xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
409 		/* We're not in the eviction worker. Signal the fence. */
410 		dma_fence_signal(&svm_bo->eviction_fence->base);
411 	dma_fence_put(&svm_bo->eviction_fence->base);
412 	amdgpu_bo_unref(&svm_bo->bo);
413 	kfree(svm_bo);
414 }
415 
416 static void svm_range_bo_wq_release(struct work_struct *work)
417 {
418 	struct svm_range_bo *svm_bo;
419 
420 	svm_bo = container_of(work, struct svm_range_bo, release_work);
421 	svm_range_bo_release(&svm_bo->kref);
422 }
423 
424 static void svm_range_bo_release_async(struct kref *kref)
425 {
426 	struct svm_range_bo *svm_bo;
427 
428 	svm_bo = container_of(kref, struct svm_range_bo, kref);
429 	pr_debug("svm_bo 0x%p\n", svm_bo);
430 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
431 	schedule_work(&svm_bo->release_work);
432 }
433 
434 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
435 {
436 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
437 }
438 
439 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
440 {
441 	if (svm_bo)
442 		kref_put(&svm_bo->kref, svm_range_bo_release);
443 }
444 
445 static bool
446 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
447 {
448 	mutex_lock(&prange->lock);
449 	if (!prange->svm_bo) {
450 		mutex_unlock(&prange->lock);
451 		return false;
452 	}
453 	if (prange->ttm_res) {
454 		/* We still have a reference, all is well */
455 		mutex_unlock(&prange->lock);
456 		return true;
457 	}
458 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
459 		/*
460 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
461 		 * range list, and return false to allocate svm_bo from destination
462 		 * node.
463 		 */
464 		if (prange->svm_bo->node != node) {
465 			mutex_unlock(&prange->lock);
466 
467 			spin_lock(&prange->svm_bo->list_lock);
468 			list_del_init(&prange->svm_bo_list);
469 			spin_unlock(&prange->svm_bo->list_lock);
470 
471 			svm_range_bo_unref(prange->svm_bo);
472 			return false;
473 		}
474 		if (READ_ONCE(prange->svm_bo->evicting)) {
475 			struct dma_fence *f;
476 			struct svm_range_bo *svm_bo;
477 			/* The BO is getting evicted,
478 			 * we need to get a new one
479 			 */
480 			mutex_unlock(&prange->lock);
481 			svm_bo = prange->svm_bo;
482 			f = dma_fence_get(&svm_bo->eviction_fence->base);
483 			svm_range_bo_unref(prange->svm_bo);
484 			/* wait for the fence to avoid long spin-loop
485 			 * at list_empty_careful
486 			 */
487 			dma_fence_wait(f, false);
488 			dma_fence_put(f);
489 		} else {
490 			/* The BO was still around and we got
491 			 * a new reference to it
492 			 */
493 			mutex_unlock(&prange->lock);
494 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
495 				 prange->svms, prange->start, prange->last);
496 
497 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
498 			return true;
499 		}
500 
501 	} else {
502 		mutex_unlock(&prange->lock);
503 	}
504 
505 	/* We need a new svm_bo. Spin-loop to wait for concurrent
506 	 * svm_range_bo_release to finish removing this range from
507 	 * its range list and set prange->svm_bo to null. After this,
508 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
509 	 */
510 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
511 		cond_resched();
512 
513 	return false;
514 }
515 
516 static struct svm_range_bo *svm_range_bo_new(void)
517 {
518 	struct svm_range_bo *svm_bo;
519 
520 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
521 	if (!svm_bo)
522 		return NULL;
523 
524 	kref_init(&svm_bo->kref);
525 	INIT_LIST_HEAD(&svm_bo->range_list);
526 	spin_lock_init(&svm_bo->list_lock);
527 
528 	return svm_bo;
529 }
530 
531 int
532 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
533 			bool clear)
534 {
535 	struct amdgpu_bo_param bp;
536 	struct svm_range_bo *svm_bo;
537 	struct amdgpu_bo_user *ubo;
538 	struct amdgpu_bo *bo;
539 	struct kfd_process *p;
540 	struct mm_struct *mm;
541 	int r;
542 
543 	p = container_of(prange->svms, struct kfd_process, svms);
544 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
545 		 prange->start, prange->last);
546 
547 	if (svm_range_validate_svm_bo(node, prange))
548 		return 0;
549 
550 	svm_bo = svm_range_bo_new();
551 	if (!svm_bo) {
552 		pr_debug("failed to alloc svm bo\n");
553 		return -ENOMEM;
554 	}
555 	mm = get_task_mm(p->lead_thread);
556 	if (!mm) {
557 		pr_debug("failed to get mm\n");
558 		kfree(svm_bo);
559 		return -ESRCH;
560 	}
561 	svm_bo->node = node;
562 	svm_bo->eviction_fence =
563 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
564 					   mm,
565 					   svm_bo);
566 	mmput(mm);
567 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
568 	svm_bo->evicting = 0;
