xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
312 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
313 				 uint8_t *granularity, uint32_t *flags)
314 {
315 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*granularity = 9;
318 	*flags =
319 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
320 }
321 
322 static struct
323 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
324 			 uint64_t last, bool update_mem_usage)
325 {
326 	uint64_t size = last - start + 1;
327 	struct svm_range *prange;
328 	struct kfd_process *p;
329 
330 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
331 	if (!prange)
332 		return NULL;
333 
334 	p = container_of(svms, struct kfd_process, svms);
335 	if (!p->xnack_enabled && update_mem_usage &&
336 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
337 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
338 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
339 		kfree(prange);
340 		return NULL;
341 	}
342 	prange->npages = size;
343 	prange->svms = svms;
344 	prange->start = start;
345 	prange->last = last;
346 	INIT_LIST_HEAD(&prange->list);
347 	INIT_LIST_HEAD(&prange->update_list);
348 	INIT_LIST_HEAD(&prange->svm_bo_list);
349 	INIT_LIST_HEAD(&prange->deferred_list);
350 	INIT_LIST_HEAD(&prange->child_list);
351 	atomic_set(&prange->invalid, 0);
352 	prange->validate_timestamp = 0;
353 	prange->vram_pages = 0;
354 	mutex_init(&prange->migrate_mutex);
355 	mutex_init(&prange->lock);
356 
357 	if (p->xnack_enabled)
358 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
359 			    MAX_GPU_INSTANCE);
360 
361 	svm_range_set_default_attributes(&prange->preferred_loc,
362 					 &prange->prefetch_loc,
363 					 &prange->granularity, &prange->flags);
364 
365 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
366 
367 	return prange;
368 }
369 
370 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
371 {
372 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
373 		return false;
374 
375 	return true;
376 }
377 
378 static void svm_range_bo_release(struct kref *kref)
379 {
380 	struct svm_range_bo *svm_bo;
381 
382 	svm_bo = container_of(kref, struct svm_range_bo, kref);
383 	pr_debug("svm_bo 0x%p\n", svm_bo);
384 
385 	spin_lock(&svm_bo->list_lock);
386 	while (!list_empty(&svm_bo->range_list)) {
387 		struct svm_range *prange =
388 				list_first_entry(&svm_bo->range_list,
389 						struct svm_range, svm_bo_list);
390 		/* list_del_init tells a concurrent svm_range_vram_node_new when
391 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
392 		 */
393 		list_del_init(&prange->svm_bo_list);
394 		spin_unlock(&svm_bo->list_lock);
395 
396 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
397 			 prange->start, prange->last);
398 		mutex_lock(&prange->lock);
399 		prange->svm_bo = NULL;
400 		/* prange should not hold vram page now */
401 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
402 		mutex_unlock(&prange->lock);
403 
404 		spin_lock(&svm_bo->list_lock);
405 	}
406 	spin_unlock(&svm_bo->list_lock);
407 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
408 		/* We're not in the eviction worker. Signal the fence. */
409 		dma_fence_signal(&svm_bo->eviction_fence->base);
410 	dma_fence_put(&svm_bo->eviction_fence->base);
411 	amdgpu_bo_unref(&svm_bo->bo);
412 	kfree(svm_bo);
413 }
414 
415 static void svm_range_bo_wq_release(struct work_struct *work)
416 {
417 	struct svm_range_bo *svm_bo;
418 
419 	svm_bo = container_of(work, struct svm_range_bo, release_work);
420 	svm_range_bo_release(&svm_bo->kref);
421 }
422 
423 static void svm_range_bo_release_async(struct kref *kref)
424 {
425 	struct svm_range_bo *svm_bo;
426 
427 	svm_bo = container_of(kref, struct svm_range_bo, kref);
428 	pr_debug("svm_bo 0x%p\n", svm_bo);
429 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
430 	schedule_work(&svm_bo->release_work);
431 }
432 
433 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
434 {
435 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
436 }
437 
438 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
439 {
440 	if (svm_bo)
441 		kref_put(&svm_bo->kref, svm_range_bo_release);
442 }
443 
444 static bool
445 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
446 {
447 	mutex_lock(&prange->lock);
448 	if (!prange->svm_bo) {
449 		mutex_unlock(&prange->lock);
450 		return false;
451 	}
452 	if (prange->ttm_res) {
453 		/* We still have a reference, all is well */
454 		mutex_unlock(&prange->lock);
455 		return true;
456 	}
457 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
458 		/*
459 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
460 		 * range list, and return false to allocate svm_bo from destination
461 		 * node.
462 		 */
463 		if (prange->svm_bo->node != node) {
464 			mutex_unlock(&prange->lock);
465 
466 			spin_lock(&prange->svm_bo->list_lock);
467 			list_del_init(&prange->svm_bo_list);
468 			spin_unlock(&prange->svm_bo->list_lock);
469 
470 			svm_range_bo_unref(prange->svm_bo);
471 			return false;
472 		}
473 		if (READ_ONCE(prange->svm_bo->evicting)) {
474 			struct dma_fence *f;
475 			struct svm_range_bo *svm_bo;
476 			/* The BO is getting evicted,
477 			 * we need to get a new one
478 			 */
479 			mutex_unlock(&prange->lock);
480 			svm_bo = prange->svm_bo;
481 			f = dma_fence_get(&svm_bo->eviction_fence->base);
482 			svm_range_bo_unref(prange->svm_bo);
483 			/* wait for the fence to avoid long spin-loop
484 			 * at list_empty_careful
485 			 */
486 			dma_fence_wait(f, false);
487 			dma_fence_put(f);
488 		} else {
489 			/* The BO was still around and we got
490 			 * a new reference to it
491 			 */
492 			mutex_unlock(&prange->lock);
493 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
494 				 prange->svms, prange->start, prange->last);
495 
496 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
497 			return true;
498 		}
499 
500 	} else {
501 		mutex_unlock(&prange->lock);
502 	}
503 
504 	/* We need a new svm_bo. Spin-loop to wait for concurrent
505 	 * svm_range_bo_release to finish removing this range from
506 	 * its range list and set prange->svm_bo to null. After this,
507 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
508 	 */
509 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
510 		cond_resched();
511 
512 	return false;
513 }
514 
515 static struct svm_range_bo *svm_range_bo_new(void)
516 {
517 	struct svm_range_bo *svm_bo;
518 
519 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
520 	if (!svm_bo)
521 		return NULL;
522 
523 	kref_init(&svm_bo->kref);
524 	INIT_LIST_HEAD(&svm_bo->range_list);
525 	spin_lock_init(&svm_bo->list_lock);
526 
527 	return svm_bo;
528 }
529 
530 int
531 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
532 			bool clear)
533 {
534 	struct amdgpu_bo_param bp;
535 	struct svm_range_bo *svm_bo;
536 	struct amdgpu_bo_user *ubo;
537 	struct amdgpu_bo *bo;
538 	struct kfd_process *p;
539 	struct mm_struct *mm;
540 	int r;
541 
542 	p = container_of(prange->svms, struct kfd_process, svms);
543 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
544 		 prange->start, prange->last);
545 
546 	if (svm_range_validate_svm_bo(node, prange))
547 		return 0;
548 
549 	svm_bo = svm_range_bo_new();
550 	if (!svm_bo) {
551 		pr_debug("failed to alloc svm bo\n");
552 		return -ENOMEM;
553 	}
554 	mm = get_task_mm(p->lead_thread);
555 	if (!mm) {
556 		pr_debug("failed to get mm\n");
557 		kfree(svm_bo);
558 		return -ESRCH;
559 	}
560 	svm_bo->node = node;
561 	svm_bo->eviction_fence =
562 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
563 					   mm,
564 					   svm_bo);
565 	mmput(mm);
566 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
567 	svm_bo->evicting = 0;
568 	memset(&bp, 0, sizeof(bp));
569 	bp.size = prange->npages * PAGE_SIZE;
570 	bp.byte_align = PAGE_SIZE;
571 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
572 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
573 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
574 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
575 	bp.type = ttm_bo_type_device;
576 	bp.resv = NULL;
577 	if (node->xcp)
578 		bp.xcp_id_plus1 = node->xcp->id + 1;
579 
580 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
581 	if (r) {
582 		pr_debug("failed %d to create bo\n", r);
583 		goto create_bo_failed;
584 	}
585 	bo = &ubo->bo;
586 
587 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
588 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
589 		 bp.xcp_id_plus1 - 1);
590 
591 	r = amdgpu_bo_reserve(bo, true);
592 	if (r) {
593 		pr_debug("failed %d to reserve bo\n", r);
594 		goto reserve_bo_failed;
595 	}
596 
597 	if (clear) {
598 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
599 		if (r) {
600 			pr_debug("failed %d to sync bo\n", r);
601 			amdgpu_bo_unreserve(bo);
602 			goto reserve_bo_failed;
603 		}
604 	}
605 
606 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
607 	if (r) {
608 		pr_debug("failed %d to reserve bo\n", r);
609 		amdgpu_bo_unreserve(bo);
610 		goto reserve_bo_failed;
611 	}
612 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
613 
614 	amdgpu_bo_unreserve(bo);
615 
616 	svm_bo->bo = bo;
617 	prange->svm_bo = svm_bo;
618 	prange->ttm_res = bo->tbo.resource;
619 	prange->offset = 0;
620 
621 	spin_lock(&svm_bo->list_lock);
622 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
623 	spin_unlock(&svm_bo->list_lock);
624 
625 	return 0;
626 
627 reserve_bo_failed:
628 	amdgpu_bo_unref(&bo);
629 create_bo_failed:
630 	dma_fence_put(&svm_bo->eviction_fence->base);
631 	kfree(svm_bo);
632 	prange->ttm_res = NULL;
633 
634 	return r;
635 }
636 
637 void svm_range_vram_node_free(struct svm_range *prange)
638 {
639 	/* serialize prange->svm_bo unref */
640 	mutex_lock(&prange->lock);
641 	/* prange->svm_bo has not been unref */
642 	if (prange->ttm_res) {
643 		prange->ttm_res = NULL;
644 		mutex_unlock(&prange->lock);
645 		svm_range_bo_unref(prange->svm_bo);
646 	} else
647 		mutex_unlock(&prange->lock);
648 }
649 
650 struct kfd_node *
651 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
652 {
653 	struct kfd_process *p;
654 	struct kfd_process_device *pdd;
655 
656 	p = container_of(prange->svms, struct kfd_process, svms);
657 	pdd = kfd_process_device_data_by_id(p, gpu_id);
658 	if (!pdd) {
659 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
660 		return NULL;
661 	}
662 
663 	return pdd->dev;
664 }
665 
666 struct kfd_process_device *
667 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
668 {
669 	struct kfd_process *p;
670 
671 	p = container_of(prange->svms, struct kfd_process, svms);
672 
673 	return kfd_get_process_device_data(node, p);
674 }
675 
676 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
677 {
678 	struct ttm_operation_ctx ctx = { false, false };
679 
680 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
681 
682 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
683 }
684 
685 static int
686 svm_range_check_attr(struct kfd_process *p,
687 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
688 {
689 	uint32_t i;
690 
691 	for (i = 0; i < nattr; i++) {
692 		uint32_t val = attrs[i].value;
693 		int gpuidx = MAX_GPU_INSTANCE;
694 
695 		switch (attrs[i].type) {
696 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
697 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
698 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
699 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
700 			break;
701 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
702 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
703 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
704 			break;
705 		case KFD_IOCTL_SVM_ATTR_ACCESS:
706 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
707 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
708 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
709 			break;
710 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
711 			break;
712 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
713 			break;
714 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
715 			break;
716 		default:
717 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
718 			return -EINVAL;
719 		}
720 
721 		if (gpuidx < 0) {
722 			pr_debug("no GPU 0x%x found\n", val);
723 			return -EINVAL;
724 		} else if (gpuidx < MAX_GPU_INSTANCE &&
725 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
726 			pr_debug("GPU 0x%x not supported\n", val);
727 			return -EINVAL;
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 static void
735 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
736 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
737 		      bool *update_mapping)
738 {
739 	uint32_t i;
740 	int gpuidx;
741 
742 	for (i = 0; i < nattr; i++) {
743 		switch (attrs[i].type) {
744 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
745 			prange->preferred_loc = attrs[i].value;
746 			break;
747 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
748 			prange->prefetch_loc = attrs[i].value;
749 			break;
750 		case KFD_IOCTL_SVM_ATTR_ACCESS:
751 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
752 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
753 			if (!p->xnack_enabled)
754 				*update_mapping = true;
755 
756 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
757 							       attrs[i].value);
758 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
759 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
760 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
761 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
762 				bitmap_set(prange->bitmap_access, gpuidx, 1);
763 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
764 			} else {
765 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
766 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
767 			}
768 			break;
769 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
770 			*update_mapping = true;
771 			prange->flags |= attrs[i].value;
772 			break;
773 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
774 			*update_mapping = true;
775 			prange->flags &= ~attrs[i].value;
776 			break;
777 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
778 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
779 			break;
780 		default:
781 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
782 		}
783 	}
784 }
785 
786 static bool
787 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
788 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
789 {
790 	uint32_t i;
791 	int gpuidx;
792 
793 	for (i = 0; i < nattr; i++) {
794 		switch (attrs[i].type) {
795 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
796 			if (prange->preferred_loc != attrs[i].value)
797 				return false;
798 			break;
799 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
800 			/* Prefetch should always trigger a migration even
801 			 * if the value of the attribute didn't change.
