo_unreserve(bo);
616 
617 	svm_bo->bo = bo;
618 	prange->svm_bo = svm_bo;
619 	prange->ttm_res = bo->tbo.resource;
620 	prange->offset = 0;
621 
622 	spin_lock(&svm_bo->list_lock);
623 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
624 	spin_unlock(&svm_bo->list_lock);
625 
626 	return 0;
627 
628 reserve_bo_failed:
629 	amdgpu_bo_unref(&bo);
630 create_bo_failed:
631 	dma_fence_put(&svm_bo->eviction_fence->base);
632 	kfree(svm_bo);
633 	prange->ttm_res = NULL;
634 
635 	return r;
636 }
637 
638 void svm_range_vram_node_free(struct svm_range *prange)
639 {
640 	/* serialize prange->svm_bo unref */
641 	mutex_lock(&prange->lock);
642 	/* prange->svm_bo has not been unref */
643 	if (prange->ttm_res) {
644 		prange->ttm_res = NULL;
645 		mutex_unlock(&prange->lock);
646 		svm_range_bo_unref(prange->svm_bo);
647 	} else
648 		mutex_unlock(&prange->lock);
649 }
650 
651 struct kfd_node *
652 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
653 {
654 	struct kfd_process *p;
655 	struct kfd_process_device *pdd;
656 
657 	p = container_of(prange->svms, struct kfd_process, svms);
658 	pdd = kfd_process_device_data_by_id(p, gpu_id);
659 	if (!pdd) {
660 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
661 		return NULL;
662 	}
663 
664 	return pdd->dev;
665 }
666 
667 struct kfd_process_device *
668 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
669 {
670 	struct kfd_process *p;
671 
672 	p = container_of(prange->svms, struct kfd_process, svms);
673 
674 	return kfd_get_process_device_data(node, p);
675 }
676 
677 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
678 {
679 	struct ttm_operation_ctx ctx = { false, false };
680 
681 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
682 
683 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
684 }
685 
686 static int
687 svm_range_check_attr(struct kfd_process *p,
688 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
689 {
690 	uint32_t i;
691 
692 	for (i = 0; i < nattr; i++) {
693 		uint32_t val = attrs[i].value;
694 		int gpuidx = MAX_GPU_INSTANCE;
695 
696 		switch (attrs[i].type) {
697 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
698 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
699 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
700 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
701 			break;
702 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
703 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
704 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
705 			break;
706 		case KFD_IOCTL_SVM_ATTR_ACCESS:
707 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
708 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
709 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
710 			break;
711 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
712 			break;
713 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
714 			break;
715 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
716 			break;
717 		default:
718 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
719 			return -EINVAL;
720 		}
721 
722 		if (gpuidx < 0) {
723 			pr_debug("no GPU 0x%x found\n", val);
724 			return -EINVAL;
725 		} else if (gpuidx < MAX_GPU_INSTANCE &&
726 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
727 			pr_debug("GPU 0x%x not supported\n", val);
728 			return -EINVAL;
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 static void
736 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
737 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
738 		      bool *update_mapping)
739 {
740 	uint32_t i;
741 	int gpuidx;
742 
743 	for (i = 0; i < nattr; i++) {
744 		switch (attrs[i].type) {
745 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
746 			prange->preferred_loc = attrs[i].value;
747 			break;
748 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
749 			prange->prefetch_loc = attrs[i].value;
750 			break;
751 		case KFD_IOCTL_SVM_ATTR_ACCESS:
752 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
753 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
754 			if (!p->xnack_enabled)
755 				*update_mapping = true;
756 
757 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
758 							       attrs[i].value);
759 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
760 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
761 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
762 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
763 				bitmap_set(prange->bitmap_access, gpuidx, 1);
764 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
765 			} else {
766 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
767 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
768 			}
769 			break;
770 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
771 			*update_mapping = true;
772 			prange->flags |= attrs[i].value;
773 			break;
774 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
775 			*update_mapping = true;
776 			prange->flags &= ~attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
779 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
780 			break;
781 		default:
782 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
783 		}
784 	}
785 }
786 
787 static bool
788 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
789 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
790 {
791 	uint32_t i;
792 	int gpuidx;
793 
794 	for (i = 0; i < nattr; i++) {
795 		switch (attrs[i].type) {
796 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
797 			if (prange->preferred_loc != attrs[i].value)
798 				return false;
799 			break;
800 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
801 			/* Prefetch should always trigger a migration even
802 			 * if the value of the attribute didn't change.
803 			 */
804 			return false;
805 		case KFD_IOCTL_SVM_ATTR_ACCESS:
806 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
807 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
808 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
809 							       attrs[i].value);
810 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
811 				if (test_bit(gpuidx, prange->bitmap_access) ||
812 				    test_bit(gpuidx, prange->bitmap_aip))
813 					return false;
814 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
815 				if (!test_bit(gpuidx, prange->bitmap_access))
816 					return false;
817 			} else {
818 				if (!test_bit(gpuidx, prange->bitmap_aip))
819 					return false;
820 			}
821 			break;
822 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
823 			if ((prange->flags & attrs[i].value) != attrs[i].value)
824 				return false;
825 			break;
826 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
827 			if ((prange->flags & attrs[i].value) != 0)
828 				return false;
829 			break;
830 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
831 			if (prange->granularity != attrs[i].value)
832 				return false;
833 			break;
834 		default:
835 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
836 		}
837 	}
838 
839 	return true;
840 }
841 
842 /**
843  * svm_range_debug_dump - print all range information from svms
844  * @svms: svm range list header
845  *
846  * debug output svm range start, end, prefetch location from svms
847  * interval tree and link list
848  *
849  * Context: The caller must hold svms->lock
850  */
851 static void svm_range_debug_dump(struct svm_range_list *svms)
852 {
853 	struct interval_tree_node *node;
854 	struct svm_range *prange;
855 
856 	pr_debug("dump svms 0x%p list\n", svms);
857 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
858 
859 	list_for_each_entry(prange, &svms->list, list) {
860 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
861 			 prange, prange->start, prange->npages,
862 			 prange->start + prange->npages - 1,
863 			 prange->actual_loc);
864 	}
865 
866 	pr_debug("dump svms 0x%p interval tree\n", svms);
867 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
868 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
869 	while (node) {
870 		prange = container_of(node, struct svm_range, it_node);
871 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
872 			 prange, prange->start, prange->npages,
873 			 prange->start + prange->npages - 1,
874 			 prange->actual_loc);
875 		node = interval_tree_iter_next(node, 0, ~0ULL);
876 	}
877 }
878 
879 static void *
880 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
881 		     uint64_t offset)
882 {
883 	unsigned char *dst;
884 
885 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
886 	if (!dst)
887 		return NULL;
888 	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
889 
890 	return (void *)dst;
891 }
892 
893 static int
894 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
895 {
896 	int i;
897 
898 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
899 		if (!src->dma_addr[i])
900 			continue;
901 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
902 					sizeof(*src->dma_addr[i]), src->npages, 0);
903 		if (!dst->dma_addr[i])
904 			return -ENOMEM;
905 	}
906 
907 	return 0;
908 }
909 
910 static int
911 svm_range_split_array(void *ppnew, void *ppold, size_t size,
912 		      uint64_t old_start, uint64_t old_n,
913 		      uint64_t new_start, uint64_t new_n)
914 {
915 	unsigned char *new, *old, *pold;
916 	uint64_t d;
917 
918 	if (!ppold)
919 		return 0;
920 	pold = *(unsigned char **)ppold;
921 	if (!pold)
922 		return 0;
923 
924 	d = (new_start - old_start) * size;
925 	new = svm_range_copy_array(pold, size, new_n, d);
926 	if (!new)
927 		return -ENOMEM;
928 	d = (new_start == old_start) ? new_n * size : 0;
929 	old = svm_range_copy_array(pold, size, old_n, d);
930 	if (!old) {
931 		kvfree(new);
932 		return -ENOMEM;
933 	}
934 	kvfree(pold);
935 	*(void **)ppold = old;
936 	*(void **)ppnew = new;
937 
938 	return 0;
939 }
940 
941 static int
942 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
943 		      uint64_t start, uint64_t last)
944 {
945 	uint64_t npages = last - start + 1;
946 	int i, r;
947 
948 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
949 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
950 					  sizeof(*old->dma_addr[i]), old->start,
951 					  npages, new->start, new->npages);
952 		if (r)
953 			return r;
954 	}
955 
956 	return 0;
957 }
958 
959 static int
960 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
961 		      uint64_t start, uint64_t last)
962 {
963 	uint64_t npages = last - start + 1;
964 
965 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
966 		 new->svms, new, new->start, start, last);
967 
968 	if (new->start == old->start) {
969 		new->offset = old->offset;
970 		old->offset += new->npages;
971 	} else {
972 		new->offset = old->offset + npages;
973 	}
974 
975 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
976 	new->ttm_res = old->ttm_res;
977 
978 	spin_lock(&new->svm_bo->list_lock);
979 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
980 	spin_unlock(&new->svm_bo->list_lock);
981 
982 	return 0;
983 }
984 
985 /**
986  * svm_range_split_adjust - split range and adjust
987  *
988  * @new: new range
989  * @old: the old range
990  * @start: the old range adjust to start address in pages
991  * @last: the old range adjust to last address in pages
992  *
993  * Copy system memory dma_addr or vram ttm_res in old range to new
994  * range from new_start up to size new->npages, the remaining old range is from
995  * start to last
996  *
997  * Return:
998  * 0 - OK, -ENOMEM - out of memory
999  */
1000 static int
1001 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1002 		      uint64_t start, uint64_t last)
1003 {
1004 	int r;
1005 
1006 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1007 		 new->svms, new->start, old->start, old->last, start, last);
1008 
1009 	if (new->start < old->start ||
1010 	    new->last > old->last) {
1011 		WARN_ONCE(1, "invalid new range start or last\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	r = svm_range_split_pages(new, old, start, last);
1016 	if (r)
1017 		return r;
1018 
1019 	if (old->actual_loc && old->ttm_res) {
1020 		r = svm_range_split_nodes(new, old, start, last);
1021 		if (r)
1022 			return r;
1023 	}
1024 
1025 	old->npages = last - start + 1;
1026 	old->start = start;
1027 	old->last = last;
1028 	new->flags = old->flags;
1029 	new->preferred_loc = old->preferred_loc;
1030 	new->prefetch_loc = old->prefetch_loc;
1031 	new->actual_loc = old->actual_loc;
1032 	new->granularity = old->granularity;
1033 	new->mapped_to_gpu = old->mapped_to_gpu;
1034 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1035 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * svm_range_split - split a range in 2 ranges
1042  *
1043  * @prange: the svm range to split
1044  * @start: the remaining range start address in pages
1045  * @last: the remaining range last address in pages
1046  * @new: the result new range generated
1047  *
1048  * Two cases only:
1049  * case 1: if start == prange->start
1050  *         prange ==> prange[start, last]
1051  *         new range [last + 1, prange->last]
1052  *
1053  * case 2: if last == prange->last
1054  *         prange ==> prange[start, last]
1055  *         new range [prange->start, start - 1]
1056  *
1057  * Return:
1058  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1059  */
1060 static int
1061 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1062 		struct svm_range **new)
1063 {
1064 	uint64_t old_start = prange->start;
1065 	uint64_t old_last = prange->last;
1066 	struct svm_range_list *svms;
1067 	int r = 0;
1068 
1069 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1070 		 old_start, old_last, start, last);
1071 
1072 	if (old_start != start && old_last != last)
1073 		return -EINVAL;
1074 	if (start < old_start || last > old_last)
1075 		return -EINVAL;
1076 
1077 	svms = prange->svms;
1078 	if (old_start == start)
1079 		*new = svm_range_new(svms, last + 1, old_last, false);
1080 	else
1081 		*new = svm_range_new(svms, old_start, start - 1, false);
1082 	if (!*new)
1083 		return -ENOMEM;
1084 
1085 	r = svm_range_split_adjust(*new, prange, start, last);
1086 	if (r) {
1087 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1088 			 r, old_start, old_last, start, last);
1089 		svm_range_free(*new, false);
1090 		*new = NULL;
1091 	}
1092 
1093 	return r;
1094 }
1095 
1096 static int
1097 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1098 		     struct list_head *insert_list, struct list_head *remap_list)
1099 {
1100 	struct svm_range *tail;
1101 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1102 
1103 	if (!r) {
1104 		list_add(&tail->list, insert_list);
1105 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1106 			list_add(&tail->update_list, remap_list);
1107 	}
1108 	return r;
1109 }
1110 
1111 static int
1112 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1113 		     struct list_head *insert_list, struct list_head *remap_list)
1114 {
1115 	struct svm_range *head;
1116 	int r = svm_range_split(prange, new_start, prange->last, &head);
1117 
1118 	if (!r) {
1119 		list_add(&head->list, insert_list);
1120 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1121 			list_add(&head->update_list, remap_list);
1122 	}
1123 	return r;
1124 }
1125 
1126 static void
1127 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1128 		    struct svm_range *pchild, enum svm_work_list_ops op)
1129 {
1130 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1131 		 pchild, pchild->start, pchild->last, prange, op);
1132 
1133 	pchild->work_item.mm = mm;
1134 	pchild->work_item.op = op;
1135 	list_add_tail(&pchild->child_list, &prange->child_list);
1136 }
1137 
1138 /**
1139  * svm_range_split_by_granularity - collect ranges within granularity boundary
1140  *
1141  * @p: the process with svms list
1142  * @mm: mm structure
1143  * @addr: the vm fault address in pages, to split the prange
1144  * @parent: parent range if prange is from child list
1145  * @prange: prange to split
1146  *
1147  * Trims @prange to be a single aligned block of prange->granularity if
1148  * possible. The head and tail are added to the child_list in @parent.
