xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision ab779466166348eecf17d20f620aa9a47965c934)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx, uint64_t *vram_pages)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	uint64_t vram_pages_dev;
168 	int i, r;
169 
170 	if (!addr) {
171 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
172 		if (!addr)
173 			return -ENOMEM;
174 		prange->dma_addr[gpuidx] = addr;
175 	}
176 
177 	vram_pages_dev = 0;
178 	addr += offset;
179 	for (i = 0; i < npages; i++) {
180 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
181 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
182 
183 		page = hmm_pfn_to_page(hmm_pfns[i]);
184 		if (is_zone_device_page(page)) {
185 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
186 
187 			vram_pages_dev++;
188 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
189 				   bo_adev->vm_manager.vram_base_offset -
190 				   bo_adev->kfd.pgmap.range.start;
191 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
192 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
193 			continue;
194 		}
195 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
196 		r = dma_mapping_error(dev, addr[i]);
197 		if (r) {
198 			dev_err(dev, "failed %d dma_map_page\n", r);
199 			return r;
200 		}
201 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
202 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
203 	}
204 	*vram_pages = vram_pages_dev;
205 	return 0;
206 }
207 
208 static int
209 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
210 		  unsigned long offset, unsigned long npages,
211 		  unsigned long *hmm_pfns, uint64_t *vram_pages)
212 {
213 	struct kfd_process *p;
214 	uint32_t gpuidx;
215 	int r;
216 
217 	p = container_of(prange->svms, struct kfd_process, svms);
218 
219 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
220 		struct kfd_process_device *pdd;
221 
222 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
223 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
224 		if (!pdd) {
225 			pr_debug("failed to find device idx %d\n", gpuidx);
226 			return -EINVAL;
227 		}
228 
229 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
230 					  hmm_pfns, gpuidx, vram_pages);
231 		if (r)
232 			break;
233 	}
234 
235 	return r;
236 }
237 
238 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
239 			 unsigned long offset, unsigned long npages)
240 {
241 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
242 	int i;
243 
244 	if (!dma_addr)
245 		return;
246 
247 	for (i = offset; i < offset + npages; i++) {
248 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
249 			continue;
250 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
251 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
252 		dma_addr[i] = 0;
253 	}
254 }
255 
256 void svm_range_dma_unmap(struct svm_range *prange)
257 {
258 	struct kfd_process_device *pdd;
259 	dma_addr_t *dma_addr;
260 	struct device *dev;
261 	struct kfd_process *p;
262 	uint32_t gpuidx;
263 
264 	p = container_of(prange->svms, struct kfd_process, svms);
265 
266 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
267 		dma_addr = prange->dma_addr[gpuidx];
268 		if (!dma_addr)
269 			continue;
270 
271 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
272 		if (!pdd) {
273 			pr_debug("failed to find device idx %d\n", gpuidx);
274 			continue;
275 		}
276 		dev = &pdd->dev->adev->pdev->dev;
277 
278 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
279 	}
280 }
281 
282 static void svm_range_free(struct svm_range *prange, bool do_unmap)
283 {
284 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
285 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
286 	uint32_t gpuidx;
287 
288 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
289 		 prange->start, prange->last);
290 
291 	svm_range_vram_node_free(prange);
292 	if (do_unmap)
293 		svm_range_dma_unmap(prange);
294 
295 	if (do_unmap && !p->xnack_enabled) {
296 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
297 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
298 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
299 	}
300 
301 	/* free dma_addr array for each gpu */
302 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
303 		if (prange->dma_addr[gpuidx]) {
304 			kvfree(prange->dma_addr[gpuidx]);
305 			prange->dma_addr[gpuidx] = NULL;
306 		}
307 	}
308 
309 	mutex_destroy(&prange->lock);
310 	mutex_destroy(&prange->migrate_mutex);
311 	kfree(prange);
312 }
313 
314 static void
315 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
316 				 uint8_t *granularity, uint32_t *flags)
317 {
318 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
319 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
320 	*granularity = 9;
321 	*flags =
322 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
323 }
324 
325 static struct
326 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
327 			 uint64_t last, bool update_mem_usage)
328 {
329 	uint64_t size = last - start + 1;
330 	struct svm_range *prange;
331 	struct kfd_process *p;
332 
333 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
334 	if (!prange)
335 		return NULL;
336 
337 	p = container_of(svms, struct kfd_process, svms);
338 	if (!p->xnack_enabled && update_mem_usage &&
339 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
340 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
341 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
342 		kfree(prange);
343 		return NULL;
344 	}
345 	prange->npages = size;
346 	prange->svms = svms;
347 	prange->start = start;
348 	prange->last = last;
349 	INIT_LIST_HEAD(&prange->list);
350 	INIT_LIST_HEAD(&prange->update_list);
351 	INIT_LIST_HEAD(&prange->svm_bo_list);
352 	INIT_LIST_HEAD(&prange->deferred_list);
353 	INIT_LIST_HEAD(&prange->child_list);
354 	atomic_set(&prange->invalid, 0);
355 	prange->validate_timestamp = 0;
356 	prange->vram_pages = 0;
357 	mutex_init(&prange->migrate_mutex);
358 	mutex_init(&prange->lock);
359 
360 	if (p->xnack_enabled)
361 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
362 			    MAX_GPU_INSTANCE);
363 
364 	svm_range_set_default_attributes(&prange->preferred_loc,
365 					 &prange->prefetch_loc,
366 					 &prange->granularity, &prange->flags);
367 
368 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
369 
370 	return prange;
371 }
372 
373 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
374 {
375 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
376 		return false;
377 
378 	return true;
379 }
380 
381 static void svm_range_bo_release(struct kref *kref)
382 {
383 	struct svm_range_bo *svm_bo;
384 
385 	svm_bo = container_of(kref, struct svm_range_bo, kref);
386 	pr_debug("svm_bo 0x%p\n", svm_bo);
387 
388 	spin_lock(&svm_bo->list_lock);
389 	while (!list_empty(&svm_bo->range_list)) {
390 		struct svm_range *prange =
391 				list_first_entry(&svm_bo->range_list,
392 						struct svm_range, svm_bo_list);
393 		/* list_del_init tells a concurrent svm_range_vram_node_new when
394 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
395 		 */
396 		list_del_init(&prange->svm_bo_list);
397 		spin_unlock(&svm_bo->list_lock);
398 
399 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
400 			 prange->start, prange->last);
401 		mutex_lock(&prange->lock);
402 		prange->svm_bo = NULL;
403 		/* prange should not hold vram page now */
404 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
405 		mutex_unlock(&prange->lock);
406 
407 		spin_lock(&svm_bo->list_lock);
408 	}
409 	spin_unlock(&svm_bo->list_lock);
410 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
411 		/* We're not in the eviction worker.
412 		 * Signal the fence and synchronize with any
413 		 * pending eviction work.
414 		 */
415 		dma_fence_signal(&svm_bo->eviction_fence->base);
416 		cancel_work_sync(&svm_bo->eviction_work);
417 	}
418 	dma_fence_put(&svm_bo->eviction_fence->base);
419 	amdgpu_bo_unref(&svm_bo->bo);
420 	kfree(svm_bo);
421 }
422 
423 static void svm_range_bo_wq_release(struct work_struct *work)
424 {
425 	struct svm_range_bo *svm_bo;
426 
427 	svm_bo = container_of(work, struct svm_range_bo, release_work);
428 	svm_range_bo_release(&svm_bo->kref);
429 }
430 
431 static void svm_range_bo_release_async(struct kref *kref)
432 {
433 	struct svm_range_bo *svm_bo;
434 
435 	svm_bo = container_of(kref, struct svm_range_bo, kref);
436 	pr_debug("svm_bo 0x%p\n", svm_bo);
437 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
438 	schedule_work(&svm_bo->release_work);
439 }
440 
441 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
442 {
443 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
444 }
445 
446 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
447 {
448 	if (svm_bo)
449 		kref_put(&svm_bo->kref, svm_range_bo_release);
450 }
451 
452 static bool
453 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
454 {
455 	mutex_lock(&prange->lock);
456 	if (!prange->svm_bo) {
457 		mutex_unlock(&prange->lock);
458 		return false;
459 	}
460 	if (prange->ttm_res) {
461 		/* We still have a reference, all is well */
462 		mutex_unlock(&prange->lock);
463 		return true;
464 	}
465 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
466 		/*
467 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
468 		 * range list, and return false to allocate svm_bo from destination
469 		 * node.
470 		 */
471 		if (prange->svm_bo->node != node) {
472 			mutex_unlock(&prange->lock);
473 
474 			spin_lock(&prange->svm_bo->list_lock);
475 			list_del_init(&prange->svm_bo_list);
476 			spin_unlock(&prange->svm_bo->list_lock);
477 
478 			svm_range_bo_unref(prange->svm_bo);
479 			return false;
480 		}
481 		if (READ_ONCE(prange->svm_bo->evicting)) {
482 			struct dma_fence *f;
483 			struct svm_range_bo *svm_bo;
484 			/* The BO is getting evicted,
485 			 * we need to get a new one
486 			 */
487 			mutex_unlock(&prange->lock);
488 			svm_bo = prange->svm_bo;
489 			f = dma_fence_get(&svm_bo->eviction_fence->base);
490 			svm_range_bo_unref(prange->svm_bo);
491 			/* wait for the fence to avoid long spin-loop
492 			 * at list_empty_careful
493 			 */
494 			dma_fence_wait(f, false);
495 			dma_fence_put(f);
496 		} else {
497 			/* The BO was still around and we got
498 			 * a new reference to it
499 			 */
500 			mutex_unlock(&prange->lock);
501 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
502 				 prange->svms, prange->start, prange->last);
503 
504 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
505 			return true;
506 		}
507 
508 	} else {
509 		mutex_unlock(&prange->lock);
510 	}
511 
512 	/* We need a new svm_bo. Spin-loop to wait for concurrent
513 	 * svm_range_bo_release to finish removing this range from
514 	 * its range list and set prange->svm_bo to null. After this,
515 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
516 	 */
517 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
518 		cond_resched();
519 
520 	return false;
521 }
522 
523 static struct svm_range_bo *svm_range_bo_new(void)
524 {
525 	struct svm_range_bo *svm_bo;
526 
527 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
528 	if (!svm_bo)
529 		return NULL;
530 
531 	kref_init(&svm_bo->kref);
532 	INIT_LIST_HEAD(&svm_bo->range_list);
533 	spin_lock_init(&svm_bo->list_lock);
534 
535 	return svm_bo;
536 }
537 
538 int
539 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
540 			bool clear)
541 {
542 	struct amdgpu_bo_param bp;
543 	struct svm_range_bo *svm_bo;
544 	struct amdgpu_bo_user *ubo;
545 	struct amdgpu_bo *bo;
546 	struct kfd_process *p;
547 	struct mm_struct *mm;
548 	int r;
549 
550 	p = container_of(prange->svms, struct kfd_process, svms);
551 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
552 		 prange->start, prange->last);
553 
554 	if (svm_range_validate_svm_bo(node, prange))
555 		return 0;
556 
557 	svm_bo = svm_range_bo_new();
558 	if (!svm_bo) {
559 		pr_debug("failed to alloc svm bo\n");
560 		return -ENOMEM;
561 	}
562 	mm = get_task_mm(p->lead_thread);
563 	if (!mm) {
564 		pr_debug("failed to get mm\n");
565 		kfree(svm_bo);
566 		return -ESRCH;
567 	}
568 	svm_bo->node = node;
569 	svm_bo->eviction_fence =
570 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
571 					   mm,
572 					   svm_bo);
573 	mmput(mm);
574 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
575 	svm_bo->evicting = 0;
576 	memset(&bp, 0, sizeof(bp));
577 	bp.size = prange->npages * PAGE_SIZE;
578 	bp.byte_align = PAGE_SIZE;
579 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
580 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
581 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
582 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
583 	bp.type = ttm_bo_type_device;
584 	bp.resv = NULL;
585 	if (node->xcp)
586 		bp.xcp_id_plus1 = node->xcp->id + 1;
587 
588 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
589 	if (r) {
590 		pr_debug("failed %d to create bo\n", r);
591 		goto create_bo_failed;
592 	}
593 	bo = &ubo->bo;
594 
595 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
596 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
597 		 bp.xcp_id_plus1 - 1);
598 
599 	r = amdgpu_bo_reserve(bo, true);
600 	if (r) {
601 		pr_debug("failed %d to reserve bo\n", r);
602 		goto reserve_bo_failed;
603 	}
604 
605 	if (clear) {
606 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
607 		if (r) {
608 			pr_debug("failed %d to sync bo\n", r);
609 			amdgpu_bo_unreserve(bo);
610 			goto reserve_bo_failed;
611 		}
612 	}
613 
614 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
615 	if (r) {
616 		pr_debug("failed %d to reserve bo\n", r);
617 		amdgpu_bo_unreserve(bo);
618 		goto reserve_bo_failed;
619 	}
620 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
621 
622 	amdgpu_bo_unreserve(bo);
623 
624 	svm_bo->bo = bo;
625 	prange->svm_bo = svm_bo;
626 	prange->ttm_res = bo->tbo.resource;
627 	prange->offset = 0;
628 
629 	spin_lock(&svm_bo->list_lock);
630 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
631 	spin_unlock(&svm_bo->list_lock);
632 
633 	return 0;
634 
635 reserve_bo_failed:
636 	amdgpu_bo_unref(&bo);
637 create_bo_failed:
638 	dma_fence_put(&svm_bo->eviction_fence->base);
639 	kfree(svm_bo);
640 	prange->ttm_res = NULL;
641 
642 	return r;
643 }
644 
645 void svm_range_vram_node_free(struct svm_range *prange)
646 {
647 	/* serialize prange->svm_bo unref */
648 	mutex_lock(&prange->lock);
649 	/* prange->svm_bo has not been unref */
650 	if (prange->ttm_res) {
651 		prange->ttm_res = NULL;
652 		mutex_unlock(&prange->lock);
653 		svm_range_bo_unref(prange->svm_bo);
654 	} else
655 		mutex_unlock(&prange->lock);
656 }
657 
658 struct kfd_node *
659 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
660 {
661 	struct kfd_process *p;
662 	struct kfd_process_device *pdd;
663 
664 	p = container_of(prange->svms, struct kfd_process, svms);
665 	pdd = kfd_process_device_data_by_id(p, gpu_id);
666 	if (!pdd) {
667 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
668 		return NULL;
669 	}
670 
671 	return pdd->dev;
672 }
673 
674 struct kfd_process_device *
675 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
676 {
677 	struct kfd_process *p;
678 
679 	p = container_of(prange->svms, struct kfd_process, svms);
680 
681 	return kfd_get_process_device_data(node, p);
682 }
683 
684 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
685 {
686 	struct ttm_operation_ctx ctx = { false, false };
687 
688 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
689 
690 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
691 }
692 
693 static int
694 svm_range_check_attr(struct kfd_process *p,
695 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
696 {
697 	uint32_t i;
698 
699 	for (i = 0; i < nattr; i++) {
700 		uint32_t val = attrs[i].value;
701 		int gpuidx = MAX_GPU_INSTANCE;
702 
703 		switch (attrs[i].type) {
704 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
705 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
706 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
707 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
708 			break;
709 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
710 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
711 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
712 			break;
713 		case KFD_IOCTL_SVM_ATTR_ACCESS:
714 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
715 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
716 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
717 			break;
718 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
719 			break;
720 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
721 			break;
722 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
723 			break;
724 		default:
725 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
726 			return -EINVAL;
727 		}
728 
729 		if (gpuidx < 0) {
730 			pr_debug("no GPU 0x%x found\n", val);
731 			return -EINVAL;
732 		} else if (gpuidx < MAX_GPU_INSTANCE &&
733 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
734 			pr_debug("GPU 0x%x not supported\n", val);
735 			return -EINVAL;
736 		}
737 	}
738 
739 	return 0;
740 }
741 
742 static void
743 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
744 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
745 		      bool *update_mapping)
746 {
747 	uint32_t i;
748 	int gpuidx;
749 
750 	for (i = 0; i < nattr; i++) {
751 		switch (attrs[i].type) {
752 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
753 			prange->preferred_loc = attrs[i].value;
754 			break;
755 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
756 			prange->prefetch_loc = attrs[i].value;
757 			break;
758 		case KFD_IOCTL_SVM_ATTR_ACCESS:
759 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
760 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
761 			if (!p->xnack_enabled)
762 				*update_mapping = true;
763 
764 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
765 							       attrs[i].value);
766 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
767 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
768 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
769 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
770 				bitmap_set(prange->bitmap_access, gpuidx, 1);
771 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
772 			} else {
773 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
774 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
775 			}
776 			break;
777 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
778 			*update_mapping = true;
779 			prange->flags |= attrs[i].value;
780 			break;
781 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
782 			*update_mapping = true;
783 			prange->flags &= ~attrs[i].value;
784 			break;
785 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
786 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
787 			break;
788 		default:
789 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
790 		}
791 	}
792 }
793 
794 static bool
795 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
796 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
797 {
798 	uint32_t i;
799 	int gpuidx;
800 
801 	for (i = 0; i < nattr; i++) {
802 		switch (attrs[i].type) {
803 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
804 			if (prange->preferred_loc != attrs[i].value)
805 				return false;
806 			break;
807 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
808 			/* Prefetch should always trigger a migration even
809 			 * if the value of the attribute didn't change.