569 	memset(&bp, 0, sizeof(bp));
570 	bp.size = prange->npages * PAGE_SIZE;
571 	bp.byte_align = PAGE_SIZE;
572 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
573 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
574 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
575 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
576 	bp.type = ttm_bo_type_device;
577 	bp.resv = NULL;
578 	if (node->xcp)
579 		bp.xcp_id_plus1 = node->xcp->id + 1;
580 
581 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
582 	if (r) {
583 		pr_debug("failed %d to create bo\n", r);
584 		goto create_bo_failed;
585 	}
586 	bo = &ubo->bo;
587 
588 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
589 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
590 		 bp.xcp_id_plus1 - 1);
591 
592 	r = amdgpu_bo_reserve(bo, true);
593 	if (r) {
594 		pr_debug("failed %d to reserve bo\n", r);
595 		goto reserve_bo_failed;
596 	}
597 
598 	if (clear) {
599 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
600 		if (r) {
601 			pr_debug("failed %d to sync bo\n", r);
602 			amdgpu_bo_unreserve(bo);
603 			goto reserve_bo_failed;
604 		}
605 	}
606 
607 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
608 	if (r) {
609 		pr_debug("failed %d to reserve bo\n", r);
610 		amdgpu_bo_unreserve(bo);
611 		goto reserve_bo_failed;
612 	}
613 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
614 
615 	amdgpu_bo_unreserve(bo);
616 
617 	svm_bo->bo = bo;
618 	prange->svm_bo = svm_bo;
619 	prange->ttm_res = bo->tbo.resource;
620 	prange->offset = 0;
621 
622 	spin_lock(&svm_bo->list_lock);
623 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
624 	spin_unlock(&svm_bo->list_lock);
625 
626 	return 0;
627 
628 reserve_bo_failed:
629 	amdgpu_bo_unref(&bo);
630 create_bo_failed:
631 	dma_fence_put(&svm_bo->eviction_fence->base);
632 	kfree(svm_bo);
633 	prange->ttm_res = NULL;
634 
635 	return r;
636 }
637 
638 void svm_range_vram_node_free(struct svm_range *prange)
639 {
640 	/* serialize prange->svm_bo unref */
641 	mutex_lock(&prange->lock);
642 	/* prange->svm_bo has not been unref */
643 	if (prange->ttm_res) {
644 		prange->ttm_res = NULL;
645 		mutex_unlock(&prange->lock);
646 		svm_range_bo_unref(prange->svm_bo);
647 	} else
648 		mutex_unlock(&prange->lock);
649 }
650 
651 struct kfd_node *
652 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
653 {
654 	struct kfd_process *p;
655 	struct kfd_process_device *pdd;
656 
657 	p = container_of(prange->svms, struct kfd_process, svms);
658 	pdd = kfd_process_device_data_by_id(p, gpu_id);
659 	if (!pdd) {
660 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
661 		return NULL;
662 	}
663 
664 	return pdd->dev;
665 }
666 
667 struct kfd_process_device *
668 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
669 {
670 	struct kfd_process *p;
671 
672 	p = container_of(prange->svms, struct kfd_process, svms);
673 
674 	return kfd_get_process_device_data(node, p);
675 }
676 
677 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
678 {
679 	struct ttm_operation_ctx ctx = { false, false };
680 
681 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
682 
683 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
684 }
685 
686 static int
687 svm_range_check_attr(struct kfd_process *p,
688 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
689 {
690 	uint32_t i;
691 
692 	for (i = 0; i < nattr; i++) {
693 		uint32_t val = attrs[i].value;
694 		int gpuidx = MAX_GPU_INSTANCE;
695 
696 		switch (attrs[i].type) {
697 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
698 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
699 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
700 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
701 			break;
702 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
703 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
704 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
705 			break;
706 		case KFD_IOCTL_SVM_ATTR_ACCESS:
707 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
708 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
709 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
710 			break;
711 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
712 			break;
713 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
714 			break;
715 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
716 			break;
717 		default:
718 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
719 			return -EINVAL;
720 		}
721 
722 		if (gpuidx < 0) {
723 			pr_debug("no GPU 0x%x found\n", val);
724 			return -EINVAL;
725 		} else if (gpuidx < MAX_GPU_INSTANCE &&
726 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