1149  *
1150  * Context: caller must hold mmap_read_lock and prange->lock
1151  *
1152  * Return:
1153  * 0 - OK, otherwise error code
1154  */
1155 int
1156 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1157 			       unsigned long addr, struct svm_range *parent,
1158 			       struct svm_range *prange)
1159 {
1160 	struct svm_range *head, *tail;
1161 	unsigned long start, last, size;
1162 	int r;
1163 
1164 	/* Align splited range start and size to granularity size, then a single
1165 	 * PTE will be used for whole range, this reduces the number of PTE
1166 	 * updated and the L1 TLB space used for translation.
1167 	 */
1168 	size = 1UL << prange->granularity;
1169 	start = ALIGN_DOWN(addr, size);
1170 	last = ALIGN(addr + 1, size) - 1;
1171 
1172 	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1173 		 prange->svms, prange->start, prange->last, start, last, size);
1174 
1175 	if (start > prange->start) {
1176 		r = svm_range_split(prange, start, prange->last, &head);
1177 		if (r)
1178 			return r;
1179 		svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1180 	}
1181 
1182 	if (last < prange->last) {
1183 		r = svm_range_split(prange, prange->start, last, &tail);
1184 		if (r)
1185 			return r;
1186 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1187 	}
1188 
1189 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1190 	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1191 		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1192 		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1193 			 prange, prange->start, prange->last,
1194 			 SVM_OP_ADD_RANGE_AND_MAP);
1195 	}
1196 	return 0;
1197 }
1198 static bool
1199 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1200 {
1201 	return (node_a->adev == node_b->adev ||
1202 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1203 }
1204 
1205 static uint64_t
1206 svm_range_get_pte_flags(struct kfd_node *node,
1207 			struct svm_range *prange, int domain)
1208 {
1209 	struct kfd_node *bo_node;
1210 	uint32_t flags = prange->flags;
1211 	uint32_t mapping_flags = 0;
1212 	uint64_t pte_flags;
1213 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1214 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1215 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1216 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1217 	unsigned int mtype_local;
1218 
1219 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1220 		bo_node = prange->svm_bo->node;
1221 
1222 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1223 	case IP_VERSION(9, 4, 1):
1224 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 			if (bo_node == node) {
1226 				mapping_flags |= coherent ?
1227 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1228 			} else {
1229 				mapping_flags |= coherent ?
1230 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1231 				if (svm_nodes_in_same_hive(node, bo_node))
1232 					snoop = true;
1233 			}
1234 		} else {
1235 			mapping_flags |= coherent ?
1236 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1237 		}
1238 		break;
1239 	case IP_VERSION(9, 4, 2):
1240 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1241 			if (bo_node == node) {
1242 				mapping_flags |= coherent ?
1243 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1244 				if (node->adev->gmc.xgmi.connected_to_cpu)
1245 					snoop = true;
1246 			} else {
1247 				mapping_flags |= coherent ?
1248 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1249 				if (svm_nodes_in_same_hive(node, bo_node))
1250 					snoop = true;
1251 			}
1252 		} else {
1253 			mapping_flags |= coherent ?
1254 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1255 		}
1256 		break;
1257 	case IP_VERSION(9, 4, 3):
1258 		if (ext_coherent)
1259 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1260 		else
1261 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1262 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1263 		snoop = true;
1264 		if (uncached) {
1265 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1266 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1267 			/* local HBM region close to partition */
1268 			if (bo_node->adev == node->adev &&
1269 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1270 				mapping_flags |= mtype_local;
1271 			/* local HBM region far from partition or remote XGMI GPU
1272 			 * with regular system scope coherence
1273 			 */
1274 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1275 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1276 			/* PCIe P2P or extended system scope coherence */
1277 			else
1278 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1279 		/* system memory accessed by the APU */
1280 		} else if (node->adev->flags & AMD_IS_APU) {
1281 			/* On NUMA systems, locality is determined per-page
1282 			 * in amdgpu_gmc_override_vm_pte_flags
1283 			 */
1284 			if (num_possible_nodes() <= 1)
1285 				mapping_flags |= mtype_local;
1286 			else
1287 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1288 		/* system memory accessed by the dGPU */
1289 		} else {
1290 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1291 		}
1292 		break;
1293 	default:
1294 		mapping_flags |= coherent ?
1295 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1296 	}
1297 
1298 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1299 
1300 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1301 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1302 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1303 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1304 
1305 	pte_flags = AMDGPU_PTE_VALID;
1306 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1307 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1308 
1309 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1310 	return pte_flags;
1311 }
1312 
1313 static int
1314 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1315 			 uint64_t start, uint64_t last,
1316 			 struct dma_fence **fence)
1317 {
1318 	uint64_t init_pte_value = 0;
1319 
1320 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1321 
1322 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1323 				      last, init_pte_value, 0, 0, NULL, NULL,
1324 				      fence);
1325 }
1326 
1327 static int
1328 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1329 			  unsigned long last, uint32_t trigger)
1330 {
1331 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1332 	struct kfd_process_device *pdd;
1333 	struct dma_fence *fence = NULL;
1334 	struct kfd_process *p;
1335 	uint32_t gpuidx;
1336 	int r = 0;
1337 
1338 	if (!prange->mapped_to_gpu) {
1339 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1340 			 prange, prange->start, prange->last);
1341 		return 0;
1342 	}
1343 
1344 	if (prange->start == start && prange->last == last) {
1345 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1346 		prange->mapped_to_gpu = false;
1347 	}
1348 
1349 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1350 		  MAX_GPU_INSTANCE);
1351 	p = container_of(prange->svms, struct kfd_process, svms);
1352 
1353 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1354 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1355 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1356 		if (!pdd) {
1357 			pr_debug("failed to find device idx %d\n", gpuidx);
1358 			return -EINVAL;
1359 		}
1360 
1361 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1362 					     start, last, trigger);
1363 
1364 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1365 					     drm_priv_to_vm(pdd->drm_priv),
1366 					     start, last, &fence);
1367 		if (r)
1368 			break;
1369 
1370 		if (fence) {
1371 			r = dma_fence_wait(fence, false);
1372 			dma_fence_put(fence);
1373 			fence = NULL;
1374 			if (r)
1375 				break;
1376 		}
1377 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1378 	}
1379 
1380 	return r;
1381 }
1382 
1383 static int
1384 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1385 		     unsigned long offset, unsigned long npages, bool readonly,
1386 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1387 		     struct dma_fence **fence, bool flush_tlb)
1388 {
1389 	struct amdgpu_device *adev = pdd->dev->adev;
1390 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1391 	uint64_t pte_flags;
1392 	unsigned long last_start;
1393 	int last_domain;
1394 	int r = 0;
1395 	int64_t i, j;
1396 
1397 	last_start = prange->start + offset;
1398 
1399 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1400 		 last_start, last_start + npages - 1, readonly);
1401 
1402 	for (i = offset; i < offset + npages; i++) {
1403 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1404 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1405 
1406 		/* Collect all pages in the same address range and memory domain
1407 		 * that can be mapped with a single call to update mapping.
1408 		 */
1409 		if (i < offset + npages - 1 &&
1410 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1411 			continue;
1412 
1413 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1414 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1415 
1416 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1417 		if (readonly)
1418 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1419 
1420 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1421 			 prange->svms, last_start, prange->start + i,
1422 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1423 			 pte_flags);
1424 
1425 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1426 		 * different memory partition based on fpfn/lpfn, we should use
1427 		 * same vm_manager.vram_base_offset regardless memory partition.
1428 		 */
1429 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1430 					   NULL, last_start, prange->start + i,
1431 					   pte_flags,
1432 					   (last_start - prange->start) << PAGE_SHIFT,
1433 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1434 					   NULL, dma_addr, &vm->last_update);
1435 
1436 		for (j = last_start - prange->start; j <= i; j++)
1437 			dma_addr[j] |= last_domain;
1438 
1439 		if (r) {
1440 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1441 			goto out;
1442 		}
1443 		last_start = prange->start + i + 1;
1444 	}
1445 
1446 	r = amdgpu_vm_update_pdes(adev, vm, false);
1447 	if (r) {
1448 		pr_debug("failed %d to update directories 0x%lx\n", r,
1449 			 prange->start);
1450 		goto out;
1451 	}
1452 
1453 	if (fence)
1454 		*fence = dma_fence_get(vm->last_update);
1455 
1456 out:
1457 	return r;
1458 }
1459 
1460 static int
1461 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1462 		      unsigned long npages, bool readonly,
1463 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1464 {
1465 	struct kfd_process_device *pdd;
1466 	struct amdgpu_device *bo_adev = NULL;
1467 	struct kfd_process *p;
1468 	struct dma_fence *fence = NULL;
1469 	uint32_t gpuidx;
1470 	int r = 0;
1471 
1472 	if (prange->svm_bo && prange->ttm_res)
1473 		bo_adev = prange->svm_bo->node->adev;
1474 
1475 	p = container_of(prange->svms, struct kfd_process, svms);
1476 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1477 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1478 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1479 		if (!pdd) {
1480 			pr_debug("failed to find device idx %d\n", gpuidx);
1481 			return -EINVAL;
1482 		}
1483 
1484 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1485 		if (IS_ERR(pdd))
1486 			return -EINVAL;
1487 
1488 		if (bo_adev && pdd->dev->adev != bo_adev &&
1489 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1490 			pr_debug("cannot map to device idx %d\n", gpuidx);
1491 			continue;
1492 		}
1493 
1494 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1495 					 prange->dma_addr[gpuidx],
1496 					 bo_adev, wait ? &fence : NULL,
1497 					 flush_tlb);
1498 		if (r)
1499 			break;
1500 
1501 		if (fence) {
1502 			r = dma_fence_wait(fence, false);
1503 			dma_fence_put(fence);
1504 			fence = NULL;
1505 			if (r) {
1506 				pr_debug("failed %d to dma fence wait\n", r);
1507 				break;
1508 			}
1509 		}
1510 
1511 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1512 	}
1513 
1514 	return r;
1515 }
1516 
1517 struct svm_validate_context {
1518 	struct kfd_process *process;
1519 	struct svm_range *prange;
1520 	bool intr;
1521 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1522 	struct drm_exec exec;
1523 };
1524 
1525 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1526 {
1527 	struct kfd_process_device *pdd;
1528 	struct amdgpu_vm *vm;
1529 	uint32_t gpuidx;
1530 	int r;
1531 
1532 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1533 	drm_exec_until_all_locked(&ctx->exec) {
1534 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1535 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1536 			if (!pdd) {
1537 				pr_debug("failed to find device idx %d\n", gpuidx);
1538 				r = -EINVAL;
1539 				goto unreserve_out;
1540 			}
1541 			vm = drm_priv_to_vm(pdd->drm_priv);
1542 
1543 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1544 			drm_exec_retry_on_contention(&ctx->exec);
1545 			if (unlikely(r)) {
1546 				pr_debug("failed %d to reserve bo\n", r);
1547 				goto unreserve_out;
1548 			}
1549 		}
1550 	}
1551 
1552 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1553 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1554 		if (!pdd) {
1555 			pr_debug("failed to find device idx %d\n", gpuidx);
1556 			r = -EINVAL;
1557 			goto unreserve_out;
1558 		}
1559 
1560 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1561 					      drm_priv_to_vm(pdd->drm_priv),
1562 					      svm_range_bo_validate, NULL);
1563 		if (r) {
1564 			pr_debug("failed %d validate pt bos\n", r);
1565 			goto unreserve_out;
1566 		}
1567 	}
1568 
1569 	return 0;
1570 
1571 unreserve_out:
1572 	drm_exec_fini(&ctx->exec);
1573 	return r;
1574 }
1575 
1576 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1577 {
1578 	drm_exec_fini(&ctx->exec);
1579 }
1580 
1581 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1582 {
1583 	struct kfd_process_device *pdd;
1584 
1585 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1586 	if (!pdd)
1587 		return NULL;
1588 
1589 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1590 }
1591 
1592 /*
1593  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1594  *
1595  * To prevent concurrent destruction or change of range attributes, the
1596  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1597  * because that would block concurrent evictions and lead to deadlocks. To
1598  * serialize concurrent migrations or validations of the same range, the
1599  * prange->migrate_mutex must be held.