802 			 */
803 			return false;
804 		case KFD_IOCTL_SVM_ATTR_ACCESS:
805 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
806 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
807 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
808 							       attrs[i].value);
809 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
810 				if (test_bit(gpuidx, prange->bitmap_access) ||
811 				    test_bit(gpuidx, prange->bitmap_aip))
812 					return false;
813 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
814 				if (!test_bit(gpuidx, prange->bitmap_access))
815 					return false;
816 			} else {
817 				if (!test_bit(gpuidx, prange->bitmap_aip))
818 					return false;
819 			}
820 			break;
821 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
822 			if ((prange->flags & attrs[i].value) != attrs[i].value)
823 				return false;
824 			break;
825 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
826 			if ((prange->flags & attrs[i].value) != 0)
827 				return false;
828 			break;
829 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
830 			if (prange->granularity != attrs[i].value)
831 				return false;
832 			break;
833 		default:
834 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
835 		}
836 	}
837 
838 	return true;
839 }
840 
841 /**
842  * svm_range_debug_dump - print all range information from svms
843  * @svms: svm range list header
844  *
845  * debug output svm range start, end, prefetch location from svms
846  * interval tree and link list
847  *
848  * Context: The caller must hold svms->lock
849  */
850 static void svm_range_debug_dump(struct svm_range_list *svms)
851 {
852 	struct interval_tree_node *node;
853 	struct svm_range *prange;
854 
855 	pr_debug("dump svms 0x%p list\n", svms);
856 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
857 
858 	list_for_each_entry(prange, &svms->list, list) {
859 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
860 			 prange, prange->start, prange->npages,
861 			 prange->start + prange->npages - 1,
862 			 prange->actual_loc);
863 	}
864 
865 	pr_debug("dump svms 0x%p interval tree\n", svms);
866 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
867 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
868 	while (node) {
869 		prange = container_of(node, struct svm_range, it_node);
870 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
871 			 prange, prange->start, prange->npages,
872 			 prange->start + prange->npages - 1,
873 			 prange->actual_loc);
874 		node = interval_tree_iter_next(node, 0, ~0ULL);
875 	}
876 }
877 
878 static void *
879 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
880 		     uint64_t offset, uint64_t *vram_pages)
881 {
882 	unsigned char *src = (unsigned char *)psrc + offset;
883 	unsigned char *dst;
884 	uint64_t i;
885 
886 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
887 	if (!dst)
888 		return NULL;
889 
890 	if (!vram_pages) {
891 		memcpy(dst, src, num_elements * size);
892 		return (void *)dst;
893 	}
894 
895 	*vram_pages = 0;
896 	for (i = 0; i < num_elements; i++) {
897 		dma_addr_t *temp;
898 		temp = (dma_addr_t *)dst + i;
899 		*temp = *((dma_addr_t *)src + i);
900 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
901 			(*vram_pages)++;
902 	}
903 
904 	return (void *)dst;
905 }
906 
907 static int
908 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
909 {
910 	int i;
911 
912 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
913 		if (!src->dma_addr[i])
914 			continue;
915 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
916 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
917 		if (!dst->dma_addr[i])
918 			return -ENOMEM;
919 	}
920 
921 	return 0;
922 }
923 
924 static int
925 svm_range_split_array(void *ppnew, void *ppold, size_t size,
926 		      uint64_t old_start, uint64_t old_n,
927 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
928 {
929 	unsigned char *new, *old, *pold;
930 	uint64_t d;
931 
932 	if (!ppold)
933 		return 0;
934 	pold = *(unsigned char **)ppold;
935 	if (!pold)
936 		return 0;
937 
938 	d = (new_start - old_start) * size;
939 	/* get dma addr array for new range and calculte its vram page number */
940 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
941 	if (!new)
942 		return -ENOMEM;
943 	d = (new_start == old_start) ? new_n * size : 0;
944 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
945 	if (!old) {
946 		kvfree(new);
947 		return -ENOMEM;
948 	}
949 	kvfree(pold);
950 	*(void **)ppold = old;
951 	*(void **)ppnew = new;
952 
953 	return 0;
954 }
955 
956 static int
957 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
958 		      uint64_t start, uint64_t last)
959 {
960 	uint64_t npages = last - start + 1;
961 	int i, r;
962 
963 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
964 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
965 					  sizeof(*old->dma_addr[i]), old->start,
966 					  npages, new->start, new->npages,
967 					  old->actual_loc ? &new->vram_pages : NULL);
968 		if (r)
969 			return r;
970 	}
971 	if (old->actual_loc)
972 		old->vram_pages -= new->vram_pages;
973 
974 	return 0;
975 }
976 
977 static int
978 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
979 		      uint64_t start, uint64_t last)
980 {
981 	uint64_t npages = last - start + 1;
982 
983 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
984 		 new->svms, new, new->start, start, last);
985 
986 	if (new->start == old->start) {
987 		new->offset = old->offset;
988 		old->offset += new->npages;
989 	} else {
990 		new->offset = old->offset + npages;
991 	}
992 
993 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
994 	new->ttm_res = old->ttm_res;
995 
996 	spin_lock(&new->svm_bo->list_lock);
997 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
998 	spin_unlock(&new->svm_bo->list_lock);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * svm_range_split_adjust - split range and adjust
1005  *
1006  * @new: new range
1007  * @old: the old range
1008  * @start: the old range adjust to start address in pages
1009  * @last: the old range adjust to last address in pages
1010  *
1011  * Copy system memory dma_addr or vram ttm_res in old range to new
1012  * range from new_start up to size new->npages, the remaining old range is from
1013  * start to last
1014  *
1015  * Return:
1016  * 0 - OK, -ENOMEM - out of memory
1017  */
1018 static int
1019 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1020 		      uint64_t start, uint64_t last)
1021 {
1022 	int r;
1023 
1024 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1025 		 new->svms, new->start, old->start, old->last, start, last);
1026 
1027 	if (new->start < old->start ||
1028 	    new->last > old->last) {
1029 		WARN_ONCE(1, "invalid new range start or last\n");
1030 		return -EINVAL;
1031 	}
1032 
1033 	r = svm_range_split_pages(new, old, start, last);
1034 	if (r)
1035 		return r;
1036 
1037 	if (old->actual_loc && old->ttm_res) {
1038 		r = svm_range_split_nodes(new, old, start, last);
1039 		if (r)
1040 			return r;
1041 	}
1042 
1043 	old->npages = last - start + 1;
1044 	old->start = start;
1045 	old->last = last;
1046 	new->flags = old->flags;
1047 	new->preferred_loc = old->preferred_loc;
1048 	new->prefetch_loc = old->prefetch_loc;
1049 	new->actual_loc = old->actual_loc;
1050 	new->granularity = old->granularity;
1051 	new->mapped_to_gpu = old->mapped_to_gpu;
1052 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1053 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * svm_range_split - split a range in 2 ranges
1060  *
1061  * @prange: the svm range to split
1062  * @start: the remaining range start address in pages
1063  * @last: the remaining range last address in pages
1064  * @new: the result new range generated
1065  *
1066  * Two cases only:
1067  * case 1: if start == prange->start
1068  *         prange ==> prange[start, last]
1069  *         new range [last + 1, prange->last]
1070  *
1071  * case 2: if last == prange->last
1072  *         prange ==> prange[start, last]
1073  *         new range [prange->start, start - 1]
1074  *
1075  * Return:
1076  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1077  */
1078 static int
1079 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1080 		struct svm_range **new)
1081 {
1082 	uint64_t old_start = prange->start;
1083 	uint64_t old_last = prange->last;
1084 	struct svm_range_list *svms;
1085 	int r = 0;
1086 
1087 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1088 		 old_start, old_last, start, last);
1089 
1090 	if (old_start != start && old_last != last)
1091 		return -EINVAL;
1092 	if (start < old_start || last > old_last)
1093 		return -EINVAL;
1094 
1095 	svms = prange->svms;
1096 	if (old_start == start)
1097 		*new = svm_range_new(svms, last + 1, old_last, false);
1098 	else
1099 		*new = svm_range_new(svms, old_start, start - 1, false);
1100 	if (!*new)
1101 		return -ENOMEM;
1102 
1103 	r = svm_range_split_adjust(*new, prange, start, last);
1104 	if (r) {
1105 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1106 			 r, old_start, old_last, start, last);
1107 		svm_range_free(*new, false);
1108 		*new = NULL;
1109 	}
1110 
1111 	return r;
1112 }
1113 
1114 static int
1115 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1116 		     struct list_head *insert_list, struct list_head *remap_list)
1117 {
1118 	struct svm_range *tail = NULL;
1119 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1120 
1121 	if (!r) {
1122 		list_add(&tail->list, insert_list);
1123 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1124 			list_add(&tail->update_list, remap_list);
1125 	}
1126 	return r;
1127 }
1128 
1129 static int
1130 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1131 		     struct list_head *insert_list, struct list_head *remap_list)
1132 {
1133 	struct svm_range *head = NULL;
1134 	int r = svm_range_split(prange, new_start, prange->last, &head);
1135 
1136 	if (!r) {
1137 		list_add(&head->list, insert_list);
1138 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1139 			list_add(&head->update_list, remap_list);
1140 	}
1141 	return r;
1142 }
1143 
1144 static void
1145 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1146 		    struct svm_range *pchild, enum svm_work_list_ops op)
1147 {
1148 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1149 		 pchild, pchild->start, pchild->last, prange, op);
1150 
1151 	pchild->work_item.mm = mm;
1152 	pchild->work_item.op = op;
1153 	list_add_tail(&pchild->child_list, &prange->child_list);
1154 }
1155 
1156 static bool
1157 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1158 {
1159 	return (node_a->adev == node_b->adev ||
1160 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1161 }
1162 
1163 static uint64_t
1164 svm_range_get_pte_flags(struct kfd_node *node,
1165 			struct svm_range *prange, int domain)
1166 {
1167 	struct kfd_node *bo_node;
1168 	uint32_t flags = prange->flags;
1169 	uint32_t mapping_flags = 0;
1170 	uint64_t pte_flags;
1171 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1172 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1173 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1174 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1175 	unsigned int mtype_local;
1176 
1177 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1178 		bo_node = prange->svm_bo->node;
1179 
1180 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1181 	case IP_VERSION(9, 4, 1):
1182 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1183 			if (bo_node == node) {
1184 				mapping_flags |= coherent ?
1185 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1186 			} else {
1187 				mapping_flags |= coherent ?
1188 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1189 				if (svm_nodes_in_same_hive(node, bo_node))
1190 					snoop = true;
1191 			}
1192 		} else {
1193 			mapping_flags |= coherent ?
1194 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1195 		}
1196 		break;
1197 	case IP_VERSION(9, 4, 2):
1198 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1199 			if (bo_node == node) {
1200 				mapping_flags |= coherent ?
1201 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1202 				if (node->adev->gmc.xgmi.connected_to_cpu)
1203 					snoop = true;
1204 			} else {
1205 				mapping_flags |= coherent ?
1206 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1207 				if (svm_nodes_in_same_hive(node, bo_node))
1208 					snoop = true;
1209 			}
1210 		} else {
1211 			mapping_flags |= coherent ?
1212 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1213 		}
1214 		break;
1215 	case IP_VERSION(9, 4, 3):
1216 		if (ext_coherent)
1217 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1218 		else
1219 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1220 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1221 		snoop = true;
1222 		if (uncached) {
1223 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1224 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 			/* local HBM region close to partition */
1226 			if (bo_node->adev == node->adev &&
1227 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1228 				mapping_flags |= mtype_local;
1229 			/* local HBM region far from partition or remote XGMI GPU
1230 			 * with regular system scope coherence
1231 			 */
1232 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1233 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1234 			/* PCIe P2P or extended system scope coherence */
1235 			else
1236 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1237 		/* system memory accessed by the APU */
1238 		} else if (node->adev->flags & AMD_IS_APU) {
1239 			/* On NUMA systems, locality is determined per-page
1240 			 * in amdgpu_gmc_override_vm_pte_flags
1241 			 */
1242 			if (num_possible_nodes() <= 1)
1243 				mapping_flags |= mtype_local;
1244 			else
1245 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1246 		/* system memory accessed by the dGPU */
1247 		} else {
1248 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1249 		}
1250 		break;
1251 	default:
1252 		mapping_flags |= coherent ?
1253 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1254 	}
1255 
1256 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1257 
1258 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1259 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1260 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1261 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1262 
1263 	pte_flags = AMDGPU_PTE_VALID;
1264 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1265 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1266 
1267 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1268 	return pte_flags;
1269 }
1270 
1271 static int
1272 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1273 			 uint64_t start, uint64_t last,
1274 			 struct dma_fence **fence)
1275 {
1276 	uint64_t init_pte_value = 0;
1277 
1278 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1279 
1280 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1281 				      last, init_pte_value, 0, 0, NULL, NULL,
1282 				      fence);
1283 }
1284 
1285 static int
1286 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1287 			  unsigned long last, uint32_t trigger)
1288 {
1289 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1290 	struct kfd_process_device *pdd;
1291 	struct dma_fence *fence = NULL;
1292 	struct kfd_process *p;
1293 	uint32_t gpuidx;
1294 	int r = 0;
1295 
1296 	if (!prange->mapped_to_gpu) {
1297 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1298 			 prange, prange->start, prange->last);
1299 		return 0;
1300 	}
1301 
1302 	if (prange->start == start && prange->last == last) {
1303 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1304 		prange->mapped_to_gpu = false;
1305 	}
1306 
1307 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1308 		  MAX_GPU_INSTANCE);
1309 	p = container_of(prange->svms, struct kfd_process, svms);
1310 
1311 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1312 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1313 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1314 		if (!pdd) {
1315 			pr_debug("failed to find device idx %d\n", gpuidx);
1316 			return -EINVAL;
1317 		}
1318 
1319 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1320 					     start, last, trigger);
1321 
1322 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1323 					     drm_priv_to_vm(pdd->drm_priv),
1324 					     start, last, &fence);
1325 		if (r)
1326 			break;
1327 
1328 		if (fence) {
1329 			r = dma_fence_wait(fence, false);
1330 			dma_fence_put(fence);
1331 			fence = NULL;
1332 			if (r)
1333 				break;
1334 		}
1335 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1336 	}
1337 
1338 	return r;
1339 }
1340 
1341 static int
1342 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1343 		     unsigned long offset, unsigned long npages, bool readonly,
1344 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1345 		     struct dma_fence **fence, bool flush_tlb)
1346 {
1347 	struct amdgpu_device *adev = pdd->dev->adev;
1348 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1349 	uint64_t pte_flags;
1350 	unsigned long last_start;
1351 	int last_domain;
1352 	int r = 0;
1353 	int64_t i, j;
1354 
1355 	last_start = prange->start + offset;
1356 
1357 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1358 		 last_start, last_start + npages - 1, readonly);
1359 
1360 	for (i = offset; i < offset + npages; i++) {
1361 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1362 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1363 
1364 		/* Collect all pages in the same address range and memory domain
1365 		 * that can be mapped with a single call to update mapping.