810 			 */
811 			return false;
812 		case KFD_IOCTL_SVM_ATTR_ACCESS:
813 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
814 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
815 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
816 							       attrs[i].value);
817 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
818 				if (test_bit(gpuidx, prange->bitmap_access) ||
819 				    test_bit(gpuidx, prange->bitmap_aip))
820 					return false;
821 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
822 				if (!test_bit(gpuidx, prange->bitmap_access))
823 					return false;
824 			} else {
825 				if (!test_bit(gpuidx, prange->bitmap_aip))
826 					return false;
827 			}
828 			break;
829 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
830 			if ((prange->flags & attrs[i].value) != attrs[i].value)
831 				return false;
832 			break;
833 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
834 			if ((prange->flags & attrs[i].value) != 0)
835 				return false;
836 			break;
837 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
838 			if (prange->granularity != attrs[i].value)
839 				return false;
840 			break;
841 		default:
842 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
843 		}
844 	}
845 
846 	return true;
847 }
848 
849 /**
850  * svm_range_debug_dump - print all range information from svms
851  * @svms: svm range list header
852  *
853  * debug output svm range start, end, prefetch location from svms
854  * interval tree and link list
855  *
856  * Context: The caller must hold svms->lock
857  */
858 static void svm_range_debug_dump(struct svm_range_list *svms)
859 {
860 	struct interval_tree_node *node;
861 	struct svm_range *prange;
862 
863 	pr_debug("dump svms 0x%p list\n", svms);
864 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
865 
866 	list_for_each_entry(prange, &svms->list, list) {
867 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
868 			 prange, prange->start, prange->npages,
869 			 prange->start + prange->npages - 1,
870 			 prange->actual_loc);
871 	}
872 
873 	pr_debug("dump svms 0x%p interval tree\n", svms);
874 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
875 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
876 	while (node) {
877 		prange = container_of(node, struct svm_range, it_node);
878 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
879 			 prange, prange->start, prange->npages,
880 			 prange->start + prange->npages - 1,
881 			 prange->actual_loc);
882 		node = interval_tree_iter_next(node, 0, ~0ULL);
883 	}
884 }
885 
886 static void *
887 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
888 		     uint64_t offset)
889 {
890 	unsigned char *dst;
891 
892 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
893 	if (!dst)
894 		return NULL;
895 	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
896 
897 	return (void *)dst;
898 }
899 
900 static int
901 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
902 {
903 	int i;
904 
905 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
906 		if (!src->dma_addr[i])
907 			continue;
908 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
909 					sizeof(*src->dma_addr[i]), src->npages, 0);
910 		if (!dst->dma_addr[i])
911 			return -ENOMEM;
912 	}
913 
914 	return 0;
915 }
916 
917 static int
918 svm_range_split_array(void *ppnew, void *ppold, size_t size,
919 		      uint64_t old_start, uint64_t old_n,
920 		      uint64_t new_start, uint64_t new_n)
921 {
922 	unsigned char *new, *old, *pold;
923 	uint64_t d;
924 
925 	if (!ppold)
926 		return 0;
927 	pold = *(unsigned char **)ppold;
928 	if (!pold)
929 		return 0;
930 
931 	d = (new_start - old_start) * size;
932 	new = svm_range_copy_array(pold, size, new_n, d);
933 	if (!new)
934 		return -ENOMEM;
935 	d = (new_start == old_start) ? new_n * size : 0;
936 	old = svm_range_copy_array(pold, size, old_n, d);
937 	if (!old) {
938 		kvfree(new);
939 		return -ENOMEM;
940 	}
941 	kvfree(pold);
942 	*(void **)ppold = old;
943 	*(void **)ppnew = new;
944 
945 	return 0;
946 }
947 
948 static int
949 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
950 		      uint64_t start, uint64_t last)
951 {
952 	uint64_t npages = last - start + 1;
953 	int i, r;
954 
955 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
956 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
957 					  sizeof(*old->dma_addr[i]), old->start,
958 					  npages, new->start, new->npages);
959 		if (r)
960 			return r;
961 	}
962 
963 	return 0;
964 }
965 
966 static int
967 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
968 		      uint64_t start, uint64_t last)
969 {
970 	uint64_t npages = last - start + 1;
971 
972 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
973 		 new->svms, new, new->start, start, last);
974 
975 	if (new->start == old->start) {
976 		new->offset = old->offset;
977 		old->offset += new->npages;
978 	} else {
979 		new->offset = old->offset + npages;
980 	}
981 
982 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
983 	new->ttm_res = old->ttm_res;
984 
985 	/* set new's vram_pages as old range's now, the acurate vram_pages
986 	 * will be updated during mapping
987 	 */
988 	new->vram_pages = min(old->vram_pages, new->npages);
989 
990 	spin_lock(&new->svm_bo->list_lock);
991 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
992 	spin_unlock(&new->svm_bo->list_lock);
993 
994 	return 0;
995 }
996 
997 /**
998  * svm_range_split_adjust - split range and adjust
999  *
1000  * @new: new range
1001  * @old: the old range
1002  * @start: the old range adjust to start address in pages
1003  * @last: the old range adjust to last address in pages
1004  *
1005  * Copy system memory dma_addr or vram ttm_res in old range to new
1006  * range from new_start up to size new->npages, the remaining old range is from
1007  * start to last
1008  *
1009  * Return:
1010  * 0 - OK, -ENOMEM - out of memory
1011  */
1012 static int
1013 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1014 		      uint64_t start, uint64_t last)
1015 {
1016 	int r;
1017 
1018 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1019 		 new->svms, new->start, old->start, old->last, start, last);
1020 
1021 	if (new->start < old->start ||
1022 	    new->last > old->last) {
1023 		WARN_ONCE(1, "invalid new range start or last\n");
1024 		return -EINVAL;
1025 	}
1026 
1027 	r = svm_range_split_pages(new, old, start, last);
1028 	if (r)
1029 		return r;
1030 
1031 	if (old->actual_loc && old->ttm_res) {
1032 		r = svm_range_split_nodes(new, old, start, last);
1033 		if (r)
1034 			return r;
1035 	}
1036 
1037 	old->npages = last - start + 1;
1038 	old->start = start;
1039 	old->last = last;
1040 	new->flags = old->flags;
1041 	new->preferred_loc = old->preferred_loc;
1042 	new->prefetch_loc = old->prefetch_loc;
1043 	new->actual_loc = old->actual_loc;
1044 	new->granularity = old->granularity;
1045 	new->mapped_to_gpu = old->mapped_to_gpu;
1046 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1047 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  * svm_range_split - split a range in 2 ranges
1054  *
1055  * @prange: the svm range to split
1056  * @start: the remaining range start address in pages
1057  * @last: the remaining range last address in pages
1058  * @new: the result new range generated
1059  *
1060  * Two cases only:
1061  * case 1: if start == prange->start
1062  *         prange ==> prange[start, last]
1063  *         new range [last + 1, prange->last]
1064  *
1065  * case 2: if last == prange->last
1066  *         prange ==> prange[start, last]
1067  *         new range [prange->start, start - 1]
1068  *
1069  * Return:
1070  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1071  */
1072 static int
1073 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1074 		struct svm_range **new)
1075 {
1076 	uint64_t old_start = prange->start;
1077 	uint64_t old_last = prange->last;
1078 	struct svm_range_list *svms;
1079 	int r = 0;
1080 
1081 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1082 		 old_start, old_last, start, last);
1083 
1084 	if (old_start != start && old_last != last)
1085 		return -EINVAL;
1086 	if (start < old_start || last > old_last)
1087 		return -EINVAL;
1088 
1089 	svms = prange->svms;
1090 	if (old_start == start)
1091 		*new = svm_range_new(svms, last + 1, old_last, false);
1092 	else
1093 		*new = svm_range_new(svms, old_start, start - 1, false);
1094 	if (!*new)
1095 		return -ENOMEM;
1096 
1097 	r = svm_range_split_adjust(*new, prange, start, last);
1098 	if (r) {
1099 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1100 			 r, old_start, old_last, start, last);
1101 		svm_range_free(*new, false);
1102 		*new = NULL;
1103 	}
1104 
1105 	return r;
1106 }
1107 
1108 static int
1109 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1110 		     struct list_head *insert_list, struct list_head *remap_list)
1111 {
1112 	struct svm_range *tail;
1113 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1114 
1115 	if (!r) {
1116 		list_add(&tail->list, insert_list);
1117 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1118 			list_add(&tail->update_list, remap_list);
1119 	}
1120 	return r;
1121 }
1122 
1123 static int
1124 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1125 		     struct list_head *insert_list, struct list_head *remap_list)
1126 {
1127 	struct svm_range *head;
1128 	int r = svm_range_split(prange, new_start, prange->last, &head);
1129 
1130 	if (!r) {
1131 		list_add(&head->list, insert_list);
1132 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1133 			list_add(&head->update_list, remap_list);
1134 	}
1135 	return r;
1136 }
1137 
1138 static void
1139 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1140 		    struct svm_range *pchild, enum svm_work_list_ops op)
1141 {
1142 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1143 		 pchild, pchild->start, pchild->last, prange, op);
1144 
1145 	pchild->work_item.mm = mm;
1146 	pchild->work_item.op = op;
1147 	list_add_tail(&pchild->child_list, &prange->child_list);
1148 }
1149 
1150 static bool
1151 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1152 {
1153 	return (node_a->adev == node_b->adev ||
1154 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1155 }
1156 
1157 static uint64_t
1158 svm_range_get_pte_flags(struct kfd_node *node,
1159 			struct svm_range *prange, int domain)
1160 {
1161 	struct kfd_node *bo_node;
1162 	uint32_t flags = prange->flags;
1163 	uint32_t mapping_flags = 0;
1164 	uint64_t pte_flags;
1165 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1166 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1167 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1168 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1169 	unsigned int mtype_local;
1170 
1171 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1172 		bo_node = prange->svm_bo->node;
1173 
1174 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1175 	case IP_VERSION(9, 4, 1):
1176 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1177 			if (bo_node == node) {
1178 				mapping_flags |= coherent ?
1179 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1180 			} else {
1181 				mapping_flags |= coherent ?
1182 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1183 				if (svm_nodes_in_same_hive(node, bo_node))
1184 					snoop = true;
1185 			}
1186 		} else {
1187 			mapping_flags |= coherent ?
1188 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1189 		}
1190 		break;
1191 	case IP_VERSION(9, 4, 2):
1192 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1193 			if (bo_node == node) {
1194 				mapping_flags |= coherent ?
1195 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1196 				if (node->adev->gmc.xgmi.connected_to_cpu)
1197 					snoop = true;
1198 			} else {
1199 				mapping_flags |= coherent ?
1200 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1201 				if (svm_nodes_in_same_hive(node, bo_node))
1202 					snoop = true;
1203 			}
1204 		} else {
1205 			mapping_flags |= coherent ?