1600  *
1601  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1602  * eviction fence.
1603  *
1604  * The following sequence ensures race-free validation and GPU mapping:
1605  *
1606  * 1. Reserve page table (and SVM BO if range is in VRAM)
1607  * 2. hmm_range_fault to get page addresses (if system memory)
1608  * 3. DMA-map pages (if system memory)
1609  * 4-a. Take notifier lock
1610  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1611  * 4-c. Check that the range was not split or otherwise invalidated
1612  * 4-d. Update GPU page table
1613  * 4.e. Release notifier lock
1614  * 5. Release page table (and SVM BO) reservation
1615  */
1616 static int svm_range_validate_and_map(struct mm_struct *mm,
1617 				      struct svm_range *prange, int32_t gpuidx,
1618 				      bool intr, bool wait, bool flush_tlb)
1619 {
1620 	struct svm_validate_context *ctx;
1621 	unsigned long start, end, addr;
1622 	struct kfd_process *p;
1623 	void *owner;
1624 	int32_t idx;
1625 	int r = 0;
1626 
1627 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1628 	if (!ctx)
1629 		return -ENOMEM;
1630 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1631 	ctx->prange = prange;
1632 	ctx->intr = intr;
1633 
1634 	if (gpuidx < MAX_GPU_INSTANCE) {
1635 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1636 		bitmap_set(ctx->bitmap, gpuidx, 1);
1637 	} else if (ctx->process->xnack_enabled) {
1638 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1639 
1640 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1641 		 * GPU, which has ACCESS attribute to the range, create mapping
1642 		 * on that GPU.
1643 		 */
1644 		if (prange->actual_loc) {
1645 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1646 							prange->actual_loc);
1647 			if (gpuidx < 0) {
1648 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1649 					 prange->actual_loc);
1650 				r = -EINVAL;
1651 				goto free_ctx;
1652 			}
1653 			if (test_bit(gpuidx, prange->bitmap_access))
1654 				bitmap_set(ctx->bitmap, gpuidx, 1);
1655 		}
1656 	} else {
1657 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1658 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1659 	}
1660 
1661 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662 		bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1663 		if (!prange->mapped_to_gpu ||
1664 		    bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1665 			r = 0;
1666 			goto free_ctx;
1667 		}
1668 	}
1669 
1670 	if (prange->actual_loc && !prange->ttm_res) {
1671 		/* This should never happen. actual_loc gets set by
1672 		 * svm_migrate_ram_to_vram after allocating a BO.
1673 		 */
1674 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1675 		r = -EINVAL;
1676 		goto free_ctx;
1677 	}
1678 
1679 	svm_range_reserve_bos(ctx, intr);
1680 
1681 	p = container_of(prange->svms, struct kfd_process, svms);
1682 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1683 						MAX_GPU_INSTANCE));
1684 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1685 		if (kfd_svm_page_owner(p, idx) != owner) {
1686 			owner = NULL;
1687 			break;
1688 		}
1689 	}
1690 
1691 	start = prange->start << PAGE_SHIFT;
1692 	end = (prange->last + 1) << PAGE_SHIFT;
1693 	for (addr = start; !r && addr < end; ) {
1694 		struct hmm_range *hmm_range;
1695 		struct vm_area_struct *vma;
1696 		unsigned long next = 0;
1697 		unsigned long offset;
1698 		unsigned long npages;
1699 		bool readonly;
1700 
1701 		vma = vma_lookup(mm, addr);
1702 		if (vma) {
1703 			readonly = !(vma->vm_flags & VM_WRITE);
1704 
1705 			next = min(vma->vm_end, end);
1706 			npages = (next - addr) >> PAGE_SHIFT;
1707 			WRITE_ONCE(p->svms.faulting_task, current);
1708 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1709 						       readonly, owner, NULL,
1710 						       &hmm_range);
1711 			WRITE_ONCE(p->svms.faulting_task, NULL);
1712 			if (r) {
1713 				pr_debug("failed %d to get svm range pages\n", r);
1714 				if (r == -EBUSY)
1715 					r = -EAGAIN;
1716 			}
1717 		} else {
1718 			r = -EFAULT;
1719 		}
1720 
1721 		if (!r) {
1722 			offset = (addr - start) >> PAGE_SHIFT;
1723 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1724 					      hmm_range->hmm_pfns);
1725 			if (r)
1726 				pr_debug("failed %d to dma map range\n", r);
1727 		}
1728 
1729 		svm_range_lock(prange);
1730 		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1731 			pr_debug("hmm update the range, need validate again\n");
1732 			r = -EAGAIN;
1733 		}
1734 
1735 		if (!r && !list_empty(&prange->child_list)) {
1736 			pr_debug("range split by unmap in parallel, validate again\n");
1737 			r = -EAGAIN;
1738 		}
1739 
1740 		if (!r)
1741 			r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1742 						  ctx->bitmap, wait, flush_tlb);
1743 
1744 		if (!r && next == end)
1745 			prange->mapped_to_gpu = true;
1746 
1747 		svm_range_unlock(prange);
1748 
1749 		addr = next;
1750 	}
1751 
1752 	svm_range_unreserve_bos(ctx);
1753 	if (!r)
1754 		prange->validate_timestamp = ktime_get_boottime();
1755 
1756 free_ctx:
1757 	kfree(ctx);
1758 
1759 	return r;
1760 }
1761 
1762 /**
1763  * svm_range_list_lock_and_flush_work - flush pending deferred work
1764  *
1765  * @svms: the svm range list
1766  * @mm: the mm structure
1767  *
1768  * Context: Returns with mmap write lock held, pending deferred work flushed
1769  *
1770  */
1771 void
1772 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1773 				   struct mm_struct *mm)
1774 {
1775 retry_flush_work:
1776 	flush_work(&svms->deferred_list_work);
1777 	mmap_write_lock(mm);
1778 
1779 	if (list_empty(&svms->deferred_range_list))
1780 		return;
1781 	mmap_write_unlock(mm);
1782 	pr_debug("retry flush\n");
1783 	goto retry_flush_work;
1784 }
1785 
1786 static void svm_range_restore_work(struct work_struct *work)
1787 {
1788 	struct delayed_work *dwork = to_delayed_work(work);
1789 	struct amdkfd_process_info *process_info;
1790 	struct svm_range_list *svms;
1791 	struct svm_range *prange;
1792 	struct kfd_process *p;
1793 	struct mm_struct *mm;
1794 	int evicted_ranges;
1795 	int invalid;
1796 	int r;
1797 
1798 	svms = container_of(dwork, struct svm_range_list, restore_work);
1799 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1800 	if (!evicted_ranges)
1801 		return;
1802 
1803 	pr_debug("restore svm ranges\n");
1804 
1805 	p = container_of(svms, struct kfd_process, svms);
1806 	process_info = p->kgd_process_info;
1807 
1808 	/* Keep mm reference when svm_range_validate_and_map ranges */
1809 	mm = get_task_mm(p->lead_thread);
1810 	if (!mm) {
1811 		pr_debug("svms 0x%p process mm gone\n", svms);
1812 		return;
1813 	}
1814 
1815 	mutex_lock(&process_info->lock);
1816 	svm_range_list_lock_and_flush_work(svms, mm);
1817 	mutex_lock(&svms->lock);
1818 
1819 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1820 
1821 	list_for_each_entry(prange, &svms->list, list) {
1822 		invalid = atomic_read(&prange->invalid);
1823 		if (!invalid)
1824 			continue;
1825 
1826 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1827 			 prange->svms, prange, prange->start, prange->last,
1828 			 invalid);
1829 
1830 		/*
1831 		 * If range is migrating, wait for migration is done.
1832 		 */
1833 		mutex_lock(&prange->migrate_mutex);
1834 
1835 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1836 					       false, true, false);
1837 		if (r)
1838 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1839 				 prange->start);
1840 
1841 		mutex_unlock(&prange->migrate_mutex);
1842 		if (r)
1843 			goto out_reschedule;
1844 
1845 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1846 			goto out_reschedule;
1847 	}
1848 
1849 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1850 	    evicted_ranges)
1851 		goto out_reschedule;
1852 
1853 	evicted_ranges = 0;
1854 
1855 	r = kgd2kfd_resume_mm(mm);
1856 	if (r) {
1857 		/* No recovery from this failure. Probably the CP is
1858 		 * hanging. No point trying again.
1859 		 */
1860 		pr_debug("failed %d to resume KFD\n", r);
1861 	}
1862 
1863 	pr_debug("restore svm ranges successfully\n");
1864 
1865 out_reschedule:
1866 	mutex_unlock(&svms->lock);
1867 	mmap_write_unlock(mm);
1868 	mutex_unlock(&process_info->lock);
1869 
1870 	/* If validation failed, reschedule another attempt */
1871 	if (evicted_ranges) {
1872 		pr_debug("reschedule to restore svm range\n");
1873 		schedule_delayed_work(&svms->restore_work,
1874 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1875 
1876 		kfd_smi_event_queue_restore_rescheduled(mm);
1877 	}
1878 	mmput(mm);
1879 }
1880 
1881 /**
1882  * svm_range_evict - evict svm range
1883  * @prange: svm range structure
1884  * @mm: current process mm_struct
1885  * @start: starting process queue number
1886  * @last: last process queue number
1887  * @event: mmu notifier event when range is evicted or migrated
1888  *
1889  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1890  * return to let CPU evict the buffer and proceed CPU pagetable update.
1891  *
1892  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1893  * If invalidation happens while restore work is running, restore work will
1894  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1895  * the queues.
1896  */
1897 static int
1898 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1899 		unsigned long start, unsigned long last,
1900 		enum mmu_notifier_event event)
1901 {
1902 	struct svm_range_list *svms = prange->svms;
1903 	struct svm_range *pchild;
1904 	struct kfd_process *p;
1905 	int r = 0;
1906 
1907 	p = container_of(svms, struct kfd_process, svms);
1908 
1909 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1910 		 svms, prange->start, prange->last, start, last);
1911 
1912 	if (!p->xnack_enabled ||
1913 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1914 		int evicted_ranges;
1915 		bool mapped = prange->mapped_to_gpu;
1916 
1917 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1918 			if (!pchild->mapped_to_gpu)
1919 				continue;
1920 			mapped = true;
1921 			mutex_lock_nested(&pchild->lock, 1);
1922 			if (pchild->start <= last && pchild->last >= start) {
1923 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1924 					 pchild->start, pchild->last);
1925 				atomic_inc(&pchild->invalid);
1926 			}
1927 			mutex_unlock(&pchild->lock);
1928 		}
1929 
1930 		if (!mapped)
1931 			return r;
1932 
1933 		if (prange->start <= last && prange->last >= start)
1934 			atomic_inc(&prange->invalid);
1935 
1936 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1937 		if (evicted_ranges != 1)
1938 			return r;
1939 
1940 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1941 			 prange->svms, prange->start, prange->last);
1942 
1943 		/* First eviction, stop the queues */
1944 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1945 		if (r)
1946 			pr_debug("failed to quiesce KFD\n");
1947 
1948 		pr_debug("schedule to restore svm %p ranges\n", svms);
1949 		schedule_delayed_work(&svms->restore_work,
1950 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1951 	} else {
1952 		unsigned long s, l;
1953 		uint32_t trigger;
1954 
1955 		if (event == MMU_NOTIFY_MIGRATE)
1956 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1957 		else
1958 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1959 
1960 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1961 			 prange->svms, start, last);
1962 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1963 			mutex_lock_nested(&pchild->lock, 1);
1964 			s = max(start, pchild->start);
1965 			l = min(last, pchild->last);
1966 			if (l >= s)
1967 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1968 			mutex_unlock(&pchild->lock);
1969 		}
1970 		s = max(start, prange->start);
1971 		l = min(last, prange->last);
1972 		if (l >= s)
1973 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1974 	}
1975 
1976 	return r;
1977 }
1978 
1979 static struct svm_range *svm_range_clone(struct svm_range *old)
1980 {
1981 	struct svm_range *new;
1982 
1983 	new = svm_range_new(old->svms, old->start, old->last, false);
1984 	if (!new)
1985 		return NULL;
1986 	if (svm_range_copy_dma_addrs(new, old)) {
1987 		svm_range_free(new, false);
1988 		return NULL;
1989 	}
1990 	if (old->svm_bo) {
1991 		new->ttm_res = old->ttm_res;
1992 		new->offset = old->offset;
1993 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1994 		spin_lock(&new->svm_bo->list_lock);
1995 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1996 		spin_unlock(&new->svm_bo->list_lock);
1997 	}
1998 	new->flags = old->flags;
1999 	new->preferred_loc = old->preferred_loc;
2000 	new->prefetch_loc = old->prefetch_loc;
2001 	new->actual_loc = old->actual_loc;
2002 	new->granularity = old->granularity;
2003 	new->mapped_to_gpu = old->mapped_to_gpu;
2004 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2005 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2006 
2007 	return new;
2008 }
2009 
2010 void svm_range_set_max_pages(struct amdgpu_device *adev)
2011 {
2012 	uint64_t max_pages;
2013 	uint64_t pages, _pages;
2014 	uint64_t min_pages = 0;
2015 	int i, id;
2016 
2017 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2018 		if (adev->kfd.dev->nodes[i]->xcp)
2019 			id = adev->kfd.dev->nodes[i]->xcp->id;
2020 		else
2021 			id = -1;
2022 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2023 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2024 		pages = rounddown_pow_of_two(pages);
2025 		min_pages = min_not_zero(min_pages, pages);
2026 	}
2027 
2028 	do {
2029 		max_pages = READ_ONCE(max_svm_range_pages);
2030 		_pages = min_not_zero(max_pages, min_pages);
2031 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2032 }
2033 
2034 static int
2035 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2036 		    uint64_t max_pages, struct list_head *insert_list,
2037 		    struct list_head *update_list)
2038 {
2039 	struct svm_range *prange;
2040 	uint64_t l;
2041 
2042 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2043 		 max_pages, start, last);
2044 
2045 	while (last >= start) {
2046 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2047 
2048 		prange = svm_range_new(svms, start, l, true);
2049 		if (!prange)
2050 			return -ENOMEM;
2051 		list_add(&prange->list, insert_list);
2052 		list_add(&prange->update_list, update_list);
2053 
2054 		start = l + 1;
2055 	}
2056 	return 0;
2057 }
2058 
2059 /**
2060  * svm_range_add - add svm range and handle overlap
2061  * @p: the range add to this process svms
2062  * @start: page size aligned
2063  * @size: page size aligned
2064  * @nattr: number of attributes
2065  * @attrs: array of attributes
2066  * @update_list: output, the ranges need validate and update GPU mapping
2067  * @insert_list: output, the ranges need insert to svms
2068  * @remove_list: output, the ranges are replaced and need remove from svms
2069  * @remap_list: output, remap unaligned svm ranges
2070  *
2071  * Check if the virtual address range has overlap with any existing ranges,
2072  * split partly overlapping ranges and add new ranges in the gaps. All changes
2073  * should be applied to the range_list and interval tree transactionally. If
2074  * any range split or allocation fails, the entire update fails. Therefore any
2075  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2076  * unchanged.
