1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/sched/task.h> 26 #include <linux/dynamic_debug.h> 27 #include <drm/ttm/ttm_tt.h> 28 #include <drm/drm_exec.h> 29 30 #include "amdgpu_sync.h" 31 #include "amdgpu_object.h" 32 #include "amdgpu_vm.h" 33 #include "amdgpu_hmm.h" 34 #include "amdgpu.h" 35 #include "amdgpu_xgmi.h" 36 #include "kfd_priv.h" 37 #include "kfd_svm.h" 38 #include "kfd_migrate.h" 39 #include "kfd_smi_events.h" 40 41 #ifdef dev_fmt 42 #undef dev_fmt 43 #endif 44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ 45 46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 47 48 /* Long enough to ensure no retry fault comes after svm range is restored and 49 * page table is updated. 50 */ 51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC) 52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) 53 #define dynamic_svm_range_dump(svms) \ 54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms) 55 #else 56 #define dynamic_svm_range_dump(svms) \ 57 do { if (0) svm_range_debug_dump(svms); } while (0) 58 #endif 59 60 /* Giant svm range split into smaller ranges based on this, it is decided using 61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to 62 * power of 2MB. 63 */ 64 static uint64_t max_svm_range_pages; 65 66 struct criu_svm_metadata { 67 struct list_head list; 68 struct kfd_criu_svm_range_priv_data data; 69 }; 70 71 static void svm_range_evict_svm_bo_worker(struct work_struct *work); 72 static bool 73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 74 const struct mmu_notifier_range *range, 75 unsigned long cur_seq); 76 static int 77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 78 uint64_t *bo_s, uint64_t *bo_l); 79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = { 80 .invalidate = svm_range_cpu_invalidate_pagetables, 81 }; 82 83 /** 84 * svm_range_unlink - unlink svm_range from lists and interval tree 85 * @prange: svm range structure to be removed 86 * 87 * Remove the svm_range from the svms and svm_bo lists and the svms 88 * interval tree. 89 * 90 * Context: The caller must hold svms->lock 91 */ 92 static void svm_range_unlink(struct svm_range *prange) 93 { 94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 95 prange, prange->start, prange->last); 96 97 if (prange->svm_bo) { 98 spin_lock(&prange->svm_bo->list_lock); 99 list_del(&prange->svm_bo_list); 100 spin_unlock(&prange->svm_bo->list_lock); 101 } 102 103 list_del(&prange->list); 104 if (prange->it_node.start != 0 && prange->it_node.last != 0) 105 interval_tree_remove(&prange->it_node, &prange->svms->objects); 106 } 107 108 static void 109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) 110 { 111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 112 prange, prange->start, prange->last); 113 114 mmu_interval_notifier_insert_locked(&prange->notifier, mm, 115 prange->start << PAGE_SHIFT, 116 prange->npages << PAGE_SHIFT, 117 &svm_range_mn_ops); 118 } 119 120 /** 121 * svm_range_add_to_svms - add svm range to svms 122 * @prange: svm range structure to be added 123 * 124 * Add the svm range to svms interval tree and link list 125 * 126 * Context: The caller must hold svms->lock 127 */ 128 static void svm_range_add_to_svms(struct svm_range *prange) 129 { 130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, 131 prange, prange->start, prange->last); 132 133 list_move_tail(&prange->list, &prange->svms->list); 134 prange->it_node.start = prange->start; 135 prange->it_node.last = prange->last; 136 interval_tree_insert(&prange->it_node, &prange->svms->objects); 137 } 138 139 static void svm_range_remove_notifier(struct svm_range *prange) 140 { 141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", 142 prange->svms, prange, 143 prange->notifier.interval_tree.start >> PAGE_SHIFT, 144 prange->notifier.interval_tree.last >> PAGE_SHIFT); 145 146 if (prange->notifier.interval_tree.start != 0 && 147 prange->notifier.interval_tree.last != 0) 148 mmu_interval_notifier_remove(&prange->notifier); 149 } 150 151 static bool 152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) 153 { 154 return dma_addr && !dma_mapping_error(dev, dma_addr) && 155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN); 156 } 157 158 static int 159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, 160 unsigned long offset, unsigned long npages, 161 unsigned long *hmm_pfns, uint32_t gpuidx) 162 { 163 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 164 dma_addr_t *addr = prange->dma_addr[gpuidx]; 165 struct device *dev = adev->dev; 166 struct page *page; 167 int i, r; 168 169 if (!addr) { 170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); 171 if (!addr) 172 return -ENOMEM; 173 prange->dma_addr[gpuidx] = addr; 174 } 175 176 addr += offset; 177 for (i = 0; i < npages; i++) { 178 if (svm_is_valid_dma_mapping_addr(dev, addr[i])) 179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); 180 181 page = hmm_pfn_to_page(hmm_pfns[i]); 182 if (is_zone_device_page(page)) { 183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev; 184 185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + 186 bo_adev->vm_manager.vram_base_offset - 187 bo_adev->kfd.pgmap.range.start; 188 addr[i] |= SVM_RANGE_VRAM_DOMAIN; 189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); 190 continue; 191 } 192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); 193 r = dma_mapping_error(dev, addr[i]); 194 if (r) { 195 dev_err(dev, "failed %d dma_map_page\n", r); 196 return r; 197 } 198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", 199 addr[i] >> PAGE_SHIFT, page_to_pfn(page)); 200 } 201 202 return 0; 203 } 204 205 static int 206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, 207 unsigned long offset, unsigned long npages, 208 unsigned long *hmm_pfns) 209 { 210 struct kfd_process *p; 211 uint32_t gpuidx; 212 int r; 213 214 p = container_of(prange->svms, struct kfd_process, svms); 215 216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 217 struct kfd_process_device *pdd; 218 219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 220 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 221 if (!pdd) { 222 pr_debug("failed to find device idx %d\n", gpuidx); 223 return -EINVAL; 224 } 225 226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, 227 hmm_pfns, gpuidx); 228 if (r) 229 break; 230 } 231 232 return r; 233 } 234 235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr, 236 unsigned long offset, unsigned long npages) 237 { 238 enum dma_data_direction dir = DMA_BIDIRECTIONAL; 239 int i; 240 241 if (!dma_addr) 242 return; 243 244 for (i = offset; i < offset + npages; i++) { 245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) 246 continue; 247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); 248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); 249 dma_addr[i] = 0; 250 } 251 } 252 253 void svm_range_dma_unmap(struct svm_range *prange) 254 { 255 struct kfd_process_device *pdd; 256 dma_addr_t *dma_addr; 257 struct device *dev; 258 struct kfd_process *p; 259 uint32_t gpuidx; 260 261 p = container_of(prange->svms, struct kfd_process, svms); 262 263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 264 dma_addr = prange->dma_addr[gpuidx]; 265 if (!dma_addr) 266 continue; 267 268 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 269 if (!pdd) { 270 pr_debug("failed to find device idx %d\n", gpuidx); 271 continue; 272 } 273 dev = &pdd->dev->adev->pdev->dev; 274 275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages); 276 } 277 } 278 279 static void svm_range_free(struct svm_range *prange, bool do_unmap) 280 { 281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT; 282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 283 uint32_t gpuidx; 284 285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, 286 prange->start, prange->last); 287 288 svm_range_vram_node_free(prange); 289 if (do_unmap) 290 svm_range_dma_unmap(prange); 291 292 if (do_unmap && !p->xnack_enabled) { 293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size); 294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 296 } 297 298 /* free dma_addr array for each gpu */ 299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { 300 if (prange->dma_addr[gpuidx]) { 301 kvfree(prange->dma_addr[gpuidx]); 302 prange->dma_addr[gpuidx] = NULL; 303 } 304 } 305 306 mutex_destroy(&prange->lock); 307 mutex_destroy(&prange->migrate_mutex); 308 kfree(prange); 309 } 310 311 static void 312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location, 313 int32_t *prefetch_loc, uint8_t *granularity, 314 uint32_t *flags) 315 { 316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 318 *granularity = svms->default_granularity; 319 *flags = 320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; 321 } 322 323 static struct 324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, 325 uint64_t last, bool update_mem_usage) 326 { 327 uint64_t size = last - start + 1; 328 struct svm_range *prange; 329 struct kfd_process *p; 330 331 prange = kzalloc(sizeof(*prange), GFP_KERNEL); 332 if (!prange) 333 return NULL; 334 335 p = container_of(svms, struct kfd_process, svms); 336 if (!p->xnack_enabled && update_mem_usage && 337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT, 338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) { 339 pr_info("SVM mapping failed, exceeds resident system memory limit\n"); 340 kfree(prange); 341 return NULL; 342 } 343 prange->npages = size; 344 prange->svms = svms; 345 prange->start = start; 346 prange->last = last; 347 INIT_LIST_HEAD(&prange->list); 348 INIT_LIST_HEAD(&prange->update_list); 349 INIT_LIST_HEAD(&prange->svm_bo_list); 350 INIT_LIST_HEAD(&prange->deferred_list); 351 INIT_LIST_HEAD(&prange->child_list); 352 atomic_set(&prange->invalid, 0); 353 prange->validate_timestamp = 0; 354 prange->vram_pages = 0; 355 mutex_init(&prange->migrate_mutex); 356 mutex_init(&prange->lock); 357 358 if (p->xnack_enabled) 359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported, 360 MAX_GPU_INSTANCE); 361 362 svm_range_set_default_attributes(svms, &prange->preferred_loc, 363 &prange->prefetch_loc, 364 &prange->granularity, &prange->flags); 365 366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); 367 368 return prange; 369 } 370 371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) 372 { 373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) 374 return false; 375 376 return true; 377 } 378 379 static void svm_range_bo_release(struct kref *kref) 380 { 381 struct svm_range_bo *svm_bo; 382 383 svm_bo = container_of(kref, struct svm_range_bo, kref); 384 pr_debug("svm_bo 0x%p\n", svm_bo); 385 386 spin_lock(&svm_bo->list_lock); 387 while (!list_empty(&svm_bo->range_list)) { 388 struct svm_range *prange = 389 list_first_entry(&svm_bo->range_list, 390 struct svm_range, svm_bo_list); 391 /* list_del_init tells a concurrent svm_range_vram_node_new when 392 * it's safe to reuse the svm_bo pointer and svm_bo_list head. 393 */ 394 list_del_init(&prange->svm_bo_list); 395 spin_unlock(&svm_bo->list_lock); 396 397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 398 prange->start, prange->last); 399 mutex_lock(&prange->lock); 400 prange->svm_bo = NULL; 401 /* prange should not hold vram page now */ 402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page"); 403 mutex_unlock(&prange->lock); 404 405 spin_lock(&svm_bo->list_lock); 406 } 407 spin_unlock(&svm_bo->list_lock); 408 409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) { 410 struct kfd_process_device *pdd; 411 struct kfd_process *p; 412 struct mm_struct *mm; 413 414 mm = svm_bo->eviction_fence->mm; 415 /* 416 * The forked child process takes svm_bo device pages ref, svm_bo could be 417 * released after parent process is gone. 418 */ 419 p = kfd_lookup_process_by_mm(mm); 420 if (p) { 421 pdd = kfd_get_process_device_data(svm_bo->node, p); 422 if (pdd) 423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage); 424 kfd_unref_process(p); 425 } 426 mmput(mm); 427 } 428 429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) 430 /* We're not in the eviction worker. Signal the fence. */ 431 dma_fence_signal(&svm_bo->eviction_fence->base); 432 dma_fence_put(&svm_bo->eviction_fence->base); 433 amdgpu_bo_unref(&svm_bo->bo); 434 kfree(svm_bo); 435 } 436 437 static void svm_range_bo_wq_release(struct work_struct *work) 438 { 439 struct svm_range_bo *svm_bo; 440 441 svm_bo = container_of(work, struct svm_range_bo, release_work); 442 svm_range_bo_release(&svm_bo->kref); 443 } 444 445 static void svm_range_bo_release_async(struct kref *kref) 446 { 447 struct svm_range_bo *svm_bo; 448 449 svm_bo = container_of(kref, struct svm_range_bo, kref); 450 pr_debug("svm_bo 0x%p\n", svm_bo); 451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); 452 schedule_work(&svm_bo->release_work); 453 } 454 455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) 456 { 457 kref_put(&svm_bo->kref, svm_range_bo_release_async); 458 } 459 460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo) 461 { 462 if (svm_bo) 463 kref_put(&svm_bo->kref, svm_range_bo_release); 464 } 465 466 static bool 467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange) 468 { 469 mutex_lock(&prange->lock); 470 if (!prange->svm_bo) { 471 mutex_unlock(&prange->lock); 472 return false; 473 } 474 if (prange->ttm_res) { 475 /* We still have a reference, all is well */ 476 mutex_unlock(&prange->lock); 477 return true; 478 } 479 if (svm_bo_ref_unless_zero(prange->svm_bo)) { 480 /* 481 * Migrate from GPU to GPU, remove range from source svm_bo->node 482 * range list, and return false to allocate svm_bo from destination 483 * node. 484 */ 485 if (prange->svm_bo->node != node) { 486 mutex_unlock(&prange->lock); 487 488 spin_lock(&prange->svm_bo->list_lock); 489 list_del_init(&prange->svm_bo_list); 490 spin_unlock(&prange->svm_bo->list_lock); 491 492 svm_range_bo_unref(prange->svm_bo); 493 return false; 494 } 495 if (READ_ONCE(prange->svm_bo->evicting)) { 496 struct dma_fence *f; 497 struct svm_range_bo *svm_bo; 498 /* The BO is getting evicted, 499 * we need to get a new one 500 */ 501 mutex_unlock(&prange->lock); 502 svm_bo = prange->svm_bo; 503 f = dma_fence_get(&svm_bo->eviction_fence->base); 504 svm_range_bo_unref(prange->svm_bo); 505 /* wait for the fence to avoid long spin-loop 506 * at list_empty_careful 507 */ 508 dma_fence_wait(f, false); 509 dma_fence_put(f); 510 } else { 511 /* The BO was still around and we got 512 * a new reference to it 513 */ 514 mutex_unlock(&prange->lock); 515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", 516 prange->svms, prange->start, prange->last); 517 518 prange->ttm_res = prange->svm_bo->bo->tbo.resource; 519 return true; 520 } 521 522 } else { 523 mutex_unlock(&prange->lock); 524 } 525 526 /* We need a new svm_bo. Spin-loop to wait for concurrent 527 * svm_range_bo_release to finish removing this range from 528 * its range list and set prange->svm_bo to null. After this, 529 * it is safe to reuse the svm_bo pointer and svm_bo_list head. 530 */ 531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo) 532 cond_resched(); 533 534 return false; 535 } 536 537 static struct svm_range_bo *svm_range_bo_new(void) 538 { 539 struct svm_range_bo *svm_bo; 540 541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); 542 if (!svm_bo) 543 return NULL; 544 545 kref_init(&svm_bo->kref); 546 INIT_LIST_HEAD(&svm_bo->range_list); 547 spin_lock_init(&svm_bo->list_lock); 548 549 return svm_bo; 550 } 551 552 int 553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange, 554 bool clear) 555 { 556 struct kfd_process_device *pdd; 557 struct amdgpu_bo_param bp; 558 struct svm_range_bo *svm_bo; 559 struct amdgpu_bo_user *ubo; 560 struct amdgpu_bo *bo; 561 struct kfd_process *p; 562 struct mm_struct *mm; 563 int r; 564 565 p = container_of(prange->svms, struct kfd_process, svms); 566 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, 567 prange->start, prange->last); 568 569 if (svm_range_validate_svm_bo(node, prange)) 570 return 0; 571 572 svm_bo = svm_range_bo_new(); 573 if (!svm_bo) { 574 pr_debug("failed to alloc svm bo\n"); 575 return -ENOMEM; 576 } 577 mm = get_task_mm(p->lead_thread); 578 if (!mm) { 579 pr_debug("failed to get mm\n"); 580 