1366 		 */
1367 		if (i < offset + npages - 1 &&
1368 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1369 			continue;
1370 
1371 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1372 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1373 
1374 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1375 		if (readonly)
1376 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1377 
1378 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1379 			 prange->svms, last_start, prange->start + i,
1380 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1381 			 pte_flags);
1382 
1383 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1384 		 * different memory partition based on fpfn/lpfn, we should use
1385 		 * same vm_manager.vram_base_offset regardless memory partition.
1386 		 */
1387 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1388 					   NULL, last_start, prange->start + i,
1389 					   pte_flags,
1390 					   (last_start - prange->start) << PAGE_SHIFT,
1391 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1392 					   NULL, dma_addr, &vm->last_update);
1393 
1394 		for (j = last_start - prange->start; j <= i; j++)
1395 			dma_addr[j] |= last_domain;
1396 
1397 		if (r) {
1398 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1399 			goto out;
1400 		}
1401 		last_start = prange->start + i + 1;
1402 	}
1403 
1404 	r = amdgpu_vm_update_pdes(adev, vm, false);
1405 	if (r) {
1406 		pr_debug("failed %d to update directories 0x%lx\n", r,
1407 			 prange->start);
1408 		goto out;
1409 	}
1410 
1411 	if (fence)
1412 		*fence = dma_fence_get(vm->last_update);
1413 
1414 out:
1415 	return r;
1416 }
1417 
1418 static int
1419 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1420 		      unsigned long npages, bool readonly,
1421 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1422 {
1423 	struct kfd_process_device *pdd;
1424 	struct amdgpu_device *bo_adev = NULL;
1425 	struct kfd_process *p;
1426 	struct dma_fence *fence = NULL;
1427 	uint32_t gpuidx;
1428 	int r = 0;
1429 
1430 	if (prange->svm_bo && prange->ttm_res)
1431 		bo_adev = prange->svm_bo->node->adev;
1432 
1433 	p = container_of(prange->svms, struct kfd_process, svms);
1434 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1435 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1436 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1437 		if (!pdd) {
1438 			pr_debug("failed to find device idx %d\n", gpuidx);
1439 			return -EINVAL;
1440 		}
1441 
1442 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1443 		if (IS_ERR(pdd))
1444 			return -EINVAL;
1445 
1446 		if (bo_adev && pdd->dev->adev != bo_adev &&
1447 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1448 			pr_debug("cannot map to device idx %d\n", gpuidx);
1449 			continue;
1450 		}
1451 
1452 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1453 					 prange->dma_addr[gpuidx],
1454 					 bo_adev, wait ? &fence : NULL,
1455 					 flush_tlb);
1456 		if (r)
1457 			break;
1458 
1459 		if (fence) {
1460 			r = dma_fence_wait(fence, false);
1461 			dma_fence_put(fence);
1462 			fence = NULL;
1463 			if (r) {
1464 				pr_debug("failed %d to dma fence wait\n", r);
1465 				break;
1466 			}
1467 		}
1468 
1469 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1470 	}
1471 
1472 	return r;
1473 }
1474 
1475 struct svm_validate_context {
1476 	struct kfd_process *process;
1477 	struct svm_range *prange;
1478 	bool intr;
1479 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1480 	struct drm_exec exec;
1481 };
1482 
1483 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1484 {
1485 	struct kfd_process_device *pdd;
1486 	struct amdgpu_vm *vm;
1487 	uint32_t gpuidx;
1488 	int r;
1489 
1490 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1491 	drm_exec_until_all_locked(&ctx->exec) {
1492 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1493 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1494 			if (!pdd) {
1495 				pr_debug("failed to find device idx %d\n", gpuidx);
1496 				r = -EINVAL;
1497 				goto unreserve_out;
1498 			}
1499 			vm = drm_priv_to_vm(pdd->drm_priv);
1500 
1501 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1502 			drm_exec_retry_on_contention(&ctx->exec);
1503 			if (unlikely(r)) {
1504 				pr_debug("failed %d to reserve bo\n", r);
1505 				goto unreserve_out;
1506 			}
1507 		}
1508 	}
1509 
1510 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1511 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1512 		if (!pdd) {
1513 			pr_debug("failed to find device idx %d\n", gpuidx);
1514 			r = -EINVAL;
1515 			goto unreserve_out;
1516 		}
1517 
1518 		r = amdgpu_vm_validate(pdd->dev->adev,
1519 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1520 				       svm_range_bo_validate, NULL);
1521 		if (r) {
1522 			pr_debug("failed %d validate pt bos\n", r);
1523 			goto unreserve_out;
1524 		}
1525 	}
1526 
1527 	return 0;
1528 
1529 unreserve_out:
1530 	drm_exec_fini(&ctx->exec);
1531 	return r;
1532 }
1533 
1534 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1535 {
1536 	drm_exec_fini(&ctx->exec);
1537 }
1538 
1539 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1540 {
1541 	struct kfd_process_device *pdd;
1542 
1543 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1544 	if (!pdd)
1545 		return NULL;
1546 
1547 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1548 }
1549 
1550 /*
1551  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1552  *
1553  * To prevent concurrent destruction or change of range attributes, the
1554  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1555  * because that would block concurrent evictions and lead to deadlocks. To
1556  * serialize concurrent migrations or validations of the same range, the
1557  * prange->migrate_mutex must be held.
1558  *
1559  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1560  * eviction fence.
1561  *
1562  * The following sequence ensures race-free validation and GPU mapping:
1563  *
1564  * 1. Reserve page table (and SVM BO if range is in VRAM)
1565  * 2. hmm_range_fault to get page addresses (if system memory)
1566  * 3. DMA-map pages (if system memory)
1567  * 4-a. Take notifier lock
1568  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1569  * 4-c. Check that the range was not split or otherwise invalidated
1570  * 4-d. Update GPU page table
1571  * 4.e. Release notifier lock
1572  * 5. Release page table (and SVM BO) reservation
1573  */
1574 static int svm_range_validate_and_map(struct mm_struct *mm,
1575 				      unsigned long map_start, unsigned long map_last,
1576 				      struct svm_range *prange, int32_t gpuidx,
1577 				      bool intr, bool wait, bool flush_tlb)
1578 {
1579 	struct svm_validate_context *ctx;
1580 	unsigned long start, end, addr;
1581 	struct kfd_process *p;
1582 	void *owner;
1583 	int32_t idx;
1584 	int r = 0;
1585 
1586 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1587 	if (!ctx)
1588 		return -ENOMEM;
1589 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1590 	ctx->prange = prange;
1591 	ctx->intr = intr;
1592 
1593 	if (gpuidx < MAX_GPU_INSTANCE) {
1594 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1595 		bitmap_set(ctx->bitmap, gpuidx, 1);
1596 	} else if (ctx->process->xnack_enabled) {
1597 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1598 
1599 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1600 		 * GPU, which has ACCESS attribute to the range, create mapping
1601 		 * on that GPU.
1602 		 */
1603 		if (prange->actual_loc) {
1604 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1605 							prange->actual_loc);
1606 			if (gpuidx < 0) {
1607 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1608 					 prange->actual_loc);
1609 				r = -EINVAL;
1610 				goto free_ctx;
1611 			}
1612 			if (test_bit(gpuidx, prange->bitmap_access))
1613 				bitmap_set(ctx->bitmap, gpuidx, 1);
1614 		}
1615 
1616 		/*
1617 		 * If prange is already mapped or with always mapped flag,
1618 		 * update mapping on GPUs with ACCESS attribute
1619 		 */
1620 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1621 			if (prange->mapped_to_gpu ||
1622 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1623 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1624 		}
1625 	} else {
1626 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1627 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1628 	}
1629 
1630 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1631 		r = 0;
1632 		goto free_ctx;
1633 	}
1634 
1635 	if (prange->actual_loc && !prange->ttm_res) {
1636 		/* This should never happen. actual_loc gets set by
1637 		 * svm_migrate_ram_to_vram after allocating a BO.
1638 		 */
1639 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1640 		r = -EINVAL;
1641 		goto free_ctx;
1642 	}
1643 
1644 	r = svm_range_reserve_bos(ctx, intr);
1645 	if (r)
1646 		goto free_ctx;
1647 
1648 	p = container_of(prange->svms, struct kfd_process, svms);
1649 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1650 						MAX_GPU_INSTANCE));
1651 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1652 		if (kfd_svm_page_owner(p, idx) != owner) {
1653 			owner = NULL;
1654 			break;
1655 		}
1656 	}
1657 
1658 	start = map_start << PAGE_SHIFT;
1659 	end = (map_last + 1) << PAGE_SHIFT;
1660 	for (addr = start; !r && addr < end; ) {
1661 		struct hmm_range *hmm_range;
1662 		unsigned long map_start_vma;
1663 		unsigned long map_last_vma;
1664 		struct vm_area_struct *vma;
1665 		unsigned long next = 0;
1666 		unsigned long offset;
1667 		unsigned long npages;
1668 		bool readonly;
1669 
1670 		vma = vma_lookup(mm, addr);
1671 		if (vma) {
1672 			readonly = !(vma->vm_flags & VM_WRITE);
1673 
1674 			next = min(vma->vm_end, end);
1675 			npages = (next - addr) >> PAGE_SHIFT;
1676 			WRITE_ONCE(p->svms.faulting_task, current);
1677 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1678 						       readonly, owner, NULL,
1679 						       &hmm_range);
1680 			WRITE_ONCE(p->svms.faulting_task, NULL);
1681 			if (r) {
1682 				pr_debug("failed %d to get svm range pages\n", r);
1683 				if (r == -EBUSY)
1684 					r = -EAGAIN;
1685 			}
1686 		} else {
1687 			r = -EFAULT;
1688 		}
1689 
1690 		if (!r) {
1691 			offset = (addr >> PAGE_SHIFT) - prange->start;
1692 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1693 					      hmm_range->hmm_pfns);
1694 			if (r)
1695 				pr_debug("failed %d to dma map range\n", r);
1696 		}
1697 
1698 		svm_range_lock(prange);
1699 		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1700 			pr_debug("hmm update the range, need validate again\n");
1701 			r = -EAGAIN;
1702 		}
1703 
1704 		if (!r && !list_empty(&prange->child_list)) {
1705 			pr_debug("range split by unmap in parallel, validate again\n");
1706 			r = -EAGAIN;
1707 		}
1708 
1709 		if (!r) {
1710 			map_start_vma = max(map_start, prange->start + offset);
1711 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1712 			if (map_start_vma <= map_last_vma) {
1713 				offset = map_start_vma - prange->start;
1714 				npages = map_last_vma - map_start_vma + 1;
1715 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1716 							  ctx->bitmap, wait, flush_tlb);
1717 			}
1718 		}
1719 
1720 		if (!r && next == end)
1721 			prange->mapped_to_gpu = true;
1722 
1723 		svm_range_unlock(prange);
1724 
1725 		addr = next;
1726 	}
1727 
1728 	svm_range_unreserve_bos(ctx);
1729 	if (!r)
1730 		prange->validate_timestamp = ktime_get_boottime();
1731 
1732 free_ctx:
1733 	kfree(ctx);
1734 
1735 	return r;
1736 }
1737 
1738 /**
1739  * svm_range_list_lock_and_flush_work - flush pending deferred work
1740  *
1741  * @svms: the svm range list
1742  * @mm: the mm structure
1743  *
1744  * Context: Returns with mmap write lock held, pending deferred work flushed
1745  *
1746  */
1747 void
1748 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1749 				   struct mm_struct *mm)
1750 {
1751 retry_flush_work:
1752 	flush_work(&svms->deferred_list_work);
1753 	mmap_write_lock(mm);
1754 
1755 	if (list_empty(&svms->deferred_range_list))
1756 		return;
1757 	mmap_write_unlock(mm);
1758 	pr_debug("retry flush\n");
1759 	goto retry_flush_work;
1760 }
1761 
1762 static void svm_range_restore_work(struct work_struct *work)
1763 {
1764 	struct delayed_work *dwork = to_delayed_work(work);
1765 	struct amdkfd_process_info *process_info;
1766 	struct svm_range_list *svms;
1767 	struct svm_range *prange;
1768 	struct kfd_process *p;
1769 	struct mm_struct *mm;
1770 	int evicted_ranges;
1771 	int invalid;
1772 	int r;
1773 
1774 	svms = container_of(dwork, struct svm_range_list, restore_work);
1775 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1776 	if (!evicted_ranges)
1777 		return;
1778 
1779 	pr_debug("restore svm ranges\n");
1780 
1781 	p = container_of(svms, struct kfd_process, svms);
1782 	process_info = p->kgd_process_info;
1783 
1784 	/* Keep mm reference when svm_range_validate_and_map ranges */
1785 	mm = get_task_mm(p->lead_thread);
1786 	if (!mm) {
1787 		pr_debug("svms 0x%p process mm gone\n", svms);
1788 		return;
1789 	}
1790 
1791 	mutex_lock(&process_info->lock);
1792 	svm_range_list_lock_and_flush_work(svms, mm);
1793 	mutex_lock(&svms->lock);
1794 
1795 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1796 
1797 	list_for_each_entry(prange, &svms->list, list) {
1798 		invalid = atomic_read(&prange->invalid);
1799 		if (!invalid)
1800 			continue;
1801 
1802 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1803 			 prange->svms, prange, prange->start, prange->last,
1804 			 invalid);
1805 
1806 		/*
1807 		 * If range is migrating, wait for migration is done.