2077  *
2078  * If the transaction succeeds, the caller can update and insert clones and
2079  * new ranges, then free the originals.
2080  *
2081  * Otherwise the caller can free the clones and new ranges, while the old
2082  * svm_ranges remain unchanged.
2083  *
2084  * Context: Process context, caller must hold svms->lock
2085  *
2086  * Return:
2087  * 0 - OK, otherwise error code
2088  */
2089 static int
2090 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2091 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2092 	      struct list_head *update_list, struct list_head *insert_list,
2093 	      struct list_head *remove_list, struct list_head *remap_list)
2094 {
2095 	unsigned long last = start + size - 1UL;
2096 	struct svm_range_list *svms = &p->svms;
2097 	struct interval_tree_node *node;
2098 	struct svm_range *prange;
2099 	struct svm_range *tmp;
2100 	struct list_head new_list;
2101 	int r = 0;
2102 
2103 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2104 
2105 	INIT_LIST_HEAD(update_list);
2106 	INIT_LIST_HEAD(insert_list);
2107 	INIT_LIST_HEAD(remove_list);
2108 	INIT_LIST_HEAD(&new_list);
2109 	INIT_LIST_HEAD(remap_list);
2110 
2111 	node = interval_tree_iter_first(&svms->objects, start, last);
2112 	while (node) {
2113 		struct interval_tree_node *next;
2114 		unsigned long next_start;
2115 
2116 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2117 			 node->last);
2118 
2119 		prange = container_of(node, struct svm_range, it_node);
2120 		next = interval_tree_iter_next(node, start, last);
2121 		next_start = min(node->last, last) + 1;
2122 
2123 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2124 		    prange->mapped_to_gpu) {
2125 			/* nothing to do */
2126 		} else if (node->start < start || node->last > last) {
2127 			/* node intersects the update range and its attributes
2128 			 * will change. Clone and split it, apply updates only
2129 			 * to the overlapping part
2130 			 */
2131 			struct svm_range *old = prange;
2132 
2133 			prange = svm_range_clone(old);
2134 			if (!prange) {
2135 				r = -ENOMEM;
2136 				goto out;
2137 			}
2138 
2139 			list_add(&old->update_list, remove_list);
2140 			list_add(&prange->list, insert_list);
2141 			list_add(&prange->update_list, update_list);
2142 
2143 			if (node->start < start) {
2144 				pr_debug("change old range start\n");
2145 				r = svm_range_split_head(prange, start,
2146 							 insert_list, remap_list);
2147 				if (r)
2148 					goto out;
2149 			}
2150 			if (node->last > last) {
2151 				pr_debug("change old range last\n");
2152 				r = svm_range_split_tail(prange, last,
2153 							 insert_list, remap_list);
2154 				if (r)
2155 					goto out;
2156 			}
2157 		} else {
2158 			/* The node is contained within start..last,
2159 			 * just update it
2160 			 */
2161 			list_add(&prange->update_list, update_list);
2162 		}
2163 
2164 		/* insert a new node if needed */
2165 		if (node->start > start) {
2166 			r = svm_range_split_new(svms, start, node->start - 1,
2167 						READ_ONCE(max_svm_range_pages),
2168 						&new_list, update_list);
2169 			if (r)
2170 				goto out;
2171 		}
2172 
2173 		node = next;
2174 		start = next_start;
2175 	}
2176 
2177 	/* add a final range at the end if needed */
2178 	if (start <= last)
2179 		r = svm_range_split_new(svms, start, last,
2180 					READ_ONCE(max_svm_range_pages),
2181 					&new_list, update_list);
2182 
2183 out:
2184 	if (r) {
2185 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2186 			svm_range_free(prange, false);
2187 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2188 			svm_range_free(prange, true);
2189 	} else {
2190 		list_splice(&new_list, insert_list);
2191 	}
2192 
2193 	return r;
2194 }
2195 
2196 static void
2197 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2198 					    struct svm_range *prange)
2199 {
2200 	unsigned long start;
2201 	unsigned long last;
2202 
2203 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2204 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2205 
2206 	if (prange->start == start && prange->last == last)
2207 		return;
2208 
2209 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2210 		  prange->svms, prange, start, last, prange->start,
2211 		  prange->last);
2212 
2213 	if (start != 0 && last != 0) {
2214 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2215 		svm_range_remove_notifier(prange);
2216 	}
2217 	prange->it_node.start = prange->start;
2218 	prange->it_node.last = prange->last;
2219 
2220 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2221 	svm_range_add_notifier_locked(mm, prange);
2222 }
2223 
2224 static void
2225 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2226 			 struct mm_struct *mm)
2227 {
2228 	switch (prange->work_item.op) {
2229 	case SVM_OP_NULL:
2230 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2231 			 svms, prange, prange->start, prange->last);
2232 		break;
2233 	case SVM_OP_UNMAP_RANGE:
2234 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2235 			 svms, prange, prange->start, prange->last);
2236 		svm_range_unlink(prange);
2237 		svm_range_remove_notifier(prange);
2238 		svm_range_free(prange, true);
2239 		break;
2240 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2241 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2242 			 svms, prange, prange->start, prange->last);
2243 		svm_range_update_notifier_and_interval_tree(mm, prange);
2244 		break;
2245 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2246 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2247 			 svms, prange, prange->start, prange->last);
2248 		svm_range_update_notifier_and_interval_tree(mm, prange);
2249 		/* TODO: implement deferred validation and mapping */
2250 		break;
2251 	case SVM_OP_ADD_RANGE:
2252 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2253 			 prange->start, prange->last);
2254 		svm_range_add_to_svms(prange);
2255 		svm_range_add_notifier_locked(mm, prange);
2256 		break;
2257 	case SVM_OP_ADD_RANGE_AND_MAP:
2258 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2259 			 prange, prange->start, prange->last);
2260 		svm_range_add_to_svms(prange);
2261 		svm_range_add_notifier_locked(mm, prange);
2262 		/* TODO: implement deferred validation and mapping */
2263 		break;
2264 	default:
2265 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2266 			 prange->work_item.op);
2267 	}
2268 }
2269 
2270 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2271 {
2272 	struct kfd_process_device *pdd;
2273 	struct kfd_process *p;
2274 	int drain;
2275 	uint32_t i;
2276 
2277 	p = container_of(svms, struct kfd_process, svms);
2278 
2279 restart:
2280 	drain = atomic_read(&svms->drain_pagefaults);
2281 	if (!drain)
2282 		return;
2283 
2284 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2285 		pdd = p->pdds[i];
2286 		if (!pdd)
2287 			continue;
2288 
2289 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2290 
2291 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2292 				pdd->dev->adev->irq.retry_cam_enabled ?
2293 				&pdd->dev->adev->irq.ih :
2294 				&pdd->dev->adev->irq.ih1);
2295 
2296 		if (pdd->dev->adev->irq.retry_cam_enabled)
2297 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2298 				&pdd->dev->adev->irq.ih_soft);
2299 
2300 
2301 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2302 	}
2303 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2304 		goto restart;
2305 }
2306 
2307 static void svm_range_deferred_list_work(struct work_struct *work)
2308 {
2309 	struct svm_range_list *svms;
2310 	struct svm_range *prange;
2311 	struct mm_struct *mm;
2312 
2313 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2314 	pr_debug("enter svms 0x%p\n", svms);
2315 
2316 	spin_lock(&svms->deferred_list_lock);
2317 	while (!list_empty(&svms->deferred_range_list)) {
2318 		prange = list_first_entry(&svms->deferred_range_list,
2319 					  struct svm_range, deferred_list);
2320 		spin_unlock(&svms->deferred_list_lock);
2321 
2322 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2323 			 prange->start, prange->last, prange->work_item.op);
2324 
2325 		mm = prange->work_item.mm;
2326 retry:
2327 		mmap_write_lock(mm);
2328 
2329 		/* Checking for the need to drain retry faults must be inside
2330 		 * mmap write lock to serialize with munmap notifiers.
2331 		 */
2332 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2333 			mmap_write_unlock(mm);
2334 			svm_range_drain_retry_fault(svms);
2335 			goto retry;
2336 		}
2337 
2338 		/* Remove from deferred_list must be inside mmap write lock, for
2339 		 * two race cases:
2340 		 * 1. unmap_from_cpu may change work_item.op and add the range
2341 		 *    to deferred_list again, cause use after free bug.
2342 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2343 		 *    lock and continue because deferred_list is empty, but
2344 		 *    deferred_list work is actually waiting for mmap lock.