kfree(svm_bo); 581 return -ESRCH; 582 } 583 svm_bo->node = node; 584 svm_bo->eviction_fence = 585 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 586 mm, 587 svm_bo); 588 mmput(mm); 589 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); 590 svm_bo->evicting = 0; 591 memset(&bp, 0, sizeof(bp)); 592 bp.size = prange->npages * PAGE_SIZE; 593 bp.byte_align = PAGE_SIZE; 594 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 595 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 596 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; 597 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; 598 bp.type = ttm_bo_type_device; 599 bp.resv = NULL; 600 if (node->xcp) 601 bp.xcp_id_plus1 = node->xcp->id + 1; 602 603 r = amdgpu_bo_create_user(node->adev, &bp, &ubo); 604 if (r) { 605 pr_debug("failed %d to create bo\n", r); 606 goto create_bo_failed; 607 } 608 bo = &ubo->bo; 609 610 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n", 611 bo->tbo.resource->start << PAGE_SHIFT, bp.size, 612 bp.xcp_id_plus1 - 1); 613 614 r = amdgpu_bo_reserve(bo, true); 615 if (r) { 616 pr_debug("failed %d to reserve bo\n", r); 617 goto reserve_bo_failed; 618 } 619 620 if (clear) { 621 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 622 if (r) { 623 pr_debug("failed %d to sync bo\n", r); 624 amdgpu_bo_unreserve(bo); 625 goto reserve_bo_failed; 626 } 627 } 628 629 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 630 if (r) { 631 pr_debug("failed %d to reserve bo\n", r); 632 amdgpu_bo_unreserve(bo); 633 goto reserve_bo_failed; 634 } 635 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); 636 637 amdgpu_bo_unreserve(bo); 638 639 svm_bo->bo = bo; 640 prange->svm_bo = svm_bo; 641 prange->ttm_res = bo->tbo.resource; 642 prange->offset = 0; 643 644 spin_lock(&svm_bo->list_lock); 645 list_add(&prange->svm_bo_list, &svm_bo->range_list); 646 spin_unlock(&svm_bo->list_lock); 647 648 pdd = svm_range_get_pdd_by_node(prange, node); 649 if (pdd) 650 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage); 651 652 return 0; 653 654 reserve_bo_failed: 655 amdgpu_bo_unref(&bo); 656 create_bo_failed: 657 dma_fence_put(&svm_bo->eviction_fence->base); 658 kfree(svm_bo); 659 prange->ttm_res = NULL; 660 661 return r; 662 } 663 664 void svm_range_vram_node_free(struct svm_range *prange) 665 { 666 /* serialize prange->svm_bo unref */ 667 mutex_lock(&prange->lock); 668 /* prange->svm_bo has not been unref */ 669 if (prange->ttm_res) { 670 prange->ttm_res = NULL; 671 mutex_unlock(&prange->lock); 672 svm_range_bo_unref(prange->svm_bo); 673 } else 674 mutex_unlock(&prange->lock); 675 } 676 677 struct kfd_node * 678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id) 679 { 680 struct kfd_process *p; 681 struct kfd_process_device *pdd; 682 683 p = container_of(prange->svms, struct kfd_process, svms); 684 pdd = kfd_process_device_data_by_id(p, gpu_id); 685 if (!pdd) { 686 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id); 687 return NULL; 688 } 689 690 return pdd->dev; 691 } 692 693 struct kfd_process_device * 694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node) 695 { 696 struct kfd_process *p; 697 698 p = container_of(prange->svms, struct kfd_process, svms); 699 700 return kfd_get_process_device_data(node, p); 701 } 702 703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) 704 { 705 struct ttm_operation_ctx ctx = { false, false }; 706 707 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); 708 709 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 710 } 711 712 static int 713 svm_range_check_attr(struct kfd_process *p, 714 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 715 { 716 uint32_t i; 717 718 for (i = 0; i < nattr; i++) { 719 uint32_t val = attrs[i].value; 720 int gpuidx = MAX_GPU_INSTANCE; 721 722 switch (attrs[i].type) { 723 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 724 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && 725 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) 726 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 727 break; 728 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 729 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) 730 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 731 break; 732 case KFD_IOCTL_SVM_ATTR_ACCESS: 733 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 734 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 735 gpuidx = kfd_process_gpuidx_from_gpuid(p, val); 736 break; 737 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 738 break; 739 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 740 break; 741 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 742 break; 743 default: 744 pr_debug("unknown attr type 0x%x\n", attrs[i].type); 745 return -EINVAL; 746 } 747 748 if (gpuidx < 0) { 749 pr_debug("no GPU 0x%x found\n", val); 750 return -EINVAL; 751 } else if (gpuidx < MAX_GPU_INSTANCE && 752 !test_bit(gpuidx, p->svms.bitmap_supported)) { 753 pr_debug("GPU 0x%x not supported\n", val); 754 return -EINVAL; 755 } 756 } 757 758 return 0; 759 } 760 761 static void 762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, 763 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 764 bool *update_mapping) 765 { 766 uint32_t i; 767 int gpuidx; 768 769 for (i = 0; i < nattr; i++) { 770 switch (attrs[i].type) { 771 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 772 prange->preferred_loc = attrs[i].value; 773 break; 774 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 775 prange->prefetch_loc = attrs[i].value; 776 break; 777 case KFD_IOCTL_SVM_ATTR_ACCESS: 778 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 779 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 780 if (!p->xnack_enabled) 781 *update_mapping = true; 782 783 gpuidx = kfd_process_gpuidx_from_gpuid(p, 784 attrs[i].value); 785 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 786 bitmap_clear(prange->bitmap_access, gpuidx, 1); 787 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 788 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 789 bitmap_set(prange->bitmap_access, gpuidx, 1); 790 bitmap_clear(prange->bitmap_aip, gpuidx, 1); 791 } else { 792 bitmap_clear(prange->bitmap_access, gpuidx, 1); 793 bitmap_set(prange->bitmap_aip, gpuidx, 1); 794 } 795 break; 796 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 797 *update_mapping = true; 798 prange->flags |= attrs[i].value; 799 break; 800 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 801 *update_mapping = true; 802 prange->flags &= ~attrs[i].value; 803 break; 804 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 805 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F); 806 break; 807 default: 808 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 809 } 810 } 811 } 812 813 static bool 814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, 815 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) 816 { 817 uint32_t i; 818 int gpuidx; 819 820 for (i = 0; i < nattr; i++) { 821 switch (attrs[i].type) { 822 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 823 if (prange->preferred_loc != attrs[i].value) 824 return false; 825 break; 826 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 827 /* Prefetch should always trigger a migration even 828 * if the value of the attribute didn't change. 829 */ 830 return false; 831 case KFD_IOCTL_SVM_ATTR_ACCESS: 832 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 833 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 834 gpuidx = kfd_process_gpuidx_from_gpuid(p, 835 attrs[i].value); 836 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { 837 if (test_bit(gpuidx, prange->bitmap_access) || 838 test_bit(gpuidx, prange->bitmap_aip)) 839 return false; 840 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { 841 if (!test_bit(gpuidx, prange->bitmap_access)) 842 return false; 843 } else { 844 if (!test_bit(gpuidx, prange->bitmap_aip)) 845 return false; 846 } 847 break; 848 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 849 if ((prange->flags & attrs[i].value) != attrs[i].value) 850 return false; 851 break; 852 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 853 if ((prange->flags & attrs[i].value) != 0) 854 return false; 855 break; 856 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 857 if (prange->granularity != attrs[i].value) 858 return false; 859 break; 860 default: 861 WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); 862 } 863 } 864 865 return true; 866 } 867 868 /** 869 * svm_range_debug_dump - print all range information from svms 870 * @svms: svm range list header 871 * 872 * debug output svm range start, end, prefetch location from svms 873 * interval tree and link list 874 * 875 * Context: The caller must hold svms->lock 876 */ 877 static void svm_range_debug_dump(struct svm_range_list *svms) 878 { 879 struct interval_tree_node *node; 880 struct svm_range *prange; 881 882 pr_debug("dump svms 0x%p list\n", svms); 883 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 884 885 list_for_each_entry(prange, &svms->list, list) { 886 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 887 prange, prange->start, prange->npages, 888 prange->start + prange->npages - 1, 889 prange->actual_loc); 890 } 891 892 pr_debug("dump svms 0x%p interval tree\n", svms); 893 pr_debug("range\tstart\tpage\tend\t\tlocation\n"); 894 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); 895 while (node) { 896 prange = container_of(node, struct svm_range, it_node); 897 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", 898 prange, prange->start, prange->npages, 899 prange->start + prange->npages - 1, 900 prange->actual_loc); 901 node = interval_tree_iter_next(node, 0, ~0ULL); 902 } 903 } 904 905 static void * 906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements, 907 uint64_t offset, uint64_t *vram_pages) 908 { 909 unsigned char *src = (unsigned char *)psrc + offset; 910 unsigned char *dst; 911 uint64_t i; 912 913 dst = kvmalloc_array(num_elements, size, GFP_KERNEL); 914 if (!dst) 915 return NULL; 916 917 if (!vram_pages) { 918 memcpy(dst, src, num_elements * size); 919 return (void *)dst; 920 } 921 922 *vram_pages = 0; 923 for (i = 0; i < num_elements; i++) { 924 dma_addr_t *temp; 925 temp = (dma_addr_t *)dst + i; 926 *temp = *((dma_addr_t *)src + i); 927 if (*temp&SVM_RANGE_VRAM_DOMAIN) 928 (*vram_pages)++; 929 } 930 931 return (void *)dst; 932 } 933 934 static int 935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src) 936 { 937 int i; 938 939 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 940 if (!src->dma_addr[i]) 941 continue; 942 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i], 943 sizeof(*src->dma_addr[i]), src->npages, 0, NULL); 944 if (!dst->dma_addr[i]) 945 return -ENOMEM; 946 } 947 948 return 0; 949 } 950 951 static int 952 svm_range_split_array(void *ppnew, void *ppold, size_t size, 953 uint64_t old_start, uint64_t old_n, 954 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages) 955 { 956 unsigned char *new, *old, *pold; 957 uint64_t d; 958 959 if (!ppold) 960 return 0; 961 pold = *(unsigned char **)ppold; 962 if (!pold) 963 return 0; 964 965 d = (new_start - old_start) * size; 966 /* get dma addr array for new range and calculte its vram page number */ 967 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages); 968 if (!new) 969 return -ENOMEM; 970 d = (new_start == old_start) ? new_n * size : 0; 971 old = svm_range_copy_array(pold, size, old_n, d, NULL); 972 if (!old) { 973 kvfree(new); 974 return -ENOMEM; 975 } 976 kvfree(pold); 977 *(void **)ppold = old; 978 *(void **)ppnew = new; 979 980 return 0; 981 } 982 983 static int 984 svm_range_split_pages(struct svm_range *new, struct svm_range *old, 985 uint64_t start, uint64_t last) 986 { 987 uint64_t npages = last - start + 1; 988 int i, r; 989 990 for (i = 0; i < MAX_GPU_INSTANCE; i++) { 991 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], 992 sizeof(*old->dma_addr[i]), old->start, 993 npages, new->start, new->npages, 994 old->actual_loc ? &new->vram_pages : NULL); 995 if (r) 996 return r; 997 } 998 if (old->actual_loc) 999 old->vram_pages -= new->vram_pages; 1000 1001 return 0; 1002 } 1003 1004 static int 1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old, 1006 uint64_t start, uint64_t last) 1007 { 1008 uint64_t npages = last - start + 1; 1009 1010 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", 1011 new->svms, new, new->start, start, last); 1012 1013 if (new->start == old->start) { 1014 new->offset = old->offset; 1015 old->offset += new->npages; 1016 } else { 1017 new->offset = old->offset + npages; 1018 } 1019 1020 new->svm_bo = svm_range_bo_ref(old->svm_bo); 1021 new->ttm_res = old->ttm_res; 1022 1023 spin_lock(&new->svm_bo->list_lock); 1024 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 1025 spin_unlock(&new->svm_bo->list_lock); 1026 1027 return 0; 1028 } 1029 1030 /** 1031 * svm_range_split_adjust - split range and adjust 1032 * 1033 * @new: new range 1034 * @old: the old range 1035 * @start: the old range adjust to start address in pages 1036 * @last: the old range adjust to last address in pages 1037 * 1038 * Copy system memory dma_addr or vram ttm_res in old range to new 1039 * range from new_start up to size new->npages, the remaining old range is from 1040 * start to last 1041 * 1042 * Return: 1043 * 0 - OK, -ENOMEM - out of memory 1044 */ 1045 static int 1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old, 1047 uint64_t start, uint64_t last) 1048 { 1049 int r; 1050 1051 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", 1052 new->svms, new->start, old->start, old->last, start, last); 1053 1054 if (new->start < old->start || 1055 new->last > old->last) { 1056 WARN_ONCE(1, "invalid new range start or last\n"); 1057 return -EINVAL; 1058 } 1059 1060 r = svm_range_split_pages(new, old, start, last); 1061 if (r) 1062 return r; 1063 1064 if (old->actual_loc && old->ttm_res) { 1065 r = svm_range_split_nodes(new, old, start, last); 1066 if (r) 1067 return r; 1068 } 1069 1070 old->npages = last - start + 1; 1071 old->start = start; 1072 old->last = last; 1073 new->flags = old->flags; 1074 new->preferred_loc = old->preferred_loc; 1075 new->prefetch_loc = old->prefetch_loc; 1076 new->actual_loc = old->actual_loc; 1077 new->granularity = old->granularity; 1078 new->mapped_to_gpu = old->mapped_to_gpu; 1079 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 1080 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 1081 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount)); 1082 1083 return 0; 1084 } 1085 1086 /** 1087 * svm_range_split - split a range in 2 ranges 1088 * 1089 * @prange: the svm range to split 1090 * @start: the remaining range start address in pages 1091 * @last: the remaining range last address in pages 1092 * @new: the result new range generated 1093 * 1094 * Two cases only: 1095 * case 1: if start == prange->start 1096 * prange ==> prange[start, last] 1097 * new range [last + 1, prange->last] 1098 * 1099 * case 2: if last == prange->last 1100 * prange ==> prange[start, last] 1101 * new range [prange->start, start - 1] 1102 * 1103 * Return: 1104 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last 1105 */ 1106 static int 1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, 1108 struct svm_range **new) 1109 { 1110 uint64_t old_start = prange->start; 1111 uint64_t old_last = prange->last; 1112 struct svm_range_list *svms; 1113 int r = 0; 1114 1115 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, 1116 old_start, old_last, start, last); 1117 1118 if (old_start != start && old_last != last) 1119 return -EINVAL; 1120 if (start < old_start || last > old_last) 1121 return -EINVAL; 1122 1123 svms = prange->svms; 1124 if (old_start == start) 1125 *new = svm_range_new(svms, last + 1, old_last, false); 1126 else 1127 *new = svm_range_new(svms, old_start, start - 1, false); 1128 if (!