1206 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1207 		}
1208 		break;
1209 	case IP_VERSION(9, 4, 3):
1210 		if (ext_coherent)
1211 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1212 		else
1213 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1214 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1215 		snoop = true;
1216 		if (uncached) {
1217 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1218 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1219 			/* local HBM region close to partition */
1220 			if (bo_node->adev == node->adev &&
1221 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1222 				mapping_flags |= mtype_local;
1223 			/* local HBM region far from partition or remote XGMI GPU
1224 			 * with regular system scope coherence
1225 			 */
1226 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1227 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1228 			/* PCIe P2P or extended system scope coherence */
1229 			else
1230 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1231 		/* system memory accessed by the APU */
1232 		} else if (node->adev->flags & AMD_IS_APU) {
1233 			/* On NUMA systems, locality is determined per-page
1234 			 * in amdgpu_gmc_override_vm_pte_flags
1235 			 */
1236 			if (num_possible_nodes() <= 1)
1237 				mapping_flags |= mtype_local;
1238 			else
1239 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1240 		/* system memory accessed by the dGPU */
1241 		} else {
1242 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1243 		}
1244 		break;
1245 	default:
1246 		mapping_flags |= coherent ?
1247 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1248 	}
1249 
1250 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1251 
1252 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1253 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1254 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1255 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1256 
1257 	pte_flags = AMDGPU_PTE_VALID;
1258 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1259 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1260 
1261 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1262 	return pte_flags;
1263 }
1264 
1265 static int
1266 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1267 			 uint64_t start, uint64_t last,
1268 			 struct dma_fence **fence)
1269 {
1270 	uint64_t init_pte_value = 0;
1271 
1272 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1273 
1274 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1275 				      last, init_pte_value, 0, 0, NULL, NULL,
1276 				      fence);
1277 }
1278 
1279 static int
1280 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1281 			  unsigned long last, uint32_t trigger)
1282 {
1283 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1284 	struct kfd_process_device *pdd;
1285 	struct dma_fence *fence = NULL;
1286 	struct kfd_process *p;
1287 	uint32_t gpuidx;
1288 	int r = 0;
1289 
1290 	if (!prange->mapped_to_gpu) {
1291 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1292 			 prange, prange->start, prange->last);
1293 		return 0;
1294 	}
1295 
1296 	if (prange->start == start && prange->last == last) {
1297 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1298 		prange->mapped_to_gpu = false;
1299 	}
1300 
1301 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1302 		  MAX_GPU_INSTANCE);
1303 	p = container_of(prange->svms, struct kfd_process, svms);
1304 
1305 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1306 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1307 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1308 		if (!pdd) {
1309 			pr_debug("failed to find device idx %d\n", gpuidx);
1310 			return -EINVAL;
1311 		}
1312 
1313 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1314 					     start, last, trigger);
1315 
1316 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1317 					     drm_priv_to_vm(pdd->drm_priv),
1318 					     start, last, &fence);
1319 		if (r)
1320 			break;
1321 
1322 		if (fence) {
1323 			r = dma_fence_wait(fence, false);
1324 			dma_fence_put(fence);
1325 			fence = NULL;
1326 			if (r)
1327 				break;
1328 		}
1329 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1330 	}
1331 
1332 	return r;
1333 }
1334 
1335 static int
1336 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1337 		     unsigned long offset, unsigned long npages, bool readonly,
1338 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1339 		     struct dma_fence **fence, bool flush_tlb)
1340 {
1341 	struct amdgpu_device *adev = pdd->dev->adev;
1342 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1343 	uint64_t pte_flags;
1344 	unsigned long last_start;
1345 	int last_domain;
1346 	int r = 0;
1347 	int64_t i, j;
1348 
1349 	last_start = prange->start + offset;
1350 
1351 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1352 		 last_start, last_start + npages - 1, readonly);
1353 
1354 	for (i = offset; i < offset + npages; i++) {
1355 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1356 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1357 
1358 		/* Collect all pages in the same address range and memory domain
1359 		 * that can be mapped with a single call to update mapping.
1360 		 */
1361 		if (i < offset + npages - 1 &&
1362 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1363 			continue;
1364 
1365 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1366 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1367 
1368 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1369 		if (readonly)
1370 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1371 
1372 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1373 			 prange->svms, last_start, prange->start + i,
1374 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1375 			 pte_flags);
1376 
1377 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1378 		 * different memory partition based on fpfn/lpfn, we should use
1379 		 * same vm_manager.vram_base_offset regardless memory partition.
1380 		 */
1381 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1382 					   NULL, last_start, prange->start + i,
1383 					   pte_flags,
1384 					   (last_start - prange->start) << PAGE_SHIFT,
1385 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1386 					   NULL, dma_addr, &vm->last_update);
1387 
1388 		for (j = last_start - prange->start; j <= i; j++)
1389 			dma_addr[j] |= last_domain;
1390 
1391 		if (r) {
1392 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1393 			goto out;
1394 		}
1395 		last_start = prange->start + i + 1;
1396 	}
1397 
1398 	r = amdgpu_vm_update_pdes(adev, vm, false);
1399 	if (r) {
1400 		pr_debug("failed %d to update directories 0x%lx\n", r,
1401 			 prange->start);
1402 		goto out;
1403 	}
1404 
1405 	if (fence)
1406 		*fence = dma_fence_get(vm->last_update);
1407 
1408 out:
1409 	return r;
1410 }
1411 
1412 static int
1413 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1414 		      unsigned long npages, bool readonly,
1415 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1416 {
1417 	struct kfd_process_device *pdd;
1418 	struct amdgpu_device *bo_adev = NULL;
1419 	struct kfd_process *p;
1420 	struct dma_fence *fence = NULL;
1421 	uint32_t gpuidx;
1422 	int r = 0;
1423 
1424 	if (prange->svm_bo && prange->ttm_res)
1425 		bo_adev = prange->svm_bo->node->adev;
1426 
1427 	p = container_of(prange->svms, struct kfd_process, svms);
1428 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1429 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1430 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1431 		if (!pdd) {
1432 			pr_debug("failed to find device idx %d\n", gpuidx);
1433 			return -EINVAL;
1434 		}
1435 
1436 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1437 		if (IS_ERR(pdd))
1438 			return -EINVAL;
1439 
1440 		if (bo_adev && pdd->dev->adev != bo_adev &&
1441 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1442 			pr_debug("cannot map to device idx %d\n", gpuidx);
1443 			continue;
1444 		}
1445 
1446 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1447 					 prange->dma_addr[gpuidx],
1448 					 bo_adev, wait ? &fence : NULL,
1449 					 flush_tlb);
1450 		if (r)
1451 			break;
1452 
1453 		if (fence) {
1454 			r = dma_fence_wait(fence, false);
1455 			dma_fence_put(fence);
1456 			fence = NULL;
1457 			if (r) {
1458 				pr_debug("failed %d to dma fence wait\n", r);
1459 				break;
1460 			}
1461 		}
1462 
1463 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1464 	}
1465 
1466 	return r;
1467 }
1468 
1469 struct svm_validate_context {
1470 	struct kfd_process *process;
1471 	struct svm_range *prange;
1472 	bool intr;
1473 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1474 	struct drm_exec exec;
1475 };
1476 
1477 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1478 {
1479 	struct kfd_process_device *pdd;
1480 	struct amdgpu_vm *vm;
1481 	uint32_t gpuidx;
1482 	int r;
1483 
1484 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1485 	drm_exec_until_all_locked(&ctx->exec) {
1486 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1487 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1488 			if (!pdd) {
1489 				pr_debug("failed to find device idx %d\n", gpuidx);
1490 				r = -EINVAL;
1491 				goto unreserve_out;
1492 			}
1493 			vm = drm_priv_to_vm(pdd->drm_priv);
1494 
1495 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1496 			drm_exec_retry_on_contention(&ctx->exec);
1497 			if (unlikely(r)) {
1498 				pr_debug("failed %d to reserve bo\n", r);
1499 				goto unreserve_out;
1500 			}
1501 		}
1502 	}
1503 
1504 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1505 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1506 		if (!pdd) {
1507 			pr_debug("failed to find device idx %d\n", gpuidx);
1508 			r = -EINVAL;
1509 			goto unreserve_out;
1510 		}
1511 
1512 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1513 					      drm_priv_to_vm(pdd->drm_priv),
1514 					      svm_range_bo_validate, NULL);
1515 		if (r) {
1516 			pr_debug("failed %d validate pt bos\n", r);
1517 			goto unreserve_out;
1518 		}
1519 	}
1520 
1521 	return 0;
1522 
1523 unreserve_out:
1524 	drm_exec_fini(&ctx->exec);
1525 	return r;
1526 }
1527 
1528 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1529 {
1530 	drm_exec_fini(&ctx->exec);
1531 }
1532 
1533 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1534 {
1535 	struct kfd_process_device *pdd;
1536 
1537 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1538 	if (!pdd)
1539 		return NULL;
1540 
1541 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1542 }
1543 
1544 /*
1545  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1546  *
1547  * To prevent concurrent destruction or change of range attributes, the
1548  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1549  * because that would block concurrent evictions and lead to deadlocks. To
1550  * serialize concurrent migrations or validations of the same range, the
1551  * prange->migrate_mutex must be held.
1552  *
1553  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1554  * eviction fence.
1555  *
1556  * The following sequence ensures race-free validation and GPU mapping:
1557  *
1558  * 1. Reserve page table (and SVM BO if range is in VRAM)
1559  * 2. hmm_range_fault to get page addresses (if system memory)
1560  * 3. DMA-map pages (if system memory)
1561  * 4-a. Take notifier lock
1562  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1563  * 4-c. Check that the range was not split or otherwise invalidated
1564  * 4-d. Update GPU page table
1565  * 4.e. Release notifier lock
1566  * 5. Release page table (and SVM BO) reservation
1567  */
1568 static int svm_range_validate_and_map(struct mm_struct *mm,
1569 				      unsigned long map_start, unsigned long map_last,
1570 				      struct svm_range *prange, int32_t gpuidx,
1571 				      bool intr, bool wait, bool flush_tlb)
1572 {
1573 	struct svm_validate_context *ctx;
1574 	unsigned long start, end, addr;
1575 	struct kfd_process *p;
1576 	uint64_t vram_pages;
1577 	void *owner;
1578 	int32_t idx;
1579 	int r = 0;
1580 
1581 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1582 	if (!ctx)
1583 		return -ENOMEM;
1584 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1585 	ctx->prange = prange;
1586 	ctx->intr = intr;
1587 
1588 	if (gpuidx < MAX_GPU_INSTANCE) {
1589 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1590 		bitmap_set(ctx->bitmap, gpuidx, 1);
1591 	} else if (ctx->process->xnack_enabled) {
1592 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1593 
1594 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1595 		 * GPU, which has ACCESS attribute to the range, create mapping
1596 		 * on that GPU.
1597 		 */
1598 		if (prange->actual_loc) {
1599 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1600 							prange->actual_loc);
1601 			if (gpuidx < 0) {
1602 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1603 					 prange->actual_loc);
1604 				r = -EINVAL;
1605 				goto free_ctx;
1606 			}
1607 			if (test_bit(gpuidx, prange->bitmap_access))
1608 				bitmap_set(ctx->bitmap, gpuidx, 1);
1609 		}
1610 	} else {
1611 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1612 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1613 	}
1614 
1615 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1616 		bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1617 		if (!prange->mapped_to_gpu ||
1618 		    bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1619 			r = 0;
1620 			goto free_ctx;
1621 		}
1622 	}
1623 
1624 	if (prange->actual_loc && !prange->ttm_res) {
1625 		/* This should never happen. actual_loc gets set by
1626 		 * svm_migrate_ram_to_vram after allocating a BO.
1627 		 */
1628 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1629 		r = -EINVAL;
1630 		goto free_ctx;
1631 	}
1632 
1633 	svm_range_reserve_bos(ctx, intr);
1634 
1635 	p = container_of(prange->svms, struct kfd_process, svms);
1636 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1637 						MAX_GPU_INSTANCE));
1638 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1639 		if (kfd_svm_page_owner(p, idx) != owner) {
1640 			owner = NULL;
1641 			break;
1642 		}
1643 	}
1644 
1645 	vram_pages = 0;
1646 	start = prange->start << PAGE_SHIFT;
1647 	end = (prange->last + 1) << PAGE_SHIFT;
1648 	for (addr = start; !r && addr < end; ) {
1649 		struct hmm_range *hmm_range;
1650 		unsigned long map_start_vma;
1651 		unsigned long map_last_vma;
1652 		struct vm_area_struct *vma;
1653 		uint64_t vram_pages_vma;
1654 		unsigned long next = 0;
1655 		unsigned long offset;
1656 		unsigned long npages;
1657 		bool readonly;
1658 
1659 		vma = vma_lookup(mm, addr);
1660 		if (vma) {
1661 			readonly = !(vma->vm_flags & VM_WRITE);
1662 
1663 			next = min(vma->vm_end, end);
1664 			npages = (next - addr) >> PAGE_SHIFT;
1665 			WRITE_ONCE(p->svms.faulting_task, current);
1666 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1667 						       readonly, owner, NULL,
1668 						       &hmm_range);
1669 			WRITE_ONCE(p->svms.faulting_task, NULL);
1670 			if (r) {
1671 				pr_debug("failed %d to get svm range pages\n", r);
1672 				if (r == -EBUSY)
1673 					r = -EAGAIN;
1674 			}
1675 		} else {
1676 			r = -EFAULT;
1677 		}
1678 
1679 		if (!r) {
1680 			offset = (addr - start) >> PAGE_SHIFT;
1681 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1682 					      hmm_range->hmm_pfns, &vram_pages_vma);
1683 			if (r)
1684 				pr_debug("failed %d to dma map range\n", r);
1685 			else
1686 				vram_pages += vram_pages_vma;
1687 		}
1688 
1689 		svm_range_lock(prange);
1690 		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1691 			pr_debug("hmm update the range, need validate again\n");
1692 			r = -EAGAIN;
1693 		}
1694 
1695 		if (!r && !list_empty(&prange->child_list)) {
1696 			pr_debug("range split by unmap in parallel, validate again\n");
1697 			r = -EAGAIN;
1698 		}
1699 
1700 		if (!r) {
1701 			map_start_vma = max(map_start, prange->start + offset);
1702 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1703 			if (map_start_vma <= map_last_vma) {
1704 				offset = map_start_vma - prange->start;
1705 				npages = map_last_vma - map_start_vma + 1;
1706 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1707 							  ctx->bitmap, wait, flush_tlb);
1708 			}
1709 		}
1710 
1711 		if (!r && next == end)
1712 			prange->mapped_to_gpu = true;
1713 
1714 		svm_range_unlock(prange);
1715 
1716 		addr = next;
1717 	}
1718 
1719 	if (addr == end) {
1720 		prange->vram_pages = vram_pages;
1721 
1722 		/* if prange does not include any vram page and it
1723 		 * has not released svm_bo drop its svm_bo reference
1724 		 * and set its actaul_loc to sys ram
1725 		 */
1726 		if (!vram_pages && prange->ttm_res) {
1727 			prange->actual_loc = 0;
1728 			svm_range_vram_node_free(prange);
1729 		}
1730 	}
1731 
1732 	svm_range_unreserve_bos(ctx);
1733 	if (!r)
1734 		prange->validate_timestamp = ktime_get_boottime();
1735 
1736 free_ctx:
1737 	kfree(ctx);
1738 
1739 	return r;
1740 }
1741 
1742 /**
1743  * svm_range_list_lock_and_flush_work - flush pending deferred work
1744  *
1745  * @svms: the svm range list
1746  * @mm: the mm structure
1747  *
1748  * Context: Returns with mmap write lock held, pending deferred work flushed
1749  *
1750  */
1751 void
1752 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1753 				   struct mm_struct *mm)
1754 {
1755 retry_flush_work:
1756 	flush_work(&svms->deferred_list_work);
1757 	mmap_write_lock(mm);
1758 
1759 	if (list_empty(&svms->deferred_range_list))
1760 		return;
1761 	mmap_write_unlock(mm);
1762 	pr_debug("retry flush\n");
1763 	goto retry_flush_work;
1764 }
1765 
1766 static void svm_range_restore_work(struct work_struct *work)
1767 {
1768 	struct delayed_work *dwork = to_delayed_work(work);
1769 	struct amdkfd_process_info *process_info;
1770 	struct svm_range_list *svms;
1771 	struct svm_range *prange;
1772 	struct kfd_process *p;
1773 	struct mm_struct *mm;
1774 	int evicted_ranges;
1775 	int invalid;
1776 	int r;
1777 
1778 	svms = container_of(dwork, struct svm_range_list, restore_work);
1779 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1780 	if (!evicted_ranges)
1781 		return;
1782 
1783 	pr_debug("restore svm ranges\n");
1784 
1785 	p = container_of(svms, struct kfd_process, svms);
1786 	process_info = p->kgd_process_info;
1787 
1788 	/* Keep mm reference when svm_range_validate_and_map ranges */
1789 	mm = get_task_mm(p->lead_thread);
1790 	if (!mm) {
1791 		pr_debug("svms 0x%p process mm gone\n", svms);
1792 		return;
1793 	}
1794 
1795 	mutex_lock(&process_info->lock);
1796 	svm_range_list_lock_and_flush_work(svms, mm);
1797 	mutex_lock(&svms->lock);
1798 
1799 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1800 
1801 	list_for_each_entry(prange, &svms->list, list) {
1802 		invalid = atomic_read(&prange->invalid);
1803 		if (!invalid)
1804 			continue;
1805 
1806 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1807 			 prange->svms, prange, prange->start, prange->last,
1808 			 invalid);
1809 
1810 		/*
1811 		 * If range is migrating, wait for migration is done.