727 			pr_debug("GPU 0x%x not supported\n", val);
728 			return -EINVAL;
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 static void
736 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
737 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
738 		      bool *update_mapping)
739 {
740 	uint32_t i;
741 	int gpuidx;
742 
743 	for (i = 0; i < nattr; i++) {
744 		switch (attrs[i].type) {
745 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
746 			prange->preferred_loc = attrs[i].value;
747 			break;
748 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
749 			prange->prefetch_loc = attrs[i].value;
750 			break;
751 		case KFD_IOCTL_SVM_ATTR_ACCESS:
752 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
753 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
754 			if (!p->xnack_enabled)
755 				*update_mapping = true;
756 
757 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
758 							       attrs[i].value);
759 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
760 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
761 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
762 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
763 				bitmap_set(prange->bitmap_access, gpuidx, 1);
764 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
765 			} else {
766 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
767 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
768 			}
769 			break;
770 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
771 			*update_mapping = true;
772 			prange->flags |= attrs[i].value;
773 			break;
774 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
775 			*update_mapping = true;
776 			prange->flags &= ~attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
779 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
780 			break;
781 		default:
782 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
783 		}
784 	}
785 }
786 
787 static bool
788 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
789 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
790 {
791 	uint32_t i;
792 	int gpuidx;
793 
794 	for (i = 0; i < nattr; i++) {
795 		switch (attrs[i].type) {
796 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
797 			if (prange->preferred_loc != attrs[i].value)
798 				return false;
799 			break;
800 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
801 			/* Prefetch should always trigger a migration even
802 			 * if the value of the attribute didn't change.
803 			 */
804 			return false;
805 		case KFD_IOCTL_SVM_ATTR_ACCESS:
806 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
807 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
808 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
809 							       attrs[i].value);
810 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
811 				if (test_bit(gpuidx, prange->bitmap_access) ||
812 				    test_bit(gpuidx, prange->bitmap_aip))
813 					return false;
814 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
815 				if (!test_bit(gpuidx, prange->bitmap_access))
816 					return false;
817 			} else {
818 				if (!test_bit(gpuidx, prange->bitmap_aip))
819 					return false;
820 			}
821 			break;
822 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
823 			if ((prange->flags & attrs[i].value) != attrs[i].value)
824 				return false;
825 			break;
826 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
827 			if ((prange->flags & attrs[i].value) != 0)
828 				return false;
829 			break;
830 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
831 			if (prange->granularity != attrs[i].value)
832 				return false;
833 			break;
834 		default:
835 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
836 		}
837 	}
838 
839 	return true;
840 }
841 
842 /**
843  * svm_range_debug_dump - print all range information from svms
844  * @svms: svm range list header
845  *
846  * debug output svm range start, end, prefetch location from svms
847  * interval tree and link list
848  *
849  * Context: The caller must hold svms->lock
850  */
851 static void svm_range_debug_dump(struct svm_range_list *svms)
852 {
853 	struct interval_tree_node *node;
854 	struct svm_range *prange;
855 
856 	pr_debug("dump svms 0x%p list\n", svms);
857 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
858 
859 	list_for_each_entry(prange, &svms->list, list) {
860 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
861 			 prange, prange->start, prange->npages,
862 			 prange->start + prange->npages - 1,
863 			 prange->actual_loc);
864 	}
865 
866 	pr_debug("dump svms 0x%p interval tree\n", svms);
867 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
868 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