*new) 1129 return -ENOMEM; 1130 1131 r = svm_range_split_adjust(*new, prange, start, last); 1132 if (r) { 1133 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", 1134 r, old_start, old_last, start, last); 1135 svm_range_free(*new, false); 1136 *new = NULL; 1137 } 1138 1139 return r; 1140 } 1141 1142 static int 1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last, 1144 struct list_head *insert_list, struct list_head *remap_list) 1145 { 1146 struct svm_range *tail = NULL; 1147 int r = svm_range_split(prange, prange->start, new_last, &tail); 1148 1149 if (!r) { 1150 list_add(&tail->list, insert_list); 1151 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity)) 1152 list_add(&tail->update_list, remap_list); 1153 } 1154 return r; 1155 } 1156 1157 static int 1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start, 1159 struct list_head *insert_list, struct list_head *remap_list) 1160 { 1161 struct svm_range *head = NULL; 1162 int r = svm_range_split(prange, new_start, prange->last, &head); 1163 1164 if (!r) { 1165 list_add(&head->list, insert_list); 1166 if (!IS_ALIGNED(new_start, 1UL << prange->granularity)) 1167 list_add(&head->update_list, remap_list); 1168 } 1169 return r; 1170 } 1171 1172 static void 1173 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, 1174 struct svm_range *pchild, enum svm_work_list_ops op) 1175 { 1176 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", 1177 pchild, pchild->start, pchild->last, prange, op); 1178 1179 pchild->work_item.mm = mm; 1180 pchild->work_item.op = op; 1181 list_add_tail(&pchild->child_list, &prange->child_list); 1182 } 1183 1184 static bool 1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b) 1186 { 1187 return (node_a->adev == node_b->adev || 1188 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev)); 1189 } 1190 1191 static uint64_t 1192 svm_range_get_pte_flags(struct kfd_node *node, 1193 struct svm_range *prange, int domain) 1194 { 1195 struct kfd_node *bo_node; 1196 uint32_t flags = prange->flags; 1197 uint32_t mapping_flags = 0; 1198 uint32_t gc_ip_version = KFD_GC_VERSION(node); 1199 uint64_t pte_flags; 1200 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); 1201 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT); 1202 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT; 1203 unsigned int mtype_local; 1204 1205 if (domain == SVM_RANGE_VRAM_DOMAIN) 1206 bo_node = prange->svm_bo->node; 1207 1208 switch (gc_ip_version) { 1209 case IP_VERSION(9, 4, 1): 1210 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1211 if (bo_node == node) { 1212 mapping_flags |= coherent ? 1213 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1214 } else { 1215 mapping_flags |= coherent ? 1216 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1217 if (svm_nodes_in_same_hive(node, bo_node)) 1218 snoop = true; 1219 } 1220 } else { 1221 mapping_flags |= coherent ? 1222 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1223 } 1224 break; 1225 case IP_VERSION(9, 4, 2): 1226 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1227 if (bo_node == node) { 1228 mapping_flags |= coherent ? 1229 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1230 if (node->adev->gmc.xgmi.connected_to_cpu) 1231 snoop = true; 1232 } else { 1233 mapping_flags |= coherent ? 1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1235 if (svm_nodes_in_same_hive(node, bo_node)) 1236 snoop = true; 1237 } 1238 } else { 1239 mapping_flags |= coherent ? 1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1241 } 1242 break; 1243 case IP_VERSION(9, 4, 3): 1244 case IP_VERSION(9, 4, 4): 1245 case IP_VERSION(9, 5, 0): 1246 if (ext_coherent) 1247 mtype_local = (gc_ip_version < IP_VERSION(9, 5, 0) && !node->adev->rev_id) ? 1248 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_CC; 1249 else 1250 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC : 1251 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; 1252 snoop = true; 1253 if (domain == SVM_RANGE_VRAM_DOMAIN) { 1254 /* local HBM region close to partition */ 1255 if (bo_node->adev == node->adev && 1256 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id)) 1257 mapping_flags |= mtype_local; 1258 /* local HBM region far from partition or remote XGMI GPU 1259 * with regular system scope coherence 1260 */ 1261 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent) 1262 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1263 /* PCIe P2P on GPUs pre-9.5.0 */ 1264 else if (gc_ip_version < IP_VERSION(9, 5, 0) && 1265 !svm_nodes_in_same_hive(bo_node, node)) 1266 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1267 /* Other remote memory */ 1268 else 1269 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1270 /* system memory accessed by the APU */ 1271 } else if (node->adev->flags & AMD_IS_APU) { 1272 /* On NUMA systems, locality is determined per-page 1273 * in amdgpu_gmc_override_vm_pte_flags 1274 */ 1275 if (num_possible_nodes() <= 1) 1276 mapping_flags |= mtype_local; 1277 else 1278 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1279 /* system memory accessed by the dGPU */ 1280 } else { 1281 if (gc_ip_version < IP_VERSION(9, 5, 0)) 1282 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1283 else 1284 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1285 } 1286 break; 1287 case IP_VERSION(12, 0, 0): 1288 case IP_VERSION(12, 0, 1): 1289 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1290 break; 1291 default: 1292 mapping_flags |= coherent ? 1293 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; 1294 } 1295 1296 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; 1297 1298 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) 1299 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; 1300 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) 1301 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1302 1303 pte_flags = AMDGPU_PTE_VALID; 1304 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; 1305 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 1306 if (gc_ip_version >= IP_VERSION(12, 0, 0)) 1307 pte_flags |= AMDGPU_PTE_IS_PTE; 1308 1309 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags); 1310 return pte_flags; 1311 } 1312 1313 static int 1314 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1315 uint64_t start, uint64_t last, 1316 struct dma_fence **fence) 1317 { 1318 uint64_t init_pte_value = 0; 1319 1320 pr_debug("[0x%llx 0x%llx]\n", start, last); 1321 1322 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start, 1323 last, init_pte_value, 0, 0, NULL, NULL, 1324 fence); 1325 } 1326 1327 static int 1328 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, 1329 unsigned long last, uint32_t trigger) 1330 { 1331 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1332 struct kfd_process_device *pdd; 1333 struct dma_fence *fence = NULL; 1334 struct kfd_process *p; 1335 uint32_t gpuidx; 1336 int r = 0; 1337 1338 if (!prange->mapped_to_gpu) { 1339 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", 1340 prange, prange->start, prange->last); 1341 return 0; 1342 } 1343 1344 if (prange->start == start && prange->last == last) { 1345 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); 1346 prange->mapped_to_gpu = false; 1347 } 1348 1349 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 1350 MAX_GPU_INSTANCE); 1351 p = container_of(prange->svms, struct kfd_process, svms); 1352 1353 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1354 pr_debug("unmap from gpu idx 0x%x\n", gpuidx); 1355 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1356 if (!pdd) { 1357 pr_debug("failed to find device idx %d\n", gpuidx); 1358 return -EINVAL; 1359 } 1360 1361 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid, 1362 start, last, trigger); 1363 1364 r = svm_range_unmap_from_gpu(pdd->dev->adev, 1365 drm_priv_to_vm(pdd->drm_priv), 1366 start, last, &fence); 1367 if (r) 1368 break; 1369 1370 if (fence) { 1371 r = dma_fence_wait(fence, false); 1372 dma_fence_put(fence); 1373 fence = NULL; 1374 if (r) 1375 break; 1376 } 1377 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); 1378 } 1379 1380 return r; 1381 } 1382 1383 static int 1384 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, 1385 unsigned long offset, unsigned long npages, bool readonly, 1386 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, 1387 struct dma_fence **fence, bool flush_tlb) 1388 { 1389 struct amdgpu_device *adev = pdd->dev->adev; 1390 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1391 uint64_t pte_flags; 1392 unsigned long last_start; 1393 int last_domain; 1394 int r = 0; 1395 int64_t i, j; 1396 1397 last_start = prange->start + offset; 1398 1399 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, 1400 last_start, last_start + npages - 1, readonly); 1401 1402 for (i = offset; i < offset + npages; i++) { 1403 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; 1404 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; 1405 1406 /* Collect all pages in the same address range and memory domain 1407 * that can be mapped with a single call to update mapping. 1408 */ 1409 if (i < offset + npages - 1 && 1410 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) 1411 continue; 1412 1413 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", 1414 last_start, prange->start + i, last_domain ? "GPU" : "CPU"); 1415 1416 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain); 1417 if (readonly) 1418 pte_flags &= ~AMDGPU_PTE_WRITEABLE; 1419 1420 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", 1421 prange->svms, last_start, prange->start + i, 1422 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, 1423 pte_flags); 1424 1425 /* For dGPU mode, we use same vm_manager to allocate VRAM for 1426 * different memory partition based on fpfn/lpfn, we should use 1427 * same vm_manager.vram_base_offset regardless memory partition. 1428 */ 1429 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true, 1430 NULL, last_start, prange->start + i, 1431 pte_flags, 1432 (last_start - prange->start) << PAGE_SHIFT, 1433 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, 1434 NULL, dma_addr, &vm->last_update); 1435 1436 for (j = last_start - prange->start; j <= i; j++) 1437 dma_addr[j] |= last_domain; 1438 1439 if (r) { 1440 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); 1441 goto out; 1442 } 1443 last_start = prange->start + i + 1; 1444 } 1445 1446 r = amdgpu_vm_update_pdes(adev, vm, false); 1447 if (r) { 1448 pr_debug("failed %d to update directories 0x%lx\n", r, 1449 prange->start); 1450 goto out; 1451 } 1452 1453 if (fence) 1454 *fence = dma_fence_get(vm->last_update); 1455 1456 out: 1457 return r; 1458 } 1459 1460 static int 1461 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, 1462 unsigned long npages, bool readonly, 1463 unsigned long *bitmap, bool wait, bool flush_tlb) 1464 { 1465 struct kfd_process_device *pdd; 1466 struct amdgpu_device *bo_adev = NULL; 1467 struct kfd_process *p; 1468 struct dma_fence *fence = NULL; 1469 uint32_t gpuidx; 1470 int r = 0; 1471 1472 if (prange->svm_bo && prange->ttm_res) 1473 bo_adev = prange->svm_bo->node->adev; 1474 1475 p = container_of(prange->svms, struct kfd_process, svms); 1476 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 1477 pr_debug("mapping to gpu idx 0x%x\n", gpuidx); 1478 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1479 if (!pdd) { 1480 pr_debug("failed to find device idx %d\n", gpuidx); 1481 return -EINVAL; 1482 } 1483 1484 pdd = kfd_bind_process_to_device(pdd->dev, p); 1485 if (IS_ERR(pdd)) 1486 return -EINVAL; 1487 1488 if (bo_adev && pdd->dev->adev != bo_adev && 1489 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { 1490 pr_debug("cannot map to device idx %d\n", gpuidx); 1491 continue; 1492 } 1493 1494 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, 1495 prange->dma_addr[gpuidx], 1496 bo_adev, wait ? &fence : NULL, 1497 flush_tlb); 1498 if (r) 1499 break; 1500 1501 if (fence) { 1502 r = dma_fence_wait(fence, false); 1503 dma_fence_put(fence); 1504 fence = NULL; 1505 if (r) { 1506 pr_debug("failed %d to dma fence wait\n", r); 1507 break; 1508 } 1509 } 1510 1511 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1512 } 1513 1514 return r; 1515 } 1516 1517 struct svm_validate_context { 1518 struct kfd_process *process; 1519 struct svm_range *prange; 1520 bool intr; 1521 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 1522 struct drm_exec exec; 1523 }; 1524 1525 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr) 1526 { 1527 struct kfd_process_device *pdd; 1528 struct amdgpu_vm *vm; 1529 uint32_t gpuidx; 1530 int r; 1531 1532 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0); 1533 drm_exec_until_all_locked(&ctx->exec) { 1534 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1535 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1536 if (!pdd) { 1537 pr_debug("failed to find device idx %d\n", gpuidx); 1538 r = -EINVAL; 1539 goto unreserve_out; 1540 } 1541 vm = drm_priv_to_vm(pdd->drm_priv); 1542 1543 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1544 drm_exec_retry_on_contention(&ctx->exec); 1545 if (unlikely(r)) { 1546 pr_debug("failed %d to reserve bo\n", r); 1547 goto unreserve_out; 1548 } 1549 } 1550 } 1551 1552 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { 1553 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); 1554 if (!pdd) { 1555 pr_debug("failed to find device idx %d\n", gpuidx); 1556 r = -EINVAL; 1557 goto unreserve_out; 1558 } 1559 1560 r = amdgpu_vm_validate(pdd->dev->adev, 1561 drm_priv_to_vm(pdd->drm_priv), NULL, 1562 svm_range_bo_validate, NULL); 1563 if (r) { 1564 pr_debug("failed %d validate pt bos\n", r); 1565 goto unreserve_out; 1566 } 1567 } 1568 1569 return 0; 1570 1571 unreserve_out: 1572 drm_exec_fini(&ctx->exec); 1573 return r; 1574 } 1575 1576 static void svm_range_unreserve_bos(struct svm_validate_context *ctx) 1577 { 1578 drm_exec_fini(&ctx->exec); 1579 } 1580 1581 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) 1582 { 1583 struct kfd_process_device *pdd; 1584 1585 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 1586 if (!pdd) 1587 return NULL; 1588 1589 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); 1590 } 1591 1592 /* 1593 * Validation+GPU mapping with concurrent invalidation (MMU notifiers) 1594 * 1595 * To prevent concurrent destruction or change of range attributes, the 1596 * svm_read_lock must be held. The caller must not hold the svm_write_lock 1597 * because that would block concurrent evictions and lead to deadlocks. To 1598 * serialize concurrent migrations or validations of the same range, the 1599 * prange->migrate_mutex must be held. 1600 * 1601 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its 1602 * eviction fence. 