1812 		 */
1813 		mutex_lock(&prange->migrate_mutex);
1814 
1815 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1816 					       MAX_GPU_INSTANCE, false, true, false);
1817 		if (r)
1818 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1819 				 prange->start);
1820 
1821 		mutex_unlock(&prange->migrate_mutex);
1822 		if (r)
1823 			goto out_reschedule;
1824 
1825 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1826 			goto out_reschedule;
1827 	}
1828 
1829 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1830 	    evicted_ranges)
1831 		goto out_reschedule;
1832 
1833 	evicted_ranges = 0;
1834 
1835 	r = kgd2kfd_resume_mm(mm);
1836 	if (r) {
1837 		/* No recovery from this failure. Probably the CP is
1838 		 * hanging. No point trying again.
1839 		 */
1840 		pr_debug("failed %d to resume KFD\n", r);
1841 	}
1842 
1843 	pr_debug("restore svm ranges successfully\n");
1844 
1845 out_reschedule:
1846 	mutex_unlock(&svms->lock);
1847 	mmap_write_unlock(mm);
1848 	mutex_unlock(&process_info->lock);
1849 
1850 	/* If validation failed, reschedule another attempt */
1851 	if (evicted_ranges) {
1852 		pr_debug("reschedule to restore svm range\n");
1853 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1854 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1855 
1856 		kfd_smi_event_queue_restore_rescheduled(mm);
1857 	}
1858 	mmput(mm);
1859 }
1860 
1861 /**
1862  * svm_range_evict - evict svm range
1863  * @prange: svm range structure
1864  * @mm: current process mm_struct
1865  * @start: starting process queue number
1866  * @last: last process queue number
1867  * @event: mmu notifier event when range is evicted or migrated
1868  *
1869  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1870  * return to let CPU evict the buffer and proceed CPU pagetable update.
1871  *
1872  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1873  * If invalidation happens while restore work is running, restore work will
1874  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1875  * the queues.
1876  */
1877 static int
1878 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1879 		unsigned long start, unsigned long last,
1880 		enum mmu_notifier_event event)
1881 {
1882 	struct svm_range_list *svms = prange->svms;
1883 	struct svm_range *pchild;
1884 	struct kfd_process *p;
1885 	int r = 0;
1886 
1887 	p = container_of(svms, struct kfd_process, svms);
1888 
1889 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1890 		 svms, prange->start, prange->last, start, last);
1891 
1892 	if (!p->xnack_enabled ||
1893 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1894 		int evicted_ranges;
1895 		bool mapped = prange->mapped_to_gpu;
1896 
1897 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1898 			if (!pchild->mapped_to_gpu)
1899 				continue;
1900 			mapped = true;
1901 			mutex_lock_nested(&pchild->lock, 1);
1902 			if (pchild->start <= last && pchild->last >= start) {
1903 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1904 					 pchild->start, pchild->last);
1905 				atomic_inc(&pchild->invalid);
1906 			}
1907 			mutex_unlock(&pchild->lock);
1908 		}
1909 
1910 		if (!mapped)
1911 			return r;
1912 
1913 		if (prange->start <= last && prange->last >= start)
1914 			atomic_inc(&prange->invalid);
1915 
1916 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1917 		if (evicted_ranges != 1)
1918 			return r;
1919 
1920 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1921 			 prange->svms, prange->start, prange->last);
1922 
1923 		/* First eviction, stop the queues */
1924 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1925 		if (r)
1926 			pr_debug("failed to quiesce KFD\n");
1927 
1928 		pr_debug("schedule to restore svm %p ranges\n", svms);
1929 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1930 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1931 	} else {
1932 		unsigned long s, l;
1933 		uint32_t trigger;
1934 
1935 		if (event == MMU_NOTIFY_MIGRATE)
1936 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1937 		else
1938 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1939 
1940 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1941 			 prange->svms, start, last);
1942 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1943 			mutex_lock_nested(&pchild->lock, 1);
1944 			s = max(start, pchild->start);
1945 			l = min(last, pchild->last);
1946 			if (l >= s)
1947 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1948 			mutex_unlock(&pchild->lock);
1949 		}
1950 		s = max(start, prange->start);
1951 		l = min(last, prange->last);
1952 		if (l >= s)
1953 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1954 	}
1955 
1956 	return r;
1957 }
1958 
1959 static struct svm_range *svm_range_clone(struct svm_range *old)
1960 {
1961 	struct svm_range *new;
1962 
1963 	new = svm_range_new(old->svms, old->start, old->last, false);
1964 	if (!new)
1965 		return NULL;
1966 	if (svm_range_copy_dma_addrs(new, old)) {
1967 		svm_range_free(new, false);
1968 		return NULL;
1969 	}
1970 	if (old->svm_bo) {
1971 		new->ttm_res = old->ttm_res;
1972 		new->offset = old->offset;
1973 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1974 		spin_lock(&new->svm_bo->list_lock);
1975 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1976 		spin_unlock(&new->svm_bo->list_lock);
1977 	}
1978 	new->flags = old->flags;
1979 	new->preferred_loc = old->preferred_loc;
1980 	new->prefetch_loc = old->prefetch_loc;
1981 	new->actual_loc = old->actual_loc;
1982 	new->granularity = old->granularity;
1983 	new->mapped_to_gpu = old->mapped_to_gpu;
1984 	new->vram_pages = old->vram_pages;
1985 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1986 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1987 
1988 	return new;
1989 }
1990 
1991 void svm_range_set_max_pages(struct amdgpu_device *adev)
1992 {
1993 	uint64_t max_pages;
1994 	uint64_t pages, _pages;
1995 	uint64_t min_pages = 0;
1996 	int i, id;
1997 
1998 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1999 		if (adev->kfd.dev->nodes[i]->xcp)
2000 			id = adev->kfd.dev->nodes[i]->xcp->id;
2001 		else
2002 			id = -1;
2003 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2004 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2005 		pages = rounddown_pow_of_two(pages);
2006 		min_pages = min_not_zero(min_pages, pages);
2007 	}
2008 
2009 	do {
2010 		max_pages = READ_ONCE(max_svm_range_pages);
2011 		_pages = min_not_zero(max_pages, min_pages);
2012 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2013 }
2014 
2015 static int
2016 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2017 		    uint64_t max_pages, struct list_head *insert_list,
2018 		    struct list_head *update_list)
2019 {
2020 	struct svm_range *prange;
2021 	uint64_t l;
2022 
2023 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2024 		 max_pages, start, last);
2025 
2026 	while (last >= start) {
2027 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2028 
2029 		prange = svm_range_new(svms, start, l, true);
2030 		if (!prange)
2031 			return -ENOMEM;
2032 		list_add(&prange->list, insert_list);
2033 		list_add(&prange->update_list, update_list);
2034 
2035 		start = l + 1;
2036 	}
2037 	return 0;
2038 }
2039 
2040 /**
2041  * svm_range_add - add svm range and handle overlap
2042  * @p: the range add to this process svms
2043  * @start: page size aligned
2044  * @size: page size aligned
2045  * @nattr: number of attributes
2046  * @attrs: array of attributes
2047  * @update_list: output, the ranges need validate and update GPU mapping
2048  * @insert_list: output, the ranges need insert to svms
2049  * @remove_list: output, the ranges are replaced and need remove from svms
2050  * @remap_list: output, remap unaligned svm ranges
2051  *
2052  * Check if the virtual address range has overlap with any existing ranges,
2053  * split partly overlapping ranges and add new ranges in the gaps. All changes
2054  * should be applied to the range_list and interval tree transactionally. If
2055  * any range split or allocation fails, the entire update fails. Therefore any
2056  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2057  * unchanged.
2058  *
2059  * If the transaction succeeds, the caller can update and insert clones and
2060  * new ranges, then free the originals.
2061  *
2062  * Otherwise the caller can free the clones and new ranges, while the old
2063  * svm_ranges remain unchanged.
2064  *
2065  * Context: Process context, caller must hold svms->lock
2066  *
2067  * Return:
2068  * 0 - OK, otherwise error code
2069  */
2070 static int
2071 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2072 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2073 	      struct list_head *update_list, struct list_head *insert_list,
2074 	      struct list_head *remove_list, struct list_head *remap_list)
2075 {
2076 	unsigned long last = start + size - 1UL;
2077 	struct svm_range_list *svms = &p->svms;
2078 	struct interval_tree_node *node;
2079 	struct svm_range *prange;
2080 	struct svm_range *tmp;
2081 	struct list_head new_list;
2082 	int r = 0;
2083 
2084 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2085 
2086 	INIT_LIST_HEAD(update_list);
2087 	INIT_LIST_HEAD(insert_list);
2088 	INIT_LIST_HEAD(remove_list);
2089 	INIT_LIST_HEAD(&new_list);
2090 	INIT_LIST_HEAD(remap_list);
2091 
2092 	node = interval_tree_iter_first(&svms->objects, start, last);
2093 	while (node) {
2094 		struct interval_tree_node *next;
2095 		unsigned long next_start;
2096 
2097 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2098 			 node->last);
2099 
2100 		prange = container_of(node, struct svm_range, it_node);
2101 		next = interval_tree_iter_next(node, start, last);
2102 		next_start = min(node->last, last) + 1;
2103 
2104 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2105 		    prange->mapped_to_gpu) {
2106 			/* nothing to do */
2107 		} else if (node->start < start || node->last > last) {
2108 			/* node intersects the update range and its attributes
2109 			 * will change. Clone and split it, apply updates only
2110 			 * to the overlapping part
2111 			 */
2112 			struct svm_range *old = prange;
2113 
2114 			prange = svm_range_clone(old);
2115 			if (!prange) {
2116 				r = -ENOMEM;
2117 				goto out;
2118 			}
2119 
2120 			list_add(&old->update_list, remove_list);
2121 			list_add(&prange->list, insert_list);
2122 			list_add(&prange->update_list, update_list);
2123 
2124 			if (node->start < start) {
2125 				pr_debug("change old range start\n");
2126 				r = svm_range_split_head(prange, start,
2127 							 insert_list, remap_list);
2128 				if (r)
2129 					goto out;
2130 			}
2131 			if (node->last > last) {
2132 				pr_debug("change old range last\n");
2133 				r = svm_range_split_tail(prange, last,
2134 							 insert_list, remap_list);
2135 				if (r)
2136 					goto out;
2137 			}
2138 		} else {
2139 			/* The node is contained within start..last,
2140 			 * just update it
2141 			 */
2142 			list_add(&prange->update_list, update_list);
2143 		}
2144 
2145 		/* insert a new node if needed */
2146 		if (node->start > start) {
2147 			r = svm_range_split_new(svms, start, node->start - 1,
2148 						READ_ONCE(max_svm_range_pages),
2149 						&new_list, update_list);
2150 			if (r)
2151 				goto out;
2152 		}
2153 
2154 		node = next;
2155 		start = next_start;
2156 	}
2157 
2158 	/* add a final range at the end if needed */
2159 	if (start <= last)
2160 		r = svm_range_split_new(svms, start, last,
2161 					READ_ONCE(max_svm_range_pages),
2162 					&new_list, update_list);
2163 
2164 out:
2165 	if (r) {
2166 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2167 			svm_range_free(prange, false);
2168 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2169 			svm_range_free(prange, true);
2170 	} else {
2171 		list_splice(&new_list, insert_list);
2172 	}
2173 
2174 	return r;
2175 }
2176 
2177 static void
2178 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2179 					    struct svm_range *prange)
2180 {
2181 	unsigned long start;
2182 	unsigned long last;
2183 
2184 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2185 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2186 
2187 	if (prange->start == start && prange->last == last)
2188 		return;
2189 
2190 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2191 		  prange->svms, prange, start, last, prange->start,
2192 		  prange->last);
2193 
2194 	if (start != 0 && last != 0) {
2195 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2196 		svm_range_remove_notifier(prange);
2197 	}
2198 	prange->it_node.start = prange->start;
2199 	prange->it_node.last = prange->last;
2200 
2201 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2202 	svm_range_add_notifier_locked(mm, prange);
2203 }
2204 
2205 static void
2206 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2207 			 struct mm_struct *mm)
2208 {
2209 	switch (prange->work_item.op) {
2210 	case SVM_OP_NULL:
2211 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2212 			 svms, prange, prange->start, prange->last);
2213 		break;
2214 	case SVM_OP_UNMAP_RANGE:
2215 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2216 			 svms, prange, prange->start, prange->last);
2217 		svm_range_unlink(prange);
2218 		svm_range_remove_notifier(prange);
2219 		svm_range_free(prange, true);
2220 		break;
2221 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2222 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2223 			 svms, prange, prange->start, prange->last);
2224 		svm_range_update_notifier_and_interval_tree(mm, prange);
2225 		break;
2226 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2227 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2228 			 svms, prange, prange->start, prange->last);
2229 		svm_range_update_notifier_and_interval_tree(mm, prange);
2230 		/* TODO: implement deferred validation and mapping */
2231 		break;
2232 	case SVM_OP_ADD_RANGE:
2233 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2234 			 prange->start, prange->last);
2235 		svm_range_add_to_svms(prange);
2236 		svm_range_add_notifier_locked(mm, prange);
2237 		break;
2238 	case SVM_OP_ADD_RANGE_AND_MAP:
2239 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2240 			 prange, prange->start, prange->last);
2241 		svm_range_add_to_svms(prange);
2242 		svm_range_add_notifier_locked(mm, prange);
2243 		/* TODO: implement deferred validation and mapping */
2244 		break;
2245 	default:
2246 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2247 			 prange->work_item.op);
2248 	}
2249 }
2250 
2251 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2252 {
2253 	struct kfd_process_device *pdd;
2254 	struct kfd_process *p;
2255 	int drain;
2256 	uint32_t i;
2257 
2258 	p = container_of(svms, struct kfd_process, svms);
2259 
2260 restart:
2261 	drain = atomic_read(&svms->drain_pagefaults);
2262 	if (!drain)
2263 		return;
2264 
2265 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2266 		pdd = p->pdds[i];
2267 		if (!pdd)
2268 			continue;
2269 
2270 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2271 
2272 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2273 				pdd->dev->adev->irq.retry_cam_enabled ?