1808 		 */
1809 		mutex_lock(&prange->migrate_mutex);
1810 
1811 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1812 					       MAX_GPU_INSTANCE, false, true, false);
1813 		if (r)
1814 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1815 				 prange->start);
1816 
1817 		mutex_unlock(&prange->migrate_mutex);
1818 		if (r)
1819 			goto out_reschedule;
1820 
1821 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1822 			goto out_reschedule;
1823 	}
1824 
1825 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1826 	    evicted_ranges)
1827 		goto out_reschedule;
1828 
1829 	evicted_ranges = 0;
1830 
1831 	r = kgd2kfd_resume_mm(mm);
1832 	if (r) {
1833 		/* No recovery from this failure. Probably the CP is
1834 		 * hanging. No point trying again.
1835 		 */
1836 		pr_debug("failed %d to resume KFD\n", r);
1837 	}
1838 
1839 	pr_debug("restore svm ranges successfully\n");
1840 
1841 out_reschedule:
1842 	mutex_unlock(&svms->lock);
1843 	mmap_write_unlock(mm);
1844 	mutex_unlock(&process_info->lock);
1845 
1846 	/* If validation failed, reschedule another attempt */
1847 	if (evicted_ranges) {
1848 		pr_debug("reschedule to restore svm range\n");
1849 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1850 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1851 
1852 		kfd_smi_event_queue_restore_rescheduled(mm);
1853 	}
1854 	mmput(mm);
1855 }
1856 
1857 /**
1858  * svm_range_evict - evict svm range
1859  * @prange: svm range structure
1860  * @mm: current process mm_struct
1861  * @start: starting process queue number
1862  * @last: last process queue number
1863  * @event: mmu notifier event when range is evicted or migrated
1864  *
1865  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1866  * return to let CPU evict the buffer and proceed CPU pagetable update.
1867  *
1868  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1869  * If invalidation happens while restore work is running, restore work will
1870  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1871  * the queues.
1872  */
1873 static int
1874 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1875 		unsigned long start, unsigned long last,
1876 		enum mmu_notifier_event event)
1877 {
1878 	struct svm_range_list *svms = prange->svms;
1879 	struct svm_range *pchild;
1880 	struct kfd_process *p;
1881 	int r = 0;
1882 
1883 	p = container_of(svms, struct kfd_process, svms);
1884 
1885 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1886 		 svms, prange->start, prange->last, start, last);
1887 
1888 	if (!p->xnack_enabled ||
1889 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1890 		int evicted_ranges;
1891 		bool mapped = prange->mapped_to_gpu;
1892 
1893 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1894 			if (!pchild->mapped_to_gpu)
1895 				continue;
1896 			mapped = true;
1897 			mutex_lock_nested(&pchild->lock, 1);
1898 			if (pchild->start <= last && pchild->last >= start) {
1899 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1900 					 pchild->start, pchild->last);
1901 				atomic_inc(&pchild->invalid);
1902 			}
1903 			mutex_unlock(&pchild->lock);
1904 		}
1905 
1906 		if (!mapped)
1907 			return r;
1908 
1909 		if (prange->start <= last && prange->last >= start)
1910 			atomic_inc(&prange->invalid);
1911 
1912 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1913 		if (evicted_ranges != 1)
1914 			return r;
1915 
1916 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1917 			 prange->svms, prange->start, prange->last);
1918 
1919 		/* First eviction, stop the queues */
1920 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1921 		if (r)
1922 			pr_debug("failed to quiesce KFD\n");
1923 
1924 		pr_debug("schedule to restore svm %p ranges\n", svms);
1925 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1926 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1927 	} else {
1928 		unsigned long s, l;
1929 		uint32_t trigger;
1930 
1931 		if (event == MMU_NOTIFY_MIGRATE)
1932 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1933 		else
1934 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1935 
1936 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1937 			 prange->svms, start, last);
1938 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1939 			mutex_lock_nested(&pchild->lock, 1);
1940 			s = max(start, pchild->start);
1941 			l = min(last, pchild->last);
1942 			if (l >= s)
1943 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1944 			mutex_unlock(&pchild->lock);
1945 		}
1946 		s = max(start, prange->start);
1947 		l = min(last, prange->last);
1948 		if (l >= s)
1949 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1950 	}
1951 
1952 	return r;
1953 }
1954 
1955 static struct svm_range *svm_range_clone(struct svm_range *old)
1956 {
1957 	struct svm_range *new;
1958 
1959 	new = svm_range_new(old->svms, old->start, old->last, false);
1960 	if (!new)
1961 		return NULL;
1962 	if (svm_range_copy_dma_addrs(new, old)) {
1963 		svm_range_free(new, false);
1964 		return NULL;
1965 	}
1966 	if (old->svm_bo) {
1967 		new->ttm_res = old->ttm_res;
1968 		new->offset = old->offset;
1969 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1970 		spin_lock(&new->svm_bo->list_lock);
1971 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1972 		spin_unlock(&new->svm_bo->list_lock);
1973 	}
1974 	new->flags = old->flags;
1975 	new->preferred_loc = old->preferred_loc;
1976 	new->prefetch_loc = old->prefetch_loc;
1977 	new->actual_loc = old->actual_loc;
1978 	new->granularity = old->granularity;
1979 	new->mapped_to_gpu = old->mapped_to_gpu;
1980 	new->vram_pages = old->vram_pages;
1981 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1982 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1983 
1984 	return new;
1985 }
1986 
1987 void svm_range_set_max_pages(struct amdgpu_device *adev)
1988 {
1989 	uint64_t max_pages;
1990 	uint64_t pages, _pages;
1991 	uint64_t min_pages = 0;
1992 	int i, id;
1993 
1994 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1995 		if (adev->kfd.dev->nodes[i]->xcp)
1996 			id = adev->kfd.dev->nodes[i]->xcp->id;
1997 		else
1998 			id = -1;
1999 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2000 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2001 		pages = rounddown_pow_of_two(pages);
2002 		min_pages = min_not_zero(min_pages, pages);
2003 	}
2004 
2005 	do {
2006 		max_pages = READ_ONCE(max_svm_range_pages);
2007 		_pages = min_not_zero(max_pages, min_pages);
2008 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2009 }
2010 
2011 static int
2012 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2013 		    uint64_t max_pages, struct list_head *insert_list,
2014 		    struct list_head *update_list)
2015 {
2016 	struct svm_range *prange;
2017 	uint64_t l;
2018 
2019 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2020 		 max_pages, start, last);
2021 
2022 	while (last >= start) {
2023 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2024 
2025 		prange = svm_range_new(svms, start, l, true);
2026 		if (!prange)
2027 			return -ENOMEM;
2028 		list_add(&prange->list, insert_list);
2029 		list_add(&prange->update_list, update_list);
2030 
2031 		start = l + 1;
2032 	}
2033 	return 0;
2034 }
2035 
2036 /**
2037  * svm_range_add - add svm range and handle overlap
2038  * @p: the range add to this process svms
2039  * @start: page size aligned
2040  * @size: page size aligned
2041  * @nattr: number of attributes
2042  * @attrs: array of attributes
2043  * @update_list: output, the ranges need validate and update GPU mapping
2044  * @insert_list: output, the ranges need insert to svms
2045  * @remove_list: output, the ranges are replaced and need remove from svms
2046  * @remap_list: output, remap unaligned svm ranges
2047  *
2048  * Check if the virtual address range has overlap with any existing ranges,
2049  * split partly overlapping ranges and add new ranges in the gaps. All changes
2050  * should be applied to the range_list and interval tree transactionally. If
2051  * any range split or allocation fails, the entire update fails. Therefore any
2052  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2053  * unchanged.
2054  *
2055  * If the transaction succeeds, the caller can update and insert clones and
2056  * new ranges, then free the originals.
2057  *
2058  * Otherwise the caller can free the clones and new ranges, while the old
2059  * svm_ranges remain unchanged.
2060  *
2061  * Context: Process context, caller must hold svms->lock
2062  *
2063  * Return:
2064  * 0 - OK, otherwise error code
2065  */
2066 static int
2067 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2068 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2069 	      struct list_head *update_list, struct list_head *insert_list,
2070 	      struct list_head *remove_list, struct list_head *remap_list)
2071 {
2072 	unsigned long last = start + size - 1UL;
2073 	struct svm_range_list *svms = &p->svms;
2074 	struct interval_tree_node *node;
2075 	struct svm_range *prange;
2076 	struct svm_range *tmp;
2077 	struct list_head new_list;
2078 	int r = 0;
2079 
2080 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2081 
2082 	INIT_LIST_HEAD(update_list);
2083 	INIT_LIST_HEAD(insert_list);
2084 	INIT_LIST_HEAD(remove_list);
2085 	INIT_LIST_HEAD(&new_list);
2086 	INIT_LIST_HEAD(remap_list);
2087 
2088 	node = interval_tree_iter_first(&svms->objects, start, last);
2089 	while (node) {
2090 		struct interval_tree_node *next;
2091 		unsigned long next_start;
2092 
2093 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2094 			 node->last);
2095 
2096 		prange = container_of(node, struct svm_range, it_node);
2097 		next = interval_tree_iter_next(node, start, last);
2098 		next_start = min(node->last, last) + 1;
2099 
2100 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2101 		    prange->mapped_to_gpu) {
2102 			/* nothing to do */
2103 		} else if (node->start < start || node->last > last) {
2104 			/* node intersects the update range and its attributes
2105 			 * will change. Clone and split it, apply updates only
2106 			 * to the overlapping part
2107 			 */
2108 			struct svm_range *old = prange;
2109 
2110 			prange = svm_range_clone(old);
2111 			if (!prange) {
2112 				r = -ENOMEM;
2113 				goto out;
2114 			}
2115 
2116 			list_add(&old->update_list, remove_list);
2117 			list_add(&prange->list, insert_list);
2118 			list_add(&prange->update_list, update_list);
2119 
2120 			if (node->start < start) {
2121 				pr_debug("change old range start\n");
2122 				r = svm_range_split_head(prange, start,
2123 							 insert_list, remap_list);
2124 				if (r)
2125 					goto out;
2126 			}
2127 			if (node->last > last) {
2128 				pr_debug("change old range last\n");
2129 				r = svm_range_split_tail(prange, last,
2130 							 insert_list, remap_list);
2131 				if (r)
2132 					goto out;
2133 			}
2134 		} else {
2135 			/* The node is contained within start..last,
2136 			 * just update it
2137 			 */
2138 			list_add(&prange->update_list, update_list);
2139 		}
2140 
2141 		/* insert a new node if needed */
2142 		if (node->start > start) {
2143 			r = svm_range_split_new(svms, start, node->start - 1,
2144 						READ_ONCE(max_svm_range_pages),
2145 						&new_list, update_list);
2146 			if (r)
2147 				goto out;
2148 		}
2149 
2150 		node = next;
2151 		start = next_start;
2152 	}
2153 
2154 	/* add a final range at the end if needed */
2155 	if (start <= last)
2156 		r = svm_range_split_new(svms, start, last,
2157 					READ_ONCE(max_svm_range_pages),
2158 					&new_list, update_list);
2159 
2160 out:
2161 	if (r) {
2162 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2163 			svm_range_free(prange, false);
2164 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2165 			svm_range_free(prange, true);
2166 	} else {
2167 		list_splice(&new_list, insert_list);
2168 	}
2169 
2170 	return r;
2171 }
2172 
2173 static void
2174 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2175 					    struct svm_range *prange)
2176 {
2177 	unsigned long start;
2178 	unsigned long last;
2179 
2180 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2181 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2182 
2183 	if (prange->start == start && prange->last == last)
2184 		return;
2185 
2186 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2187 		  prange->svms, prange, start, last, prange->start,
2188 		  prange->last);
2189 
2190 	if (start != 0 && last != 0) {
2191 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2192 		svm_range_remove_notifier(prange);
2193 	}
2194 	prange->it_node.start = prange->start;
2195 	prange->it_node.last = prange->last;
2196 
2197 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2198 	svm_range_add_notifier_locked(mm, prange);
2199 }
2200 
2201 static void
2202 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2203 			 struct mm_struct *mm)
2204 {
2205 	switch (prange->work_item.op) {
2206 	case SVM_OP_NULL:
2207 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2208 			 svms, prange, prange->start, prange->last);
2209 		break;
2210 	case SVM_OP_UNMAP_RANGE:
2211 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2212 			 svms, prange, prange->start, prange->last);
2213 		svm_range_unlink(prange);
2214 		svm_range_remove_notifier(prange);
2215 		svm_range_free(prange, true);
2216 		break;
2217 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2218 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2219 			 svms, prange, prange->start, prange->last);
2220 		svm_range_update_notifier_and_interval_tree(mm, prange);
2221 		break;
2222 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2223 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2224 			 svms, prange, prange->start, prange->last);
2225 		svm_range_update_notifier_and_interval_tree(mm, prange);
2226 		/* TODO: implement deferred validation and mapping */
2227 		break;
2228 	case SVM_OP_ADD_RANGE:
2229 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2230 			 prange->start, prange->last);
2231 		svm_range_add_to_svms(prange);
2232 		svm_range_add_notifier_locked(mm, prange);
2233 		break;
2234 	case SVM_OP_ADD_RANGE_AND_MAP:
2235 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2236 			 prange, prange->start, prange->last);
2237 		svm_range_add_to_svms(prange);
2238 		svm_range_add_notifier_locked(mm, prange);
2239 		/* TODO: implement deferred validation and mapping */
2240 		break;
2241 	default:
2242 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2243 			 prange->work_item.op);
2244 	}
2245 }
2246 
2247 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2248 {
2249 	struct kfd_process_device *pdd;
2250 	struct kfd_process *p;
2251 	int drain;
2252 	uint32_t i;
2253 
2254 	p = container_of(svms, struct kfd_process, svms);
2255 
2256 restart:
2257 	drain = atomic_read(&svms->drain_pagefaults);
2258 	if (!drain)
2259 		return;
2260 
2261 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2262 		pdd = p->pdds[i];
2263 		if (!pdd)
2264 			continue;
2265 
2266 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2267 
2268 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2269 				pdd->dev->adev->irq.retry_cam_enabled ?