1603 * 1604 * The following sequence ensures race-free validation and GPU mapping: 1605 * 1606 * 1. Reserve page table (and SVM BO if range is in VRAM) 1607 * 2. hmm_range_fault to get page addresses (if system memory) 1608 * 3. DMA-map pages (if system memory) 1609 * 4-a. Take notifier lock 1610 * 4-b. Check that pages still valid (mmu_interval_read_retry) 1611 * 4-c. Check that the range was not split or otherwise invalidated 1612 * 4-d. Update GPU page table 1613 * 4.e. Release notifier lock 1614 * 5. Release page table (and SVM BO) reservation 1615 */ 1616 static int svm_range_validate_and_map(struct mm_struct *mm, 1617 unsigned long map_start, unsigned long map_last, 1618 struct svm_range *prange, int32_t gpuidx, 1619 bool intr, bool wait, bool flush_tlb) 1620 { 1621 struct svm_validate_context *ctx; 1622 unsigned long start, end, addr; 1623 struct kfd_process *p; 1624 void *owner; 1625 int32_t idx; 1626 int r = 0; 1627 1628 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL); 1629 if (!ctx) 1630 return -ENOMEM; 1631 ctx->process = container_of(prange->svms, struct kfd_process, svms); 1632 ctx->prange = prange; 1633 ctx->intr = intr; 1634 1635 if (gpuidx < MAX_GPU_INSTANCE) { 1636 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE); 1637 bitmap_set(ctx->bitmap, gpuidx, 1); 1638 } else if (ctx->process->xnack_enabled) { 1639 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 1640 1641 /* If prefetch range to GPU, or GPU retry fault migrate range to 1642 * GPU, which has ACCESS attribute to the range, create mapping 1643 * on that GPU. 1644 */ 1645 if (prange->actual_loc) { 1646 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process, 1647 prange->actual_loc); 1648 if (gpuidx < 0) { 1649 WARN_ONCE(1, "failed get device by id 0x%x\n", 1650 prange->actual_loc); 1651 r = -EINVAL; 1652 goto free_ctx; 1653 } 1654 if (test_bit(gpuidx, prange->bitmap_access)) 1655 bitmap_set(ctx->bitmap, gpuidx, 1); 1656 } 1657 1658 /* 1659 * If prange is already mapped or with always mapped flag, 1660 * update mapping on GPUs with ACCESS attribute 1661 */ 1662 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1663 if (prange->mapped_to_gpu || 1664 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED) 1665 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); 1666 } 1667 } else { 1668 bitmap_or(ctx->bitmap, prange->bitmap_access, 1669 prange->bitmap_aip, MAX_GPU_INSTANCE); 1670 } 1671 1672 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { 1673 r = 0; 1674 goto free_ctx; 1675 } 1676 1677 if (prange->actual_loc && !prange->ttm_res) { 1678 /* This should never happen. actual_loc gets set by 1679 * svm_migrate_ram_to_vram after allocating a BO. 1680 */ 1681 WARN_ONCE(1, "VRAM BO missing during validation\n"); 1682 r = -EINVAL; 1683 goto free_ctx; 1684 } 1685 1686 r = svm_range_reserve_bos(ctx, intr); 1687 if (r) 1688 goto free_ctx; 1689 1690 p = container_of(prange->svms, struct kfd_process, svms); 1691 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap, 1692 MAX_GPU_INSTANCE)); 1693 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) { 1694 if (kfd_svm_page_owner(p, idx) != owner) { 1695 owner = NULL; 1696 break; 1697 } 1698 } 1699 1700 start = map_start << PAGE_SHIFT; 1701 end = (map_last + 1) << PAGE_SHIFT; 1702 for (addr = start; !r && addr < end; ) { 1703 struct hmm_range *hmm_range = NULL; 1704 unsigned long map_start_vma; 1705 unsigned long map_last_vma; 1706 struct vm_area_struct *vma; 1707 unsigned long next = 0; 1708 unsigned long offset; 1709 unsigned long npages; 1710 bool readonly; 1711 1712 vma = vma_lookup(mm, addr); 1713 if (vma) { 1714 readonly = !(vma->vm_flags & VM_WRITE); 1715 1716 next = min(vma->vm_end, end); 1717 npages = (next - addr) >> PAGE_SHIFT; 1718 WRITE_ONCE(p->svms.faulting_task, current); 1719 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages, 1720 readonly, owner, NULL, 1721 &hmm_range); 1722 WRITE_ONCE(p->svms.faulting_task, NULL); 1723 if (r) 1724 pr_debug("failed %d to get svm range pages\n", r); 1725 } else { 1726 r = -EFAULT; 1727 } 1728 1729 if (!r) { 1730 offset = (addr >> PAGE_SHIFT) - prange->start; 1731 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages, 1732 hmm_range->hmm_pfns); 1733 if (r) 1734 pr_debug("failed %d to dma map range\n", r); 1735 } 1736 1737 svm_range_lock(prange); 1738 1739 /* Free backing memory of hmm_range if it was initialized 1740 * Overrride return value to TRY AGAIN only if prior returns 1741 * were successful 1742 */ 1743 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) { 1744 pr_debug("hmm update the range, need validate again\n"); 1745 r = -EAGAIN; 1746 } 1747 1748 if (!r && !list_empty(&prange->child_list)) { 1749 pr_debug("range split by unmap in parallel, validate again\n"); 1750 r = -EAGAIN; 1751 } 1752 1753 if (!r) { 1754 map_start_vma = max(map_start, prange->start + offset); 1755 map_last_vma = min(map_last, prange->start + offset + npages - 1); 1756 if (map_start_vma <= map_last_vma) { 1757 offset = map_start_vma - prange->start; 1758 npages = map_last_vma - map_start_vma + 1; 1759 r = svm_range_map_to_gpus(prange, offset, npages, readonly, 1760 ctx->bitmap, wait, flush_tlb); 1761 } 1762 } 1763 1764 if (!r && next == end) 1765 prange->mapped_to_gpu = true; 1766 1767 svm_range_unlock(prange); 1768 1769 addr = next; 1770 } 1771 1772 svm_range_unreserve_bos(ctx); 1773 if (!r) 1774 prange->validate_timestamp = ktime_get_boottime(); 1775 1776 free_ctx: 1777 kfree(ctx); 1778 1779 return r; 1780 } 1781 1782 /** 1783 * svm_range_list_lock_and_flush_work - flush pending deferred work 1784 * 1785 * @svms: the svm range list 1786 * @mm: the mm structure 1787 * 1788 * Context: Returns with mmap write lock held, pending deferred work flushed 1789 * 1790 */ 1791 void 1792 svm_range_list_lock_and_flush_work(struct svm_range_list *svms, 1793 struct mm_struct *mm) 1794 { 1795 retry_flush_work: 1796 flush_work(&svms->deferred_list_work); 1797 mmap_write_lock(mm); 1798 1799 if (list_empty(&svms->deferred_range_list)) 1800 return; 1801 mmap_write_unlock(mm); 1802 pr_debug("retry flush\n"); 1803 goto retry_flush_work; 1804 } 1805 1806 static void svm_range_restore_work(struct work_struct *work) 1807 { 1808 struct delayed_work *dwork = to_delayed_work(work); 1809 struct amdkfd_process_info *process_info; 1810 struct svm_range_list *svms; 1811 struct svm_range *prange; 1812 struct kfd_process *p; 1813 struct mm_struct *mm; 1814 int evicted_ranges; 1815 int invalid; 1816 int r; 1817 1818 svms = container_of(dwork, struct svm_range_list, restore_work); 1819 evicted_ranges = atomic_read(&svms->evicted_ranges); 1820 if (!evicted_ranges) 1821 return; 1822 1823 pr_debug("restore svm ranges\n"); 1824 1825 p = container_of(svms, struct kfd_process, svms); 1826 process_info = p->kgd_process_info; 1827 1828 /* Keep mm reference when svm_range_validate_and_map ranges */ 1829 mm = get_task_mm(p->lead_thread); 1830 if (!mm) { 1831 pr_debug("svms 0x%p process mm gone\n", svms); 1832 return; 1833 } 1834 1835 mutex_lock(&process_info->lock); 1836 svm_range_list_lock_and_flush_work(svms, mm); 1837 mutex_lock(&svms->lock); 1838 1839 evicted_ranges = atomic_read(&svms->evicted_ranges); 1840 1841 list_for_each_entry(prange, &svms->list, list) { 1842 invalid = atomic_read(&prange->invalid); 1843 if (!invalid) 1844 continue; 1845 1846 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", 1847 prange->svms, prange, prange->start, prange->last, 1848 invalid); 1849 1850 /* 1851 * If range is migrating, wait for migration is done. 1852 */ 1853 mutex_lock(&prange->migrate_mutex); 1854 1855 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, 1856 MAX_GPU_INSTANCE, false, true, false); 1857 if (r) 1858 pr_debug("failed %d to map 0x%lx to gpus\n", r, 1859 prange->start); 1860 1861 mutex_unlock(&prange->migrate_mutex); 1862 if (r) 1863 goto out_reschedule; 1864 1865 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) 1866 goto out_reschedule; 1867 } 1868 1869 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != 1870 evicted_ranges) 1871 goto out_reschedule; 1872 1873 evicted_ranges = 0; 1874 1875 r = kgd2kfd_resume_mm(mm); 1876 if (r) { 1877 /* No recovery from this failure. Probably the CP is 1878 * hanging. No point trying again. 1879 */ 1880 pr_debug("failed %d to resume KFD\n", r); 1881 } 1882 1883 pr_debug("restore svm ranges successfully\n"); 1884 1885 out_reschedule: 1886 mutex_unlock(&svms->lock); 1887 mmap_write_unlock(mm); 1888 mutex_unlock(&process_info->lock); 1889 1890 /* If validation failed, reschedule another attempt */ 1891 if (evicted_ranges) { 1892 pr_debug("reschedule to restore svm range\n"); 1893 queue_delayed_work(system_freezable_wq, &svms->restore_work, 1894 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1895 1896 kfd_smi_event_queue_restore_rescheduled(mm); 1897 } 1898 mmput(mm); 1899 } 1900 1901 /** 1902 * svm_range_evict - evict svm range 1903 * @prange: svm range structure 1904 * @mm: current process mm_struct 1905 * @start: starting process queue number 1906 * @last: last process queue number 1907 * @event: mmu notifier event when range is evicted or migrated 1908 * 1909 * Stop all queues of the process to ensure GPU doesn't access the memory, then 1910 * return to let CPU evict the buffer and proceed CPU pagetable update. 1911 * 1912 * Don't need use lock to sync cpu pagetable invalidation with GPU execution. 1913 * If invalidation happens while restore work is running, restore work will 1914 * restart to ensure to get the latest CPU pages mapping to GPU, then start 1915 * the queues. 1916 */ 1917 static int 1918 svm_range_evict(struct svm_range *prange, struct mm_struct *mm, 1919 unsigned long start, unsigned long last, 1920 enum mmu_notifier_event event) 1921 { 1922 struct svm_range_list *svms = prange->svms; 1923 struct svm_range *pchild; 1924 struct kfd_process *p; 1925 int r = 0; 1926 1927 p = container_of(svms, struct kfd_process, svms); 1928 1929 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 1930 svms, prange->start, prange->last, start, last); 1931 1932 if (!p->xnack_enabled || 1933 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) { 1934 int evicted_ranges; 1935 bool mapped = prange->mapped_to_gpu; 1936 1937 list_for_each_entry(pchild, &prange->child_list, child_list) { 1938 if (!pchild->mapped_to_gpu) 1939 continue; 1940 mapped = true; 1941 mutex_lock_nested(&pchild->lock, 1); 1942 if (pchild->start <= last && pchild->last >= start) { 1943 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", 1944 pchild->start, pchild->last); 1945 atomic_inc(&pchild->invalid); 1946 } 1947 mutex_unlock(&pchild->lock); 1948 } 1949 1950 if (!mapped) 1951 return r; 1952 1953 if (prange->start <= last && prange->last >= start) 1954 atomic_inc(&prange->invalid); 1955 1956 evicted_ranges = atomic_inc_return(&svms->evicted_ranges); 1957 if (evicted_ranges != 1) 1958 return r; 1959 1960 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", 1961 prange->svms, prange->start, prange->last); 1962 1963 /* First eviction, stop the queues */ 1964 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); 1965 if (r) 1966 pr_debug("failed to quiesce KFD\n"); 1967 1968 pr_debug("schedule to restore svm %p ranges\n", svms); 1969 queue_delayed_work(system_freezable_wq, &svms->restore_work, 1970 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); 1971 } else { 1972 unsigned long s, l; 1973 uint32_t trigger; 1974 1975 if (event == MMU_NOTIFY_MIGRATE) 1976 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE; 1977 else 1978 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY; 1979 1980 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", 1981 prange->svms, start, last); 1982 list_for_each_entry(pchild, &prange->child_list, child_list) { 1983 mutex_lock_nested(&pchild->lock, 1); 1984 s = max(start, pchild->start); 1985 l = min(last, pchild->last); 1986 if (l >= s) 1987 svm_range_unmap_from_gpus(pchild, s, l, trigger); 1988 mutex_unlock(&pchild->lock); 1989 } 1990 s = max(start, prange->start); 1991 l = min(last, prange->last); 1992 if (l >= s) 1993 svm_range_unmap_from_gpus(prange, s, l, trigger); 1994 } 1995 1996 return r; 1997 } 1998 1999 static struct svm_range *svm_range_clone(struct svm_range *old) 2000 { 2001 struct svm_range *new; 2002 2003 new = svm_range_new(old->svms, old->start, old->last, false); 2004 if (!new) 2005 return NULL; 2006 if (svm_range_copy_dma_addrs(new, old)) { 2007 svm_range_free(new, false); 2008 return NULL; 2009 } 2010 if (old->svm_bo) { 2011 new->ttm_res = old->ttm_res; 2012 new->offset = old->offset; 2013 new->svm_bo = svm_range_bo_ref(old->svm_bo); 2014 spin_lock(&new->svm_bo->list_lock); 2015 list_add(&new->svm_bo_list, &new->svm_bo->range_list); 2016 spin_unlock(&new->svm_bo->list_lock); 2017 } 2018 new->flags = old->flags; 2019 new->preferred_loc = old->preferred_loc; 2020 new->prefetch_loc = old->prefetch_loc; 2021 new->actual_loc = old->actual_loc; 2022 new->granularity = old->granularity; 2023 new->mapped_to_gpu = old->mapped_to_gpu; 2024 new->vram_pages = old->vram_pages; 2025 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); 2026 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); 2027 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount)); 2028 2029 return new; 2030 } 2031 2032 void svm_range_set_max_pages(struct amdgpu_device *adev) 2033 { 2034 uint64_t max_pages; 2035 uint64_t pages, _pages; 2036 uint64_t min_pages = 0; 2037 int i, id; 2038 2039 for (i = 0; i < adev->kfd.dev->num_nodes; i++) { 2040 if (adev->kfd.dev->nodes[i]->xcp) 2041 id = adev->kfd.dev->nodes[i]->xcp->id; 2042 else 2043 id = -1; 2044 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17; 2045 pages = clamp(pages, 1ULL << 9, 1ULL << 18); 2046 pages = rounddown_pow_of_two(pages); 2047 min_pages = min_not_zero(min_pages, pages); 2048 } 2049 2050 do { 2051 max_pages = READ_ONCE(max_svm_range_pages); 2052 _pages = min_not_zero(max_pages, min_pages); 2053 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages); 2054 } 2055 2056 static int 2057 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last, 2058 uint64_t max_pages, struct list_head *insert_list, 2059 struct list_head *update_list) 2060 { 2061 struct svm_range *prange; 2062 uint64_t l; 2063 2064 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n", 2065 max_pages, start, last); 2066 2067 while (last >= start) { 2068 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1); 2069 2070 prange = svm_range_new(svms, start, l, true); 2071 if (!prange) 2072 return -ENOMEM; 2073 list_add(&prange->list, insert_list); 2074 list_add(&prange->update_list, update_list); 2075 2076 start = l + 1; 2077 } 2078 return 0; 2079 } 2080 2081 /** 2082 * svm_range_add - add svm range and handle overlap 2083 * @p: the range add to this process svms 2084 * @start: page size aligned 2085 * @size: page size aligned 2086 * @nattr: number of attributes 2087 * @attrs: array of attributes 2088 * @update_list: output, the ranges need validate and update GPU mapping 2089 * @insert_list: output, the ranges need insert to svms 2090 * @remove_list: output, the ranges are replaced and need remove from svms 2091 * @remap_list: output, remap unaligned svm ranges 2092 * 2093 * Check if the virtual address range has overlap with any existing ranges, 2094 * split partly overlapping ranges and add new ranges in the gaps. All changes 2095 * should be applied to the range_list and interval tree transactionally. If 2096 * any range split or allocation fails, the entire update fails. Therefore any 2097 * existing overlapping svm_ranges are cloned and the original svm_ranges left 2098 * unchanged. 2099 * 2100 * If the transaction succeeds, the caller can update and insert clones and 2101 * new ranges, then free the originals. 2102 * 2103 * Otherwise the caller can free the clones and new ranges, while the old 2104 * svm_ranges remain unchanged. 