2274 				&pdd->dev->adev->irq.ih :
2275 				&pdd->dev->adev->irq.ih1);
2276 
2277 		if (pdd->dev->adev->irq.retry_cam_enabled)
2278 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2279 				&pdd->dev->adev->irq.ih_soft);
2280 
2281 
2282 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2283 	}
2284 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2285 		goto restart;
2286 }
2287 
2288 static void svm_range_deferred_list_work(struct work_struct *work)
2289 {
2290 	struct svm_range_list *svms;
2291 	struct svm_range *prange;
2292 	struct mm_struct *mm;
2293 
2294 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2295 	pr_debug("enter svms 0x%p\n", svms);
2296 
2297 	spin_lock(&svms->deferred_list_lock);
2298 	while (!list_empty(&svms->deferred_range_list)) {
2299 		prange = list_first_entry(&svms->deferred_range_list,
2300 					  struct svm_range, deferred_list);
2301 		spin_unlock(&svms->deferred_list_lock);
2302 
2303 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2304 			 prange->start, prange->last, prange->work_item.op);
2305 
2306 		mm = prange->work_item.mm;
2307 retry:
2308 		mmap_write_lock(mm);
2309 
2310 		/* Checking for the need to drain retry faults must be inside
2311 		 * mmap write lock to serialize with munmap notifiers.
2312 		 */
2313 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2314 			mmap_write_unlock(mm);
2315 			svm_range_drain_retry_fault(svms);
2316 			goto retry;
2317 		}
2318 
2319 		/* Remove from deferred_list must be inside mmap write lock, for
2320 		 * two race cases:
2321 		 * 1. unmap_from_cpu may change work_item.op and add the range
2322 		 *    to deferred_list again, cause use after free bug.
2323 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2324 		 *    lock and continue because deferred_list is empty, but
2325 		 *    deferred_list work is actually waiting for mmap lock.
2326 		 */
2327 		spin_lock(&svms->deferred_list_lock);
2328 		list_del_init(&prange->deferred_list);
2329 		spin_unlock(&svms->deferred_list_lock);
2330 
2331 		mutex_lock(&svms->lock);
2332 		mutex_lock(&prange->migrate_mutex);
2333 		while (!list_empty(&prange->child_list)) {
2334 			struct svm_range *pchild;
2335 
2336 			pchild = list_first_entry(&prange->child_list,
2337 						struct svm_range, child_list);
2338 			pr_debug("child prange 0x%p op %d\n", pchild,
2339 				 pchild->work_item.op);
2340 			list_del_init(&pchild->child_list);
2341 			svm_range_handle_list_op(svms, pchild, mm);
2342 		}
2343 		mutex_unlock(&prange->migrate_mutex);
2344 
2345 		svm_range_handle_list_op(svms, prange, mm);
2346 		mutex_unlock(&svms->lock);
2347 		mmap_write_unlock(mm);
2348 
2349 		/* Pairs with mmget in svm_range_add_list_work */
2350 		mmput(mm);
2351 
2352 		spin_lock(&svms->deferred_list_lock);
2353 	}
2354 	spin_unlock(&svms->deferred_list_lock);
2355 	pr_debug("exit svms 0x%p\n", svms);
2356 }
2357 
2358 void
2359 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2360 			struct mm_struct *mm, enum svm_work_list_ops op)
2361 {
2362 	spin_lock(&svms->deferred_list_lock);
2363 	/* if prange is on the deferred list */
2364 	if (!list_empty(&prange->deferred_list)) {
2365 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2366 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2367 		if (op != SVM_OP_NULL &&
2368 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2369 			prange->work_item.op = op;
2370 	} else {
2371 		prange->work_item.op = op;
2372 
2373 		/* Pairs with mmput in deferred_list_work */
2374 		mmget(mm);
2375 		prange->work_item.mm = mm;
2376 		list_add_tail(&prange->deferred_list,
2377 			      &prange->svms->deferred_range_list);
2378 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2379 			 prange, prange->start, prange->last, op);
2380 	}
2381 	spin_unlock(&svms->deferred_list_lock);
2382 }
2383 
2384 void schedule_deferred_list_work(struct svm_range_list *svms)
2385 {
2386 	spin_lock(&svms->deferred_list_lock);
2387 	if (!list_empty(&svms->deferred_range_list))
2388 		schedule_work(&svms->deferred_list_work);
2389 	spin_unlock(&svms->deferred_list_lock);
2390 }
2391 
2392 static void
2393 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2394 		      struct svm_range *prange, unsigned long start,
2395 		      unsigned long last)
2396 {
2397 	struct svm_range *head;
2398 	struct svm_range *tail;
2399 
2400 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2401 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2402 			 prange->start, prange->last);
2403 		return;
2404 	}
2405 	if (start > prange->last || last < prange->start)
2406 		return;
2407 
2408 	head = tail = prange;
2409 	if (start > prange->start)
2410 		svm_range_split(prange, prange->start, start - 1, &tail);
2411 	if (last < tail->last)
2412 		svm_range_split(tail, last + 1, tail->last, &head);
2413 
2414 	if (head != prange && tail != prange) {
2415 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2416 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2417 	} else if (tail != prange) {
2418 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2419 	} else if (head != prange) {
2420 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2421 	} else if (parent != prange) {
2422 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2423 	}
2424 }
2425 
2426 static void
2427 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2428 			 unsigned long start, unsigned long last)
2429 {
2430 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2431 	struct svm_range_list *svms;
2432 	struct svm_range *pchild;
2433 	struct kfd_process *p;
2434 	unsigned long s, l;
2435 	bool unmap_parent;
2436 
2437 	p = kfd_lookup_process_by_mm(mm);
2438 	if (!p)
2439 		return;
2440 	svms = &p->svms;
2441 
2442 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2443 		 prange, prange->start, prange->last, start, last);
2444 
2445 	/* Make sure pending page faults are drained in the deferred worker
2446 	 * before the range is freed to avoid straggler interrupts on
2447 	 * unmapped memory causing "phantom faults".
2448 	 */
2449 	atomic_inc(&svms->drain_pagefaults);
2450 
2451 	unmap_parent = start <= prange->start && last >= prange->last;
2452 
2453 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2454 		mutex_lock_nested(&pchild->lock, 1);
2455 		s = max(start, pchild->start);
2456 		l = min(last, pchild->last);
2457 		if (l >= s)
2458 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2459 		svm_range_unmap_split(mm, prange, pchild, start, last);
2460 		mutex_unlock(&pchild->lock);
2461 	}
2462 	s = max(start, prange->start);
2463 	l = min(last, prange->last);
2464 	if (l >= s)
2465 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2466 	svm_range_unmap_split(mm, prange, prange, start, last);
2467 
2468 	if (unmap_parent)
2469 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2470 	else
2471 		svm_range_add_list_work(svms, prange, mm,
2472 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2473 	schedule_deferred_list_work(svms);
2474 
2475 	kfd_unref_process(p);
2476 }
2477 
2478 /**
2479  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2480  * @mni: mmu_interval_notifier struct
2481  * @range: mmu_notifier_range struct
2482  * @cur_seq: value to pass to mmu_interval_set_seq()
2483  *
2484  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2485  * is from migration, or CPU page invalidation callback.
2486  *
2487  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2488  * work thread, and split prange if only part of prange is unmapped.
2489  *
2490  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2491  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2492  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2493  * update GPU mapping to recover.
2494  *
2495  * Context: mmap lock, notifier_invalidate_start lock are held
2496  *          for invalidate event, prange lock is held if this is from migration
2497  */
2498 static bool
2499 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2500 				    const struct mmu_notifier_range *range,
2501 				    unsigned long cur_seq)
2502 {
2503 	struct svm_range *prange;
2504 	unsigned long start;
2505 	unsigned long last;
2506 
2507 	if (range->event == MMU_NOTIFY_RELEASE)
2508 		return true;
2509 	if (!mmget_not_zero(mni->mm))
2510 		return true;
2511 
2512 	start = mni->interval_tree.start;
2513 	last = mni->interval_tree.last;
2514 	start = max(start, range->start) >> PAGE_SHIFT;
2515 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2516 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2517 		 start, last, range->start >> PAGE_SHIFT,
2518 		 (range->end - 1) >> PAGE_SHIFT,
2519 		 mni->interval_tree.start >> PAGE_SHIFT,
2520 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2521 
2522 	prange = container_of(mni, struct svm_range, notifier);
2523 
2524 	svm_range_lock(prange);
2525 	mmu_interval_set_seq(mni, cur_seq);
2526 
2527 	switch (range->event) {
2528 	case MMU_NOTIFY_UNMAP:
2529 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2530 		break;
2531 	default:
2532 		svm_range_evict(prange, mni->mm, start, last, range->event);
2533 		break;
2534 	}
2535 
2536 	svm_range_unlock(prange);
2537 	mmput(mni->mm);
2538 
2539 	return true;
2540 }
2541 
2542 /**
2543  * svm_range_from_addr - find svm range from fault address
2544  * @svms: svm range list header
2545  * @addr: address to search range interval tree, in pages
2546  * @parent: parent range if range is on child list
2547  *
2548  * Context: The caller must hold svms->lock
2549  *
2550  * Return: the svm_range found or NULL
2551  */
2552 struct svm_range *
2553 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2554 		    struct svm_range **parent)
2555 {
2556 	struct interval_tree_node *node;
2557 	struct svm_range *prange;
2558 	struct svm_range *pchild;
2559 
2560 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2561 	if (!node)
2562 		return NULL;
2563 
2564 	prange = container_of(node, struct svm_range, it_node);
2565 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2566 		 addr, prange->start, prange->last, node->start, node->last);
2567 
2568 	if (addr >= prange->start && addr <= prange->last) {
2569 		if (parent)
2570 			*parent = prange;
2571 		return prange;
2572 	}
2573 	list_for_each_entry(pchild, &prange->child_list, child_list)
2574 		if (addr >= pchild->start && addr <= pchild->last) {
2575 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2576 				 addr, pchild->start, pchild->last);
2577 			if (parent)
2578 				*parent = prange;
2579 			return pchild;
2580 		}
2581 
2582 	return NULL;
2583 }
2584 
2585 /* svm_range_best_restore_location - decide the best fault restore location
2586  * @prange: svm range structure
2587  * @adev: the GPU on which vm fault happened
2588  *
2589  * This is only called when xnack is on, to decide the best location to restore
2590  * the range mapping after GPU vm fault. Caller uses the best location to do
2591  * migration if actual loc is not best location, then update GPU page table
2592  * mapping to the best location.
2593  *
2594  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2595  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2596  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2597  *    if range actual loc is cpu, best_loc is cpu
2598  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2599  *    range actual loc.
2600  * Otherwise, GPU no access, best_loc is -1.