2270 				&pdd->dev->adev->irq.ih :
2271 				&pdd->dev->adev->irq.ih1);
2272 
2273 		if (pdd->dev->adev->irq.retry_cam_enabled)
2274 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2275 				&pdd->dev->adev->irq.ih_soft);
2276 
2277 
2278 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2279 	}
2280 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2281 		goto restart;
2282 }
2283 
2284 static void svm_range_deferred_list_work(struct work_struct *work)
2285 {
2286 	struct svm_range_list *svms;
2287 	struct svm_range *prange;
2288 	struct mm_struct *mm;
2289 
2290 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2291 	pr_debug("enter svms 0x%p\n", svms);
2292 
2293 	spin_lock(&svms->deferred_list_lock);
2294 	while (!list_empty(&svms->deferred_range_list)) {
2295 		prange = list_first_entry(&svms->deferred_range_list,
2296 					  struct svm_range, deferred_list);
2297 		spin_unlock(&svms->deferred_list_lock);
2298 
2299 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2300 			 prange->start, prange->last, prange->work_item.op);
2301 
2302 		mm = prange->work_item.mm;
2303 retry:
2304 		mmap_write_lock(mm);
2305 
2306 		/* Checking for the need to drain retry faults must be inside
2307 		 * mmap write lock to serialize with munmap notifiers.
2308 		 */
2309 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2310 			mmap_write_unlock(mm);
2311 			svm_range_drain_retry_fault(svms);
2312 			goto retry;
2313 		}
2314 
2315 		/* Remove from deferred_list must be inside mmap write lock, for
2316 		 * two race cases:
2317 		 * 1. unmap_from_cpu may change work_item.op and add the range
2318 		 *    to deferred_list again, cause use after free bug.
2319 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2320 		 *    lock and continue because deferred_list is empty, but
2321 		 *    deferred_list work is actually waiting for mmap lock.
2322 		 */
2323 		spin_lock(&svms->deferred_list_lock);
2324 		list_del_init(&prange->deferred_list);
2325 		spin_unlock(&svms->deferred_list_lock);
2326 
2327 		mutex_lock(&svms->lock);
2328 		mutex_lock(&prange->migrate_mutex);
2329 		while (!list_empty(&prange->child_list)) {
2330 			struct svm_range *pchild;
2331 
2332 			pchild = list_first_entry(&prange->child_list,
2333 						struct svm_range, child_list);
2334 			pr_debug("child prange 0x%p op %d\n", pchild,
2335 				 pchild->work_item.op);
2336 			list_del_init(&pchild->child_list);
2337 			svm_range_handle_list_op(svms, pchild, mm);
2338 		}
2339 		mutex_unlock(&prange->migrate_mutex);
2340 
2341 		svm_range_handle_list_op(svms, prange, mm);
2342 		mutex_unlock(&svms->lock);
2343 		mmap_write_unlock(mm);
2344 
2345 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2346 		 * last mm refcount, schedule release work to avoid circular locking
2347 		 */
2348 		mmput_async(mm);
2349 
2350 		spin_lock(&svms->deferred_list_lock);
2351 	}
2352 	spin_unlock(&svms->deferred_list_lock);
2353 	pr_debug("exit svms 0x%p\n", svms);
2354 }
2355 
2356 void
2357 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2358 			struct mm_struct *mm, enum svm_work_list_ops op)
2359 {
2360 	spin_lock(&svms->deferred_list_lock);
2361 	/* if prange is on the deferred list */
2362 	if (!list_empty(&prange->deferred_list)) {
2363 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2364 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2365 		if (op != SVM_OP_NULL &&
2366 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2367 			prange->work_item.op = op;
2368 	} else {
2369 		prange->work_item.op = op;
2370 
2371 		/* Pairs with mmput in deferred_list_work */
2372 		mmget(mm);
2373 		prange->work_item.mm = mm;
2374 		list_add_tail(&prange->deferred_list,
2375 			      &prange->svms->deferred_range_list);
2376 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2377 			 prange, prange->start, prange->last, op);
2378 	}
2379 	spin_unlock(&svms->deferred_list_lock);
2380 }
2381 
2382 void schedule_deferred_list_work(struct svm_range_list *svms)
2383 {
2384 	spin_lock(&svms->deferred_list_lock);
2385 	if (!list_empty(&svms->deferred_range_list))
2386 		schedule_work(&svms->deferred_list_work);
2387 	spin_unlock(&svms->deferred_list_lock);
2388 }
2389 
2390 static void
2391 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2392 		      struct svm_range *prange, unsigned long start,
2393 		      unsigned long last)
2394 {
2395 	struct svm_range *head;
2396 	struct svm_range *tail;
2397 
2398 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2399 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2400 			 prange->start, prange->last);
2401 		return;
2402 	}
2403 	if (start > prange->last || last < prange->start)
2404 		return;
2405 
2406 	head = tail = prange;
2407 	if (start > prange->start)
2408 		svm_range_split(prange, prange->start, start - 1, &tail);
2409 	if (last < tail->last)
2410 		svm_range_split(tail, last + 1, tail->last, &head);
2411 
2412 	if (head != prange && tail != prange) {
2413 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2414 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2415 	} else if (tail != prange) {
2416 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2417 	} else if (head != prange) {
2418 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2419 	} else if (parent != prange) {
2420 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2421 	}
2422 }
2423 
2424 static void
2425 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2426 			 unsigned long start, unsigned long last)
2427 {
2428 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2429 	struct svm_range_list *svms;
2430 	struct svm_range *pchild;
2431 	struct kfd_process *p;
2432 	unsigned long s, l;
2433 	bool unmap_parent;
2434 
2435 	p = kfd_lookup_process_by_mm(mm);
2436 	if (!p)
2437 		return;
2438 	svms = &p->svms;
2439 
2440 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2441 		 prange, prange->start, prange->last, start, last);
2442 
2443 	/* Make sure pending page faults are drained in the deferred worker
2444 	 * before the range is freed to avoid straggler interrupts on
2445 	 * unmapped memory causing "phantom faults".
2446 	 */
2447 	atomic_inc(&svms->drain_pagefaults);
2448 
2449 	unmap_parent = start <= prange->start && last >= prange->last;
2450 
2451 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2452 		mutex_lock_nested(&pchild->lock, 1);
2453 		s = max(start, pchild->start);
2454 		l = min(last, pchild->last);
2455 		if (l >= s)
2456 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2457 		svm_range_unmap_split(mm, prange, pchild, start, last);
2458 		mutex_unlock(&pchild->lock);
2459 	}
2460 	s = max(start, prange->start);
2461 	l = min(last, prange->last);
2462 	if (l >= s)
2463 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2464 	svm_range_unmap_split(mm, prange, prange, start, last);
2465 
2466 	if (unmap_parent)
2467 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2468 	else
2469 		svm_range_add_list_work(svms, prange, mm,
2470 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2471 	schedule_deferred_list_work(svms);
2472 
2473 	kfd_unref_process(p);
2474 }
2475 
2476 /**
2477  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2478  * @mni: mmu_interval_notifier struct
2479  * @range: mmu_notifier_range struct
2480  * @cur_seq: value to pass to mmu_interval_set_seq()
2481  *
2482  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2483  * is from migration, or CPU page invalidation callback.
2484  *
2485  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2486  * work thread, and split prange if only part of prange is unmapped.
2487  *
2488  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2489  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2490  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2491  * update GPU mapping to recover.
2492  *
2493  * Context: mmap lock, notifier_invalidate_start lock are held
2494  *          for invalidate event, prange lock is held if this is from migration
2495  */
2496 static bool
2497 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2498 				    const struct mmu_notifier_range *range,
2499 				    unsigned long cur_seq)
2500 {
2501 	struct svm_range *prange;
2502 	unsigned long start;
2503 	unsigned long last;
2504 
2505 	if (range->event == MMU_NOTIFY_RELEASE)
2506 		return true;
2507 	if (!mmget_not_zero(mni->mm))
2508 		return true;
2509 
2510 	start = mni->interval_tree.start;
2511 	last = mni->interval_tree.last;
2512 	start = max(start, range->start) >> PAGE_SHIFT;
2513 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2514 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2515 		 start, last, range->start >> PAGE_SHIFT,
2516 		 (range->end - 1) >> PAGE_SHIFT,
2517 		 mni->interval_tree.start >> PAGE_SHIFT,
2518 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2519 
2520 	prange = container_of(mni, struct svm_range, notifier);
2521 
2522 	svm_range_lock(prange);
2523 	mmu_interval_set_seq(mni, cur_seq);
2524 
2525 	switch (range->event) {
2526 	case MMU_NOTIFY_UNMAP:
2527 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2528 		break;
2529 	default:
2530 		svm_range_evict(prange, mni->mm, start, last, range->event);
2531 		break;
2532 	}
2533 
2534 	svm_range_unlock(prange);
2535 	mmput(mni->mm);
2536 
2537 	return true;
2538 }
2539 
2540 /**
2541  * svm_range_from_addr - find svm range from fault address
2542  * @svms: svm range list header
2543  * @addr: address to search range interval tree, in pages
2544  * @parent: parent range if range is on child list
2545  *
2546  * Context: The caller must hold svms->lock
2547  *
2548  * Return: the svm_range found or NULL
2549  */
2550 struct svm_range *
2551 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2552 		    struct svm_range **parent)
2553 {
2554 	struct interval_tree_node *node;
2555 	struct svm_range *prange;
2556 	struct svm_range *pchild;
2557 
2558 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2559 	if (!node)
2560 		return NULL;
2561 
2562 	prange = container_of(node, struct svm_range, it_node);
2563 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2564 		 addr, prange->start, prange->last, node->start, node->last);
2565 
2566 	if (addr >= prange->start && addr <= prange->last) {
2567 		if (parent)
2568 			*parent = prange;
2569 		return prange;
2570 	}
2571 	list_for_each_entry(pchild, &prange->child_list, child_list)
2572 		if (addr >= pchild->start && addr <= pchild->last) {
2573 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2574 				 addr, pchild->start, pchild->last);
2575 			if (parent)
2576 				*parent = prange;
2577 			return pchild;
2578 		}
2579 
2580 	return NULL;
2581 }
2582 
2583 /* svm_range_best_restore_location - decide the best fault restore location
2584  * @prange: svm range structure
2585  * @adev: the GPU on which vm fault happened
2586  *
2587  * This is only called when xnack is on, to decide the best location to restore
2588  * the range mapping after GPU vm fault. Caller uses the best location to do
2589  * migration if actual loc is not best location, then update GPU page table
2590  * mapping to the best location.
2591  *
2592  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2593  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2594  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2595  *    if range actual loc is cpu, best_loc is cpu
2596  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2597  *    range actual loc.
2598  * Otherwise, GPU no access, best_loc is -1.