869 	while (node) {
870 		prange = container_of(node, struct svm_range, it_node);
871 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
872 			 prange, prange->start, prange->npages,
873 			 prange->start + prange->npages - 1,
874 			 prange->actual_loc);
875 		node = interval_tree_iter_next(node, 0, ~0ULL);
876 	}
877 }
878 
879 static void *
880 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
881 		     uint64_t offset, uint64_t *vram_pages)
882 {
883 	unsigned char *src = (unsigned char *)psrc + offset;
884 	unsigned char *dst;
885 	uint64_t i;
886 
887 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
888 	if (!dst)
889 		return NULL;
890 
891 	if (!vram_pages) {
892 		memcpy(dst, src, num_elements * size);
893 		return (void *)dst;
894 	}
895 
896 	*vram_pages = 0;
897 	for (i = 0; i < num_elements; i++) {
898 		dma_addr_t *temp;
899 		temp = (dma_addr_t *)dst + i;
900 		*temp = *((dma_addr_t *)src + i);
901 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
902 			(*vram_pages)++;
903 	}
904 
905 	return (void *)dst;
906 }
907 
908 static int
909 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
910 {
911 	int i;
912 
913 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
914 		if (!src->dma_addr[i])
915 			continue;
916 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
917 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
918 		if (!dst->dma_addr[i])
919 			return -ENOMEM;
920 	}
921 
922 	return 0;
923 }
924 
925 static int
926 svm_range_split_array(void *ppnew, void *ppold, size_t size,
927 		      uint64_t old_start, uint64_t old_n,
928 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
929 {
930 	unsigned char *new, *old, *pold;
931 	uint64_t d;
932 
933 	if (!ppold)
934 		return 0;
935 	pold = *(unsigned char **)ppold;
936 	if (!pold)
937 		return 0;
938 
939 	d = (new_start - old_start) * size;
940 	/* get dma addr array for new range and calculte its vram page number */
941 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
942 	if (!new)
943 		return -ENOMEM;
944 	d = (new_start == old_start) ? new_n * size : 0;
945 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
946 	if (!old) {
947 		kvfree(new);
948 		return -ENOMEM;
949 	}
950 	kvfree(pold);
951 	*(void **)ppold = old;
952 	*(void **)ppnew = new;
953 
954 	return 0;
955 }
956 
957 static int
958 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
959 		      uint64_t start, uint64_t last)
960 {
961 	uint64_t npages = last - start + 1;
962 	int i, r;
963 
964 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
965 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
966 					  sizeof(*old->dma_addr[i]), old->start,
967 					  npages, new->start, new->npages,
968 					  old->actual_loc ? &new->vram_pages : NULL);
969 		if (r)
970 			return r;
971 	}
972 	if (old->actual_loc)
973 		old->vram_pages -= new->vram_pages;
974 
975 	return 0;
976 }
977 
978 static int
979 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
980 		      uint64_t start, uint64_t last)
981 {
982 	uint64_t npages = last - start + 1;
983 
984 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
985 		 new->svms, new, new->start, start, last);
986 
987 	if (new->start == old->start) {
988 		new->offset = old->offset;
989 		old->offset += new->npages;
990 	} else {
991 		new->offset = old->offset + npages;
992 	}
993 
994 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
995 	new->ttm_res = old->ttm_res;
996 
997 	spin_lock(&new->svm_bo->list_lock);
998 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
999 	spin_unlock(&new->svm_bo->list_lock);
1000 
1001 	return 0;
1002 }
1003 
1004 /**
1005  * svm_range_split_adjust - split range and adjust
1006  *
1007  * @new: new range
1008  * @old: the old range
1009  * @start: the old range adjust to start address in pages
1010  * @last: the old range adjust to last address in pages
1011  *
1012  * Copy system memory dma_addr or vram ttm_res in old range to new
1013  * range from new_start up to size new->npages, the remaining old range is from
1014  * start to last
1015  *
1016  * Return:
1017  * 0 - OK, -ENOMEM - out of memory
1018  */
1019 static int
1020 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1021 		      uint64_t start, uint64_t last)
1022 {
1023 	int r;
1024 
1025 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1026 		 new->svms, new->start, old->start, old->last, start, last);
1027 
1028 	if (new->start < old->start ||
1029 	    new->last > old->last) {
1030 		WARN_ONCE(1, "invalid new range start or last\n");
1031 		return -EINVAL;
1032 	}
1033 
1034 	r = svm_range_split_pages(new, old, start, last);
1035 	if (r)
1036 		return r;