2601  *
2602  * Return:
2603  * -1 means vm fault GPU no access
2604  * 0 for CPU or GPU id
2605  */
2606 static int32_t
2607 svm_range_best_restore_location(struct svm_range *prange,
2608 				struct kfd_node *node,
2609 				int32_t *gpuidx)
2610 {
2611 	struct kfd_node *bo_node, *preferred_node;
2612 	struct kfd_process *p;
2613 	uint32_t gpuid;
2614 	int r;
2615 
2616 	p = container_of(prange->svms, struct kfd_process, svms);
2617 
2618 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2619 	if (r < 0) {
2620 		pr_debug("failed to get gpuid from kgd\n");
2621 		return -1;
2622 	}
2623 
2624 	if (node->adev->gmc.is_app_apu)
2625 		return 0;
2626 
2627 	if (prange->preferred_loc == gpuid ||
2628 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2629 		return prange->preferred_loc;
2630 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2631 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2632 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2633 			return prange->preferred_loc;
2634 		/* fall through */
2635 	}
2636 
2637 	if (test_bit(*gpuidx, prange->bitmap_access))
2638 		return gpuid;
2639 
2640 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2641 		if (!prange->actual_loc)
2642 			return 0;
2643 
2644 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2645 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2646 			return prange->actual_loc;
2647 		else
2648 			return 0;
2649 	}
2650 
2651 	return -1;
2652 }
2653 
2654 static int
2655 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2656 			       unsigned long *start, unsigned long *last,
2657 			       bool *is_heap_stack)
2658 {
2659 	struct vm_area_struct *vma;
2660 	struct interval_tree_node *node;
2661 	unsigned long start_limit, end_limit;
2662 
2663 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2664 	if (!vma) {
2665 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2666 		return -EFAULT;
2667 	}
2668 
2669 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2670 
2671 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2672 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2673 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2674 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2675 	/* First range that starts after the fault address */
2676 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2677 	if (node) {
2678 		end_limit = min(end_limit, node->start);
2679 		/* Last range that ends before the fault address */
2680 		node = container_of(rb_prev(&node->rb),
2681 				    struct interval_tree_node, rb);
2682 	} else {
2683 		/* Last range must end before addr because
2684 		 * there was no range after addr
2685 		 */
2686 		node = container_of(rb_last(&p->svms.objects.rb_root),
2687 				    struct interval_tree_node, rb);
2688 	}
2689 	if (node) {
2690 		if (node->last >= addr) {
2691 			WARN(1, "Overlap with prev node and page fault addr\n");
2692 			return -EFAULT;
2693 		}
2694 		start_limit = max(start_limit, node->last + 1);
2695 	}
2696 
2697 	*start = start_limit;
2698 	*last = end_limit - 1;
2699 
2700 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2701 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2702 		 *start, *last, *is_heap_stack);
2703 
2704 	return 0;
2705 }
2706 
2707 static int
2708 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2709 			   uint64_t *bo_s, uint64_t *bo_l)
2710 {
2711 	struct amdgpu_bo_va_mapping *mapping;
2712 	struct interval_tree_node *node;
2713 	struct amdgpu_bo *bo = NULL;
2714 	unsigned long userptr;
2715 	uint32_t i;
2716 	int r;
2717 
2718 	for (i = 0; i < p->n_pdds; i++) {
2719 		struct amdgpu_vm *vm;
2720 
2721 		if (!p->pdds[i]->drm_priv)
2722 			continue;
2723 
2724 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2725 		r = amdgpu_bo_reserve(vm->root.bo, false);
2726 		if (r)
2727 			return r;
2728 
2729 		/* Check userptr by searching entire vm->va interval tree */
2730 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2731 		while (node) {
2732 			mapping = container_of((struct rb_node *)node,
2733 					       struct amdgpu_bo_va_mapping, rb);
2734 			bo = mapping->bo_va->base.bo;
2735 
2736 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2737 							 start << PAGE_SHIFT,
2738 							 last << PAGE_SHIFT,
2739 							 &userptr)) {
2740 				node = interval_tree_iter_next(node, 0, ~0ULL);
2741 				continue;
2742 			}
2743 
2744 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2745 				 start, last);
2746 			if (bo_s && bo_l) {
2747 				*bo_s = userptr >> PAGE_SHIFT;
2748 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2749 			}
2750 			amdgpu_bo_unreserve(vm->root.bo);
2751 			return -EADDRINUSE;
2752 		}
2753 		amdgpu_bo_unreserve(vm->root.bo);
2754 	}
2755 	return 0;
2756 }
2757 
2758 static struct
2759 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2760 						struct kfd_process *p,
2761 						struct mm_struct *mm,
2762 						int64_t addr)
2763 {
2764 	struct svm_range *prange = NULL;
2765 	unsigned long start, last;
2766 	uint32_t gpuid, gpuidx;
2767 	bool is_heap_stack;
2768 	uint64_t bo_s = 0;
2769 	uint64_t bo_l = 0;
2770 	int r;
2771 
2772 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2773 					   &is_heap_stack))
2774 		return NULL;
2775 
2776 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2777 	if (r != -EADDRINUSE)
2778 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2779 
2780 	if (r == -EADDRINUSE) {
2781 		if (addr >= bo_s && addr <= bo_l)
2782 			return NULL;
2783 
2784 		/* Create one page svm range if 2MB range overlapping */
2785 		start = addr;
2786 		last = addr;
2787 	}
2788 
2789 	prange = svm_range_new(&p->svms, start, last, true);
2790 	if (!prange) {
2791 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2792 		return NULL;
2793 	}
2794 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2795 		pr_debug("failed to get gpuid from kgd\n");
2796 		svm_range_free(prange, true);
2797 		return NULL;
2798 	}
2799 
2800 	if (is_heap_stack)
2801 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2802 
2803 	svm_range_add_to_svms(prange);
2804 	svm_range_add_notifier_locked(mm, prange);
2805 
2806 	return prange;
2807 }
2808 
2809 /* svm_range_skip_recover - decide if prange can be recovered
2810  * @prange: svm range structure
2811  *
2812  * GPU vm retry fault handle skip recover the range for cases:
2813  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2814  *    deferred list work will drain the stale fault before free the prange.
2815  * 2. prange is on deferred list to add interval notifier after split, or
2816  * 3. prange is child range, it is split from parent prange, recover later
2817  *    after interval notifier is added.
2818  *
2819  * Return: true to skip recover, false to recover
2820  */
2821 static bool svm_range_skip_recover(struct svm_range *prange)
2822 {
2823 	struct svm_range_list *svms = prange->svms;
2824 
2825 	spin_lock(&svms->deferred_list_lock);
2826 	if (list_empty(&prange->deferred_list) &&
2827 	    list_empty(&prange->child_list)) {
2828 		spin_unlock(&svms->deferred_list_lock);
2829 		return false;
2830 	}
2831 	spin_unlock(&svms->deferred_list_lock);
2832 
2833 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2834 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2835 			 svms, prange, prange->start, prange->last);
2836 		return true;
2837 	}
2838 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2839 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2840 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2841 			 svms, prange, prange->start, prange->last);
2842 		return true;
2843 	}
2844 	return false;
2845 }
2846 
2847 static void
2848 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2849 		      int32_t gpuidx)
2850 {
2851 	struct kfd_process_device *pdd;
2852 
2853 	/* fault is on different page of same range
2854 	 * or fault is skipped to recover later
2855 	 * or fault is on invalid virtual address
2856 	 */
2857 	if (gpuidx == MAX_GPU_INSTANCE) {
2858 		uint32_t gpuid;
2859 		int r;
2860 
2861 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2862 		if (r < 0)
2863 			return;
2864 	}
2865 
2866 	/* fault is recovered
2867 	 * or fault cannot recover because GPU no access on the range
2868 	 */
2869 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2870 	if (pdd)
2871 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2872 }
2873 
2874 static bool
2875 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2876 {
2877 	unsigned long requested = VM_READ;
2878 
2879 	if (write_fault)
2880 		requested |= VM_WRITE;
2881 
2882 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2883 		vma->vm_flags);
2884 	return (vma->vm_flags & requested) == requested;
2885 }
2886 
2887 int
2888 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2889 			uint32_t vmid, uint32_t node_id,
2890 			uint64_t addr, bool write_fault)
2891 {
2892 	unsigned long start, last, size;
2893 	struct mm_struct *mm = NULL;
2894 	struct svm_range_list *svms;
2895 	struct svm_range *prange;
2896 	struct kfd_process *p;
2897 	ktime_t timestamp = ktime_get_boottime();
2898 	struct kfd_node *node;
2899 	int32_t best_loc;
2900 	int32_t gpuidx = MAX_GPU_INSTANCE;
2901 	bool write_locked = false;
2902 	struct vm_area_struct *vma;
2903 	bool migration = false;
2904 	int r = 0;
2905 
2906 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2907 		pr_debug("device does not support SVM\n");
2908 		return -EFAULT;
2909 	}
2910 
2911 	p = kfd_lookup_process_by_pasid(pasid);
2912 	if (!p) {
2913 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2914 		return 0;
2915 	}
2916 	svms = &p->svms;
2917 
2918 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2919 
2920 	if (atomic_read(&svms->drain_pagefaults)) {
2921 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2922 		r = 0;
2923 		goto out;
2924 	}
2925 
2926 	if (!p->xnack_enabled) {
2927 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2928 		r = -EFAULT;
2929 		goto out;
2930 	}
2931 
2932 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2933 	 * before releasing task ref.
2934 	 */
2935 	mm = get_task_mm(p->lead_thread);
2936 	if (!mm) {
2937 		pr_debug("svms 0x%p failed to get mm\n", svms);
2938 		r = 0;
2939 		goto out;
2940 	}
2941 
2942 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2943 	if (!node) {
2944 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2945 			 vmid);
2946 		r = -EFAULT;
2947 		goto out;
2948 	}
2949 	mmap_read_lock(mm);
2950 retry_write_locked:
2951 	mutex_lock(&svms->lock);
2952 	prange = svm_range_from_addr(svms, addr, NULL);
2953 	if (!prange) {
2954 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2955 			 svms, addr);
2956 		if (!write_locked) {
2957 			/* Need the write lock to create new range with MMU notifier.
2958 			 * Also flush pending deferred work to make sure the interval
2959 			 * tree is up to date before we add a new range
2960 			 */
2961 			mutex_unlock(&svms->lock);
2962 			mmap_read_unlock(mm);
2963 			mmap_write_lock(mm);
2964 			write_locked = true;
2965 			goto retry_write_locked;
2966 		}
2967 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2968 		if (!prange) {
2969 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2970 				 svms, addr);
2971 			mmap_write_downgrade(mm);
2972 			r = -EFAULT;
2973 			goto out_unlock_svms;
2974 		}
2975 	}
2976 	if (write_locked)
2977 		mmap_write_downgrade(mm);
2978 
2979 	mutex_lock(&prange->migrate_mutex);
2980 
2981 	if (svm_range_skip_recover(prange)) {
2982 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2983 		r = 0;
2984 		goto out_unlock_range;
2985 	}
2986 
2987 	/* skip duplicate vm fault on different pages of same range */
2988 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2989 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2990 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2991 			 svms, prange->start, prange->last);
2992 		r = 0;
2993 		goto out_unlock_range;
2994 	}
2995 
2996 	/* __do_munmap removed VMA, return success as we are handling stale
2997 	 * retry fault.
2998 	 */
2999 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3000 	if (!vma) {
3001 		pr_debug("address 0x%llx VMA is removed\n", addr);
3002 		r = 0;
3003 		goto out_unlock_range;
3004 	}
3005 
3006 	if (!svm_fault_allowed(vma, write_fault)) {
3007 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3008 			write_fault ? "write" : "read");
3009 		r = -EPERM;
3010 		goto out_unlock_range;
3011 	}
3012 
3013 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3014 	if (best_loc == -1) {
3015 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3016 			 svms, prange->start, prange->last);
3017 		r = -EACCES;
3018 		goto out_unlock_range;
3019 	}
3020 
3021 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3022 		 svms, prange->start, prange->last, best_loc,
3023 		 prange->actual_loc);
3024 
3025 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3026 				       write_fault, timestamp);
3027 
3028 	/* Align migration range start and size to granularity size */
3029 	size = 1UL << prange->granularity;
3030 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3031 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3032 	if (prange->actual_loc != 0 || best_loc != 0) {
3033 		migration = true;
3034 
3035 		if (best_loc) {
3036 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3037 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3038 			if (r) {
3039 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3040 					 r, addr);
3041 				/* Fallback to system memory if migration to
3042 				 * VRAM failed
3043 				 */
3044 				if (prange->actual_loc && prange->actual_loc != best_loc)
3045 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3046 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3047 				else
3048 					r = 0;
3049 			}
3050 		} else {
3051 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3052 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3053 		}
3054 		if (r) {
3055 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3056 				 r, svms, start, last);
3057 			goto out_unlock_range;
3058 		}
3059 	}
3060 
3061 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3062 				       false, false);
3063 	if (r)
3064 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3065 			 r, svms, start, last);
3066 
3067 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3068 				     migration);
3069 
3070 out_unlock_range:
3071 	mutex_unlock(&prange->migrate_mutex);
3072 out_unlock_svms:
3073 	mutex_unlock(&svms->lock);
3074 	mmap_read_unlock(mm);
3075 
3076 	svm_range_count_fault(node, p, gpuidx);
3077 
3078 	mmput(mm);
3079 out:
3080 	kfd_unref_process(p);
3081 
3082 	if (r == -EAGAIN) {
3083 		pr_debug("recover vm fault later\n");
3084 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3085 		r = 0;
3086 	}
3087 	return r;
3088 }
3089 
3090 int
3091 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3092 {
3093 	struct svm_range *prange, *pchild;
3094 	uint64_t reserved_size = 0;
3095 	uint64_t size;
3096 	int r = 0;
3097 
3098 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3099 
3100 	mutex_lock(&p->svms.lock);
3101 
3102 	list_for_each_entry(prange, &p->svms.list, list) {
3103 		svm_range_lock(prange);
3104 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3105 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3106 			if (xnack_enabled) {
3107 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3108 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3109 			} else {
3110 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3111 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3112 				if (r)
3113 					goto out_unlock;
3114 				reserved_size += size;
3115 			}
3116 		}
3117 
3118 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3119 		if (xnack_enabled) {
3120 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3121 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3122 		} else {
3123 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3124 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3125 			if (r)
3126 				goto out_unlock;
3127 			reserved_size += size;
3128 		}
3129 out_unlock:
3130 		svm_range_unlock(prange);
3131 		if (r)
3132 			break;
3133 	}
3134 
3135 	if (r)
3136 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3137 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3138 	else
3139 		/* Change xnack mode must be inside svms lock, to avoid race with
3140 		 * svm_range_deferred_list_work unreserve memory in parallel.
3141 		 */
3142 		p->xnack_enabled = xnack_enabled;
3143 
3144 	mutex_unlock(&p->svms.lock);
3145 	return r;
3146 }
3147 
3148 void svm_range_list_fini(struct kfd_process *p)
3149 {
3150 	struct svm_range *prange;
3151 	struct svm_range *next;
3152 
3153 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3154 
3155 	cancel_delayed_work_sync(&p->svms.restore_work);
3156 
3157 	/* Ensure list work is finished before process is destroyed */
3158 	flush_work(&p->svms.deferred_list_work);
3159 
3160 	/*
3161 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3162 	 * not find kfd process and take mm lock to recover fault.