2599  *
2600  * Return:
2601  * -1 means vm fault GPU no access
2602  * 0 for CPU or GPU id
2603  */
2604 static int32_t
2605 svm_range_best_restore_location(struct svm_range *prange,
2606 				struct kfd_node *node,
2607 				int32_t *gpuidx)
2608 {
2609 	struct kfd_node *bo_node, *preferred_node;
2610 	struct kfd_process *p;
2611 	uint32_t gpuid;
2612 	int r;
2613 
2614 	p = container_of(prange->svms, struct kfd_process, svms);
2615 
2616 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2617 	if (r < 0) {
2618 		pr_debug("failed to get gpuid from kgd\n");
2619 		return -1;
2620 	}
2621 
2622 	if (node->adev->gmc.is_app_apu ||
2623 	    node->adev->flags & AMD_IS_APU)
2624 		return 0;
2625 
2626 	if (prange->preferred_loc == gpuid ||
2627 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2628 		return prange->preferred_loc;
2629 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2630 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2631 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2632 			return prange->preferred_loc;
2633 		/* fall through */
2634 	}
2635 
2636 	if (test_bit(*gpuidx, prange->bitmap_access))
2637 		return gpuid;
2638 
2639 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2640 		if (!prange->actual_loc)
2641 			return 0;
2642 
2643 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2644 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2645 			return prange->actual_loc;
2646 		else
2647 			return 0;
2648 	}
2649 
2650 	return -1;
2651 }
2652 
2653 static int
2654 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2655 			       unsigned long *start, unsigned long *last,
2656 			       bool *is_heap_stack)
2657 {
2658 	struct vm_area_struct *vma;
2659 	struct interval_tree_node *node;
2660 	struct rb_node *rb_node;
2661 	unsigned long start_limit, end_limit;
2662 
2663 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2664 	if (!vma) {
2665 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2666 		return -EFAULT;
2667 	}
2668 
2669 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2670 
2671 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2672 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2673 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2674 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2675 	/* First range that starts after the fault address */
2676 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2677 	if (node) {
2678 		end_limit = min(end_limit, node->start);
2679 		/* Last range that ends before the fault address */
2680 		rb_node = rb_prev(&node->rb);
2681 	} else {
2682 		/* Last range must end before addr because
2683 		 * there was no range after addr
2684 		 */
2685 		rb_node = rb_last(&p->svms.objects.rb_root);
2686 	}
2687 	if (rb_node) {
2688 		node = container_of(rb_node, struct interval_tree_node, rb);
2689 		if (node->last >= addr) {
2690 			WARN(1, "Overlap with prev node and page fault addr\n");
2691 			return -EFAULT;
2692 		}
2693 		start_limit = max(start_limit, node->last + 1);
2694 	}
2695 
2696 	*start = start_limit;
2697 	*last = end_limit - 1;
2698 
2699 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2700 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2701 		 *start, *last, *is_heap_stack);
2702 
2703 	return 0;
2704 }
2705 
2706 static int
2707 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2708 			   uint64_t *bo_s, uint64_t *bo_l)
2709 {
2710 	struct amdgpu_bo_va_mapping *mapping;
2711 	struct interval_tree_node *node;
2712 	struct amdgpu_bo *bo = NULL;
2713 	unsigned long userptr;
2714 	uint32_t i;
2715 	int r;
2716 
2717 	for (i = 0; i < p->n_pdds; i++) {
2718 		struct amdgpu_vm *vm;
2719 
2720 		if (!p->pdds[i]->drm_priv)
2721 			continue;
2722 
2723 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2724 		r = amdgpu_bo_reserve(vm->root.bo, false);
2725 		if (r)
2726 			return r;
2727 
2728 		/* Check userptr by searching entire vm->va interval tree */
2729 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2730 		while (node) {
2731 			mapping = container_of((struct rb_node *)node,
2732 					       struct amdgpu_bo_va_mapping, rb);
2733 			bo = mapping->bo_va->base.bo;
2734 
2735 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2736 							 start << PAGE_SHIFT,
2737 							 last << PAGE_SHIFT,
2738 							 &userptr)) {
2739 				node = interval_tree_iter_next(node, 0, ~0ULL);
2740 				continue;
2741 			}
2742 
2743 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2744 				 start, last);
2745 			if (bo_s && bo_l) {
2746 				*bo_s = userptr >> PAGE_SHIFT;
2747 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2748 			}
2749 			amdgpu_bo_unreserve(vm->root.bo);
2750 			return -EADDRINUSE;
2751 		}
2752 		amdgpu_bo_unreserve(vm->root.bo);
2753 	}
2754 	return 0;
2755 }
2756 
2757 static struct
2758 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2759 						struct kfd_process *p,
2760 						struct mm_struct *mm,
2761 						int64_t addr)
2762 {
2763 	struct svm_range *prange = NULL;
2764 	unsigned long start, last;
2765 	uint32_t gpuid, gpuidx;
2766 	bool is_heap_stack;
2767 	uint64_t bo_s = 0;
2768 	uint64_t bo_l = 0;
2769 	int r;
2770 
2771 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2772 					   &is_heap_stack))
2773 		return NULL;
2774 
2775 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2776 	if (r != -EADDRINUSE)
2777 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2778 
2779 	if (r == -EADDRINUSE) {
2780 		if (addr >= bo_s && addr <= bo_l)
2781 			return NULL;
2782 
2783 		/* Create one page svm range if 2MB range overlapping */
2784 		start = addr;
2785 		last = addr;
2786 	}
2787 
2788 	prange = svm_range_new(&p->svms, start, last, true);
2789 	if (!prange) {
2790 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2791 		return NULL;
2792 	}
2793 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2794 		pr_debug("failed to get gpuid from kgd\n");
2795 		svm_range_free(prange, true);
2796 		return NULL;
2797 	}
2798 
2799 	if (is_heap_stack)
2800 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2801 
2802 	svm_range_add_to_svms(prange);
2803 	svm_range_add_notifier_locked(mm, prange);
2804 
2805 	return prange;
2806 }
2807 
2808 /* svm_range_skip_recover - decide if prange can be recovered
2809  * @prange: svm range structure
2810  *
2811  * GPU vm retry fault handle skip recover the range for cases:
2812  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2813  *    deferred list work will drain the stale fault before free the prange.
2814  * 2. prange is on deferred list to add interval notifier after split, or
2815  * 3. prange is child range, it is split from parent prange, recover later
2816  *    after interval notifier is added.
2817  *
2818  * Return: true to skip recover, false to recover
2819  */
2820 static bool svm_range_skip_recover(struct svm_range *prange)
2821 {
2822 	struct svm_range_list *svms = prange->svms;
2823 
2824 	spin_lock(&svms->deferred_list_lock);
2825 	if (list_empty(&prange->deferred_list) &&
2826 	    list_empty(&prange->child_list)) {
2827 		spin_unlock(&svms->deferred_list_lock);
2828 		return false;
2829 	}
2830 	spin_unlock(&svms->deferred_list_lock);
2831 
2832 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2833 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2834 			 svms, prange, prange->start, prange->last);
2835 		return true;
2836 	}
2837 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2838 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2839 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2840 			 svms, prange, prange->start, prange->last);
2841 		return true;
2842 	}
2843 	return false;
2844 }
2845 
2846 static void
2847 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2848 		      int32_t gpuidx)
2849 {
2850 	struct kfd_process_device *pdd;
2851 
2852 	/* fault is on different page of same range
2853 	 * or fault is skipped to recover later
2854 	 * or fault is on invalid virtual address
2855 	 */
2856 	if (gpuidx == MAX_GPU_INSTANCE) {
2857 		uint32_t gpuid;
2858 		int r;
2859 
2860 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2861 		if (r < 0)
2862 			return;
2863 	}
2864 
2865 	/* fault is recovered
2866 	 * or fault cannot recover because GPU no access on the range
2867 	 */
2868 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2869 	if (pdd)
2870 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2871 }
2872 
2873 static bool
2874 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2875 {
2876 	unsigned long requested = VM_READ;
2877 
2878 	if (write_fault)
2879 		requested |= VM_WRITE;
2880 
2881 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2882 		vma->vm_flags);
2883 	return (vma->vm_flags & requested) == requested;
2884 }
2885 
2886 int
2887 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2888 			uint32_t vmid, uint32_t node_id,
2889 			uint64_t addr, bool write_fault)
2890 {
2891 	unsigned long start, last, size;
2892 	struct mm_struct *mm = NULL;
2893 	struct svm_range_list *svms;
2894 	struct svm_range *prange;
2895 	struct kfd_process *p;
2896 	ktime_t timestamp = ktime_get_boottime();
2897 	struct kfd_node *node;
2898 	int32_t best_loc;
2899 	int32_t gpuidx = MAX_GPU_INSTANCE;
2900 	bool write_locked = false;
2901 	struct vm_area_struct *vma;
2902 	bool migration = false;
2903 	int r = 0;
2904 
2905 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2906 		pr_debug("device does not support SVM\n");
2907 		return -EFAULT;
2908 	}
2909 
2910 	p = kfd_lookup_process_by_pasid(pasid);
2911 	if (!p) {
2912 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2913 		return 0;
2914 	}
2915 	svms = &p->svms;
2916 
2917 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2918 
2919 	if (atomic_read(&svms->drain_pagefaults)) {
2920 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2921 		r = 0;
2922 		goto out;
2923 	}
2924 
2925 	if (!p->xnack_enabled) {
2926 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2927 		r = -EFAULT;
2928 		goto out;
2929 	}
2930 
2931 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2932 	 * before releasing task ref.
2933 	 */
2934 	mm = get_task_mm(p->lead_thread);
2935 	if (!mm) {
2936 		pr_debug("svms 0x%p failed to get mm\n", svms);
2937 		r = 0;
2938 		goto out;
2939 	}
2940 
2941 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2942 	if (!node) {
2943 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2944 			 vmid);
2945 		r = -EFAULT;
2946 		goto out;
2947 	}
2948 	mmap_read_lock(mm);
2949 retry_write_locked:
2950 	mutex_lock(&svms->lock);
2951 	prange = svm_range_from_addr(svms, addr, NULL);
2952 	if (!prange) {
2953 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2954 			 svms, addr);
2955 		if (!write_locked) {
2956 			/* Need the write lock to create new range with MMU notifier.
2957 			 * Also flush pending deferred work to make sure the interval
2958 			 * tree is up to date before we add a new range
2959 			 */
2960 			mutex_unlock(&svms->lock);
2961 			mmap_read_unlock(mm);
2962 			mmap_write_lock(mm);
2963 			write_locked = true;
2964 			goto retry_write_locked;
2965 		}
2966 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2967 		if (!prange) {
2968 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2969 				 svms, addr);
2970 			mmap_write_downgrade(mm);
2971 			r = -EFAULT;
2972 			goto out_unlock_svms;
2973 		}
2974 	}
2975 	if (write_locked)
2976 		mmap_write_downgrade(mm);
2977 
2978 	mutex_lock(&prange->migrate_mutex);
2979 
2980 	if (svm_range_skip_recover(prange)) {
2981 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2982 		r = 0;
2983 		goto out_unlock_range;
2984 	}
2985 
2986 	/* skip duplicate vm fault on different pages of same range */
2987 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2988 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2989 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2990 			 svms, prange->start, prange->last);
2991 		r = 0;
2992 		goto out_unlock_range;
2993 	}
2994 
2995 	/* __do_munmap removed VMA, return success as we are handling stale
2996 	 * retry fault.
2997 	 */
2998 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
2999 	if (!vma) {
3000 		pr_debug("address 0x%llx VMA is removed\n", addr);
3001 		r = 0;
3002 		goto out_unlock_range;
3003 	}
3004 
3005 	if (!svm_fault_allowed(vma, write_fault)) {
3006 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3007 			write_fault ? "write" : "read");
3008 		r = -EPERM;
3009 		goto out_unlock_range;
3010 	}
3011 
3012 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3013 	if (best_loc == -1) {
3014 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3015 			 svms, prange->start, prange->last);
3016 		r = -EACCES;
3017 		goto out_unlock_range;
3018 	}
3019 
3020 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3021 		 svms, prange->start, prange->last, best_loc,
3022 		 prange->actual_loc);
3023 
3024 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3025 				       write_fault, timestamp);
3026 
3027 	/* Align migration range start and size to granularity size */
3028 	size = 1UL << prange->granularity;
3029 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3030 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3031 	if (prange->actual_loc != 0 || best_loc != 0) {
3032 		migration = true;
3033 
3034 		if (best_loc) {
3035 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3036 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3037 			if (r) {
3038 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3039 					 r, addr);
3040 				/* Fallback to system memory if migration to
3041 				 * VRAM failed
3042 				 */
3043 				if (prange->actual_loc && prange->actual_loc != best_loc)
3044 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3045 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3046 				else
3047 					r = 0;
3048 			}
3049 		} else {
3050 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3051 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3052 		}
3053 		if (r) {
3054 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3055 				 r, svms, start, last);
3056 			goto out_unlock_range;
3057 		}
3058 	}
3059 
3060 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3061 				       false, false);
3062 	if (r)
3063 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3064 			 r, svms, start, last);
3065 
3066 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3067 				     migration);
3068 
3069 out_unlock_range:
3070 	mutex_unlock(&prange->migrate_mutex);
3071 out_unlock_svms:
3072 	mutex_unlock(&svms->lock);
3073 	mmap_read_unlock(mm);
3074 
3075 	svm_range_count_fault(node, p, gpuidx);
3076 
3077 	mmput(mm);
3078 out:
3079 	kfd_unref_process(p);
3080 
3081 	if (r == -EAGAIN) {
3082 		pr_debug("recover vm fault later\n");
3083 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3084 		r = 0;
3085 	}
3086 	return r;
3087 }
3088 
3089 int
3090 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3091 {
3092 	struct svm_range *prange, *pchild;
3093 	uint64_t reserved_size = 0;
3094 	uint64_t size;
3095 	int r = 0;
3096 
3097 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3098 
3099 	mutex_lock(&p->svms.lock);
3100 
3101 	list_for_each_entry(prange, &p->svms.list, list) {
3102 		svm_range_lock(prange);
3103 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3104 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3105 			if (xnack_enabled) {
3106 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3107 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3108 			} else {
3109 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3110 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3111 				if (r)
3112 					goto out_unlock;
3113 				reserved_size += size;
3114 			}
3115 		}
3116 
3117 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3118 		if (xnack_enabled) {
3119 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3120 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3121 		} else {
3122 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3123 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3124 			if (r)
3125 				goto out_unlock;
3126 			reserved_size += size;
3127 		}
3128 out_unlock:
3129 		svm_range_unlock(prange);
3130 		if (r)
3131 			break;
3132 	}
3133 
3134 	if (r)
3135 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3136 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3137 	else
3138 		/* Change xnack mode must be inside svms lock, to avoid race with
3139 		 * svm_range_deferred_list_work unreserve memory in parallel.
3140 		 */
3141 		p->xnack_enabled = xnack_enabled;
3142 
3143 	mutex_unlock(&p->svms.lock);
3144 	return r;
3145 }
3146 
3147 void svm_range_list_fini(struct kfd_process *p)
3148 {
3149 	struct svm_range *prange;
3150 	struct svm_range *next;
3151 
3152 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3153 
3154 	cancel_delayed_work_sync(&p->svms.restore_work);
3155 
3156 	/* Ensure list work is finished before process is destroyed */
3157 	flush_work(&p->svms.deferred_list_work);
3158 
3159 	/*
3160 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3161 	 * not find kfd process and take mm lock to recover fault.
3162 	 */
3163 	atomic_inc(&p->svms.drain_pagefaults);
3164 	svm_range_drain_retry_fault(&p->svms);
3165 
3166 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3167 		svm_range_unlink(prange);
3168 		svm_range_remove_notifier(prange);
3169 		svm_range_free(prange, true);
3170 	}
3171 
3172 	mutex_destroy(&p->svms.lock);
3173 
3174 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3175 }
3176 
3177 int svm_range_list_init(struct kfd_process *p)
3178 {
3179 	struct svm_range_list *svms = &p->svms;
3180 	int i;
3181 
3182 	svms->objects = RB_ROOT_CACHED;
3183 	mutex_init(&svms->lock);
3184 	INIT_LIST_HEAD(&svms->list);
3185 	atomic_set(&svms->evicted_ranges, 0);
3186 	atomic_set(&svms->drain_pagefaults, 0);
3187 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3188 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3189 	INIT_LIST_HEAD(&svms->deferred_range_list);
3190 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3191 	spin_lock_init(&svms->deferred_list_lock);
3192 
3193 	for (i = 0; i < p->n_pdds; i++)
3194 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3195 			bitmap_set(svms->bitmap_supported, i, 1);
3196 
3197 	return 0;
3198 }
3199 
3200 /**
3201  * svm_range_check_vm - check if virtual address range mapped already
3202  * @p: current kfd_process
3203  * @start: range start address, in pages
3204  * @last: range last address, in pages
3205  * @bo_s: mapping start address in pages if address range already mapped
3206  * @bo_l: mapping last address in pages if address range already mapped
3207  *
3208  * The purpose is to avoid virtual address ranges already allocated by
3209  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3210  * It looks for each pdd in the kfd_process.