1037 
1038 	if (old->actual_loc && old->ttm_res) {
1039 		r = svm_range_split_nodes(new, old, start, last);
1040 		if (r)
1041 			return r;
1042 	}
1043 
1044 	old->npages = last - start + 1;
1045 	old->start = start;
1046 	old->last = last;
1047 	new->flags = old->flags;
1048 	new->preferred_loc = old->preferred_loc;
1049 	new->prefetch_loc = old->prefetch_loc;
1050 	new->actual_loc = old->actual_loc;
1051 	new->granularity = old->granularity;
1052 	new->mapped_to_gpu = old->mapped_to_gpu;
1053 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1054 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1055 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * svm_range_split - split a range in 2 ranges
1062  *
1063  * @prange: the svm range to split
1064  * @start: the remaining range start address in pages
1065  * @last: the remaining range last address in pages
1066  * @new: the result new range generated
1067  *
1068  * Two cases only:
1069  * case 1: if start == prange->start
1070  *         prange ==> prange[start, last]
1071  *         new range [last + 1, prange->last]
1072  *
1073  * case 2: if last == prange->last
1074  *         prange ==> prange[start, last]
1075  *         new range [prange->start, start - 1]
1076  *
1077  * Return:
1078  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1079  */
1080 static int
1081 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1082 		struct svm_range **new)
1083 {
1084 	uint64_t old_start = prange->start;
1085 	uint64_t old_last = prange->last;
1086 	struct svm_range_list *svms;
1087 	int r = 0;
1088 
1089 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1090 		 old_start, old_last, start, last);
1091 
1092 	if (old_start != start && old_last != last)
1093 		return -EINVAL;
1094 	if (start < old_start || last > old_last)
1095 		return -EINVAL;
1096 
1097 	svms = prange->svms;
1098 	if (old_start == start)
1099 		*new = svm_range_new(svms, last + 1, old_last, false);
1100 	else
1101 		*new = svm_range_new(svms, old_start, start - 1, false);
1102 	if (!*new)
1103 		return -ENOMEM;
1104 
1105 	r = svm_range_split_adjust(*new, prange, start, last);
1106 	if (r) {
1107 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1108 			 r, old_start, old_last, start, last);
1109 		svm_range_free(*new, false);
1110 		*new = NULL;
1111 	}
1112 
1113 	return r;
1114 }
1115 
1116 static int
1117 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1118 		     struct list_head *insert_list, struct list_head *remap_list)
1119 {
1120 	struct svm_range *tail = NULL;
1121 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1122 
1123 	if (!r) {
1124 		list_add(&tail->list, insert_list);
1125 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1126 			list_add(&tail->update_list, remap_list);
1127 	}
1128 	return r;
1129 }
1130 
1131 static int
1132 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1133 		     struct list_head *insert_list, struct list_head *remap_list)
1134 {
1135 	struct svm_range *head = NULL;
1136 	int r = svm_range_split(prange, new_start, prange->last, &head);
1137 
1138 	if (!r) {
1139 		list_add(&head->list, insert_list);
1140 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1141 			list_add(&head->update_list, remap_list);
1142 	}
1143 	return r;
1144 }
1145 
1146 static void
1147 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1148 		    struct svm_range *pchild, enum svm_work_list_ops op)
1149 {
1150 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1151 		 pchild, pchild->start, pchild->last, prange, op);
1152 
1153 	pchild->work_item.mm = mm;
1154 	pchild->work_item.op = op;
1155 	list_add_tail(&pchild->child_list, &prange->child_list);
1156 }
1157 
1158 static bool
1159 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1160 {
1161 	return (node_a->adev == node_b->adev ||
1162 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1163 }
1164 
1165 static uint64_t
1166 svm_range_get_pte_flags(struct kfd_node *node,
1167 			struct svm_range *prange, int domain)
1168 {
1169 	struct kfd_node *bo_node;
1170 	uint32_t flags = prange->flags;
1171 	uint32_t mapping_flags = 0;
1172 	uint64_t pte_flags;
1173 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1174 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1175 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1176 	unsigned int mtype_local;
1177 
1178 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1179 		bo_node = prange->svm_bo->node;
1180 
1181 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1182 	case IP_VERSION(9, 4, 1):
1183 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1184 			if (bo_node == node) {
1185 				mapping_flags |= coherent ?