2105 * 2106 * Context: Process context, caller must hold svms->lock 2107 * 2108 * Return: 2109 * 0 - OK, otherwise error code 2110 */ 2111 static int 2112 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, 2113 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, 2114 struct list_head *update_list, struct list_head *insert_list, 2115 struct list_head *remove_list, struct list_head *remap_list) 2116 { 2117 unsigned long last = start + size - 1UL; 2118 struct svm_range_list *svms = &p->svms; 2119 struct interval_tree_node *node; 2120 struct svm_range *prange; 2121 struct svm_range *tmp; 2122 struct list_head new_list; 2123 int r = 0; 2124 2125 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); 2126 2127 INIT_LIST_HEAD(update_list); 2128 INIT_LIST_HEAD(insert_list); 2129 INIT_LIST_HEAD(remove_list); 2130 INIT_LIST_HEAD(&new_list); 2131 INIT_LIST_HEAD(remap_list); 2132 2133 node = interval_tree_iter_first(&svms->objects, start, last); 2134 while (node) { 2135 struct interval_tree_node *next; 2136 unsigned long next_start; 2137 2138 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, 2139 node->last); 2140 2141 prange = container_of(node, struct svm_range, it_node); 2142 next = interval_tree_iter_next(node, start, last); 2143 next_start = min(node->last, last) + 1; 2144 2145 if (svm_range_is_same_attrs(p, prange, nattr, attrs) && 2146 prange->mapped_to_gpu) { 2147 /* nothing to do */ 2148 } else if (node->start < start || node->last > last) { 2149 /* node intersects the update range and its attributes 2150 * will change. Clone and split it, apply updates only 2151 * to the overlapping part 2152 */ 2153 struct svm_range *old = prange; 2154 2155 prange = svm_range_clone(old); 2156 if (!prange) { 2157 r = -ENOMEM; 2158 goto out; 2159 } 2160 2161 list_add(&old->update_list, remove_list); 2162 list_add(&prange->list, insert_list); 2163 list_add(&prange->update_list, update_list); 2164 2165 if (node->start < start) { 2166 pr_debug("change old range start\n"); 2167 r = svm_range_split_head(prange, start, 2168 insert_list, remap_list); 2169 if (r) 2170 goto out; 2171 } 2172 if (node->last > last) { 2173 pr_debug("change old range last\n"); 2174 r = svm_range_split_tail(prange, last, 2175 insert_list, remap_list); 2176 if (r) 2177 goto out; 2178 } 2179 } else { 2180 /* The node is contained within start..last, 2181 * just update it 2182 */ 2183 list_add(&prange->update_list, update_list); 2184 } 2185 2186 /* insert a new node if needed */ 2187 if (node->start > start) { 2188 r = svm_range_split_new(svms, start, node->start - 1, 2189 READ_ONCE(max_svm_range_pages), 2190 &new_list, update_list); 2191 if (r) 2192 goto out; 2193 } 2194 2195 node = next; 2196 start = next_start; 2197 } 2198 2199 /* add a final range at the end if needed */ 2200 if (start <= last) 2201 r = svm_range_split_new(svms, start, last, 2202 READ_ONCE(max_svm_range_pages), 2203 &new_list, update_list); 2204 2205 out: 2206 if (r) { 2207 list_for_each_entry_safe(prange, tmp, insert_list, list) 2208 svm_range_free(prange, false); 2209 list_for_each_entry_safe(prange, tmp, &new_list, list) 2210 svm_range_free(prange, true); 2211 } else { 2212 list_splice(&new_list, insert_list); 2213 } 2214 2215 return r; 2216 } 2217 2218 static void 2219 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, 2220 struct svm_range *prange) 2221 { 2222 unsigned long start; 2223 unsigned long last; 2224 2225 start = prange->notifier.interval_tree.start >> PAGE_SHIFT; 2226 last = prange->notifier.interval_tree.last >> PAGE_SHIFT; 2227 2228 if (prange->start == start && prange->last == last) 2229 return; 2230 2231 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", 2232 prange->svms, prange, start, last, prange->start, 2233 prange->last); 2234 2235 if (start != 0 && last != 0) { 2236 interval_tree_remove(&prange->it_node, &prange->svms->objects); 2237 svm_range_remove_notifier(prange); 2238 } 2239 prange->it_node.start = prange->start; 2240 prange->it_node.last = prange->last; 2241 2242 interval_tree_insert(&prange->it_node, &prange->svms->objects); 2243 svm_range_add_notifier_locked(mm, prange); 2244 } 2245 2246 static void 2247 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, 2248 struct mm_struct *mm) 2249 { 2250 switch (prange->work_item.op) { 2251 case SVM_OP_NULL: 2252 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2253 svms, prange, prange->start, prange->last); 2254 break; 2255 case SVM_OP_UNMAP_RANGE: 2256 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2257 svms, prange, prange->start, prange->last); 2258 svm_range_unlink(prange); 2259 svm_range_remove_notifier(prange); 2260 svm_range_free(prange, true); 2261 break; 2262 case SVM_OP_UPDATE_RANGE_NOTIFIER: 2263 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2264 svms, prange, prange->start, prange->last); 2265 svm_range_update_notifier_and_interval_tree(mm, prange); 2266 break; 2267 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: 2268 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", 2269 svms, prange, prange->start, prange->last); 2270 svm_range_update_notifier_and_interval_tree(mm, prange); 2271 /* TODO: implement deferred validation and mapping */ 2272 break; 2273 case SVM_OP_ADD_RANGE: 2274 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, 2275 prange->start, prange->last); 2276 svm_range_add_to_svms(prange); 2277 svm_range_add_notifier_locked(mm, prange); 2278 break; 2279 case SVM_OP_ADD_RANGE_AND_MAP: 2280 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, 2281 prange, prange->start, prange->last); 2282 svm_range_add_to_svms(prange); 2283 svm_range_add_notifier_locked(mm, prange); 2284 /* TODO: implement deferred validation and mapping */ 2285 break; 2286 default: 2287 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, 2288 prange->work_item.op); 2289 } 2290 } 2291 2292 static void svm_range_drain_retry_fault(struct svm_range_list *svms) 2293 { 2294 struct kfd_process_device *pdd; 2295 struct kfd_process *p; 2296 uint32_t i; 2297 2298 p = container_of(svms, struct kfd_process, svms); 2299 2300 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2301 pdd = p->pdds[i]; 2302 if (!pdd) 2303 continue; 2304 2305 pr_debug("drain retry fault gpu %d svms %p\n", i, svms); 2306 2307 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2308 pdd->dev->adev->irq.retry_cam_enabled ? 2309 &pdd->dev->adev->irq.ih : 2310 &pdd->dev->adev->irq.ih1); 2311 2312 if (pdd->dev->adev->irq.retry_cam_enabled) 2313 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, 2314 &pdd->dev->adev->irq.ih_soft); 2315 2316 2317 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); 2318 } 2319 } 2320 2321 static void svm_range_deferred_list_work(struct work_struct *work) 2322 { 2323 struct svm_range_list *svms; 2324 struct svm_range *prange; 2325 struct mm_struct *mm; 2326 2327 svms = container_of(work, struct svm_range_list, deferred_list_work); 2328 pr_debug("enter svms 0x%p\n", svms); 2329 2330 spin_lock(&svms->deferred_list_lock); 2331 while (!list_empty(&svms->deferred_range_list)) { 2332 prange = list_first_entry(&svms->deferred_range_list, 2333 struct svm_range, deferred_list); 2334 spin_unlock(&svms->deferred_list_lock); 2335 2336 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, 2337 prange->start, prange->last, prange->work_item.op); 2338 2339 mm = prange->work_item.mm; 2340 2341 mmap_write_lock(mm); 2342 2343 /* Remove from deferred_list must be inside mmap write lock, for 2344 * two race cases: 2345 * 1. unmap_from_cpu may change work_item.op and add the range 2346 * to deferred_list again, cause use after free bug. 2347 * 2. svm_range_list_lock_and_flush_work may hold mmap write 2348 * lock and continue because deferred_list is empty, but 2349 * deferred_list work is actually waiting for mmap lock. 2350 */ 2351 spin_lock(&svms->deferred_list_lock); 2352 list_del_init(&prange->deferred_list); 2353 spin_unlock(&svms->deferred_list_lock); 2354 2355 mutex_lock(&svms->lock); 2356 mutex_lock(&prange->migrate_mutex); 2357 while (!list_empty(&prange->child_list)) { 2358 struct svm_range *pchild; 2359 2360 pchild = list_first_entry(&prange->child_list, 2361 struct svm_range, child_list); 2362 pr_debug("child prange 0x%p op %d\n", pchild, 2363 pchild->work_item.op); 2364 list_del_init(&pchild->child_list); 2365 svm_range_handle_list_op(svms, pchild, mm); 2366 } 2367 mutex_unlock(&prange->migrate_mutex); 2368 2369 svm_range_handle_list_op(svms, prange, mm); 2370 mutex_unlock(&svms->lock); 2371 mmap_write_unlock(mm); 2372 2373 /* Pairs with mmget in svm_range_add_list_work. If dropping the 2374 * last mm refcount, schedule release work to avoid circular locking 2375 */ 2376 mmput_async(mm); 2377 2378 spin_lock(&svms->deferred_list_lock); 2379 } 2380 spin_unlock(&svms->deferred_list_lock); 2381 pr_debug("exit svms 0x%p\n", svms); 2382 } 2383 2384 void 2385 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, 2386 struct mm_struct *mm, enum svm_work_list_ops op) 2387 { 2388 spin_lock(&svms->deferred_list_lock); 2389 /* if prange is on the deferred list */ 2390 if (!list_empty(&prange->deferred_list)) { 2391 pr_debug("update exist prange 0x%p work op %d\n", prange, op); 2392 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); 2393 if (op != SVM_OP_NULL && 2394 prange->work_item.op != SVM_OP_UNMAP_RANGE) 2395 prange->work_item.op = op; 2396 } else { 2397 prange->work_item.op = op; 2398 2399 /* Pairs with mmput in deferred_list_work */ 2400 mmget(mm); 2401 prange->work_item.mm = mm; 2402 list_add_tail(&prange->deferred_list, 2403 &prange->svms->deferred_range_list); 2404 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", 2405 prange, prange->start, prange->last, op); 2406 } 2407 spin_unlock(&svms->deferred_list_lock); 2408 } 2409 2410 void schedule_deferred_list_work(struct svm_range_list *svms) 2411 { 2412 spin_lock(&svms->deferred_list_lock); 2413 if (!list_empty(&svms->deferred_range_list)) 2414 schedule_work(&svms->deferred_list_work); 2415 spin_unlock(&svms->deferred_list_lock); 2416 } 2417 2418 static void 2419 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, 2420 struct svm_range *prange, unsigned long start, 2421 unsigned long last) 2422 { 2423 struct svm_range *head; 2424 struct svm_range *tail; 2425 2426 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2427 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, 2428 prange->start, prange->last); 2429 return; 2430 } 2431 if (start > prange->last || last < prange->start) 2432 return; 2433 2434 head = tail = prange; 2435 if (start > prange->start) 2436 svm_range_split(prange, prange->start, start - 1, &tail); 2437 if (last < tail->last) 2438 svm_range_split(tail, last + 1, tail->last, &head); 2439 2440 if (head != prange && tail != prange) { 2441 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2442 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); 2443 } else if (tail != prange) { 2444 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); 2445 } else if (head != prange) { 2446 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); 2447 } else if (parent != prange) { 2448 prange->work_item.op = SVM_OP_UNMAP_RANGE; 2449 } 2450 } 2451 2452 static void 2453 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, 2454 unsigned long start, unsigned long last) 2455 { 2456 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU; 2457 struct svm_range_list *svms; 2458 struct svm_range *pchild; 2459 struct kfd_process *p; 2460 unsigned long s, l; 2461 bool unmap_parent; 2462 uint32_t i; 2463 2464 if (atomic_read(&prange->queue_refcount)) { 2465 int r; 2466 2467 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n", 2468 prange->start << PAGE_SHIFT); 2469 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); 2470 if (r) 2471 pr_debug("failed %d to quiesce KFD queues\n", r); 2472 } 2473 2474 p = kfd_lookup_process_by_mm(mm); 2475 if (!p) 2476 return; 2477 svms = &p->svms; 2478 2479 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, 2480 prange, prange->start, prange->last, start, last); 2481 2482 /* calculate time stamps that are used to decide which page faults need be 2483 * dropped or handled before unmap pages from gpu vm 2484 */ 2485 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { 2486 struct kfd_process_device *pdd; 2487 struct amdgpu_device *adev; 2488 struct amdgpu_ih_ring *ih; 2489 uint32_t checkpoint_wptr; 2490 2491 pdd = p->pdds[i]; 2492 if (!pdd) 2493 continue; 2494 2495 adev = pdd->dev->adev; 2496 2497 /* Check and drain ih1 ring if cam not available */ 2498 if (adev->irq.ih1.ring_size) { 2499 ih = &adev->irq.ih1; 2500 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih); 2501 if (ih->rptr != checkpoint_wptr) { 2502 svms->checkpoint_ts[i] = 2503 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1); 2504 continue; 2505 } 2506 } 2507 2508 /* check if dev->irq.ih_soft is not empty */ 2509 ih = &adev->irq.ih_soft; 2510 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih); 2511 if (ih->rptr != checkpoint_wptr) 2512 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1); 2513 } 2514 2515 unmap_parent = start <= prange->start && last >= prange->last; 2516 2517 list_for_each_entry(pchild, &prange->child_list, child_list) { 2518 mutex_lock_nested(&pchild->lock, 1); 2519 s = max(start, pchild->start); 2520 l = min(last, pchild->last); 2521 if (l >= s) 2522 svm_range_unmap_from_gpus(pchild, s, l, trigger); 2523 svm_range_unmap_split(mm, prange, pchild, start, last); 2524 mutex_unlock(&pchild->lock); 2525 } 2526 s = max(start, prange->start); 2527 l = min(last, prange->last); 2528 if (l >= s) 2529 svm_range_unmap_from_gpus(prange, s, l, trigger); 2530 svm_range_unmap_split(mm, prange, prange, start, last); 2531 2532 if (unmap_parent) 2533 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); 2534 else 2535 svm_range_add_list_work(svms, prange, mm, 2536 SVM_OP_UPDATE_RANGE_NOTIFIER); 2537 schedule_deferred_list_work(svms); 2538 2539 kfd_unref_process(p); 2540 } 2541 2542 /** 2543 * svm_range_cpu_invalidate_pagetables - interval notifier callback 2544 * @mni: mmu_interval_notifier struct 2545 * @range: mmu_notifier_range struct 2546 * @cur_seq: value to pass to mmu_interval_set_seq() 2547 * 2548 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it 2549 * is from migration, or CPU page invalidation callback. 2550 * 2551 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed 2552 * work thread, and split prange if only part of prange is unmapped. 2553 * 2554 * For invalidation event, if GPU retry fault is not enabled, evict the queues, 2555 * then schedule svm_range_restore_work to update GPU mapping and resume queues. 2556 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will 2557 * update GPU mapping to recover. 2558 * 2559 * Context: mmap lock, notifier_invalidate_start lock are held 2560 * for invalidate event, prange lock is held if this is from migration 2561 */ 2562 static bool 2563 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, 2564 const struct mmu_notifier_range *range, 2565 unsigned long cur_seq) 2566 { 2567 struct svm_range *prange; 2568 unsigned long start; 2569 unsigned long last; 2570 2571 if (range->event == MMU_NOTIFY_RELEASE) 2572 return true; 2573 if (!mmget_not_zero(mni->mm)) 2574 return true; 2575 2576 start = mni->interval_tree.start; 2577 last = mni->interval_tree.last; 2578 start = max(start, range->start) >> PAGE_SHIFT; 2579 last = min(last, range->end - 1) >> PAGE_SHIFT; 2580 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", 2581 start, last, range->start >> PAGE_SHIFT, 2582 (range->end - 1) >> PAGE_SHIFT, 2583 mni->interval_tree.start >> PAGE_SHIFT, 2584 mni->interval_tree.last >> PAGE_SHIFT, range->event); 2585 2586 prange = container_of(mni, struct svm_range, notifier); 2587 2588 svm_range_lock(prange); 2589 mmu_interval_set_seq(mni, cur_seq); 2590 2591 switch (range->event) { 2592 case MMU_NOTIFY_UNMAP: 2593 svm_range_unmap_from_cpu(mni->mm, prange, start, last); 2594 break; 2595 default: 2596 svm_range_evict(prange, mni->mm, start, last, range->event); 2597 break; 2598 } 2599 2600 svm_range_unlock(prange); 2601 mmput(mni->mm); 2602 2603 return true; 2604 } 2605 2606 /** 2607 * svm_range_from_addr - find svm range from fault address 2608 * @svms: svm range list header 2609 * @addr: address to search range interval tree, in pages 2610 * @parent: parent range if range is on child list 2611 * 2612 * Context: The caller must hold svms->lock 2613 * 2614 * Return: the svm_range found or NULL 2615 */ 2616 struct svm_range * 2617 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, 2618 struct svm_range **parent) 2619 { 2620 struct interval_tree_node *node; 2621 struct svm_range *prange; 2622 struct svm_range *pchild; 2623 2624 node = interval_tree_iter_first(&svms->objects, addr, addr); 2625 if (!node) 2626 return NULL; 2627 2628 prange = container_of(node, struct svm_range, it_node); 2629 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", 2630 addr, prange->start, prange->last, node->start, node->last); 2631 2632 if (addr >= prange->start && addr <= prange->last) { 2633 if (parent) 2634 *parent = prange; 2635 return prange; 2636 } 2637 list_for_each_entry(pchild, &prange->child_list, child_list) 2638 if (addr >= pchild->start && addr <= pchild->last) { 2639 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", 2640 addr, pchild->start, pchild->last); 2641 if (parent) 2642 *parent = prange; 2643 return pchild; 2644 } 2645 2646 return NULL; 2647 } 2648 2649 /* svm_range_best_restore_location - decide the best fault restore location 2650 * @prange: svm range structure 2651 * @adev: the GPU on which vm fault happened 2652 * 2653 * This is only called when xnack is on, to decide the best location to restore 2654 * the range mapping after GPU vm fault. Caller uses the best location to do 2655 * migration if actual loc is not best location, then update GPU page table 2656 * mapping to the best location. 2657 * 2658 * If the preferred loc is accessible by faulting GPU, use preferred loc. 2659 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu 2660 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then 2661 * if range actual loc is cpu, best_loc is cpu 2662 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is 2663 * range actual loc. 2664 * Otherwise, GPU no access, best_loc is -1. 