2345 		 */
2346 		spin_lock(&svms->deferred_list_lock);
2347 		list_del_init(&prange->deferred_list);
2348 		spin_unlock(&svms->deferred_list_lock);
2349 
2350 		mutex_lock(&svms->lock);
2351 		mutex_lock(&prange->migrate_mutex);
2352 		while (!list_empty(&prange->child_list)) {
2353 			struct svm_range *pchild;
2354 
2355 			pchild = list_first_entry(&prange->child_list,
2356 						struct svm_range, child_list);
2357 			pr_debug("child prange 0x%p op %d\n", pchild,
2358 				 pchild->work_item.op);
2359 			list_del_init(&pchild->child_list);
2360 			svm_range_handle_list_op(svms, pchild, mm);
2361 		}
2362 		mutex_unlock(&prange->migrate_mutex);
2363 
2364 		svm_range_handle_list_op(svms, prange, mm);
2365 		mutex_unlock(&svms->lock);
2366 		mmap_write_unlock(mm);
2367 
2368 		/* Pairs with mmget in svm_range_add_list_work */
2369 		mmput(mm);
2370 
2371 		spin_lock(&svms->deferred_list_lock);
2372 	}
2373 	spin_unlock(&svms->deferred_list_lock);
2374 	pr_debug("exit svms 0x%p\n", svms);
2375 }
2376 
2377 void
2378 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2379 			struct mm_struct *mm, enum svm_work_list_ops op)
2380 {
2381 	spin_lock(&svms->deferred_list_lock);
2382 	/* if prange is on the deferred list */
2383 	if (!list_empty(&prange->deferred_list)) {
2384 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2385 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2386 		if (op != SVM_OP_NULL &&
2387 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2388 			prange->work_item.op = op;
2389 	} else {
2390 		prange->work_item.op = op;
2391 
2392 		/* Pairs with mmput in deferred_list_work */
2393 		mmget(mm);
2394 		prange->work_item.mm = mm;
2395 		list_add_tail(&prange->deferred_list,
2396 			      &prange->svms->deferred_range_list);
2397 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2398 			 prange, prange->start, prange->last, op);
2399 	}
2400 	spin_unlock(&svms->deferred_list_lock);
2401 }
2402 
2403 void schedule_deferred_list_work(struct svm_range_list *svms)
2404 {
2405 	spin_lock(&svms->deferred_list_lock);
2406 	if (!list_empty(&svms->deferred_range_list))
2407 		schedule_work(&svms->deferred_list_work);
2408 	spin_unlock(&svms->deferred_list_lock);
2409 }
2410 
2411 static void
2412 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2413 		      struct svm_range *prange, unsigned long start,
2414 		      unsigned long last)
2415 {
2416 	struct svm_range *head;
2417 	struct svm_range *tail;
2418 
2419 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2420 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2421 			 prange->start, prange->last);
2422 		return;
2423 	}
2424 	if (start > prange->last || last < prange->start)
2425 		return;
2426 
2427 	head = tail = prange;
2428 	if (start > prange->start)
2429 		svm_range_split(prange, prange->start, start - 1, &tail);
2430 	if (last < tail->last)
2431 		svm_range_split(tail, last + 1, tail->last, &head);
2432 
2433 	if (head != prange && tail != prange) {
2434 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2435 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2436 	} else if (tail != prange) {
2437 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2438 	} else if (head != prange) {
2439 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2440 	} else if (parent != prange) {
2441 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2442 	}
2443 }
2444 
2445 static void
2446 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2447 			 unsigned long start, unsigned long last)
2448 {
2449 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2450 	struct svm_range_list *svms;
2451 	struct svm_range *pchild;
2452 	struct kfd_process *p;
2453 	unsigned long s, l;
2454 	bool unmap_parent;
2455 
2456 	p = kfd_lookup_process_by_mm(mm);
2457 	if (!p)
2458 		return;
2459 	svms = &p->svms;
2460 
2461 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2462 		 prange, prange->start, prange->last, start, last);
2463 
2464 	/* Make sure pending page faults are drained in the deferred worker
2465 	 * before the range is freed to avoid straggler interrupts on
2466 	 * unmapped memory causing "phantom faults".
2467 	 */
2468 	atomic_inc(&svms->drain_pagefaults);
2469 
2470 	unmap_parent = start <= prange->start && last >= prange->last;
2471 
2472 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2473 		mutex_lock_nested(&pchild->lock, 1);
2474 		s = max(start, pchild->start);
2475 		l = min(last, pchild->last);
2476 		if (l >= s)
2477 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2478 		svm_range_unmap_split(mm, prange, pchild, start, last);
2479 		mutex_unlock(&pchild->lock);
2480 	}
2481 	s = max(start, prange->start);
2482 	l = min(last, prange->last);
2483 	if (l >= s)
2484 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2485 	svm_range_unmap_split(mm, prange, prange, start, last);
2486 
2487 	if (unmap_parent)
2488 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2489 	else
2490 		svm_range_add_list_work(svms, prange, mm,
2491 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2492 	schedule_deferred_list_work(svms);
2493 
2494 	kfd_unref_process(p);
2495 }
2496 
2497 /**
2498  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2499  * @mni: mmu_interval_notifier struct
2500  * @range: mmu_notifier_range struct
2501  * @cur_seq: value to pass to mmu_interval_set_seq()
2502  *
2503  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2504  * is from migration, or CPU page invalidation callback.
2505  *
2506  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2507  * work thread, and split prange if only part of prange is unmapped.
2508  *
2509  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2510  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2511  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2512  * update GPU mapping to recover.
2513  *
2514  * Context: mmap lock, notifier_invalidate_start lock are held
2515  *          for invalidate event, prange lock is held if this is from migration
2516  */
2517 static bool
2518 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2519 				    const struct mmu_notifier_range *range,
2520 				    unsigned long cur_seq)
2521 {
2522 	struct svm_range *prange;
2523 	unsigned long start;
2524 	unsigned long last;
2525 
2526 	if (range->event == MMU_NOTIFY_RELEASE)
2527 		return true;
2528 	if (!mmget_not_zero(mni->mm))
2529 		return true;
2530 
2531 	start = mni->interval_tree.start;
2532 	last = mni->interval_tree.last;
2533 	start = max(start, range->start) >> PAGE_SHIFT;
2534 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2535 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2536 		 start, last, range->start >> PAGE_SHIFT,
2537 		 (range->end - 1) >> PAGE_SHIFT,
2538 		 mni->interval_tree.start >> PAGE_SHIFT,
2539 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2540 
2541 	prange = container_of(mni, struct svm_range, notifier);
2542 
2543 	svm_range_lock(prange);
2544 	mmu_interval_set_seq(mni, cur_seq);
2545 
2546 	switch (range->event) {
2547 	case MMU_NOTIFY_UNMAP:
2548 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2549 		break;
2550 	default:
2551 		svm_range_evict(prange, mni->mm, start, last, range->event);
2552 		break;
2553 	}
2554 
2555 	svm_range_unlock(prange);
2556 	mmput(mni->mm);
2557 
2558 	return true;
2559 }
2560 
2561 /**
2562  * svm_range_from_addr - find svm range from fault address
2563  * @svms: svm range list header
2564  * @addr: address to search range interval tree, in pages
2565  * @parent: parent range if range is on child list
2566  *
2567  * Context: The caller must hold svms->lock
2568  *
2569  * Return: the svm_range found or NULL
2570  */
2571 struct svm_range *
2572 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2573 		    struct svm_range **parent)
2574 {
2575 	struct interval_tree_node *node;
2576 	struct svm_range *prange;
2577 	struct svm_range *pchild;
2578 
2579 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2580 	if (!node)
2581 		return NULL;
2582 
2583 	prange = container_of(node, struct svm_range, it_node);
2584 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2585 		 addr, prange->start, prange->last, node->start, node->last);
2586 
2587 	if (addr >= prange->start && addr <= prange->last) {
2588 		if (parent)
2589 			*parent = prange;
2590 		return prange;
2591 	}
2592 	list_for_each_entry(pchild, &prange->child_list, child_list)
2593 		if (addr >= pchild->start && addr <= pchild->last) {
2594 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2595 				 addr, pchild->start, pchild->last);
2596 			if (parent)
2597 				*parent = prange;
2598 			return pchild;
2599 		}
2600 
2601 	return NULL;
2602 }
2603 
2604 /* svm_range_best_restore_location - decide the best fault restore location
2605  * @prange: svm range structure
2606  * @adev: the GPU on which vm fault happened
2607  *
2608  * This is only called when xnack is on, to decide the best location to restore
2609  * the range mapping after GPU vm fault. Caller uses the best location to do
2610  * migration if actual loc is not best location, then update GPU page table
2611  * mapping to the best location.
2612  *
2613  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2614  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2615  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2616  *    if range actual loc is cpu, best_loc is cpu
2617  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2618  *    range actual loc.
2619  * Otherwise, GPU no access, best_loc is -1.
2620  *
2621  * Return:
2622  * -1 means vm fault GPU no access
2623  * 0 for CPU or GPU id
2624  */
2625 static int32_t
2626 svm_range_best_restore_location(struct svm_range *prange,
2627 				struct kfd_node *node,
2628 				int32_t *gpuidx)
2629 {
2630 	struct kfd_node *bo_node, *preferred_node;
2631 	struct kfd_process *p;
2632 	uint32_t gpuid;
2633 	int r;
2634 
2635 	p = container_of(prange->svms, struct kfd_process, svms);
2636 
2637 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2638 	if (r < 0) {
2639 		pr_debug("failed to get gpuid from kgd\n");
2640 		return -1;
2641 	}
2642 
2643 	if (node->adev->gmc.is_app_apu)
2644 		return 0;
2645 
2646 	if (prange->preferred_loc == gpuid ||
2647 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2648 		return prange->preferred_loc;
2649 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2650 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2651 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2652 			return prange->preferred_loc;
2653 		/* fall through */
2654 	}
2655 
2656 	if (test_bit(*gpuidx, prange->bitmap_access))
2657 		return gpuid;
2658 
2659 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2660 		if (!prange->actual_loc)
2661 			return 0;
2662 
2663 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2664 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2665 			return prange->actual_loc;
2666 		else
2667 			return 0;
2668 	}
2669 
2670 	return -1;
2671 }
2672 
2673 static int
2674 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2675 			       unsigned long *start, unsigned long *last,
2676 			       bool *is_heap_stack)
2677 {
2678 	struct vm_area_struct *vma;
2679 	struct interval_tree_node *node;
2680 	unsigned long start_limit, end_limit;
2681 
2682 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2683 	if (!vma) {
2684 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2685 		return -EFAULT;
2686 	}
2687 
2688 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2689 
2690 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2691 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2692 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2693 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2694 	/* First range that starts after the fault address */
2695 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2696 	if (node) {
2697 		end_limit = min(end_limit, node->start);
2698 		/* Last range that ends before the fault address */
2699 		node = container_of(rb_prev(&node->rb),
2700 				    struct interval_tree_node, rb);
2701 	} else {
2702 		/* Last range must end before addr because
2703 		 * there was no range after addr
2704 		 */
2705 		node = container_of(rb_last(&p->svms.objects.rb_root),
2706 				    struct interval_tree_node, rb);
2707 	}
2708 	if (node) {
2709 		if (node->last >= addr) {
2710 			WARN(1, "Overlap with prev node and page fault addr\n");
2711 			return -EFAULT;
2712 		}
2713 		start_limit = max(start_limit, node->last + 1);
2714 	}
2715 
2716 	*start = start_limit;
2717 	*last = end_limit - 1;
2718 
2719 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2720 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2721 		 *start, *last, *is_heap_stack);
2722 
2723 	return 0;
2724 }
2725 
2726 static int
2727 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2728 			   uint64_t *bo_s, uint64_t *bo_l)
2729 {
2730 	struct amdgpu_bo_va_mapping *mapping;
2731 	struct interval_tree_node *node;
2732 	struct amdgpu_bo *bo = NULL;
2733 	unsigned long userptr;
2734 	uint32_t i;
2735 	int r;
2736 
2737 	for (i = 0; i < p->n_pdds; i++) {
2738 		struct amdgpu_vm *vm;
2739 
2740 		if (!p->pdds[i]->drm_priv)
2741 			continue;
2742 
2743 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2744 		r = amdgpu_bo_reserve(vm->root.bo, false);
2745 		if (r)
2746 			return r;
2747 
2748 		/* Check userptr by searching entire vm->va interval tree */
2749 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2750 		while (node) {
2751 			mapping = container_of((struct rb_node *)node,
2752 					       struct amdgpu_bo_va_mapping, rb);
2753 			bo = mapping->bo_va->base.bo;
2754 
2755 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2756 							 start << PAGE_SHIFT,
2757 							 last << PAGE_SHIFT,
2758 							 &userptr)) {
2759 				node = interval_tree_iter_next(node, 0, ~0ULL);
2760 				continue;
2761 			}
2762 
2763 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2764 				 start, last);
2765 			if (bo_s && bo_l) {
2766 				*bo_s = userptr >> PAGE_SHIFT;
2767 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2768 			}
2769 			amdgpu_bo_unreserve(vm->root.bo);
2770 			return -EADDRINUSE;
2771 		}
2772 		amdgpu_bo_unreserve(vm->root.bo);
2773 	}
2774 	return 0;
2775 }
2776 
2777 static struct
2778 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2779 						struct kfd_process *p,
2780 						struct mm_struct *mm,
2781 						int64_t addr)
2782 {
2783 	struct svm_range *prange = NULL;
2784 	unsigned long start, last;
2785 	uint32_t gpuid, gpuidx;
2786 	bool is_heap_stack;
2787 	uint64_t bo_s = 0;
2788 	uint64_t bo_l = 0;
2789 	int r;
2790 
2791 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2792 					   &is_heap_stack))
2793 		return NULL;
2794 
2795 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2796 	if (r != -EADDRINUSE)
2797 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2798 
2799 	if (r == -EADDRINUSE) {
2800 		if (addr >= bo_s && addr <= bo_l)
2801 			return NULL;
2802 
2803 		/* Create one page svm range if 2MB range overlapping */
2804 		start = addr;
2805 		last = addr;
2806 	}
2807 
2808 	prange = svm_range_new(&p->svms, start, last, true);
2809 	if (!prange) {
2810 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2811 		return NULL;
2812 	}
2813 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2814 		pr_debug("failed to get gpuid from kgd\n");
2815 		svm_range_free(prange, true);
2816 		return NULL;
2817 	}
2818 
2819 	if (is_heap_stack)
2820 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2821 
2822 	svm_range_add_to_svms(prange);
2823 	svm_range_add_notifier_locked(mm, prange);
2824 
2825 	return prange;
2826 }
2827 
2828 /* svm_range_skip_recover - decide if prange can be recovered
2829  * @prange: svm range structure
2830  *
2831  * GPU vm retry fault handle skip recover the range for cases:
2832  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2833  *    deferred list work will drain the stale fault before free the prange.