1186 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1187 			} else {
1188 				mapping_flags |= coherent ?
1189 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1190 				if (svm_nodes_in_same_hive(node, bo_node))
1191 					snoop = true;
1192 			}
1193 		} else {
1194 			mapping_flags |= coherent ?
1195 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1196 		}
1197 		break;
1198 	case IP_VERSION(9, 4, 2):
1199 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1200 			if (bo_node == node) {
1201 				mapping_flags |= coherent ?
1202 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1203 				if (node->adev->gmc.xgmi.connected_to_cpu)
1204 					snoop = true;
1205 			} else {
1206 				mapping_flags |= coherent ?
1207 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1208 				if (svm_nodes_in_same_hive(node, bo_node))
1209 					snoop = true;
1210 			}
1211 		} else {
1212 			mapping_flags |= coherent ?
1213 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1214 		}
1215 		break;
1216 	case IP_VERSION(9, 4, 3):
1217 	case IP_VERSION(9, 4, 4):
1218 		if (ext_coherent)
1219 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1220 		else
1221 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1222 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1223 		snoop = true;
1224 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 			/* local HBM region close to partition */
1226 			if (bo_node->adev == node->adev &&
1227 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1228 				mapping_flags |= mtype_local;
1229 			/* local HBM region far from partition or remote XGMI GPU
1230 			 * with regular system scope coherence
1231 			 */
1232 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1233 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1234 			/* PCIe P2P or extended system scope coherence */
1235 			else
1236 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1237 		/* system memory accessed by the APU */
1238 		} else if (node->adev->flags & AMD_IS_APU) {
1239 			/* On NUMA systems, locality is determined per-page
1240 			 * in amdgpu_gmc_override_vm_pte_flags
1241 			 */
1242 			if (num_possible_nodes() <= 1)
1243 				mapping_flags |= mtype_local;
1244 			else
1245 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1246 		/* system memory accessed by the dGPU */
1247 		} else {
1248 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1249 		}
1250 		break;
1251 	case IP_VERSION(12, 0, 0):
1252 	case IP_VERSION(12, 0, 1):
1253 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1254 			if (bo_node != node)
1255 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1256 		} else {
1257 			mapping_flags |= coherent ?
1258 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1259 		}
1260 		break;
1261 	default:
1262 		mapping_flags |= coherent ?