2665 * 2666 * Return: 2667 * -1 means vm fault GPU no access 2668 * 0 for CPU or GPU id 2669 */ 2670 static int32_t 2671 svm_range_best_restore_location(struct svm_range *prange, 2672 struct kfd_node *node, 2673 int32_t *gpuidx) 2674 { 2675 struct kfd_node *bo_node, *preferred_node; 2676 struct kfd_process *p; 2677 uint32_t gpuid; 2678 int r; 2679 2680 p = container_of(prange->svms, struct kfd_process, svms); 2681 2682 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx); 2683 if (r < 0) { 2684 pr_debug("failed to get gpuid from kgd\n"); 2685 return -1; 2686 } 2687 2688 if (node->adev->flags & AMD_IS_APU) 2689 return 0; 2690 2691 if (prange->preferred_loc == gpuid || 2692 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { 2693 return prange->preferred_loc; 2694 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 2695 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc); 2696 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node)) 2697 return prange->preferred_loc; 2698 /* fall through */ 2699 } 2700 2701 if (test_bit(*gpuidx, prange->bitmap_access)) 2702 return gpuid; 2703 2704 if (test_bit(*gpuidx, prange->bitmap_aip)) { 2705 if (!prange->actual_loc) 2706 return 0; 2707 2708 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc); 2709 if (bo_node && svm_nodes_in_same_hive(node, bo_node)) 2710 return prange->actual_loc; 2711 else 2712 return 0; 2713 } 2714 2715 return -1; 2716 } 2717 2718 static int 2719 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, 2720 unsigned long *start, unsigned long *last, 2721 bool *is_heap_stack) 2722 { 2723 struct vm_area_struct *vma; 2724 struct interval_tree_node *node; 2725 struct rb_node *rb_node; 2726 unsigned long start_limit, end_limit; 2727 2728 vma = vma_lookup(p->mm, addr << PAGE_SHIFT); 2729 if (!vma) { 2730 pr_debug("VMA does not exist in address [0x%llx]\n", addr); 2731 return -EFAULT; 2732 } 2733 2734 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma); 2735 2736 start_limit = max(vma->vm_start >> PAGE_SHIFT, 2737 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity)); 2738 end_limit = min(vma->vm_end >> PAGE_SHIFT, 2739 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity)); 2740 2741 /* First range that starts after the fault address */ 2742 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); 2743 if (node) { 2744 end_limit = min(end_limit, node->start); 2745 /* Last range that ends before the fault address */ 2746 rb_node = rb_prev(&node->rb); 2747 } else { 2748 /* Last range must end before addr because 2749 * there was no range after addr 2750 */ 2751 rb_node = rb_last(&p->svms.objects.rb_root); 2752 } 2753 if (rb_node) { 2754 node = container_of(rb_node, struct interval_tree_node, rb); 2755 if (node->last >= addr) { 2756 WARN(1, "Overlap with prev node and page fault addr\n"); 2757 return -EFAULT; 2758 } 2759 start_limit = max(start_limit, node->last + 1); 2760 } 2761 2762 *start = start_limit; 2763 *last = end_limit - 1; 2764 2765 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", 2766 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, 2767 *start, *last, *is_heap_stack); 2768 2769 return 0; 2770 } 2771 2772 static int 2773 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, 2774 uint64_t *bo_s, uint64_t *bo_l) 2775 { 2776 struct amdgpu_bo_va_mapping *mapping; 2777 struct interval_tree_node *node; 2778 struct amdgpu_bo *bo = NULL; 2779 unsigned long userptr; 2780 uint32_t i; 2781 int r; 2782 2783 for (i = 0; i < p->n_pdds; i++) { 2784 struct amdgpu_vm *vm; 2785 2786 if (!p->pdds[i]->drm_priv) 2787 continue; 2788 2789 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 2790 r = amdgpu_bo_reserve(vm->root.bo, false); 2791 if (r) 2792 return r; 2793 2794 /* Check userptr by searching entire vm->va interval tree */ 2795 node = interval_tree_iter_first(&vm->va, 0, ~0ULL); 2796 while (node) { 2797 mapping = container_of((struct rb_node *)node, 2798 struct amdgpu_bo_va_mapping, rb); 2799 bo = mapping->bo_va->base.bo; 2800 2801 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, 2802 start << PAGE_SHIFT, 2803 last << PAGE_SHIFT, 2804 &userptr)) { 2805 node = interval_tree_iter_next(node, 0, ~0ULL); 2806 continue; 2807 } 2808 2809 pr_debug("[0x%llx 0x%llx] already userptr mapped\n", 2810 start, last); 2811 if (bo_s && bo_l) { 2812 *bo_s = userptr >> PAGE_SHIFT; 2813 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; 2814 } 2815 amdgpu_bo_unreserve(vm->root.bo); 2816 return -EADDRINUSE; 2817 } 2818 amdgpu_bo_unreserve(vm->root.bo); 2819 } 2820 return 0; 2821 } 2822 2823 static struct 2824 svm_range *svm_range_create_unregistered_range(struct kfd_node *node, 2825 struct kfd_process *p, 2826 struct mm_struct *mm, 2827 int64_t addr) 2828 { 2829 struct svm_range *prange = NULL; 2830 unsigned long start, last; 2831 uint32_t gpuid, gpuidx; 2832 bool is_heap_stack; 2833 uint64_t bo_s = 0; 2834 uint64_t bo_l = 0; 2835 int r; 2836 2837 if (svm_range_get_range_boundaries(p, addr, &start, &last, 2838 &is_heap_stack)) 2839 return NULL; 2840 2841 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); 2842 if (r != -EADDRINUSE) 2843 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); 2844 2845 if (r == -EADDRINUSE) { 2846 if (addr >= bo_s && addr <= bo_l) 2847 return NULL; 2848 2849 /* Create one page svm range if 2MB range overlapping */ 2850 start = addr; 2851 last = addr; 2852 } 2853 2854 prange = svm_range_new(&p->svms, start, last, true); 2855 if (!prange) { 2856 pr_debug("Failed to create prange in address [0x%llx]\n", addr); 2857 return NULL; 2858 } 2859 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { 2860 pr_debug("failed to get gpuid from kgd\n"); 2861 svm_range_free(prange, true); 2862 return NULL; 2863 } 2864 2865 if (is_heap_stack) 2866 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; 2867 2868 svm_range_add_to_svms(prange); 2869 svm_range_add_notifier_locked(mm, prange); 2870 2871 return prange; 2872 } 2873 2874 /* svm_range_skip_recover - decide if prange can be recovered 2875 * @prange: svm range structure 2876 * 2877 * GPU vm retry fault handle skip recover the range for cases: 2878 * 1. prange is on deferred list to be removed after unmap, it is stale fault, 2879 * deferred list work will drain the stale fault before free the prange. 2880 * 2. prange is on deferred list to add interval notifier after split, or 2881 * 3. prange is child range, it is split from parent prange, recover later 2882 * after interval notifier is added. 2883 * 2884 * Return: true to skip recover, false to recover 2885 */ 2886 static bool svm_range_skip_recover(struct svm_range *prange) 2887 { 2888 struct svm_range_list *svms = prange->svms; 2889 2890 spin_lock(&svms->deferred_list_lock); 2891 if (list_empty(&prange->deferred_list) && 2892 list_empty(&prange->child_list)) { 2893 spin_unlock(&svms->deferred_list_lock); 2894 return false; 2895 } 2896 spin_unlock(&svms->deferred_list_lock); 2897 2898 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { 2899 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", 2900 svms, prange, prange->start, prange->last); 2901 return true; 2902 } 2903 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || 2904 prange->work_item.op == SVM_OP_ADD_RANGE) { 2905 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", 2906 svms, prange, prange->start, prange->last); 2907 return true; 2908 } 2909 return false; 2910 } 2911 2912 static void 2913 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p, 2914 int32_t gpuidx) 2915 { 2916 struct kfd_process_device *pdd; 2917 2918 /* fault is on different page of same range 2919 * or fault is skipped to recover later 2920 * or fault is on invalid virtual address 2921 */ 2922 if (gpuidx == MAX_GPU_INSTANCE) { 2923 uint32_t gpuid; 2924 int r; 2925 2926 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx); 2927 if (r < 0) 2928 return; 2929 } 2930 2931 /* fault is recovered 2932 * or fault cannot recover because GPU no access on the range 2933 */ 2934 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 2935 if (pdd) 2936 WRITE_ONCE(pdd->faults, pdd->faults + 1); 2937 } 2938 2939 static bool 2940 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) 2941 { 2942 unsigned long requested = VM_READ; 2943 2944 if (write_fault) 2945 requested |= VM_WRITE; 2946 2947 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, 2948 vma->vm_flags); 2949 return (vma->vm_flags & requested) == requested; 2950 } 2951 2952 int 2953 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, 2954 uint32_t vmid, uint32_t node_id, 2955 uint64_t addr, uint64_t ts, bool write_fault) 2956 { 2957 unsigned long start, last, size; 2958 struct mm_struct *mm = NULL; 2959 struct svm_range_list *svms; 2960 struct svm_range *prange; 2961 struct kfd_process *p; 2962 ktime_t timestamp = ktime_get_boottime(); 2963 struct kfd_node *node; 2964 int32_t best_loc; 2965 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE; 2966 bool write_locked = false; 2967 struct vm_area_struct *vma; 2968 bool migration = false; 2969 int r = 0; 2970 2971 if (!KFD_IS_SVM_API_SUPPORTED(adev)) { 2972 pr_debug("device does not support SVM\n"); 2973 return -EFAULT; 2974 } 2975 2976 p = kfd_lookup_process_by_pasid(pasid); 2977 if (!p) { 2978 pr_debug("kfd process not founded pasid 0x%x\n", pasid); 2979 return 0; 2980 } 2981 svms = &p->svms; 2982 2983 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); 2984 2985 if (atomic_read(&svms->drain_pagefaults)) { 2986 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr); 2987 r = 0; 2988 goto out; 2989 } 2990 2991 node = kfd_node_by_irq_ids(adev, node_id, vmid); 2992 if (!node) { 2993 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id, 2994 vmid); 2995 r = -EFAULT; 2996 goto out; 2997 } 2998 2999 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { 3000 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id); 3001 r = -EFAULT; 3002 goto out; 3003 } 3004 3005 /* check if this page fault time stamp is before svms->checkpoint_ts */ 3006 if (svms->checkpoint_ts[gpuidx] != 0) { 3007 if (amdgpu_ih_ts_after(ts, svms->checkpoint_ts[gpuidx])) { 3008 pr_debug("draining retry fault, drop fault 0x%llx\n", addr); 3009 r = 0; 3010 goto out; 3011 } else 3012 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts 3013 * to zero to avoid following ts wrap around give wrong comparing 3014 */ 3015 svms->checkpoint_ts[gpuidx] = 0; 3016 } 3017 3018 if (!p->xnack_enabled) { 3019 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); 3020 r = -EFAULT; 3021 goto out; 3022 } 3023 3024 /* p->lead_thread is available as kfd_process_wq_release flush the work 3025 * before releasing task ref. 3026 */ 3027 mm = get_task_mm(p->lead_thread); 3028 if (!mm) { 3029 pr_debug("svms 0x%p failed to get mm\n", svms); 3030 r = 0; 3031 goto out; 3032 } 3033 3034 mmap_read_lock(mm); 3035 retry_write_locked: 3036 mutex_lock(&svms->lock); 3037 prange = svm_range_from_addr(svms, addr, NULL); 3038 if (!prange) { 3039 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", 3040 svms, addr); 3041 if (!write_locked) { 3042 /* Need the write lock to create new range with MMU notifier. 3043 * Also flush pending deferred work to make sure the interval 3044 * tree is up to date before we add a new range 3045 */ 3046 mutex_unlock(&svms->lock); 3047 mmap_read_unlock(mm); 3048 mmap_write_lock(mm); 3049 write_locked = true; 3050 goto retry_write_locked; 3051 } 3052 prange = svm_range_create_unregistered_range(node, p, mm, addr); 3053 if (!prange) { 3054 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", 3055 svms, addr); 3056 mmap_write_downgrade(mm); 3057 r = -EFAULT; 3058 goto out_unlock_svms; 3059 } 3060 } 3061 if (write_locked) 3062 mmap_write_downgrade(mm); 3063 3064 mutex_lock(&prange->migrate_mutex); 3065 3066 if (svm_range_skip_recover(prange)) { 3067 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 3068 r = 0; 3069 goto out_unlock_range; 3070 } 3071 3072 /* skip duplicate vm fault on different pages of same range */ 3073 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp, 3074 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) { 3075 pr_debug("svms 0x%p [0x%lx %lx] already restored\n", 3076 svms, prange->start, prange->last); 3077 r = 0; 3078 goto out_unlock_range; 3079 } 3080 3081 /* __do_munmap removed VMA, return success as we are handling stale 3082 * retry fault. 3083 */ 3084 vma = vma_lookup(mm, addr << PAGE_SHIFT); 3085 if (!vma) { 3086 pr_debug("address 0x%llx VMA is removed\n", addr); 3087 r = 0; 3088 goto out_unlock_range; 3089 } 3090 3091 if (!svm_fault_allowed(vma, write_fault)) { 3092 pr_debug("fault addr 0x%llx no %s permission\n", addr, 3093 write_fault ? "write" : "read"); 3094 r = -EPERM; 3095 goto out_unlock_range; 3096 } 3097 3098 best_loc = svm_range_best_restore_location(prange, node, &gpuidx); 3099 if (best_loc == -1) { 3100 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", 3101 svms, prange->start, prange->last); 3102 r = -EACCES; 3103 goto out_unlock_range; 3104 } 3105 3106 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", 3107 svms, prange->start, prange->last, best_loc, 3108 prange->actual_loc); 3109 3110 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr, 3111 write_fault, timestamp); 3112 3113 /* Align migration range start and size to granularity size */ 3114 size = 1UL << prange->granularity; 3115 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start); 3116 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last); 3117 if (prange->actual_loc != 0 || best_loc != 0) { 3118 if (best_loc) { 3119 r = svm_migrate_to_vram(prange, best_loc, start, last, 3120 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU); 3121 if (r) { 3122 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", 3123 r, addr); 3124 /* Fallback to system memory if migration to 3125 * VRAM failed 3126 */ 3127 if (prange->actual_loc && prange->actual_loc != best_loc) 3128 r = svm_migrate_vram_to_ram(prange, mm, start, last, 3129 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); 3130 else 3131 r = 0; 3132 } 3133 } else { 3134 r = svm_migrate_vram_to_ram(prange, mm, start, last, 3135 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); 3136 } 3137 if (r) { 3138 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", 3139 r, svms, start, last); 3140 goto out_migrate_fail; 3141 } else { 3142 migration = true; 3143 } 3144 } 3145 3146 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false, 3147 false, false); 3148 if (r) 3149 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", 3150 r, svms, start, last); 3151 3152 out_migrate_fail: 3153 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr, 3154 migration); 3155 3156 out_unlock_range: 3157 mutex_unlock(&prange->migrate_mutex); 3158 out_unlock_svms: 3159 mutex_unlock(&svms->lock); 3160 mmap_read_unlock(mm); 3161 3162 svm_range_count_fault(node, p, gpuidx); 3163 3164 mmput(mm); 3165 out: 3166 kfd_unref_process(p); 3167 3168 if (r == -EAGAIN) { 3169 pr_debug("recover vm fault later\n"); 3170 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); 3171 r = 0; 3172 } 3173 return r; 3174 } 3175 3176 int 3177 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled) 3178 { 3179 struct svm_range *prange, *pchild; 3180 uint64_t reserved_size = 0; 3181 uint64_t size; 3182 int r = 0; 3183 3184 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled); 3185 3186 mutex_lock(&p->svms.lock); 3187 3188 list_for_each_entry(prange, &p->svms.list, list) { 3189 svm_range_lock(prange); 3190 list_for_each_entry(pchild, &prange->child_list, child_list) { 3191 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT; 3192 if (xnack_enabled) { 3193 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3194 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3195 } else { 3196 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3197 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3198 if (r) 3199 goto out_unlock; 3200 reserved_size += size; 3201 } 3202 } 3203 3204 size = (prange->last - prange->start + 1) << PAGE_SHIFT; 3205 if (xnack_enabled) { 3206 amdgpu_amdkfd_unreserve_mem_limit(NULL, size, 3207 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3208 } else { 3209 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, 3210 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3211 if (r) 3212 goto out_unlock; 3213 reserved_size += size; 3214 } 3215 out_unlock: 3216 svm_range_unlock(prange); 3217 if (r) 3218 break; 3219 } 3220 3221 if (r) 3222 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size, 3223 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); 3224 else 3225 /* Change xnack mode must be inside svms lock, to avoid race with 3226 * svm_range_deferred_list_work unreserve memory in parallel. 