2834  * 2. prange is on deferred list to add interval notifier after split, or
2835  * 3. prange is child range, it is split from parent prange, recover later
2836  *    after interval notifier is added.
2837  *
2838  * Return: true to skip recover, false to recover
2839  */
2840 static bool svm_range_skip_recover(struct svm_range *prange)
2841 {
2842 	struct svm_range_list *svms = prange->svms;
2843 
2844 	spin_lock(&svms->deferred_list_lock);
2845 	if (list_empty(&prange->deferred_list) &&
2846 	    list_empty(&prange->child_list)) {
2847 		spin_unlock(&svms->deferred_list_lock);
2848 		return false;
2849 	}
2850 	spin_unlock(&svms->deferred_list_lock);
2851 
2852 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2853 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2854 			 svms, prange, prange->start, prange->last);
2855 		return true;
2856 	}
2857 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2858 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2859 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2860 			 svms, prange, prange->start, prange->last);
2861 		return true;
2862 	}
2863 	return false;
2864 }
2865 
2866 static void
2867 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2868 		      int32_t gpuidx)
2869 {
2870 	struct kfd_process_device *pdd;
2871 
2872 	/* fault is on different page of same range
2873 	 * or fault is skipped to recover later
2874 	 * or fault is on invalid virtual address
2875 	 */
2876 	if (gpuidx == MAX_GPU_INSTANCE) {
2877 		uint32_t gpuid;
2878 		int r;
2879 
2880 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2881 		if (r < 0)
2882 			return;
2883 	}
2884 
2885 	/* fault is recovered
2886 	 * or fault cannot recover because GPU no access on the range
2887 	 */
2888 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2889 	if (pdd)
2890 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2891 }
2892 
2893 static bool
2894 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2895 {
2896 	unsigned long requested = VM_READ;
2897 
2898 	if (write_fault)
2899 		requested |= VM_WRITE;
2900 
2901 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2902 		vma->vm_flags);
2903 	return (vma->vm_flags & requested) == requested;
2904 }
2905 
2906 int
2907 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2908 			uint32_t vmid, uint32_t node_id,
2909 			uint64_t addr, bool write_fault)
2910 {
2911 	struct mm_struct *mm = NULL;
2912 	struct svm_range_list *svms;
2913 	struct svm_range *prange;
2914 	struct kfd_process *p;
2915 	ktime_t timestamp = ktime_get_boottime();
2916 	struct kfd_node *node;
2917 	int32_t best_loc;
2918 	int32_t gpuidx = MAX_GPU_INSTANCE;
2919 	bool write_locked = false;
2920 	struct vm_area_struct *vma;
2921 	bool migration = false;
2922 	int r = 0;
2923 
2924 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2925 		pr_debug("device does not support SVM\n");
2926 		return -EFAULT;
2927 	}
2928 
2929 	p = kfd_lookup_process_by_pasid(pasid);
2930 	if (!p) {
2931 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2932 		return 0;
2933 	}
2934 	svms = &p->svms;
2935 
2936 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2937 
2938 	if (atomic_read(&svms->drain_pagefaults)) {
2939 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2940 		r = 0;
2941 		goto out;
2942 	}
2943 
2944 	if (!p->xnack_enabled) {
2945 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2946 		r = -EFAULT;
2947 		goto out;
2948 	}
2949 
2950 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2951 	 * before releasing task ref.
2952 	 */
2953 	mm = get_task_mm(p->lead_thread);
2954 	if (!mm) {
2955 		pr_debug("svms 0x%p failed to get mm\n", svms);
2956 		r = 0;
2957 		goto out;
2958 	}
2959 
2960 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2961 	if (!node) {
2962 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2963 			 vmid);
2964 		r = -EFAULT;
2965 		goto out;
2966 	}
2967 	mmap_read_lock(mm);
2968 retry_write_locked:
2969 	mutex_lock(&svms->lock);
2970 	prange = svm_range_from_addr(svms, addr, NULL);
2971 	if (!prange) {
2972 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2973 			 svms, addr);
2974 		if (!write_locked) {
2975 			/* Need the write lock to create new range with MMU notifier.
2976 			 * Also flush pending deferred work to make sure the interval
2977 			 * tree is up to date before we add a new range
2978 			 */
2979 			mutex_unlock(&svms->lock);
2980 			mmap_read_unlock(mm);
2981 			mmap_write_lock(mm);
2982 			write_locked = true;
2983 			goto retry_write_locked;
2984 		}
2985 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2986 		if (!prange) {
2987 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2988 				 svms, addr);
2989 			mmap_write_downgrade(mm);
2990 			r = -EFAULT;
2991 			goto out_unlock_svms;
2992 		}
2993 	}
2994 	if (write_locked)
2995 		mmap_write_downgrade(mm);
2996 
2997 	mutex_lock(&prange->migrate_mutex);
2998 
2999 	if (svm_range_skip_recover(prange)) {
3000 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3001 		r = 0;
3002 		goto out_unlock_range;
3003 	}
3004 
3005 	/* skip duplicate vm fault on different pages of same range */
3006 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3007 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3008 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3009 			 svms, prange->start, prange->last);
3010 		r = 0;
3011 		goto out_unlock_range;
3012 	}
3013 
3014 	/* __do_munmap removed VMA, return success as we are handling stale
3015 	 * retry fault.
3016 	 */
3017 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3018 	if (!vma) {
3019 		pr_debug("address 0x%llx VMA is removed\n", addr);
3020 		r = 0;
3021 		goto out_unlock_range;
3022 	}
3023 
3024 	if (!svm_fault_allowed(vma, write_fault)) {
3025 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3026 			write_fault ? "write" : "read");
3027 		r = -EPERM;
3028 		goto out_unlock_range;
3029 	}
3030 
3031 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3032 	if (best_loc == -1) {
3033 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3034 			 svms, prange->start, prange->last);
3035 		r = -EACCES;
3036 		goto out_unlock_range;
3037 	}
3038 
3039 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3040 		 svms, prange->start, prange->last, best_loc,
3041 		 prange->actual_loc);
3042 
3043 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3044 				       write_fault, timestamp);
3045 
3046 	if (prange->actual_loc != best_loc) {
3047 		migration = true;
3048 		if (best_loc) {
3049 			r = svm_migrate_to_vram(prange, best_loc, mm,
3050 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3051 			if (r) {
3052 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3053 					 r, addr);
3054 				/* Fallback to system memory if migration to
3055 				 * VRAM failed
3056 				 */
3057 				if (prange->actual_loc)
3058 					r = svm_migrate_vram_to_ram(prange, mm,
3059 					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3060 					   NULL);
3061 				else
3062 					r = 0;
3063 			}
3064 		} else {
3065 			r = svm_migrate_vram_to_ram(prange, mm,
3066 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3067 					NULL);
3068 		}
3069 		if (r) {
3070 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3071 				 r, svms, prange->start, prange->last);
3072 			goto out_unlock_range;
3073 		}
3074 	}
3075 
3076 	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3077 	if (r)
3078 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3079 			 r, svms, prange->start, prange->last);
3080 
3081 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3082 				     migration);
3083 
3084 out_unlock_range:
3085 	mutex_unlock(&prange->migrate_mutex);
3086 out_unlock_svms:
3087 	mutex_unlock(&svms->lock);
3088 	mmap_read_unlock(mm);
3089 
3090 	svm_range_count_fault(node, p, gpuidx);
3091 
3092 	mmput(mm);
3093 out:
3094 	kfd_unref_process(p);
3095 
3096 	if (r == -EAGAIN) {
3097 		pr_debug("recover vm fault later\n");
3098 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3099 		r = 0;
3100 	}
3101 	return r;
3102 }
3103 
3104 int
3105 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3106 {
3107 	struct svm_range *prange, *pchild;
3108 	uint64_t reserved_size = 0;
3109 	uint64_t size;
3110 	int r = 0;
3111 
3112 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3113 
3114 	mutex_lock(&p->svms.lock);
3115 
3116 	list_for_each_entry(prange, &p->svms.list, list) {
3117 		svm_range_lock(prange);
3118 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3119 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3120 			if (xnack_enabled) {
3121 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3122 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3123 			} else {
3124 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3125 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3126 				if (r)
3127 					goto out_unlock;
3128 				reserved_size += size;
3129 			}
3130 		}
3131 
3132 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3133 		if (xnack_enabled) {
3134 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3135 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3136 		} else {
3137 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3138 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3139 			if (r)
3140 				goto out_unlock;
3141 			reserved_size += size;
3142 		}
3143 out_unlock:
3144 		svm_range_unlock(prange);
3145 		if (r)
3146 			break;
3147 	}
3148 
3149 	if (r)
3150 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3151 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3152 	else
3153 		/* Change xnack mode must be inside svms lock, to avoid race with
3154 		 * svm_range_deferred_list_work unreserve memory in parallel.
3155 		 */
3156 		p->xnack_enabled = xnack_enabled;
3157 
3158 	mutex_unlock(&p->svms.lock);
3159 	return r;
3160 }
3161 
3162 void svm_range_list_fini(struct kfd_process *p)
3163 {
3164 	struct svm_range *prange;
3165 	struct svm_range *next;
3166 
3167 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3168 
3169 	cancel_delayed_work_sync(&p->svms.restore_work);
3170 
3171 	/* Ensure list work is finished before process is destroyed */
3172 	flush_work(&p->svms.deferred_list_work);
3173 
3174 	/*
3175 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3176 	 * not find kfd process and take mm lock to recover fault.
3177 	 */
3178 	atomic_inc(&p->svms.drain_pagefaults);
3179 	svm_range_drain_retry_fault(&p->svms);
3180 
3181 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3182 		svm_range_unlink(prange);
3183 		svm_range_remove_notifier(prange);
3184 		svm_range_free(prange, true);
3185 	}
3186 
3187 	mutex_destroy(&p->svms.lock);
3188 
3189 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3190 }
3191 
3192 int svm_range_list_init(struct kfd_process *p)
3193 {
3194 	struct svm_range_list *svms = &p->svms;
3195 	int i;
3196 
3197 	svms->objects = RB_ROOT_CACHED;
3198 	mutex_init(&svms->lock);
3199 	INIT_LIST_HEAD(&svms->list);
3200 	atomic_set(&svms->evicted_ranges, 0);
3201 	atomic_set(&svms->drain_pagefaults, 0);
3202 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3203 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3204 	INIT_LIST_HEAD(&svms->deferred_range_list);
3205 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3206 	spin_lock_init(&svms->deferred_list_lock);
3207 
3208 	for (i = 0; i < p->n_pdds; i++)
3209 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3210 			bitmap_set(svms->bitmap_supported, i, 1);
3211 
3212 	return 0;
3213 }
3214 
3215 /**
3216  * svm_range_check_vm - check if virtual address range mapped already
3217  * @p: current kfd_process
3218  * @start: range start address, in pages
3219  * @last: range last address, in pages
3220  * @bo_s: mapping start address in pages if address range already mapped
3221  * @bo_l: mapping last address in pages if address range already mapped
3222  *
3223  * The purpose is to avoid virtual address ranges already allocated by
3224  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3225  * It looks for each pdd in the kfd_process.
3226  *
3227  * Context: Process context
3228  *
3229  * Return 0 - OK, if the range is not mapped.
3230  * Otherwise error code:
3231  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3232  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3233  * a signal. Release all buffer reservations and return to user-space.