3163 	 */
3164 	atomic_inc(&p->svms.drain_pagefaults);
3165 	svm_range_drain_retry_fault(&p->svms);
3166 
3167 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3168 		svm_range_unlink(prange);
3169 		svm_range_remove_notifier(prange);
3170 		svm_range_free(prange, true);
3171 	}
3172 
3173 	mutex_destroy(&p->svms.lock);
3174 
3175 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3176 }
3177 
3178 int svm_range_list_init(struct kfd_process *p)
3179 {
3180 	struct svm_range_list *svms = &p->svms;
3181 	int i;
3182 
3183 	svms->objects = RB_ROOT_CACHED;
3184 	mutex_init(&svms->lock);
3185 	INIT_LIST_HEAD(&svms->list);
3186 	atomic_set(&svms->evicted_ranges, 0);
3187 	atomic_set(&svms->drain_pagefaults, 0);
3188 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3189 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3190 	INIT_LIST_HEAD(&svms->deferred_range_list);
3191 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3192 	spin_lock_init(&svms->deferred_list_lock);
3193 
3194 	for (i = 0; i < p->n_pdds; i++)
3195 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3196 			bitmap_set(svms->bitmap_supported, i, 1);
3197 
3198 	return 0;
3199 }
3200 
3201 /**
3202  * svm_range_check_vm - check if virtual address range mapped already
3203  * @p: current kfd_process
3204  * @start: range start address, in pages
3205  * @last: range last address, in pages
3206  * @bo_s: mapping start address in pages if address range already mapped
3207  * @bo_l: mapping last address in pages if address range already mapped
3208  *
3209  * The purpose is to avoid virtual address ranges already allocated by
3210  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3211  * It looks for each pdd in the kfd_process.
3212  *
3213  * Context: Process context
3214  *
3215  * Return 0 - OK, if the range is not mapped.
3216  * Otherwise error code:
3217  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3218  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3219  * a signal. Release all buffer reservations and return to user-space.
3220  */
3221 static int
3222 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3223 		   uint64_t *bo_s, uint64_t *bo_l)
3224 {
3225 	struct amdgpu_bo_va_mapping *mapping;
3226 	struct interval_tree_node *node;
3227 	uint32_t i;
3228 	int r;
3229 
3230 	for (i = 0; i < p->n_pdds; i++) {
3231 		struct amdgpu_vm *vm;
3232 
3233 		if (!p->pdds[i]->drm_priv)
3234 			continue;
3235 
3236 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3237 		r = amdgpu_bo_reserve(vm->root.bo, false);
3238 		if (r)
3239 			return r;
3240 
3241 		node = interval_tree_iter_first(&vm->va, start, last);
3242 		if (node) {
3243 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3244 				 start, last);
3245 			mapping = container_of((struct rb_node *)node,
3246 					       struct amdgpu_bo_va_mapping, rb);
3247 			if (bo_s && bo_l) {
3248 				*bo_s = mapping->start;
3249 				*bo_l = mapping->last;
3250 			}
3251 			amdgpu_bo_unreserve(vm->root.bo);
3252 			return -EADDRINUSE;
3253 		}
3254 		amdgpu_bo_unreserve(vm->root.bo);
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 /**
3261  * svm_range_is_valid - check if virtual address range is valid
3262  * @p: current kfd_process
3263  * @start: range start address, in pages
3264  * @size: range size, in pages
3265  *
3266  * Valid virtual address range means it belongs to one or more VMAs
3267  *
3268  * Context: Process context
3269  *
3270  * Return:
3271  *  0 - OK, otherwise error code
3272  */
3273 static int
3274 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3275 {
3276 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3277 	struct vm_area_struct *vma;
3278 	unsigned long end;
3279 	unsigned long start_unchg = start;
3280 
3281 	start <<= PAGE_SHIFT;
3282 	end = start + (size << PAGE_SHIFT);
3283 	do {
3284 		vma = vma_lookup(p->mm, start);
3285 		if (!vma || (vma->vm_flags & device_vma))
3286 			return -EFAULT;
3287 		start = min(end, vma->vm_end);
3288 	} while (start < end);
3289 
3290 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3291 				  NULL);
3292 }
3293 
3294 /**
3295  * svm_range_best_prefetch_location - decide the best prefetch location
3296  * @prange: svm range structure
3297  *
3298  * For xnack off:
3299  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3300  * can be CPU or GPU.
3301  *
3302  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3303  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3304  * the best prefetch location is always CPU, because GPU can not have coherent
3305  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3306  *
3307  * For xnack on:
3308  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3309  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3310  *
3311  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3312  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3313  * prefetch location is always CPU.
3314  *
3315  * Context: Process context
3316  *
3317  * Return:
3318  * 0 for CPU or GPU id
3319  */
3320 static uint32_t
3321 svm_range_best_prefetch_location(struct svm_range *prange)
3322 {
3323 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3324 	uint32_t best_loc = prange->prefetch_loc;
3325 	struct kfd_process_device *pdd;
3326 	struct kfd_node *bo_node;
3327 	struct kfd_process *p;
3328 	uint32_t gpuidx;
3329 
3330 	p = container_of(prange->svms, struct kfd_process, svms);
3331 
3332 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3333 		goto out;
3334 
3335 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3336 	if (!bo_node) {
3337 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3338 		best_loc = 0;
3339 		goto out;
3340 	}
3341 
3342 	if (bo_node->adev->gmc.is_app_apu) {
3343 		best_loc = 0;
3344 		goto out;
3345 	}
3346 
3347 	if (p->xnack_enabled)
3348 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3349 	else
3350 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3351 			  MAX_GPU_INSTANCE);
3352 
3353 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3354 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3355 		if (!pdd) {
3356 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3357 			continue;
3358 		}
3359 
3360 		if (pdd->dev->adev == bo_node->adev)
3361 			continue;
3362 
3363 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3364 			best_loc = 0;
3365 			break;
3366 		}
3367 	}
3368 
3369 out:
3370 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3371 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3372 		 best_loc);
3373 
3374 	return best_loc;
3375 }
3376 
3377 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3378  * @mm: current process mm_struct
3379  * @prange: svm range structure
3380  * @migrated: output, true if migration is triggered
3381  *
3382  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3383  * from ram to vram.
3384  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3385  * from vram to ram.
3386  *
3387  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3388  * and restore work:
3389  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3390  *    stops all queues, schedule restore work
3391  * 2. svm_range_restore_work wait for migration is done by
3392  *    a. svm_range_validate_vram takes prange->migrate_mutex
3393  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3394  * 3. restore work update mappings of GPU, resume all queues.
3395  *
3396  * Context: Process context
3397  *
3398  * Return:
3399  * 0 - OK, otherwise - error code of migration
3400  */
3401 static int
3402 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3403 			    bool *migrated)
3404 {
3405 	uint32_t best_loc;
3406 	int r = 0;
3407 
3408 	*migrated = false;
3409 	best_loc = svm_range_best_prefetch_location(prange);
3410 
3411 	/* when best_loc is a gpu node and same as prange->actual_loc
3412 	 * we still need do migration as prange->actual_loc !=0 does
3413 	 * not mean all pages in prange are vram. hmm migrate will pick
3414 	 * up right pages during migration.
3415 	 */
3416 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3417 	    (best_loc == 0 && prange->actual_loc == 0))
3418 		return 0;
3419 
3420 	if (!best_loc) {
3421 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3422 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3423 		*migrated = !r;
3424 		return r;
3425 	}
3426 
3427 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3428 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3429 	*migrated = !r;
3430 
3431 	return r;
3432 }
3433 
3434 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3435 {
3436 	if (!fence)
3437 		return -EINVAL;
3438 
3439 	if (dma_fence_is_signaled(&fence->base))
3440 		return 0;
3441 
3442 	if (fence->svm_bo) {
3443 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3444 		schedule_work(&fence->svm_bo->eviction_work);
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3451 {
3452 	struct svm_range_bo *svm_bo;
3453 	struct mm_struct *mm;
3454 	int r = 0;
3455 
3456 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3457 	if (!svm_bo_ref_unless_zero(svm_bo))
3458 		return; /* svm_bo was freed while eviction was pending */
3459 
3460 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3461 		mm = svm_bo->eviction_fence->mm;
3462 	} else {
3463 		svm_range_bo_unref(svm_bo);
3464 		return;
3465 	}
3466 
3467 	mmap_read_lock(mm);
3468 	spin_lock(&svm_bo->list_lock);
3469 	while (!list_empty(&svm_bo->range_list) && !r) {
3470 		struct svm_range *prange =
3471 				list_first_entry(&svm_bo->range_list,
3472 						struct svm_range, svm_bo_list);
3473 		int retries = 3;
3474 
3475 		list_del_init(&prange->svm_bo_list);
3476 		spin_unlock(&svm_bo->list_lock);
3477 
3478 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3479 			 prange->start, prange->last);
3480 
3481 		mutex_lock(&prange->migrate_mutex);
3482 		do {
3483 			/* migrate all vram pages in this prange to sys ram
3484 			 * after that prange->actual_loc should be zero
3485 			 */
3486 			r = svm_migrate_vram_to_ram(prange, mm,
3487 					prange->start, prange->last,
3488 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3489 		} while (!r && prange->actual_loc && --retries);
3490 
3491 		if (!r && prange->actual_loc)
3492 			pr_info_once("Migration failed during eviction");
3493 
3494 		if (!prange->actual_loc) {
3495 			mutex_lock(&prange->lock);
3496 			prange->svm_bo = NULL;
3497 			mutex_unlock(&prange->lock);
3498 		}
3499 		mutex_unlock(&prange->migrate_mutex);
3500 
3501 		spin_lock(&svm_bo->list_lock);
3502 	}
3503 	spin_unlock(&svm_bo->list_lock);
3504 	mmap_read_unlock(mm);
3505 	mmput(mm);
3506 
3507 	dma_fence_signal(&svm_bo->eviction_fence->base);
3508 
3509 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3510 	 * has been called in svm_migrate_vram_to_ram
3511 	 */
3512 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3513 	svm_range_bo_unref(svm_bo);
3514 }
3515 
3516 static int
3517 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3518 		   uint64_t start, uint64_t size, uint32_t nattr,
3519 		   struct kfd_ioctl_svm_attribute *attrs)
3520 {
3521 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3522 	struct list_head update_list;
3523 	struct list_head insert_list;
3524 	struct list_head remove_list;
3525 	struct list_head remap_list;
3526 	struct svm_range_list *svms;
3527 	struct svm_range *prange;
3528 	struct svm_range *next;
3529 	bool update_mapping = false;
3530 	bool flush_tlb;
3531 	int r, ret = 0;
3532 
3533 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3534 		 p->pasid, &p->svms, start, start + size - 1, size);
3535 
3536 	r = svm_range_check_attr(p, nattr, attrs);
3537 	if (r)
3538 		return r;
3539 
3540 	svms = &p->svms;
3541 
3542 	mutex_lock(&process_info->lock);
3543 
3544 	svm_range_list_lock_and_flush_work(svms, mm);
3545 
3546 	r = svm_range_is_valid(p, start, size);
3547 	if (r) {
3548 		pr_debug("invalid range r=%d\n", r);
3549 		mmap_write_unlock(mm);
3550 		goto out;
3551 	}
3552 
3553 	mutex_lock(&svms->lock);
3554 
3555 	/* Add new range and split existing ranges as needed */
3556 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3557 			  &insert_list, &remove_list, &remap_list);
3558 	if (r) {
3559 		mutex_unlock(&svms->lock);
3560 		mmap_write_unlock(mm);
3561 		goto out;
3562 	}
3563 	/* Apply changes as a transaction */
3564 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3565 		svm_range_add_to_svms(prange);
3566 		svm_range_add_notifier_locked(mm, prange);
3567 	}
3568 	list_for_each_entry(prange, &update_list, update_list) {
3569 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3570 		/* TODO: unmap ranges from GPU that lost access */
3571 	}
3572 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3573 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3574 			 prange->svms, prange, prange->start,
3575 			 prange->last);
3576 		svm_range_unlink(prange);
3577 		svm_range_remove_notifier(prange);
3578 		svm_range_free(prange, false);
3579 	}
3580 
3581 	mmap_write_downgrade(mm);
3582 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3583 	 * this fails we may be left with partially completed actions. There
3584 	 * is no clean way of rolling back to the previous state in such a
3585 	 * case because the rollback wouldn't be guaranteed to work either.
3586 	 */
3587 	list_for_each_entry(prange, &update_list, update_list) {
3588 		bool migrated;
3589 
3590 		mutex_lock(&prange->migrate_mutex);
3591 
3592 		r = svm_range_trigger_migration(mm, prange, &migrated);
3593 		if (r)
3594 			goto out_unlock_range;
3595 
3596 		if (migrated && (!p->xnack_enabled ||
3597 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3598 		    prange->mapped_to_gpu) {
3599 			pr_debug("restore_work will update mappings of GPUs\n");
3600 			mutex_unlock(&prange->migrate_mutex);
3601 			continue;
3602 		}
3603 
3604 		if (!migrated && !update_mapping) {
3605 			mutex_unlock(&prange->migrate_mutex);
3606 			continue;
3607 		}
3608 
3609 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3610 
3611 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3612 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3613 		if (r)
3614 			pr_debug("failed %d to map svm range\n", r);
3615 
3616 out_unlock_range:
3617 		mutex_unlock(&prange->migrate_mutex);
3618 		if (r)
3619 			ret = r;
3620 	}
3621 
3622 	list_for_each_entry(prange, &remap_list, update_list) {
3623 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3624 			 prange, prange->start, prange->last);
3625 		mutex_lock(&prange->migrate_mutex);
3626 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3627 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3628 		if (r)
3629 			pr_debug("failed %d on remap svm range\n", r);
3630 		mutex_unlock(&prange->migrate_mutex);
3631 		if (r)
3632 			ret = r;
3633 	}
3634 
3635 	dynamic_svm_range_dump(svms);
3636 
3637 	mutex_unlock(&svms->lock);
3638 	mmap_read_unlock(mm);
3639 out:
3640 	mutex_unlock(&process_info->lock);
3641 
3642 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3643 		 &p->svms, start, start + size - 1, r);
3644 
3645 	return ret ? ret : r;
3646 }
3647 
3648 static int
3649 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3650 		   uint64_t start, uint64_t size, uint32_t nattr,
3651 		   struct kfd_ioctl_svm_attribute *attrs)
3652 {
3653 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3654 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3655 	bool get_preferred_loc = false;
3656 	bool get_prefetch_loc = false;
3657 	bool get_granularity = false;
3658 	bool get_accessible = false;
3659 	bool get_flags = false;
3660 	uint64_t last = start + size - 1UL;
3661 	uint8_t granularity = 0xff;
3662 	struct interval_tree_node *node;
3663 	struct svm_range_list *svms;
3664 	struct svm_range *prange;
3665 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3666 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3667 	uint32_t flags_and = 0xffffffff;
3668 	uint32_t flags_or = 0;
3669 	int gpuidx;
3670 	uint32_t i;
3671 	int r = 0;
3672 
3673 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3674 		 start + size - 1, nattr);
3675 
3676 	/* Flush pending deferred work to avoid racing with deferred actions from
3677 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3678 	 * can still race with get_attr because we don't hold the mmap lock. But that
3679 	 * would be a race condition in the application anyway, and undefined
3680 	 * behaviour is acceptable in that case.