3227 */ 3228 p->xnack_enabled = xnack_enabled; 3229 3230 mutex_unlock(&p->svms.lock); 3231 return r; 3232 } 3233 3234 void svm_range_list_fini(struct kfd_process *p) 3235 { 3236 struct svm_range *prange; 3237 struct svm_range *next; 3238 3239 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); 3240 3241 cancel_delayed_work_sync(&p->svms.restore_work); 3242 3243 /* Ensure list work is finished before process is destroyed */ 3244 flush_work(&p->svms.deferred_list_work); 3245 3246 /* 3247 * Ensure no retry fault comes in afterwards, as page fault handler will 3248 * not find kfd process and take mm lock to recover fault. 3249 * stop kfd page fault handing, then wait pending page faults got drained 3250 */ 3251 atomic_set(&p->svms.drain_pagefaults, 1); 3252 svm_range_drain_retry_fault(&p->svms); 3253 3254 list_for_each_entry_safe(prange, next, &p->svms.list, list) { 3255 svm_range_unlink(prange); 3256 svm_range_remove_notifier(prange); 3257 svm_range_free(prange, true); 3258 } 3259 3260 mutex_destroy(&p->svms.lock); 3261 3262 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); 3263 } 3264 3265 int svm_range_list_init(struct kfd_process *p) 3266 { 3267 struct svm_range_list *svms = &p->svms; 3268 int i; 3269 3270 svms->objects = RB_ROOT_CACHED; 3271 mutex_init(&svms->lock); 3272 INIT_LIST_HEAD(&svms->list); 3273 atomic_set(&svms->evicted_ranges, 0); 3274 atomic_set(&svms->drain_pagefaults, 0); 3275 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); 3276 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); 3277 INIT_LIST_HEAD(&svms->deferred_range_list); 3278 INIT_LIST_HEAD(&svms->criu_svm_metadata_list); 3279 spin_lock_init(&svms->deferred_list_lock); 3280 3281 for (i = 0; i < p->n_pdds; i++) 3282 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev)) 3283 bitmap_set(svms->bitmap_supported, i, 1); 3284 3285 /* Value of default granularity cannot exceed 0x1B, the 3286 * number of pages supported by a 4-level paging table 3287 */ 3288 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B); 3289 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity); 3290 3291 return 0; 3292 } 3293 3294 /** 3295 * svm_range_check_vm - check if virtual address range mapped already 3296 * @p: current kfd_process 3297 * @start: range start address, in pages 3298 * @last: range last address, in pages 3299 * @bo_s: mapping start address in pages if address range already mapped 3300 * @bo_l: mapping last address in pages if address range already mapped 3301 * 3302 * The purpose is to avoid virtual address ranges already allocated by 3303 * kfd_ioctl_alloc_memory_of_gpu ioctl. 3304 * It looks for each pdd in the kfd_process. 3305 * 3306 * Context: Process context 3307 * 3308 * Return 0 - OK, if the range is not mapped. 3309 * Otherwise error code: 3310 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu 3311 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by 3312 * a signal. Release all buffer reservations and return to user-space. 3313 */ 3314 static int 3315 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, 3316 uint64_t *bo_s, uint64_t *bo_l) 3317 { 3318 struct amdgpu_bo_va_mapping *mapping; 3319 struct interval_tree_node *node; 3320 uint32_t i; 3321 int r; 3322 3323 for (i = 0; i < p->n_pdds; i++) { 3324 struct amdgpu_vm *vm; 3325 3326 if (!p->pdds[i]->drm_priv) 3327 continue; 3328 3329 vm = drm_priv_to_vm(p->pdds[i]->drm_priv); 3330 r = amdgpu_bo_reserve(vm->root.bo, false); 3331 if (r) 3332 return r; 3333 3334 node = interval_tree_iter_first(&vm->va, start, last); 3335 if (node) { 3336 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", 3337 start, last); 3338 mapping = container_of((struct rb_node *)node, 3339 struct amdgpu_bo_va_mapping, rb); 3340 if (bo_s && bo_l) { 3341 *bo_s = mapping->start; 3342 *bo_l = mapping->last; 3343 } 3344 amdgpu_bo_unreserve(vm->root.bo); 3345 return -EADDRINUSE; 3346 } 3347 amdgpu_bo_unreserve(vm->root.bo); 3348 } 3349 3350 return 0; 3351 } 3352 3353 /** 3354 * svm_range_is_valid - check if virtual address range is valid 3355 * @p: current kfd_process 3356 * @start: range start address, in pages 3357 * @size: range size, in pages 3358 * 3359 * Valid virtual address range means it belongs to one or more VMAs 3360 * 3361 * Context: Process context 3362 * 3363 * Return: 3364 * 0 - OK, otherwise error code 3365 */ 3366 static int 3367 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) 3368 { 3369 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 3370 struct vm_area_struct *vma; 3371 unsigned long end; 3372 unsigned long start_unchg = start; 3373 3374 start <<= PAGE_SHIFT; 3375 end = start + (size << PAGE_SHIFT); 3376 do { 3377 vma = vma_lookup(p->mm, start); 3378 if (!vma || (vma->vm_flags & device_vma)) 3379 return -EFAULT; 3380 start = min(end, vma->vm_end); 3381 } while (start < end); 3382 3383 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, 3384 NULL); 3385 } 3386 3387 /** 3388 * svm_range_best_prefetch_location - decide the best prefetch location 3389 * @prange: svm range structure 3390 * 3391 * For xnack off: 3392 * If range map to single GPU, the best prefetch location is prefetch_loc, which 3393 * can be CPU or GPU. 3394 * 3395 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on 3396 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise 3397 * the best prefetch location is always CPU, because GPU can not have coherent 3398 * mapping VRAM of other GPUs even with large-BAR PCIe connection. 3399 * 3400 * For xnack on: 3401 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is 3402 * prefetch_loc, other GPU access will generate vm fault and trigger migration. 3403 * 3404 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same 3405 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best 3406 * prefetch location is always CPU. 3407 * 3408 * Context: Process context 3409 * 3410 * Return: 3411 * 0 for CPU or GPU id 3412 */ 3413 static uint32_t 3414 svm_range_best_prefetch_location(struct svm_range *prange) 3415 { 3416 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); 3417 uint32_t best_loc = prange->prefetch_loc; 3418 struct kfd_process_device *pdd; 3419 struct kfd_node *bo_node; 3420 struct kfd_process *p; 3421 uint32_t gpuidx; 3422 3423 p = container_of(prange->svms, struct kfd_process, svms); 3424 3425 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) 3426 goto out; 3427 3428 bo_node = svm_range_get_node_by_id(prange, best_loc); 3429 if (!bo_node) { 3430 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc); 3431 best_loc = 0; 3432 goto out; 3433 } 3434 3435 if (bo_node->adev->flags & AMD_IS_APU) { 3436 best_loc = 0; 3437 goto out; 3438 } 3439 3440 if (p->xnack_enabled) 3441 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); 3442 else 3443 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, 3444 MAX_GPU_INSTANCE); 3445 3446 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { 3447 pdd = kfd_process_device_from_gpuidx(p, gpuidx); 3448 if (!pdd) { 3449 pr_debug("failed to get device by idx 0x%x\n", gpuidx); 3450 continue; 3451 } 3452 3453 if (pdd->dev->adev == bo_node->adev) 3454 continue; 3455 3456 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) { 3457 best_loc = 0; 3458 break; 3459 } 3460 } 3461 3462 out: 3463 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", 3464 p->xnack_enabled, &p->svms, prange->start, prange->last, 3465 best_loc); 3466 3467 return best_loc; 3468 } 3469 3470 /* svm_range_trigger_migration - start page migration if prefetch loc changed 3471 * @mm: current process mm_struct 3472 * @prange: svm range structure 3473 * @migrated: output, true if migration is triggered 3474 * 3475 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range 3476 * from ram to vram. 3477 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range 3478 * from vram to ram. 3479 * 3480 * If GPU vm fault retry is not enabled, migration interact with MMU notifier 3481 * and restore work: 3482 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict 3483 * stops all queues, schedule restore work 3484 * 2. svm_range_restore_work wait for migration is done by 3485 * a. svm_range_validate_vram takes prange->migrate_mutex 3486 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns 3487 * 3. restore work update mappings of GPU, resume all queues. 3488 * 3489 * Context: Process context 3490 * 3491 * Return: 3492 * 0 - OK, otherwise - error code of migration 3493 */ 3494 static int 3495 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, 3496 bool *migrated) 3497 { 3498 uint32_t best_loc; 3499 int r = 0; 3500 3501 *migrated = false; 3502 best_loc = svm_range_best_prefetch_location(prange); 3503 3504 /* when best_loc is a gpu node and same as prange->actual_loc 3505 * we still need do migration as prange->actual_loc !=0 does 3506 * not mean all pages in prange are vram. hmm migrate will pick 3507 * up right pages during migration. 3508 */ 3509 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) || 3510 (best_loc == 0 && prange->actual_loc == 0)) 3511 return 0; 3512 3513 if (!best_loc) { 3514 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, 3515 KFD_MIGRATE_TRIGGER_PREFETCH, NULL); 3516 *migrated = !r; 3517 return r; 3518 } 3519 3520 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last, 3521 mm, KFD_MIGRATE_TRIGGER_PREFETCH); 3522 *migrated = !r; 3523 3524 return 0; 3525 } 3526 3527 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) 3528 { 3529 /* Dereferencing fence->svm_bo is safe here because the fence hasn't 3530 * signaled yet and we're under the protection of the fence->lock. 3531 * After the fence is signaled in svm_range_bo_release, we cannot get 3532 * here any more. 3533 * 3534 * Reference is dropped in svm_range_evict_svm_bo_worker. 3535 */ 3536 if (svm_bo_ref_unless_zero(fence->svm_bo)) { 3537 WRITE_ONCE(fence->svm_bo->evicting, 1); 3538 schedule_work(&fence->svm_bo->eviction_work); 3539 } 3540 3541 return 0; 3542 } 3543 3544 static void svm_range_evict_svm_bo_worker(struct work_struct *work) 3545 { 3546 struct svm_range_bo *svm_bo; 3547 struct mm_struct *mm; 3548 int r = 0; 3549 3550 svm_bo = container_of(work, struct svm_range_bo, eviction_work); 3551 3552 if (mmget_not_zero(svm_bo->eviction_fence->mm)) { 3553 mm = svm_bo->eviction_fence->mm; 3554 } else { 3555 svm_range_bo_unref(svm_bo); 3556 return; 3557 } 3558 3559 mmap_read_lock(mm); 3560 spin_lock(&svm_bo->list_lock); 3561 while (!list_empty(&svm_bo->range_list) && !r) { 3562 struct svm_range *prange = 3563 list_first_entry(&svm_bo->range_list, 3564 struct svm_range, svm_bo_list); 3565 int retries = 3; 3566 3567 list_del_init(&prange->svm_bo_list); 3568 spin_unlock(&svm_bo->list_lock); 3569 3570 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, 3571 prange->start, prange->last); 3572 3573 mutex_lock(&prange->migrate_mutex); 3574 do { 3575 /* migrate all vram pages in this prange to sys ram 3576 * after that prange->actual_loc should be zero 3577 */ 3578 r = svm_migrate_vram_to_ram(prange, mm, 3579 prange->start, prange->last, 3580 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL); 3581 } while (!r && prange->actual_loc && --retries); 3582 3583 if (!r && prange->actual_loc) 3584 pr_info_once("Migration failed during eviction"); 3585 3586 if (!prange->actual_loc) { 3587 mutex_lock(&prange->lock); 3588 prange->svm_bo = NULL; 3589 mutex_unlock(&prange->lock); 3590 } 3591 mutex_unlock(&prange->migrate_mutex); 3592 3593 spin_lock(&svm_bo->list_lock); 3594 } 3595 spin_unlock(&svm_bo->list_lock); 3596 mmap_read_unlock(mm); 3597 mmput(mm); 3598 3599 dma_fence_signal(&svm_bo->eviction_fence->base); 3600 3601 /* This is the last reference to svm_bo, after svm_range_vram_node_free 3602 * has been called in svm_migrate_vram_to_ram 3603 */ 3604 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); 3605 svm_range_bo_unref(svm_bo); 3606 } 3607 3608 static int 3609 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, 3610 uint64_t start, uint64_t size, uint32_t nattr, 3611 struct kfd_ioctl_svm_attribute *attrs) 3612 { 3613 struct amdkfd_process_info *process_info = p->kgd_process_info; 3614 struct list_head update_list; 3615 struct list_head insert_list; 3616 struct list_head remove_list; 3617 struct list_head remap_list; 3618 struct svm_range_list *svms; 3619 struct svm_range *prange; 3620 struct svm_range *next; 3621 bool update_mapping = false; 3622 bool flush_tlb; 3623 int r, ret = 0; 3624 3625 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", 3626 p->pasid, &p->svms, start, start + size - 1, size); 3627 3628 r = svm_range_check_attr(p, nattr, attrs); 3629 if (r) 3630 return r; 3631 3632 svms = &p->svms; 3633 3634 mutex_lock(&process_info->lock); 3635 3636 svm_range_list_lock_and_flush_work(svms, mm); 3637 3638 r = svm_range_is_valid(p, start, size); 3639 if (r) { 3640 pr_debug("invalid range r=%d\n", r); 3641 mmap_write_unlock(mm); 3642 goto out; 3643 } 3644 3645 mutex_lock(&svms->lock); 3646 3647 /* Add new range and split existing ranges as needed */ 3648 r = svm_range_add(p, start, size, nattr, attrs, &update_list, 3649 &insert_list, &remove_list, &remap_list); 3650 if (r) { 3651 mutex_unlock(&svms->lock); 3652 mmap_write_unlock(mm); 3653 goto out; 3654 } 3655 /* Apply changes as a transaction */ 3656 list_for_each_entry_safe(prange, next, &insert_list, list) { 3657 svm_range_add_to_svms(prange); 3658 svm_range_add_notifier_locked(mm, prange); 3659 } 3660 list_for_each_entry(prange, &update_list, update_list) { 3661 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); 3662 /* TODO: unmap ranges from GPU that lost access */ 3663 } 3664 list_for_each_entry_safe(prange, next, &remove_list, update_list) { 3665 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", 3666 prange->svms, prange, prange->start, 3667 prange->last); 3668 svm_range_unlink(prange); 3669 svm_range_remove_notifier(prange); 3670 svm_range_free(prange, false); 3671 } 3672 3673 mmap_write_downgrade(mm); 3674 /* Trigger migrations and revalidate and map to GPUs as needed. If 3675 * this fails we may be left with partially completed actions. There 3676 * is no clean way of rolling back to the previous state in such a 3677 * case because the rollback wouldn't be guaranteed to work either. 