3234  */
3235 static int
3236 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3237 		   uint64_t *bo_s, uint64_t *bo_l)
3238 {
3239 	struct amdgpu_bo_va_mapping *mapping;
3240 	struct interval_tree_node *node;
3241 	uint32_t i;
3242 	int r;
3243 
3244 	for (i = 0; i < p->n_pdds; i++) {
3245 		struct amdgpu_vm *vm;
3246 
3247 		if (!p->pdds[i]->drm_priv)
3248 			continue;
3249 
3250 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3251 		r = amdgpu_bo_reserve(vm->root.bo, false);
3252 		if (r)
3253 			return r;
3254 
3255 		node = interval_tree_iter_first(&vm->va, start, last);
3256 		if (node) {
3257 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3258 				 start, last);
3259 			mapping = container_of((struct rb_node *)node,
3260 					       struct amdgpu_bo_va_mapping, rb);
3261 			if (bo_s && bo_l) {
3262 				*bo_s = mapping->start;
3263 				*bo_l = mapping->last;
3264 			}
3265 			amdgpu_bo_unreserve(vm->root.bo);
3266 			return -EADDRINUSE;
3267 		}
3268 		amdgpu_bo_unreserve(vm->root.bo);
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 /**
3275  * svm_range_is_valid - check if virtual address range is valid
3276  * @p: current kfd_process
3277  * @start: range start address, in pages
3278  * @size: range size, in pages
3279  *
3280  * Valid virtual address range means it belongs to one or more VMAs
3281  *
3282  * Context: Process context
3283  *
3284  * Return:
3285  *  0 - OK, otherwise error code
3286  */
3287 static int
3288 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3289 {
3290 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3291 	struct vm_area_struct *vma;
3292 	unsigned long end;
3293 	unsigned long start_unchg = start;
3294 
3295 	start <<= PAGE_SHIFT;
3296 	end = start + (size << PAGE_SHIFT);
3297 	do {
3298 		vma = vma_lookup(p->mm, start);
3299 		if (!vma || (vma->vm_flags & device_vma))
3300 			return -EFAULT;
3301 		start = min(end, vma->vm_end);
3302 	} while (start < end);
3303 
3304 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3305 				  NULL);
3306 }
3307 
3308 /**
3309  * svm_range_best_prefetch_location - decide the best prefetch location
3310  * @prange: svm range structure
3311  *
3312  * For xnack off:
3313  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3314  * can be CPU or GPU.
3315  *
3316  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3317  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3318  * the best prefetch location is always CPU, because GPU can not have coherent
3319  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3320  *
3321  * For xnack on:
3322  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3323  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3324  *
3325  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3326  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3327  * prefetch location is always CPU.
3328  *
3329  * Context: Process context
3330  *
3331  * Return:
3332  * 0 for CPU or GPU id
3333  */
3334 static uint32_t
3335 svm_range_best_prefetch_location(struct svm_range *prange)
3336 {
3337 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3338 	uint32_t best_loc = prange->prefetch_loc;
3339 	struct kfd_process_device *pdd;
3340 	struct kfd_node *bo_node;
3341 	struct kfd_process *p;
3342 	uint32_t gpuidx;
3343 
3344 	p = container_of(prange->svms, struct kfd_process, svms);
3345 
3346 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3347 		goto out;
3348 
3349 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3350 	if (!bo_node) {
3351 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3352 		best_loc = 0;
3353 		goto out;
3354 	}
3355 
3356 	if (bo_node->adev->gmc.is_app_apu) {
3357 		best_loc = 0;
3358 		goto out;
3359 	}
3360 
3361 	if (p->xnack_enabled)
3362 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3363 	else
3364 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3365 			  MAX_GPU_INSTANCE);
3366 
3367 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3368 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3369 		if (!pdd) {
3370 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3371 			continue;
3372 		}
3373 
3374 		if (pdd->dev->adev == bo_node->adev)
3375 			continue;
3376 
3377 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3378 			best_loc = 0;
3379 			break;
3380 		}
3381 	}
3382 
3383 out:
3384 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3385 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3386 		 best_loc);
3387 
3388 	return best_loc;
3389 }
3390 
3391 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3392  * @mm: current process mm_struct
3393  * @prange: svm range structure
3394  * @migrated: output, true if migration is triggered
3395  *
3396  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3397  * from ram to vram.
3398  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3399  * from vram to ram.
3400  *
3401  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3402  * and restore work:
3403  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3404  *    stops all queues, schedule restore work
3405  * 2. svm_range_restore_work wait for migration is done by
3406  *    a. svm_range_validate_vram takes prange->migrate_mutex
3407  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3408  * 3. restore work update mappings of GPU, resume all queues.
3409  *
3410  * Context: Process context
3411  *
3412  * Return:
3413  * 0 - OK, otherwise - error code of migration
3414  */
3415 static int
3416 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3417 			    bool *migrated)
3418 {
3419 	uint32_t best_loc;
3420 	int r = 0;
3421 
3422 	*migrated = false;
3423 	best_loc = svm_range_best_prefetch_location(prange);
3424 
3425 	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3426 	    best_loc == prange->actual_loc)
3427 		return 0;
3428 
3429 	if (!best_loc) {
3430 		r = svm_migrate_vram_to_ram(prange, mm,
3431 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3432 		*migrated = !r;
3433 		return r;
3434 	}
3435 
3436 	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3437 	*migrated = !r;
3438 
3439 	return r;
3440 }
3441 
3442 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3443 {
3444 	if (!fence)
3445 		return -EINVAL;
3446 
3447 	if (dma_fence_is_signaled(&fence->base))
3448 		return 0;
3449 
3450 	if (fence->svm_bo) {
3451 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3452 		schedule_work(&fence->svm_bo->eviction_work);
3453 	}
3454 
3455 	return 0;
3456 }
3457 
3458 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3459 {
3460 	struct svm_range_bo *svm_bo;
3461 	struct mm_struct *mm;
3462 	int r = 0;
3463 
3464 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3465 	if (!svm_bo_ref_unless_zero(svm_bo))
3466 		return; /* svm_bo was freed while eviction was pending */
3467 
3468 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3469 		mm = svm_bo->eviction_fence->mm;
3470 	} else {
3471 		svm_range_bo_unref(svm_bo);
3472 		return;
3473 	}
3474 
3475 	mmap_read_lock(mm);
3476 	spin_lock(&svm_bo->list_lock);
3477 	while (!list_empty(&svm_bo->range_list) && !r) {
3478 		struct svm_range *prange =
3479 				list_first_entry(&svm_bo->range_list,
3480 						struct svm_range, svm_bo_list);
3481 		int retries = 3;
3482 
3483 		list_del_init(&prange->svm_bo_list);
3484 		spin_unlock(&svm_bo->list_lock);
3485 
3486 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3487 			 prange->start, prange->last);
3488 
3489 		mutex_lock(&prange->migrate_mutex);
3490 		do {
3491 			r = svm_migrate_vram_to_ram(prange, mm,
3492 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3493 		} while (!r && prange->actual_loc && --retries);
3494 
3495 		if (!r && prange->actual_loc)
3496 			pr_info_once("Migration failed during eviction");
3497 
3498 		if (!prange->actual_loc) {
3499 			mutex_lock(&prange->lock);
3500 			prange->svm_bo = NULL;
3501 			mutex_unlock(&prange->lock);
3502 		}
3503 		mutex_unlock(&prange->migrate_mutex);
3504 
3505 		spin_lock(&svm_bo->list_lock);
3506 	}
3507 	spin_unlock(&svm_bo->list_lock);
3508 	mmap_read_unlock(mm);
3509 	mmput(mm);
3510 
3511 	dma_fence_signal(&svm_bo->eviction_fence->base);
3512 
3513 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3514 	 * has been called in svm_migrate_vram_to_ram
3515 	 */
3516 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3517 	svm_range_bo_unref(svm_bo);
3518 }
3519 
3520 static int
3521 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3522 		   uint64_t start, uint64_t size, uint32_t nattr,
3523 		   struct kfd_ioctl_svm_attribute *attrs)
3524 {
3525 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3526 	struct list_head update_list;
3527 	struct list_head insert_list;
3528 	struct list_head remove_list;
3529 	struct list_head remap_list;
3530 	struct svm_range_list *svms;
3531 	struct svm_range *prange;
3532 	struct svm_range *next;
3533 	bool update_mapping = false;
3534 	bool flush_tlb;
3535 	int r, ret = 0;
3536 
3537 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3538 		 p->pasid, &p->svms, start, start + size - 1, size);
3539 
3540 	r = svm_range_check_attr(p, nattr, attrs);
3541 	if (r)
3542 		return r;
3543 
3544 	svms = &p->svms;
3545 
3546 	mutex_lock(&process_info->lock);
3547 
3548 	svm_range_list_lock_and_flush_work(svms, mm);
3549 
3550 	r = svm_range_is_valid(p, start, size);
3551 	if (r) {
3552 		pr_debug("invalid range r=%d\n", r);
3553 		mmap_write_unlock(mm);
3554 		goto out;
3555 	}
3556 
3557 	mutex_lock(&svms->lock);
3558 
3559 	/* Add new range and split existing ranges as needed */
3560 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3561 			  &insert_list, &remove_list, &remap_list);
3562 	if (r) {
3563 		mutex_unlock(&svms->lock);
3564 		mmap_write_unlock(mm);
3565 		goto out;
3566 	}
3567 	/* Apply changes as a transaction */
3568 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3569 		svm_range_add_to_svms(prange);
3570 		svm_range_add_notifier_locked(mm, prange);
3571 	}
3572 	list_for_each_entry(prange, &update_list, update_list) {
3573 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3574 		/* TODO: unmap ranges from GPU that lost access */
3575 	}
3576 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3577 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3578 			 prange->svms, prange, prange->start,
3579 			 prange->last);
3580 		svm_range_unlink(prange);
3581 		svm_range_remove_notifier(prange);
3582 		svm_range_free(prange, false);
3583 	}
3584 
3585 	mmap_write_downgrade(mm);
3586 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3587 	 * this fails we may be left with partially completed actions. There
3588 	 * is no clean way of rolling back to the previous state in such a
3589 	 * case because the rollback wouldn't be guaranteed to work either.
3590 	 */
3591 	list_for_each_entry(prange, &update_list, update_list) {
3592 		bool migrated;
3593 
3594 		mutex_lock(&prange->migrate_mutex);
3595 
3596 		r = svm_range_trigger_migration(mm, prange, &migrated);
3597 		if (r)
3598 			goto out_unlock_range;
3599 
3600 		if (migrated && (!p->xnack_enabled ||
3601 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3602 		    prange->mapped_to_gpu) {
3603 			pr_debug("restore_work will update mappings of GPUs\n");
3604 			mutex_unlock(&prange->migrate_mutex);
3605 			continue;
3606 		}
3607 
3608 		if (!migrated && !update_mapping) {
3609 			mutex_unlock(&prange->migrate_mutex);
3610 			continue;
3611 		}
3612 
3613 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3614 
3615 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3616 					       true, true, flush_tlb);
3617 		if (r)
3618 			pr_debug("failed %d to map svm range\n", r);
3619 
3620 out_unlock_range:
3621 		mutex_unlock(&prange->migrate_mutex);
3622 		if (r)
3623 			ret = r;
3624 	}
3625 
3626 	list_for_each_entry(prange, &remap_list, update_list) {
3627 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3628 			 prange, prange->start, prange->last);
3629 		mutex_lock(&prange->migrate_mutex);
3630 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3631 					       true, true, prange->mapped_to_gpu);
3632 		if (r)
3633 			pr_debug("failed %d on remap svm range\n", r);
3634 		mutex_unlock(&prange->migrate_mutex);
3635 		if (r)
3636 			ret = r;
3637 	}
3638 
3639 	dynamic_svm_range_dump(svms);
3640 
3641 	mutex_unlock(&svms->lock);
3642 	mmap_read_unlock(mm);
3643 out:
3644 	mutex_unlock(&process_info->lock);
3645 
3646 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3647 		 &p->svms, start, start + size - 1, r);
3648 
3649 	return ret ? ret : r;
3650 }
3651 
3652 static int
3653 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3654 		   uint64_t start, uint64_t size, uint32_t nattr,
3655 		   struct kfd_ioctl_svm_attribute *attrs)
3656 {
3657 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3658 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3659 	bool get_preferred_loc = false;
3660 	bool get_prefetch_loc = false;
3661 	bool get_granularity = false;
3662 	bool get_accessible = false;
3663 	bool get_flags = false;
3664 	uint64_t last = start + size - 1UL;
3665 	uint8_t granularity = 0xff;
3666 	struct interval_tree_node *node;
3667 	struct svm_range_list *svms;
3668 	struct svm_range *prange;
3669 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3670 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3671 	uint32_t flags_and = 0xffffffff;
3672 	uint32_t flags_or = 0;
3673 	int gpuidx;
3674 	uint32_t i;
3675 	int r = 0;
3676 
3677 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3678 		 start + size - 1, nattr);
3679 
3680 	/* Flush pending deferred work to avoid racing with deferred actions from
3681 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3682 	 * can still race with get_attr because we don't hold the mmap lock. But that
3683 	 * would be a race condition in the application anyway, and undefined
3684 	 * behaviour is acceptable in that case.