3681 	 */
3682 	flush_work(&p->svms.deferred_list_work);
3683 
3684 	mmap_read_lock(mm);
3685 	r = svm_range_is_valid(p, start, size);
3686 	mmap_read_unlock(mm);
3687 	if (r) {
3688 		pr_debug("invalid range r=%d\n", r);
3689 		return r;
3690 	}
3691 
3692 	for (i = 0; i < nattr; i++) {
3693 		switch (attrs[i].type) {
3694 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3695 			get_preferred_loc = true;
3696 			break;
3697 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3698 			get_prefetch_loc = true;
3699 			break;
3700 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3701 			get_accessible = true;
3702 			break;
3703 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3704 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3705 			get_flags = true;
3706 			break;
3707 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3708 			get_granularity = true;
3709 			break;
3710 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3711 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3712 			fallthrough;
3713 		default:
3714 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3715 			return -EINVAL;
3716 		}
3717 	}
3718 
3719 	svms = &p->svms;
3720 
3721 	mutex_lock(&svms->lock);
3722 
3723 	node = interval_tree_iter_first(&svms->objects, start, last);
3724 	if (!node) {
3725 		pr_debug("range attrs not found return default values\n");
3726 		svm_range_set_default_attributes(&location, &prefetch_loc,
3727 						 &granularity, &flags_and);
3728 		flags_or = flags_and;
3729 		if (p->xnack_enabled)
3730 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3731 				    MAX_GPU_INSTANCE);
3732 		else
3733 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3734 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3735 		goto fill_values;
3736 	}
3737 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3738 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3739 
3740 	while (node) {
3741 		struct interval_tree_node *next;
3742 
3743 		prange = container_of(node, struct svm_range, it_node);
3744 		next = interval_tree_iter_next(node, start, last);
3745 
3746 		if (get_preferred_loc) {
3747 			if (prange->preferred_loc ==
3748 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3749 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3750 			     location != prange->preferred_loc)) {
3751 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3752 				get_preferred_loc = false;
3753 			} else {
3754 				location = prange->preferred_loc;
3755 			}
3756 		}
3757 		if (get_prefetch_loc) {
3758 			if (prange->prefetch_loc ==
3759 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3760 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3761 			     prefetch_loc != prange->prefetch_loc)) {
3762 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3763 				get_prefetch_loc = false;
3764 			} else {
3765 				prefetch_loc = prange->prefetch_loc;
3766 			}
3767 		}
3768 		if (get_accessible) {
3769 			bitmap_and(bitmap_access, bitmap_access,
3770 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3771 			bitmap_and(bitmap_aip, bitmap_aip,
3772 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3773 		}
3774 		if (get_flags) {
3775 			flags_and &= prange->flags;
3776 			flags_or |= prange->flags;
3777 		}
3778 
3779 		if (get_granularity && prange->granularity < granularity)
3780 			granularity = prange->granularity;
3781 
3782 		node = next;
3783 	}
3784 fill_values:
3785 	mutex_unlock(&svms->lock);
3786 
3787 	for (i = 0; i < nattr; i++) {
3788 		switch (attrs[i].type) {
3789 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3790 			attrs[i].value = location;
3791 			break;
3792 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3793 			attrs[i].value = prefetch_loc;
3794 			break;
3795 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3796 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3797 							       attrs[i].value);
3798 			if (gpuidx < 0) {
3799 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3800 				return -EINVAL;
3801 			}
3802 			if (test_bit(gpuidx, bitmap_access))
3803 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3804 			else if (test_bit(gpuidx, bitmap_aip))
3805 				attrs[i].type =
3806 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3807 			else
3808 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3809 			break;
3810 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3811 			attrs[i].value = flags_and;
3812 			break;
3813 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3814 			attrs[i].value = ~flags_or;
3815 			break;
3816 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3817 			attrs[i].value = (uint32_t)granularity;
3818 			break;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 int kfd_criu_resume_svm(struct kfd_process *p)
3826 {
3827 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3828 	int nattr_common = 4, nattr_accessibility = 1;
3829 	struct criu_svm_metadata *criu_svm_md = NULL;
3830 	struct svm_range_list *svms = &p->svms;
3831 	struct criu_svm_metadata *next = NULL;
3832 	uint32_t set_flags = 0xffffffff;
3833 	int i, j, num_attrs, ret = 0;
3834 	uint64_t set_attr_size;
3835 	struct mm_struct *mm;
3836 
3837 	if (list_empty(&svms->criu_svm_metadata_list)) {
3838 		pr_debug("No SVM data from CRIU restore stage 2\n");
3839 		return ret;
3840 	}
3841 
3842 	mm = get_task_mm(p->lead_thread);
3843 	if (!mm) {
3844 		pr_err("failed to get mm for the target process\n");
3845 		return -ESRCH;
3846 	}
3847 
3848 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3849 
3850 	i = j = 0;
3851 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3852 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3853 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3854 
3855 		for (j = 0; j < num_attrs; j++) {
3856 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3857 				 i, j, criu_svm_md->data.attrs[j].type,
3858 				 i, j, criu_svm_md->data.attrs[j].value);
3859 			switch (criu_svm_md->data.attrs[j].type) {
3860 			/* During Checkpoint operation, the query for
3861 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3862 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3863 			 * not used by the range which was checkpointed. Care
3864 			 * must be taken to not restore with an invalid value
3865 			 * otherwise the gpuidx value will be invalid and
3866 			 * set_attr would eventually fail so just replace those
3867 			 * with another dummy attribute such as
3868 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3869 			 */
3870 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3871 				if (criu_svm_md->data.attrs[j].value ==
3872 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3873 					criu_svm_md->data.attrs[j].type =
3874 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3875 					criu_svm_md->data.attrs[j].value = 0;
3876 				}
3877 				break;
3878 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3879 				set_flags = criu_svm_md->data.attrs[j].value;
3880 				break;
3881 			default:
3882 				break;
3883 			}
3884 		}
3885 
3886 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3887 		 * it needs to be inserted before restoring the ranges so
3888 		 * allocate extra space for it before calling set_attr
3889 		 */
3890 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3891 						(num_attrs + 1);
3892 		set_attr_new = krealloc(set_attr, set_attr_size,
3893 					    GFP_KERNEL);
3894 		if (!set_attr_new) {
3895 			ret = -ENOMEM;
3896 			goto exit;
3897 		}
3898 		set_attr = set_attr_new;
3899 
3900 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3901 					sizeof(struct kfd_ioctl_svm_attribute));
3902 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3903 		set_attr[num_attrs].value = ~set_flags;
3904 
3905 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3906 					 criu_svm_md->data.size, num_attrs + 1,
3907 					 set_attr);
3908 		if (ret) {
3909 			pr_err("CRIU: failed to set range attributes\n");
3910 			goto exit;
3911 		}
3912 
3913 		i++;
3914 	}
3915 exit:
3916 	kfree(set_attr);
3917 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3918 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3919 						criu_svm_md->data.start_addr);
3920 		kfree(criu_svm_md);
3921 	}
3922 
3923 	mmput(mm);
3924 	return ret;
3925 
3926 }
3927 
3928 int kfd_criu_restore_svm(struct kfd_process *p,
3929 			 uint8_t __user *user_priv_ptr,
3930 			 uint64_t *priv_data_offset,
3931 			 uint64_t max_priv_data_size)
3932 {
3933 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3934 	int nattr_common = 4, nattr_accessibility = 1;
3935 	struct criu_svm_metadata *criu_svm_md = NULL;
3936 	struct svm_range_list *svms = &p->svms;
3937 	uint32_t num_devices;
3938 	int ret = 0;
3939 
3940 	num_devices = p->n_pdds;
3941 	/* Handle one SVM range object at a time, also the number of gpus are
3942 	 * assumed to be same on the restore node, checking must be done while
3943 	 * evaluating the topology earlier
3944 	 */
3945 
3946 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3947 		(nattr_common + nattr_accessibility * num_devices);
3948 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3949 
3950 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3951 								svm_attrs_size;
3952 
3953 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3954 	if (!criu_svm_md) {
3955 		pr_err("failed to allocate memory to store svm metadata\n");
3956 		return -ENOMEM;
3957 	}
3958 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3959 		ret = -EINVAL;
3960 		goto exit;
3961 	}
3962 
3963 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3964 			     svm_priv_data_size);
3965 	if (ret) {
3966 		ret = -EFAULT;
3967 		goto exit;
3968 	}
3969 	*priv_data_offset += svm_priv_data_size;
3970 
3971 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3972 
3973 	return 0;
3974 
3975 
3976 exit:
3977 	kfree(criu_svm_md);
3978 	return ret;
3979 }
3980 
3981 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3982 		       uint64_t *svm_priv_data_size)
3983 {
3984 	uint64_t total_size, accessibility_size, common_attr_size;
3985 	int nattr_common = 4, nattr_accessibility = 1;
3986 	int num_devices = p->n_pdds;
3987 	struct svm_range_list *svms;
3988 	struct svm_range *prange;
3989 	uint32_t count = 0;
3990 
3991 	*svm_priv_data_size = 0;
3992 
3993 	svms = &p->svms;
3994 	if (!svms)
3995 		return -EINVAL;
3996 
3997 	mutex_lock(&svms->lock);
3998 	list_for_each_entry(prange, &svms->list, list) {
3999 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4000 			 prange, prange->start, prange->npages,
4001 			 prange->start + prange->npages - 1);
4002 		count++;
4003 	}
4004 	mutex_unlock(&svms->lock);
4005 
4006 	*num_svm_ranges = count;
4007 	/* Only the accessbility attributes need to be queried for all the gpus
4008 	 * individually, remaining ones are spanned across the entire process
4009 	 * regardless of the various gpu nodes. Of the remaining attributes,
4010 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4011 	 *
4012 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4013 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4014 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4015 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4016 	 *
4017 	 * ** ACCESSBILITY ATTRIBUTES **
4018 	 * (Considered as one, type is altered during query, value is gpuid)
4019 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4020 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4021 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4022 	 */
4023 	if (*num_svm_ranges > 0) {
4024 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4025 			nattr_common;
4026 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4027 			nattr_accessibility * num_devices;
4028 
4029 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4030 			common_attr_size + accessibility_size;
4031 
4032 		*svm_priv_data_size = *num_svm_ranges * total_size;
4033 	}
4034 
4035 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4036 		 *svm_priv_data_size);
4037 	return 0;
4038 }
4039 
4040 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4041 			    uint8_t __user *user_priv_data,
4042 			    uint64_t *priv_data_offset)
4043 {
4044 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4045 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4046 	uint64_t svm_priv_data_size, query_attr_size = 0;
4047 	int index, nattr_common = 4, ret = 0;
4048 	struct svm_range_list *svms;
4049 	int num_devices = p->n_pdds;
4050 	struct svm_range *prange;
4051 	struct mm_struct *mm;
4052 
4053 	svms = &p->svms;
4054 	if (!svms)
4055 		return -EINVAL;
4056 
4057 	mm = get_task_mm(p->lead_thread);
4058 	if (!mm) {
4059 		pr_err("failed to get mm for the target process\n");
4060 		return -ESRCH;
4061 	}
4062 
4063 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4064 				(nattr_common + num_devices);
4065 
4066 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4067 	if (!query_attr) {
4068 		ret = -ENOMEM;
4069 		goto exit;
4070 	}
4071 
4072 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4073 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4074 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4075 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4076 
4077 	for (index = 0; index < num_devices; index++) {
4078 		struct kfd_process_device *pdd = p->pdds[index];
4079 
4080 		query_attr[index + nattr_common].type =
4081 			KFD_IOCTL_SVM_ATTR_ACCESS;
4082 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4083 	}
4084 
4085 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4086 
4087 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4088 	if (!svm_priv) {
4089 		ret = -ENOMEM;
4090 		goto exit_query;
4091 	}
4092 
4093 	index = 0;
4094 	list_for_each_entry(prange, &svms->list, list) {
4095 
4096 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4097 		svm_priv->start_addr = prange->start;
4098 		svm_priv->size = prange->npages;
4099 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4100 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4101 			 prange, prange->start, prange->npages,
4102 			 prange->start + prange->npages - 1,
4103 			 prange->npages * PAGE_SIZE);
4104 
4105 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4106 					 svm_priv->size,
4107 					 (nattr_common + num_devices),
4108 					 svm_priv->attrs);
4109 		if (ret) {
4110 			pr_err("CRIU: failed to obtain range attributes\n");
4111 			goto exit_priv;
4112 		}
4113 
4114 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4115 				 svm_priv_data_size)) {
4116 			pr_err("Failed to copy svm priv to user\n");
4117 			ret = -EFAULT;
4118 			goto exit_priv;
4119 		}
4120 
4121 		*priv_data_offset += svm_priv_data_size;
4122 
4123 	}
4124 
4125 
4126 exit_priv:
4127 	kfree(svm_priv);
4128 exit_query:
4129 	kfree(query_attr);
4130 exit:
4131 	mmput(mm);
4132 	return ret;
4133 }
4134 
4135 int
4136 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4137 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4138 {
4139 	struct mm_struct *mm = current->mm;
4140 	int r;
4141 
4142 	start >>= PAGE_SHIFT;
4143 	size >>= PAGE_SHIFT;
4144 
4145 	switch (op) {
4146 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4147 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4148 		break;
4149 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4150 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4151 		break;
4152 	default:
4153 		r = EINVAL;
4154 		break;
4155 	}
4156 
4157 	return r;
4158 }
4159