3678 */ 3679 list_for_each_entry(prange, &update_list, update_list) { 3680 bool migrated; 3681 3682 mutex_lock(&prange->migrate_mutex); 3683 3684 r = svm_range_trigger_migration(mm, prange, &migrated); 3685 if (r) 3686 goto out_unlock_range; 3687 3688 if (migrated && (!p->xnack_enabled || 3689 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) && 3690 prange->mapped_to_gpu) { 3691 pr_debug("restore_work will update mappings of GPUs\n"); 3692 mutex_unlock(&prange->migrate_mutex); 3693 continue; 3694 } 3695 3696 if (!migrated && !update_mapping) { 3697 mutex_unlock(&prange->migrate_mutex); 3698 continue; 3699 } 3700 3701 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; 3702 3703 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, 3704 MAX_GPU_INSTANCE, true, true, flush_tlb); 3705 if (r) 3706 pr_debug("failed %d to map svm range\n", r); 3707 3708 out_unlock_range: 3709 mutex_unlock(&prange->migrate_mutex); 3710 if (r) 3711 ret = r; 3712 } 3713 3714 list_for_each_entry(prange, &remap_list, update_list) { 3715 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n", 3716 prange, prange->start, prange->last); 3717 mutex_lock(&prange->migrate_mutex); 3718 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange, 3719 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu); 3720 if (r) 3721 pr_debug("failed %d on remap svm range\n", r); 3722 mutex_unlock(&prange->migrate_mutex); 3723 if (r) 3724 ret = r; 3725 } 3726 3727 dynamic_svm_range_dump(svms); 3728 3729 mutex_unlock(&svms->lock); 3730 mmap_read_unlock(mm); 3731 out: 3732 mutex_unlock(&process_info->lock); 3733 3734 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, 3735 &p->svms, start, start + size - 1, r); 3736 3737 return ret ? ret : r; 3738 } 3739 3740 static int 3741 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, 3742 uint64_t start, uint64_t size, uint32_t nattr, 3743 struct kfd_ioctl_svm_attribute *attrs) 3744 { 3745 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); 3746 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); 3747 bool get_preferred_loc = false; 3748 bool get_prefetch_loc = false; 3749 bool get_granularity = false; 3750 bool get_accessible = false; 3751 bool get_flags = false; 3752 uint64_t last = start + size - 1UL; 3753 uint8_t granularity = 0xff; 3754 struct interval_tree_node *node; 3755 struct svm_range_list *svms; 3756 struct svm_range *prange; 3757 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3758 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3759 uint32_t flags_and = 0xffffffff; 3760 uint32_t flags_or = 0; 3761 int gpuidx; 3762 uint32_t i; 3763 int r = 0; 3764 3765 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, 3766 start + size - 1, nattr); 3767 3768 /* Flush pending deferred work to avoid racing with deferred actions from 3769 * previous memory map changes (e.g. munmap). Concurrent memory map changes 3770 * can still race with get_attr because we don't hold the mmap lock. But that 3771 * would be a race condition in the application anyway, and undefined 3772 * behaviour is acceptable in that case. 3773 */ 3774 flush_work(&p->svms.deferred_list_work); 3775 3776 mmap_read_lock(mm); 3777 r = svm_range_is_valid(p, start, size); 3778 mmap_read_unlock(mm); 3779 if (r) { 3780 pr_debug("invalid range r=%d\n", r); 3781 return r; 3782 } 3783 3784 for (i = 0; i < nattr; i++) { 3785 switch (attrs[i].type) { 3786 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3787 get_preferred_loc = true; 3788 break; 3789 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3790 get_prefetch_loc = true; 3791 break; 3792 case KFD_IOCTL_SVM_ATTR_ACCESS: 3793 get_accessible = true; 3794 break; 3795 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3796 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3797 get_flags = true; 3798 break; 3799 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3800 get_granularity = true; 3801 break; 3802 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 3803 case KFD_IOCTL_SVM_ATTR_NO_ACCESS: 3804 fallthrough; 3805 default: 3806 pr_debug("get invalid attr type 0x%x\n", attrs[i].type); 3807 return -EINVAL; 3808 } 3809 } 3810 3811 svms = &p->svms; 3812 3813 mutex_lock(&svms->lock); 3814 3815 node = interval_tree_iter_first(&svms->objects, start, last); 3816 if (!node) { 3817 pr_debug("range attrs not found return default values\n"); 3818 svm_range_set_default_attributes(svms, &location, &prefetch_loc, 3819 &granularity, &flags_and); 3820 flags_or = flags_and; 3821 if (p->xnack_enabled) 3822 bitmap_copy(bitmap_access, svms->bitmap_supported, 3823 MAX_GPU_INSTANCE); 3824 else 3825 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); 3826 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); 3827 goto fill_values; 3828 } 3829 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); 3830 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); 3831 3832 while (node) { 3833 struct interval_tree_node *next; 3834 3835 prange = container_of(node, struct svm_range, it_node); 3836 next = interval_tree_iter_next(node, start, last); 3837 3838 if (get_preferred_loc) { 3839 if (prange->preferred_loc == 3840 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3841 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3842 location != prange->preferred_loc)) { 3843 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3844 get_preferred_loc = false; 3845 } else { 3846 location = prange->preferred_loc; 3847 } 3848 } 3849 if (get_prefetch_loc) { 3850 if (prange->prefetch_loc == 3851 KFD_IOCTL_SVM_LOCATION_UNDEFINED || 3852 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && 3853 prefetch_loc != prange->prefetch_loc)) { 3854 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; 3855 get_prefetch_loc = false; 3856 } else { 3857 prefetch_loc = prange->prefetch_loc; 3858 } 3859 } 3860 if (get_accessible) { 3861 bitmap_and(bitmap_access, bitmap_access, 3862 prange->bitmap_access, MAX_GPU_INSTANCE); 3863 bitmap_and(bitmap_aip, bitmap_aip, 3864 prange->bitmap_aip, MAX_GPU_INSTANCE); 3865 } 3866 if (get_flags) { 3867 flags_and &= prange->flags; 3868 flags_or |= prange->flags; 3869 } 3870 3871 if (get_granularity && prange->granularity < granularity) 3872 granularity = prange->granularity; 3873 3874 node = next; 3875 } 3876 fill_values: 3877 mutex_unlock(&svms->lock); 3878 3879 for (i = 0; i < nattr; i++) { 3880 switch (attrs[i].type) { 3881 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: 3882 attrs[i].value = location; 3883 break; 3884 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3885 attrs[i].value = prefetch_loc; 3886 break; 3887 case KFD_IOCTL_SVM_ATTR_ACCESS: 3888 gpuidx = kfd_process_gpuidx_from_gpuid(p, 3889 attrs[i].value); 3890 if (gpuidx < 0) { 3891 pr_debug("invalid gpuid %x\n", attrs[i].value); 3892 return -EINVAL; 3893 } 3894 if (test_bit(gpuidx, bitmap_access)) 3895 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; 3896 else if (test_bit(gpuidx, bitmap_aip)) 3897 attrs[i].type = 3898 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; 3899 else 3900 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; 3901 break; 3902 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3903 attrs[i].value = flags_and; 3904 break; 3905 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: 3906 attrs[i].value = ~flags_or; 3907 break; 3908 case KFD_IOCTL_SVM_ATTR_GRANULARITY: 3909 attrs[i].value = (uint32_t)granularity; 3910 break; 3911 } 3912 } 3913 3914 return 0; 3915 } 3916 3917 int kfd_criu_resume_svm(struct kfd_process *p) 3918 { 3919 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; 3920 int nattr_common = 4, nattr_accessibility = 1; 3921 struct criu_svm_metadata *criu_svm_md = NULL; 3922 struct svm_range_list *svms = &p->svms; 3923 struct criu_svm_metadata *next = NULL; 3924 uint32_t set_flags = 0xffffffff; 3925 int i, j, num_attrs, ret = 0; 3926 uint64_t set_attr_size; 3927 struct mm_struct *mm; 3928 3929 if (list_empty(&svms->criu_svm_metadata_list)) { 3930 pr_debug("No SVM data from CRIU restore stage 2\n"); 3931 return ret; 3932 } 3933 3934 mm = get_task_mm(p->lead_thread); 3935 if (!mm) { 3936 pr_err("failed to get mm for the target process\n"); 3937 return -ESRCH; 3938 } 3939 3940 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); 3941 3942 i = j = 0; 3943 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { 3944 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", 3945 i, criu_svm_md->data.start_addr, criu_svm_md->data.size); 3946 3947 for (j = 0; j < num_attrs; j++) { 3948 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", 3949 i, j, criu_svm_md->data.attrs[j].type, 3950 i, j, criu_svm_md->data.attrs[j].value); 3951 switch (criu_svm_md->data.attrs[j].type) { 3952 /* During Checkpoint operation, the query for 3953 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might 3954 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were 3955 * not used by the range which was checkpointed. Care 3956 * must be taken to not restore with an invalid value 3957 * otherwise the gpuidx value will be invalid and 3958 * set_attr would eventually fail so just replace those 3959 * with another dummy attribute such as 3960 * KFD_IOCTL_SVM_ATTR_SET_FLAGS. 3961 */ 3962 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: 3963 if (criu_svm_md->data.attrs[j].value == 3964 KFD_IOCTL_SVM_LOCATION_UNDEFINED) { 3965 criu_svm_md->data.attrs[j].type = 3966 KFD_IOCTL_SVM_ATTR_SET_FLAGS; 3967 criu_svm_md->data.attrs[j].value = 0; 3968 } 3969 break; 3970 case KFD_IOCTL_SVM_ATTR_SET_FLAGS: 3971 set_flags = criu_svm_md->data.attrs[j].value; 3972 break; 3973 default: 3974 break; 3975 } 3976 } 3977 3978 /* CLR_FLAGS is not available via get_attr during checkpoint but 3979 * it needs to be inserted before restoring the ranges so 3980 * allocate extra space for it before calling set_attr 3981 */ 3982 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 3983 (num_attrs + 1); 3984 set_attr_new = krealloc(set_attr, set_attr_size, 3985 GFP_KERNEL); 3986 if (!set_attr_new) { 3987 ret = -ENOMEM; 3988 goto exit; 3989 } 3990 set_attr = set_attr_new; 3991 3992 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * 3993 sizeof(struct kfd_ioctl_svm_attribute)); 3994 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; 3995 set_attr[num_attrs].value = ~set_flags; 3996 3997 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, 3998 criu_svm_md->data.size, num_attrs + 1, 3999 set_attr); 4000 if (ret) { 4001 pr_err("CRIU: failed to set range attributes\n"); 4002 goto exit; 4003 } 4004 4005 i++; 4006 } 4007 exit: 4008 kfree(set_attr); 4009 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { 4010 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", 4011 criu_svm_md->data.start_addr); 4012 kfree(criu_svm_md); 4013 } 4014 4015 mmput(mm); 4016 return ret; 4017 4018 } 4019 4020 int kfd_criu_restore_svm(struct kfd_process *p, 4021 uint8_t __user *user_priv_ptr, 4022 uint64_t *priv_data_offset, 4023 uint64_t max_priv_data_size) 4024 { 4025 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; 4026 int nattr_common = 4, nattr_accessibility = 1; 4027 struct criu_svm_metadata *criu_svm_md = NULL; 4028 struct svm_range_list *svms = &p->svms; 4029 uint32_t num_devices; 4030 int ret = 0; 4031 4032 num_devices = p->n_pdds; 4033 /* Handle one SVM range object at a time, also the number of gpus are 4034 * assumed to be same on the restore node, checking must be done while 4035 * evaluating the topology earlier 4036 */ 4037 4038 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * 4039 (nattr_common + nattr_accessibility * num_devices); 4040 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; 4041 4042 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + 4043 svm_attrs_size; 4044 4045 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); 4046 if (!criu_svm_md) { 4047 pr_err("failed to allocate memory to store svm metadata\n"); 4048 return -ENOMEM; 4049 } 4050 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { 4051 ret = -EINVAL; 4052 goto exit; 4053 } 4054 4055 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, 4056 svm_priv_data_size); 4057 if (ret) { 4058 ret = -EFAULT; 4059 goto exit; 4060 } 4061 *priv_data_offset += svm_priv_data_size; 4062 4063 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); 4064 4065 return 0; 4066 4067 4068 exit: 4069 kfree(criu_svm_md); 4070 return ret; 4071 } 4072 4073 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, 4074 uint64_t *svm_priv_data_size) 4075 { 4076 uint64_t total_size, accessibility_size, common_attr_size; 4077 int nattr_common = 4, nattr_accessibility = 1; 4078 int num_devices = p->n_pdds; 4079 struct svm_range_list *svms; 4080 struct svm_range *prange; 4081 uint32_t count = 0; 4082 4083 *svm_priv_data_size = 0; 4084 4085 svms = &p->svms; 4086 if (!svms) 4087 return -EINVAL; 4088 4089 mutex_lock(&svms->lock); 4090 list_for_each_entry(prange, &svms->list, list) { 4091 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", 4092 prange, prange->start, prange->npages, 4093 prange->start + prange->npages - 1); 4094 count++; 4095 } 4096 mutex_unlock(&svms->lock); 4097 4098 *num_svm_ranges = count; 4099 /* Only the accessbility attributes need to be queried for all the gpus 4100 * individually, remaining ones are spanned across the entire process 4101 * regardless of the various gpu nodes. Of the remaining attributes, 4102 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. 4103 * 4104 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC 4105 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC 4106 * KFD_IOCTL_SVM_ATTR_SET_FLAGS 4107 * KFD_IOCTL_SVM_ATTR_GRANULARITY 4108 * 4109 * ** ACCESSBILITY ATTRIBUTES ** 4110 * (Considered as one, type is altered during query, value is gpuid) 4111 * KFD_IOCTL_SVM_ATTR_ACCESS 4112 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE 4113 * KFD_IOCTL_SVM_ATTR_NO_ACCESS 4114 */ 4115 if (*num_svm_ranges > 0) { 4116 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 4117 nattr_common; 4118 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * 4119 nattr_accessibility * num_devices; 4120 4121 total_size = sizeof(struct kfd_criu_svm_range_priv_data) + 4122 common_attr_size + accessibility_size; 4123 4124 *svm_priv_data_size = *num_svm_ranges * total_size; 4125 } 4126 4127 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, 4128 *svm_priv_data_size); 4129 return 0; 4130 } 4131 4132 int kfd_criu_checkpoint_svm(struct kfd_process *p, 4133 uint8_t __user *user_priv_data, 4134 uint64_t *priv_data_offset) 4135 { 4136 struct kfd_criu_svm_range_priv_data *svm_priv = NULL; 4137 struct kfd_ioctl_svm_attribute *query_attr = NULL; 4138 uint64_t svm_priv_data_size, query_attr_size = 0; 4139 int index, nattr_common = 4, ret = 0; 4140 struct svm_range_list *svms; 4141 int num_devices = p->n_pdds; 4142 struct svm_range *prange; 4143 struct mm_struct *mm; 4144 4145 svms = &p->svms; 4146 if (!svms) 4147 return -EINVAL; 4148 4149 mm = get_task_mm(p->lead_thread); 4150 if (!mm) { 4151 pr_err("failed to get mm for the target process\n"); 4152 return -ESRCH; 4153 } 4154 4155 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * 4156 (nattr_common + num_devices); 4157 4158 query_attr = kzalloc(query_attr_size, GFP_KERNEL); 4159 if (!query_attr) { 4160 ret = -ENOMEM; 4161 goto exit; 4162 } 4163 4164 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; 4165 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; 4166 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; 4167 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; 4168 4169 for (index = 0; index < num_devices; index++) { 4170 struct kfd_process_device *pdd = p->pdds[index]; 4171 4172 query_attr[index + nattr_common].type = 4173 KFD_IOCTL_SVM_ATTR_ACCESS; 4174 query_attr[index + nattr_common].value = pdd->user_gpu_id; 4175 } 4176 4177 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; 4178 4179 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); 4180 if (!svm_priv) { 4181 ret = -ENOMEM; 4182 goto exit_query; 4183 } 4184 4185 index = 0; 4186 list_for_each_entry(prange, &svms->list, list) { 4187 4188 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; 4189 svm_priv->start_addr = prange->start; 4190 svm_priv->size = prange->npages; 4191 memcpy(&svm_priv->attrs, query_attr, query_attr_size); 4192 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", 4193 prange, prange->start, prange->npages, 4194 prange->start + prange->npages - 1, 4195 prange->npages * PAGE_SIZE); 4196 4197 ret = svm_range_get_attr(p, mm, svm_priv->start_addr, 4198 svm_priv->size, 4199 (nattr_common + num_devices), 4200 svm_priv->attrs); 4201 if (ret) { 4202 pr_err("CRIU: failed to obtain range attributes\n"); 4203 goto exit_priv; 4204 } 4205 4206 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, 4207 svm_priv_data_size)) { 4208 pr_err("Failed to copy svm priv to user\n"); 4209 ret = -EFAULT; 4210 goto exit_priv; 4211 } 4212 4213 *priv_data_offset += svm_priv_data_size; 4214 4215 } 4216 4217 4218 exit_priv: 4219 kfree(svm_priv); 4220 exit_query: 4221 kfree(query_attr); 4222 exit: 4223 mmput(mm); 4224 return ret; 4225 } 4226 4227 int 4228 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, 4229 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) 4230 { 4231 struct mm_struct *mm = current->mm; 4232 int r; 4233 4234 start >>= PAGE_SHIFT; 4235 size >>= PAGE_SHIFT; 4236 4237 switch (op) { 4238 case KFD_IOCTL_SVM_OP_SET_ATTR: 4239 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); 4240 break; 4241 case KFD_IOCTL_SVM_OP_GET_ATTR: 4242 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); 4243 break; 4244 default: 4245 r = EINVAL; 4246 break; 4247 } 4248 4249 return r; 4250 } 4251