3211  *
3212  * Context: Process context
3213  *
3214  * Return 0 - OK, if the range is not mapped.
3215  * Otherwise error code:
3216  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3217  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3218  * a signal. Release all buffer reservations and return to user-space.
3219  */
3220 static int
3221 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3222 		   uint64_t *bo_s, uint64_t *bo_l)
3223 {
3224 	struct amdgpu_bo_va_mapping *mapping;
3225 	struct interval_tree_node *node;
3226 	uint32_t i;
3227 	int r;
3228 
3229 	for (i = 0; i < p->n_pdds; i++) {
3230 		struct amdgpu_vm *vm;
3231 
3232 		if (!p->pdds[i]->drm_priv)
3233 			continue;
3234 
3235 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3236 		r = amdgpu_bo_reserve(vm->root.bo, false);
3237 		if (r)
3238 			return r;
3239 
3240 		node = interval_tree_iter_first(&vm->va, start, last);
3241 		if (node) {
3242 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3243 				 start, last);
3244 			mapping = container_of((struct rb_node *)node,
3245 					       struct amdgpu_bo_va_mapping, rb);
3246 			if (bo_s && bo_l) {
3247 				*bo_s = mapping->start;
3248 				*bo_l = mapping->last;
3249 			}
3250 			amdgpu_bo_unreserve(vm->root.bo);
3251 			return -EADDRINUSE;
3252 		}
3253 		amdgpu_bo_unreserve(vm->root.bo);
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 /**
3260  * svm_range_is_valid - check if virtual address range is valid
3261  * @p: current kfd_process
3262  * @start: range start address, in pages
3263  * @size: range size, in pages
3264  *
3265  * Valid virtual address range means it belongs to one or more VMAs
3266  *
3267  * Context: Process context
3268  *
3269  * Return:
3270  *  0 - OK, otherwise error code
3271  */
3272 static int
3273 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3274 {
3275 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3276 	struct vm_area_struct *vma;
3277 	unsigned long end;
3278 	unsigned long start_unchg = start;
3279 
3280 	start <<= PAGE_SHIFT;
3281 	end = start + (size << PAGE_SHIFT);
3282 	do {
3283 		vma = vma_lookup(p->mm, start);
3284 		if (!vma || (vma->vm_flags & device_vma))
3285 			return -EFAULT;
3286 		start = min(end, vma->vm_end);
3287 	} while (start < end);
3288 
3289 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3290 				  NULL);
3291 }
3292 
3293 /**
3294  * svm_range_best_prefetch_location - decide the best prefetch location
3295  * @prange: svm range structure
3296  *
3297  * For xnack off:
3298  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3299  * can be CPU or GPU.
3300  *
3301  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3302  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3303  * the best prefetch location is always CPU, because GPU can not have coherent
3304  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3305  *
3306  * For xnack on:
3307  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3308  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3309  *
3310  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3311  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3312  * prefetch location is always CPU.
3313  *
3314  * Context: Process context
3315  *
3316  * Return:
3317  * 0 for CPU or GPU id
3318  */
3319 static uint32_t
3320 svm_range_best_prefetch_location(struct svm_range *prange)
3321 {
3322 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3323 	uint32_t best_loc = prange->prefetch_loc;
3324 	struct kfd_process_device *pdd;
3325 	struct kfd_node *bo_node;
3326 	struct kfd_process *p;
3327 	uint32_t gpuidx;
3328 
3329 	p = container_of(prange->svms, struct kfd_process, svms);
3330 
3331 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3332 		goto out;
3333 
3334 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3335 	if (!bo_node) {
3336 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3337 		best_loc = 0;
3338 		goto out;
3339 	}
3340 
3341 	if (bo_node->adev->gmc.is_app_apu ||
3342 	    bo_node->adev->flags & AMD_IS_APU) {
3343 		best_loc = 0;
3344 		goto out;
3345 	}
3346 
3347 	if (p->xnack_enabled)
3348 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3349 	else
3350 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3351 			  MAX_GPU_INSTANCE);
3352 
3353 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3354 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3355 		if (!pdd) {
3356 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3357 			continue;
3358 		}
3359 
3360 		if (pdd->dev->adev == bo_node->adev)
3361 			continue;
3362 
3363 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3364 			best_loc = 0;
3365 			break;
3366 		}
3367 	}
3368 
3369 out:
3370 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3371 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3372 		 best_loc);
3373 
3374 	return best_loc;
3375 }
3376 
3377 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3378  * @mm: current process mm_struct
3379  * @prange: svm range structure
3380  * @migrated: output, true if migration is triggered
3381  *
3382  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3383  * from ram to vram.
3384  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3385  * from vram to ram.
3386  *
3387  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3388  * and restore work:
3389  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3390  *    stops all queues, schedule restore work
3391  * 2. svm_range_restore_work wait for migration is done by
3392  *    a. svm_range_validate_vram takes prange->migrate_mutex
3393  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3394  * 3. restore work update mappings of GPU, resume all queues.
3395  *
3396  * Context: Process context
3397  *
3398  * Return:
3399  * 0 - OK, otherwise - error code of migration
3400  */
3401 static int
3402 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3403 			    bool *migrated)
3404 {
3405 	uint32_t best_loc;
3406 	int r = 0;
3407 
3408 	*migrated = false;
3409 	best_loc = svm_range_best_prefetch_location(prange);
3410 
3411 	/* when best_loc is a gpu node and same as prange->actual_loc
3412 	 * we still need do migration as prange->actual_loc !=0 does
3413 	 * not mean all pages in prange are vram. hmm migrate will pick
3414 	 * up right pages during migration.
3415 	 */
3416 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3417 	    (best_loc == 0 && prange->actual_loc == 0))
3418 		return 0;
3419 
3420 	if (!best_loc) {
3421 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3422 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3423 		*migrated = !r;
3424 		return r;
3425 	}
3426 
3427 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3428 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3429 	*migrated = !r;
3430 
3431 	return 0;
3432 }
3433 
3434 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3435 {
3436 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3437 	 * signaled yet and we're under the protection of the fence->lock.
3438 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3439 	 * here any more.
3440 	 *
3441 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3442 	 */
3443 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3444 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3445 		schedule_work(&fence->svm_bo->eviction_work);
3446 	}
3447 
3448 	return 0;
3449 }
3450 
3451 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3452 {
3453 	struct svm_range_bo *svm_bo;
3454 	struct mm_struct *mm;
3455 	int r = 0;
3456 
3457 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3458 
3459 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3460 		mm = svm_bo->eviction_fence->mm;
3461 	} else {
3462 		svm_range_bo_unref(svm_bo);
3463 		return;
3464 	}
3465 
3466 	mmap_read_lock(mm);
3467 	spin_lock(&svm_bo->list_lock);
3468 	while (!list_empty(&svm_bo->range_list) && !r) {
3469 		struct svm_range *prange =
3470 				list_first_entry(&svm_bo->range_list,
3471 						struct svm_range, svm_bo_list);
3472 		int retries = 3;
3473 
3474 		list_del_init(&prange->svm_bo_list);
3475 		spin_unlock(&svm_bo->list_lock);
3476 
3477 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3478 			 prange->start, prange->last);
3479 
3480 		mutex_lock(&prange->migrate_mutex);
3481 		do {
3482 			/* migrate all vram pages in this prange to sys ram
3483 			 * after that prange->actual_loc should be zero
3484 			 */
3485 			r = svm_migrate_vram_to_ram(prange, mm,
3486 					prange->start, prange->last,
3487 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3488 		} while (!r && prange->actual_loc && --retries);
3489 
3490 		if (!r && prange->actual_loc)
3491 			pr_info_once("Migration failed during eviction");
3492 
3493 		if (!prange->actual_loc) {
3494 			mutex_lock(&prange->lock);
3495 			prange->svm_bo = NULL;
3496 			mutex_unlock(&prange->lock);
3497 		}
3498 		mutex_unlock(&prange->migrate_mutex);
3499 
3500 		spin_lock(&svm_bo->list_lock);
3501 	}
3502 	spin_unlock(&svm_bo->list_lock);
3503 	mmap_read_unlock(mm);
3504 	mmput(mm);
3505 
3506 	dma_fence_signal(&svm_bo->eviction_fence->base);
3507 
3508 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3509 	 * has been called in svm_migrate_vram_to_ram
3510 	 */
3511 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3512 	svm_range_bo_unref(svm_bo);
3513 }
3514 
3515 static int
3516 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3517 		   uint64_t start, uint64_t size, uint32_t nattr,
3518 		   struct kfd_ioctl_svm_attribute *attrs)
3519 {
3520 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3521 	struct list_head update_list;
3522 	struct list_head insert_list;
3523 	struct list_head remove_list;
3524 	struct list_head remap_list;
3525 	struct svm_range_list *svms;
3526 	struct svm_range *prange;
3527 	struct svm_range *next;
3528 	bool update_mapping = false;
3529 	bool flush_tlb;
3530 	int r, ret = 0;
3531 
3532 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3533 		 p->pasid, &p->svms, start, start + size - 1, size);
3534 
3535 	r = svm_range_check_attr(p, nattr, attrs);
3536 	if (r)
3537 		return r;
3538 
3539 	svms = &p->svms;
3540 
3541 	mutex_lock(&process_info->lock);
3542 
3543 	svm_range_list_lock_and_flush_work(svms, mm);
3544 
3545 	r = svm_range_is_valid(p, start, size);
3546 	if (r) {
3547 		pr_debug("invalid range r=%d\n", r);
3548 		mmap_write_unlock(mm);
3549 		goto out;
3550 	}
3551 
3552 	mutex_lock(&svms->lock);
3553 
3554 	/* Add new range and split existing ranges as needed */
3555 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3556 			  &insert_list, &remove_list, &remap_list);
3557 	if (r) {
3558 		mutex_unlock(&svms->lock);
3559 		mmap_write_unlock(mm);
3560 		goto out;
3561 	}
3562 	/* Apply changes as a transaction */
3563 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3564 		svm_range_add_to_svms(prange);
3565 		svm_range_add_notifier_locked(mm, prange);
3566 	}
3567 	list_for_each_entry(prange, &update_list, update_list) {
3568 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3569 		/* TODO: unmap ranges from GPU that lost access */
3570 	}
3571 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3572 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3573 			 prange->svms, prange, prange->start,
3574 			 prange->last);
3575 		svm_range_unlink(prange);
3576 		svm_range_remove_notifier(prange);
3577 		svm_range_free(prange, false);
3578 	}
3579 
3580 	mmap_write_downgrade(mm);
3581 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3582 	 * this fails we may be left with partially completed actions. There
3583 	 * is no clean way of rolling back to the previous state in such a
3584 	 * case because the rollback wouldn't be guaranteed to work either.
3585 	 */
3586 	list_for_each_entry(prange, &update_list, update_list) {
3587 		bool migrated;
3588 
3589 		mutex_lock(&prange->migrate_mutex);
3590 
3591 		r = svm_range_trigger_migration(mm, prange, &migrated);
3592 		if (r)
3593 			goto out_unlock_range;
3594 
3595 		if (migrated && (!p->xnack_enabled ||
3596 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3597 		    prange->mapped_to_gpu) {
3598 			pr_debug("restore_work will update mappings of GPUs\n");
3599 			mutex_unlock(&prange->migrate_mutex);
3600 			continue;
3601 		}
3602 
3603 		if (!migrated && !update_mapping) {
3604 			mutex_unlock(&prange->migrate_mutex);
3605 			continue;
3606 		}
3607 
3608 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3609 
3610 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3611 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3612 		if (r)
3613 			pr_debug("failed %d to map svm range\n", r);
3614 
3615 out_unlock_range:
3616 		mutex_unlock(&prange->migrate_mutex);
3617 		if (r)
3618 			ret = r;
3619 	}
3620 
3621 	list_for_each_entry(prange, &remap_list, update_list) {
3622 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3623 			 prange, prange->start, prange->last);
3624 		mutex_lock(&prange->migrate_mutex);
3625 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3626 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3627 		if (r)
3628 			pr_debug("failed %d on remap svm range\n", r);
3629 		mutex_unlock(&prange->migrate_mutex);
3630 		if (r)
3631 			ret = r;
3632 	}
3633 
3634 	dynamic_svm_range_dump(svms);
3635 
3636 	mutex_unlock(&svms->lock);
3637 	mmap_read_unlock(mm);
3638 out:
3639 	mutex_unlock(&process_info->lock);
3640 
3641 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3642 		 &p->svms, start, start + size - 1, r);
3643 
3644 	return ret ? ret : r;
3645 }
3646 
3647 static int
3648 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3649 		   uint64_t start, uint64_t size, uint32_t nattr,
3650 		   struct kfd_ioctl_svm_attribute *attrs)
3651 {
3652 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3653 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3654 	bool get_preferred_loc = false;
3655 	bool get_prefetch_loc = false;
3656 	bool get_granularity = false;
3657 	bool get_accessible = false;
3658 	bool get_flags = false;
3659 	uint64_t last = start + size - 1UL;
3660 	uint8_t granularity = 0xff;
3661 	struct interval_tree_node *node;
3662 	struct svm_range_list *svms;
3663 	struct svm_range *prange;
3664 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3665 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3666 	uint32_t flags_and = 0xffffffff;
3667 	uint32_t flags_or = 0;
3668 	int gpuidx;
3669 	uint32_t i;
3670 	int r = 0;
3671 
3672 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3673 		 start + size - 1, nattr);
3674 
3675 	/* Flush pending deferred work to avoid racing with deferred actions from
3676 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3677 	 * can still race with get_attr because we don't hold the mmap lock. But that
3678 	 * would be a race condition in the application anyway, and undefined
3679 	 * behaviour is acceptable in that case.