3685 	 */
3686 	flush_work(&p->svms.deferred_list_work);
3687 
3688 	mmap_read_lock(mm);
3689 	r = svm_range_is_valid(p, start, size);
3690 	mmap_read_unlock(mm);
3691 	if (r) {
3692 		pr_debug("invalid range r=%d\n", r);
3693 		return r;
3694 	}
3695 
3696 	for (i = 0; i < nattr; i++) {
3697 		switch (attrs[i].type) {
3698 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3699 			get_preferred_loc = true;
3700 			break;
3701 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3702 			get_prefetch_loc = true;
3703 			break;
3704 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3705 			get_accessible = true;
3706 			break;
3707 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3708 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3709 			get_flags = true;
3710 			break;
3711 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3712 			get_granularity = true;
3713 			break;
3714 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3715 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3716 			fallthrough;
3717 		default:
3718 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3719 			return -EINVAL;
3720 		}
3721 	}
3722 
3723 	svms = &p->svms;
3724 
3725 	mutex_lock(&svms->lock);
3726 
3727 	node = interval_tree_iter_first(&svms->objects, start, last);
3728 	if (!node) {
3729 		pr_debug("range attrs not found return default values\n");
3730 		svm_range_set_default_attributes(&location, &prefetch_loc,
3731 						 &granularity, &flags_and);
3732 		flags_or = flags_and;
3733 		if (p->xnack_enabled)
3734 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3735 				    MAX_GPU_INSTANCE);
3736 		else
3737 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3738 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3739 		goto fill_values;
3740 	}
3741 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3742 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3743 
3744 	while (node) {
3745 		struct interval_tree_node *next;
3746 
3747 		prange = container_of(node, struct svm_range, it_node);
3748 		next = interval_tree_iter_next(node, start, last);
3749 
3750 		if (get_preferred_loc) {
3751 			if (prange->preferred_loc ==
3752 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3753 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3754 			     location != prange->preferred_loc)) {
3755 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3756 				get_preferred_loc = false;
3757 			} else {
3758 				location = prange->preferred_loc;
3759 			}
3760 		}
3761 		if (get_prefetch_loc) {
3762 			if (prange->prefetch_loc ==
3763 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3764 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3765 			     prefetch_loc != prange->prefetch_loc)) {
3766 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3767 				get_prefetch_loc = false;
3768 			} else {
3769 				prefetch_loc = prange->prefetch_loc;
3770 			}
3771 		}
3772 		if (get_accessible) {
3773 			bitmap_and(bitmap_access, bitmap_access,
3774 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3775 			bitmap_and(bitmap_aip, bitmap_aip,
3776 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3777 		}
3778 		if (get_flags) {
3779 			flags_and &= prange->flags;
3780 			flags_or |= prange->flags;
3781 		}
3782 
3783 		if (get_granularity && prange->granularity < granularity)
3784 			granularity = prange->granularity;
3785 
3786 		node = next;
3787 	}
3788 fill_values:
3789 	mutex_unlock(&svms->lock);
3790 
3791 	for (i = 0; i < nattr; i++) {
3792 		switch (attrs[i].type) {
3793 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3794 			attrs[i].value = location;
3795 			break;
3796 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3797 			attrs[i].value = prefetch_loc;
3798 			break;
3799 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3800 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3801 							       attrs[i].value);
3802 			if (gpuidx < 0) {
3803 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3804 				return -EINVAL;
3805 			}
3806 			if (test_bit(gpuidx, bitmap_access))
3807 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3808 			else if (test_bit(gpuidx, bitmap_aip))
3809 				attrs[i].type =
3810 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3811 			else
3812 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3813 			break;
3814 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3815 			attrs[i].value = flags_and;
3816 			break;
3817 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3818 			attrs[i].value = ~flags_or;
3819 			break;
3820 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3821 			attrs[i].value = (uint32_t)granularity;
3822 			break;
3823 		}
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 int kfd_criu_resume_svm(struct kfd_process *p)
3830 {
3831 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3832 	int nattr_common = 4, nattr_accessibility = 1;
3833 	struct criu_svm_metadata *criu_svm_md = NULL;
3834 	struct svm_range_list *svms = &p->svms;
3835 	struct criu_svm_metadata *next = NULL;
3836 	uint32_t set_flags = 0xffffffff;
3837 	int i, j, num_attrs, ret = 0;
3838 	uint64_t set_attr_size;
3839 	struct mm_struct *mm;
3840 
3841 	if (list_empty(&svms->criu_svm_metadata_list)) {
3842 		pr_debug("No SVM data from CRIU restore stage 2\n");
3843 		return ret;
3844 	}
3845 
3846 	mm = get_task_mm(p->lead_thread);
3847 	if (!mm) {
3848 		pr_err("failed to get mm for the target process\n");
3849 		return -ESRCH;
3850 	}
3851 
3852 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3853 
3854 	i = j = 0;
3855 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3856 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3857 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3858 
3859 		for (j = 0; j < num_attrs; j++) {
3860 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3861 				 i, j, criu_svm_md->data.attrs[j].type,
3862 				 i, j, criu_svm_md->data.attrs[j].value);
3863 			switch (criu_svm_md->data.attrs[j].type) {
3864 			/* During Checkpoint operation, the query for
3865 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3866 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3867 			 * not used by the range which was checkpointed. Care
3868 			 * must be taken to not restore with an invalid value
3869 			 * otherwise the gpuidx value will be invalid and
3870 			 * set_attr would eventually fail so just replace those
3871 			 * with another dummy attribute such as
3872 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3873 			 */
3874 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3875 				if (criu_svm_md->data.attrs[j].value ==
3876 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3877 					criu_svm_md->data.attrs[j].type =
3878 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3879 					criu_svm_md->data.attrs[j].value = 0;
3880 				}
3881 				break;
3882 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3883 				set_flags = criu_svm_md->data.attrs[j].value;
3884 				break;
3885 			default:
3886 				break;
3887 			}
3888 		}
3889 
3890 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3891 		 * it needs to be inserted before restoring the ranges so
3892 		 * allocate extra space for it before calling set_attr
3893 		 */
3894 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3895 						(num_attrs + 1);
3896 		set_attr_new = krealloc(set_attr, set_attr_size,
3897 					    GFP_KERNEL);
3898 		if (!set_attr_new) {
3899 			ret = -ENOMEM;
3900 			goto exit;
3901 		}
3902 		set_attr = set_attr_new;
3903 
3904 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3905 					sizeof(struct kfd_ioctl_svm_attribute));
3906 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3907 		set_attr[num_attrs].value = ~set_flags;
3908 
3909 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3910 					 criu_svm_md->data.size, num_attrs + 1,
3911 					 set_attr);
3912 		if (ret) {
3913 			pr_err("CRIU: failed to set range attributes\n");
3914 			goto exit;
3915 		}
3916 
3917 		i++;
3918 	}
3919 exit:
3920 	kfree(set_attr);
3921 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3922 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3923 						criu_svm_md->data.start_addr);
3924 		kfree(criu_svm_md);
3925 	}
3926 
3927 	mmput(mm);
3928 	return ret;
3929 
3930 }
3931 
3932 int kfd_criu_restore_svm(struct kfd_process *p,
3933 			 uint8_t __user *user_priv_ptr,
3934 			 uint64_t *priv_data_offset,
3935 			 uint64_t max_priv_data_size)
3936 {
3937 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3938 	int nattr_common = 4, nattr_accessibility = 1;
3939 	struct criu_svm_metadata *criu_svm_md = NULL;
3940 	struct svm_range_list *svms = &p->svms;
3941 	uint32_t num_devices;
3942 	int ret = 0;
3943 
3944 	num_devices = p->n_pdds;
3945 	/* Handle one SVM range object at a time, also the number of gpus are
3946 	 * assumed to be same on the restore node, checking must be done while
3947 	 * evaluating the topology earlier
3948 	 */
3949 
3950 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3951 		(nattr_common + nattr_accessibility * num_devices);
3952 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3953 
3954 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3955 								svm_attrs_size;
3956 
3957 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3958 	if (!criu_svm_md) {
3959 		pr_err("failed to allocate memory to store svm metadata\n");
3960 		return -ENOMEM;
3961 	}
3962 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3963 		ret = -EINVAL;
3964 		goto exit;
3965 	}
3966 
3967 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3968 			     svm_priv_data_size);
3969 	if (ret) {
3970 		ret = -EFAULT;
3971 		goto exit;
3972 	}
3973 	*priv_data_offset += svm_priv_data_size;
3974 
3975 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3976 
3977 	return 0;
3978 
3979 
3980 exit:
3981 	kfree(criu_svm_md);
3982 	return ret;
3983 }
3984 
3985 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3986 		       uint64_t *svm_priv_data_size)
3987 {
3988 	uint64_t total_size, accessibility_size, common_attr_size;
3989 	int nattr_common = 4, nattr_accessibility = 1;
3990 	int num_devices = p->n_pdds;
3991 	struct svm_range_list *svms;
3992 	struct svm_range *prange;
3993 	uint32_t count = 0;
3994 
3995 	*svm_priv_data_size = 0;
3996 
3997 	svms = &p->svms;
3998 	if (!svms)
3999 		return -EINVAL;
4000 
4001 	mutex_lock(&svms->lock);
4002 	list_for_each_entry(prange, &svms->list, list) {
4003 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4004 			 prange, prange->start, prange->npages,
4005 			 prange->start + prange->npages - 1);
4006 		count++;
4007 	}
4008 	mutex_unlock(&svms->lock);
4009 
4010 	*num_svm_ranges = count;
4011 	/* Only the accessbility attributes need to be queried for all the gpus
4012 	 * individually, remaining ones are spanned across the entire process
4013 	 * regardless of the various gpu nodes. Of the remaining attributes,
4014 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4015 	 *
4016 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4017 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4018 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4019 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4020 	 *
4021 	 * ** ACCESSBILITY ATTRIBUTES **
4022 	 * (Considered as one, type is altered during query, value is gpuid)
4023 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4024 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4025 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4026 	 */
4027 	if (*num_svm_ranges > 0) {
4028 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4029 			nattr_common;
4030 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4031 			nattr_accessibility * num_devices;
4032 
4033 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4034 			common_attr_size + accessibility_size;
4035 
4036 		*svm_priv_data_size = *num_svm_ranges * total_size;
4037 	}
4038 
4039 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4040 		 *svm_priv_data_size);
4041 	return 0;
4042 }
4043 
4044 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4045 			    uint8_t __user *user_priv_data,
4046 			    uint64_t *priv_data_offset)
4047 {
4048 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4049 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4050 	uint64_t svm_priv_data_size, query_attr_size = 0;
4051 	int index, nattr_common = 4, ret = 0;
4052 	struct svm_range_list *svms;
4053 	int num_devices = p->n_pdds;
4054 	struct svm_range *prange;
4055 	struct mm_struct *mm;
4056 
4057 	svms = &p->svms;
4058 	if (!svms)
4059 		return -EINVAL;
4060 
4061 	mm = get_task_mm(p->lead_thread);
4062 	if (!mm) {
4063 		pr_err("failed to get mm for the target process\n");
4064 		return -ESRCH;
4065 	}
4066 
4067 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4068 				(nattr_common + num_devices);
4069 
4070 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4071 	if (!query_attr) {
4072 		ret = -ENOMEM;
4073 		goto exit;
4074 	}
4075 
4076 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4077 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4078 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4079 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4080 
4081 	for (index = 0; index < num_devices; index++) {
4082 		struct kfd_process_device *pdd = p->pdds[index];
4083 
4084 		query_attr[index + nattr_common].type =
4085 			KFD_IOCTL_SVM_ATTR_ACCESS;
4086 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4087 	}
4088 
4089 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4090 
4091 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4092 	if (!svm_priv) {
4093 		ret = -ENOMEM;
4094 		goto exit_query;
4095 	}
4096 
4097 	index = 0;
4098 	list_for_each_entry(prange, &svms->list, list) {
4099 
4100 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4101 		svm_priv->start_addr = prange->start;
4102 		svm_priv->size = prange->npages;
4103 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4104 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4105 			 prange, prange->start, prange->npages,
4106 			 prange->start + prange->npages - 1,
4107 			 prange->npages * PAGE_SIZE);
4108 
4109 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4110 					 svm_priv->size,
4111 					 (nattr_common + num_devices),
4112 					 svm_priv->attrs);
4113 		if (ret) {
4114 			pr_err("CRIU: failed to obtain range attributes\n");
4115 			goto exit_priv;
4116 		}
4117 
4118 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4119 				 svm_priv_data_size)) {
4120 			pr_err("Failed to copy svm priv to user\n");
4121 			ret = -EFAULT;
4122 			goto exit_priv;
4123 		}
4124 
4125 		*priv_data_offset += svm_priv_data_size;
4126 
4127 	}
4128 
4129 
4130 exit_priv:
4131 	kfree(svm_priv);
4132 exit_query:
4133 	kfree(query_attr);
4134 exit:
4135 	mmput(mm);
4136 	return ret;
4137 }
4138 
4139 int
4140 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4141 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4142 {
4143 	struct mm_struct *mm = current->mm;
4144 	int r;
4145 
4146 	start >>= PAGE_SHIFT;
4147 	size >>= PAGE_SHIFT;
4148 
4149 	switch (op) {
4150 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4151 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4152 		break;
4153 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4154 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4155 		break;
4156 	default:
4157 		r = EINVAL;
4158 		break;
4159 	}
4160 
4161 	return r;
4162 }
4163