3680 	 */
3681 	flush_work(&p->svms.deferred_list_work);
3682 
3683 	mmap_read_lock(mm);
3684 	r = svm_range_is_valid(p, start, size);
3685 	mmap_read_unlock(mm);
3686 	if (r) {
3687 		pr_debug("invalid range r=%d\n", r);
3688 		return r;
3689 	}
3690 
3691 	for (i = 0; i < nattr; i++) {
3692 		switch (attrs[i].type) {
3693 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3694 			get_preferred_loc = true;
3695 			break;
3696 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3697 			get_prefetch_loc = true;
3698 			break;
3699 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3700 			get_accessible = true;
3701 			break;
3702 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3703 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3704 			get_flags = true;
3705 			break;
3706 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3707 			get_granularity = true;
3708 			break;
3709 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3710 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3711 			fallthrough;
3712 		default:
3713 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3714 			return -EINVAL;
3715 		}
3716 	}
3717 
3718 	svms = &p->svms;
3719 
3720 	mutex_lock(&svms->lock);
3721 
3722 	node = interval_tree_iter_first(&svms->objects, start, last);
3723 	if (!node) {
3724 		pr_debug("range attrs not found return default values\n");
3725 		svm_range_set_default_attributes(&location, &prefetch_loc,
3726 						 &granularity, &flags_and);
3727 		flags_or = flags_and;
3728 		if (p->xnack_enabled)
3729 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3730 				    MAX_GPU_INSTANCE);
3731 		else
3732 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3733 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3734 		goto fill_values;
3735 	}
3736 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3737 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3738 
3739 	while (node) {
3740 		struct interval_tree_node *next;
3741 
3742 		prange = container_of(node, struct svm_range, it_node);
3743 		next = interval_tree_iter_next(node, start, last);
3744 
3745 		if (get_preferred_loc) {
3746 			if (prange->preferred_loc ==
3747 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3748 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3749 			     location != prange->preferred_loc)) {
3750 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3751 				get_preferred_loc = false;
3752 			} else {
3753 				location = prange->preferred_loc;
3754 			}
3755 		}
3756 		if (get_prefetch_loc) {
3757 			if (prange->prefetch_loc ==
3758 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3759 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3760 			     prefetch_loc != prange->prefetch_loc)) {
3761 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3762 				get_prefetch_loc = false;
3763 			} else {
3764 				prefetch_loc = prange->prefetch_loc;
3765 			}
3766 		}
3767 		if (get_accessible) {
3768 			bitmap_and(bitmap_access, bitmap_access,
3769 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3770 			bitmap_and(bitmap_aip, bitmap_aip,
3771 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3772 		}
3773 		if (get_flags) {
3774 			flags_and &= prange->flags;
3775 			flags_or |= prange->flags;
3776 		}
3777 
3778 		if (get_granularity && prange->granularity < granularity)
3779 			granularity = prange->granularity;
3780 
3781 		node = next;
3782 	}
3783 fill_values:
3784 	mutex_unlock(&svms->lock);
3785 
3786 	for (i = 0; i < nattr; i++) {
3787 		switch (attrs[i].type) {
3788 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3789 			attrs[i].value = location;
3790 			break;
3791 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3792 			attrs[i].value = prefetch_loc;
3793 			break;
3794 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3795 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3796 							       attrs[i].value);
3797 			if (gpuidx < 0) {
3798 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3799 				return -EINVAL;
3800 			}
3801 			if (test_bit(gpuidx, bitmap_access))
3802 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3803 			else if (test_bit(gpuidx, bitmap_aip))
3804 				attrs[i].type =
3805 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3806 			else
3807 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3808 			break;
3809 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3810 			attrs[i].value = flags_and;
3811 			break;
3812 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3813 			attrs[i].value = ~flags_or;
3814 			break;
3815 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3816 			attrs[i].value = (uint32_t)granularity;
3817 			break;
3818 		}
3819 	}
3820 
3821 	return 0;
3822 }
3823 
3824 int kfd_criu_resume_svm(struct kfd_process *p)
3825 {
3826 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3827 	int nattr_common = 4, nattr_accessibility = 1;
3828 	struct criu_svm_metadata *criu_svm_md = NULL;
3829 	struct svm_range_list *svms = &p->svms;
3830 	struct criu_svm_metadata *next = NULL;
3831 	uint32_t set_flags = 0xffffffff;
3832 	int i, j, num_attrs, ret = 0;
3833 	uint64_t set_attr_size;
3834 	struct mm_struct *mm;
3835 
3836 	if (list_empty(&svms->criu_svm_metadata_list)) {
3837 		pr_debug("No SVM data from CRIU restore stage 2\n");
3838 		return ret;
3839 	}
3840 
3841 	mm = get_task_mm(p->lead_thread);
3842 	if (!mm) {
3843 		pr_err("failed to get mm for the target process\n");
3844 		return -ESRCH;
3845 	}
3846 
3847 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3848 
3849 	i = j = 0;
3850 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3851 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3852 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3853 
3854 		for (j = 0; j < num_attrs; j++) {
3855 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3856 				 i, j, criu_svm_md->data.attrs[j].type,
3857 				 i, j, criu_svm_md->data.attrs[j].value);
3858 			switch (criu_svm_md->data.attrs[j].type) {
3859 			/* During Checkpoint operation, the query for
3860 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3861 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3862 			 * not used by the range which was checkpointed. Care
3863 			 * must be taken to not restore with an invalid value
3864 			 * otherwise the gpuidx value will be invalid and
3865 			 * set_attr would eventually fail so just replace those
3866 			 * with another dummy attribute such as
3867 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3868 			 */
3869 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3870 				if (criu_svm_md->data.attrs[j].value ==
3871 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3872 					criu_svm_md->data.attrs[j].type =
3873 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3874 					criu_svm_md->data.attrs[j].value = 0;
3875 				}
3876 				break;
3877 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3878 				set_flags = criu_svm_md->data.attrs[j].value;
3879 				break;
3880 			default:
3881 				break;
3882 			}
3883 		}
3884 
3885 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3886 		 * it needs to be inserted before restoring the ranges so
3887 		 * allocate extra space for it before calling set_attr
3888 		 */
3889 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3890 						(num_attrs + 1);
3891 		set_attr_new = krealloc(set_attr, set_attr_size,
3892 					    GFP_KERNEL);
3893 		if (!set_attr_new) {
3894 			ret = -ENOMEM;
3895 			goto exit;
3896 		}
3897 		set_attr = set_attr_new;
3898 
3899 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3900 					sizeof(struct kfd_ioctl_svm_attribute));
3901 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3902 		set_attr[num_attrs].value = ~set_flags;
3903 
3904 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3905 					 criu_svm_md->data.size, num_attrs + 1,
3906 					 set_attr);
3907 		if (ret) {
3908 			pr_err("CRIU: failed to set range attributes\n");
3909 			goto exit;
3910 		}
3911 
3912 		i++;
3913 	}
3914 exit:
3915 	kfree(set_attr);
3916 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3917 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3918 						criu_svm_md->data.start_addr);
3919 		kfree(criu_svm_md);
3920 	}
3921 
3922 	mmput(mm);
3923 	return ret;
3924 
3925 }
3926 
3927 int kfd_criu_restore_svm(struct kfd_process *p,
3928 			 uint8_t __user *user_priv_ptr,
3929 			 uint64_t *priv_data_offset,
3930 			 uint64_t max_priv_data_size)
3931 {
3932 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3933 	int nattr_common = 4, nattr_accessibility = 1;
3934 	struct criu_svm_metadata *criu_svm_md = NULL;
3935 	struct svm_range_list *svms = &p->svms;
3936 	uint32_t num_devices;
3937 	int ret = 0;
3938 
3939 	num_devices = p->n_pdds;
3940 	/* Handle one SVM range object at a time, also the number of gpus are
3941 	 * assumed to be same on the restore node, checking must be done while
3942 	 * evaluating the topology earlier
3943 	 */
3944 
3945 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3946 		(nattr_common + nattr_accessibility * num_devices);
3947 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3948 
3949 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3950 								svm_attrs_size;
3951 
3952 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3953 	if (!criu_svm_md) {
3954 		pr_err("failed to allocate memory to store svm metadata\n");
3955 		return -ENOMEM;
3956 	}
3957 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3958 		ret = -EINVAL;
3959 		goto exit;
3960 	}
3961 
3962 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3963 			     svm_priv_data_size);
3964 	if (ret) {
3965 		ret = -EFAULT;
3966 		goto exit;
3967 	}
3968 	*priv_data_offset += svm_priv_data_size;
3969 
3970 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3971 
3972 	return 0;
3973 
3974 
3975 exit:
3976 	kfree(criu_svm_md);
3977 	return ret;
3978 }
3979 
3980 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3981 		       uint64_t *svm_priv_data_size)
3982 {
3983 	uint64_t total_size, accessibility_size, common_attr_size;
3984 	int nattr_common = 4, nattr_accessibility = 1;
3985 	int num_devices = p->n_pdds;
3986 	struct svm_range_list *svms;
3987 	struct svm_range *prange;
3988 	uint32_t count = 0;
3989 
3990 	*svm_priv_data_size = 0;
3991 
3992 	svms = &p->svms;
3993 	if (!svms)
3994 		return -EINVAL;
3995 
3996 	mutex_lock(&svms->lock);
3997 	list_for_each_entry(prange, &svms->list, list) {
3998 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3999 			 prange, prange->start, prange->npages,
4000 			 prange->start + prange->npages - 1);
4001 		count++;
4002 	}
4003 	mutex_unlock(&svms->lock);
4004 
4005 	*num_svm_ranges = count;
4006 	/* Only the accessbility attributes need to be queried for all the gpus
4007 	 * individually, remaining ones are spanned across the entire process
4008 	 * regardless of the various gpu nodes. Of the remaining attributes,
4009 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4010 	 *
4011 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4012 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4013 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4014 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4015 	 *
4016 	 * ** ACCESSBILITY ATTRIBUTES **
4017 	 * (Considered as one, type is altered during query, value is gpuid)
4018 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4019 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4020 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4021 	 */
4022 	if (*num_svm_ranges > 0) {
4023 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4024 			nattr_common;
4025 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4026 			nattr_accessibility * num_devices;
4027 
4028 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4029 			common_attr_size + accessibility_size;
4030 
4031 		*svm_priv_data_size = *num_svm_ranges * total_size;
4032 	}
4033 
4034 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4035 		 *svm_priv_data_size);
4036 	return 0;
4037 }
4038 
4039 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4040 			    uint8_t __user *user_priv_data,
4041 			    uint64_t *priv_data_offset)
4042 {
4043 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4044 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4045 	uint64_t svm_priv_data_size, query_attr_size = 0;
4046 	int index, nattr_common = 4, ret = 0;
4047 	struct svm_range_list *svms;
4048 	int num_devices = p->n_pdds;
4049 	struct svm_range *prange;
4050 	struct mm_struct *mm;
4051 
4052 	svms = &p->svms;
4053 	if (!svms)
4054 		return -EINVAL;
4055 
4056 	mm = get_task_mm(p->lead_thread);
4057 	if (!mm) {
4058 		pr_err("failed to get mm for the target process\n");
4059 		return -ESRCH;
4060 	}
4061 
4062 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4063 				(nattr_common + num_devices);
4064 
4065 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4066 	if (!query_attr) {
4067 		ret = -ENOMEM;
4068 		goto exit;
4069 	}
4070 
4071 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4072 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4073 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4074 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4075 
4076 	for (index = 0; index < num_devices; index++) {
4077 		struct kfd_process_device *pdd = p->pdds[index];
4078 
4079 		query_attr[index + nattr_common].type =
4080 			KFD_IOCTL_SVM_ATTR_ACCESS;
4081 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4082 	}
4083 
4084 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4085 
4086 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4087 	if (!svm_priv) {
4088 		ret = -ENOMEM;
4089 		goto exit_query;
4090 	}
4091 
4092 	index = 0;
4093 	list_for_each_entry(prange, &svms->list, list) {
4094 
4095 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4096 		svm_priv->start_addr = prange->start;
4097 		svm_priv->size = prange->npages;
4098 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4099 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4100 			 prange, prange->start, prange->npages,
4101 			 prange->start + prange->npages - 1,
4102 			 prange->npages * PAGE_SIZE);
4103 
4104 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4105 					 svm_priv->size,
4106 					 (nattr_common + num_devices),
4107 					 svm_priv->attrs);
4108 		if (ret) {
4109 			pr_err("CRIU: failed to obtain range attributes\n");
4110 			goto exit_priv;
4111 		}
4112 
4113 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4114 				 svm_priv_data_size)) {
4115 			pr_err("Failed to copy svm priv to user\n");
4116 			ret = -EFAULT;
4117 			goto exit_priv;
4118 		}
4119 
4120 		*priv_data_offset += svm_priv_data_size;
4121 
4122 	}
4123 
4124 
4125 exit_priv:
4126 	kfree(svm_priv);
4127 exit_query:
4128 	kfree(query_attr);
4129 exit:
4130 	mmput(mm);
4131 	return ret;
4132 }
4133 
4134 int
4135 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4136 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4137 {
4138 	struct mm_struct *mm = current->mm;
4139 	int r;
4140 
4141 	start >>= PAGE_SHIFT;
4142 	size >>= PAGE_SHIFT;
4143 
4144 	switch (op) {
4145 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4146 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4147 		break;
4148 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4149 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4150 		break;
4151 	default:
4152 		r = EINVAL;
4153 		break;
4154 	}
4155 
4156 	return r;
4157 }
4158