1263 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1264 	}
1265 
1266 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1267 
1268 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1269 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1270 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1271 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1272 
1273 	pte_flags = AMDGPU_PTE_VALID;
1274 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1275 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1276 	if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1277 		pte_flags |= AMDGPU_PTE_IS_PTE;
1278 
1279 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1280 	return pte_flags;
1281 }
1282 
1283 static int
1284 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1285 			 uint64_t start, uint64_t last,
1286 			 struct dma_fence **fence)
1287 {
1288 	uint64_t init_pte_value = 0;
1289 
1290 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1291 
1292 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1293 				      last, init_pte_value, 0, 0, NULL, NULL,
1294 				      fence);
1295 }
1296 
1297 static int
1298 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1299 			  unsigned long last, uint32_t trigger)
1300 {
1301 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1302 	struct kfd_process_device *pdd;
1303 	struct dma_fence *fence = NULL;
1304 	struct kfd_process *p;
1305 	uint32_t gpuidx;
1306 	int r = 0;
1307 
1308 	if (!prange->mapped_to_gpu) {
1309 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1310 			 prange, prange->start, prange->last);
1311 		return 0;
1312 	}
1313 
1314 	if (prange->start == start && prange->last == last) {
1315 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1316 		prange->mapped_to_gpu = false;
1317 	}
1318 
1319 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1320 		  MAX_GPU_INSTANCE);
1321 	p = container_of(prange->svms, struct kfd_process, svms);
1322 
1323 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1324 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1325 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1326 		if (!pdd) {
1327 			pr_debug("failed to find device idx %d\n", gpuidx);
1328 			return -EINVAL;
1329 		}
1330 
1331 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1332 					     start, last, trigger);
1333 
1334 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1335 					     drm_priv_to_vm(pdd->drm_priv),
1336 					     start, last, &fence);
1337 		if (r)
1338 			break;
1339 
1340 		if (fence) {
1341 			r = dma_fence_wait(fence, false);
1342 			dma_fence_put(fence);
1343 			fence = NULL;
1344 			if (r)
1345 				break;
1346 		}
1347 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1348 	}
1349 
1350 	return r;
1351 }
1352 
1353 static int
1354 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1355 		     unsigned long offset, unsigned long npages, bool readonly,
1356 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1357 		     struct dma_fence **fence, bool flush_tlb)
1358 {
1359 	struct amdgpu_device *adev = pdd->dev->adev;
1360 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1361 	uint64_t pte_flags;
1362 	unsigned long last_start;
1363 	int last_domain;
1364 	int r = 0;
1365 	int64_t i, j;
1366 
1367 	last_start = prange->start + offset;
1368 
1369 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1370 		 last_start, last_start + npages - 1, readonly);
1371 
1372 	for (i = offset; i < offset + npages; i++) {
1373 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1374 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1375 
1376 		/* Collect all pages in the same address range and memory domain
1377 		 * that can be mapped with a single call to update mapping.
1378 		 */
1379 		if (i < offset + npages - 1 &&
1380 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1381 			continue;
1382 
1383 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1384 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1385 
1386 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1387 		if (readonly)
1388 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1389 
1390 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1391 			 prange->svms, last_start, prange->start + i,
1392 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1393 			 pte_flags);
1394 
1395 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1396 		 * different memory partition based on fpfn/lpfn, we should use
1397 		 * same vm_manager.vram_base_offset regardless memory partition.
1398 		 */
1399 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1400 					   NULL, last_start, prange->start + i,
1401 					   pte_flags,
1402 					   (last_start - prange->start) << PAGE_SHIFT,
1403 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1404 					   NULL, dma_addr, &vm->last_update);
1405 
1406 		for (j = last_start - prange->start; j <= i; j++)
1407 			dma_addr[j] |= last_domain;
1408 
1409 		if (r) {
1410 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1411 			goto out;
1412 		}
1413 		last_start = prange->start + i + 1;
1414 	}
1415 
1416 	r = amdgpu_vm_update_pdes(adev, vm, false);
1417 	if (r) {
1418 		pr_debug("failed %d to update directories 0x%lx\n", r,
1419 			 prange->start);
1420 		goto out;
1421 	}
1422 
1423 	if (fence)
1424 		*fence = dma_fence_get(vm->last_update);
1425 
1426 out:
1427 	return r;
1428 }
1429 
1430 static int
1431 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1432 		      unsigned long npages, bool readonly,
1433 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1434 {
1435 	struct kfd_process_device *pdd;
1436 	struct amdgpu_device *bo_adev = NULL;
1437 	struct kfd_process *p;
1438 	struct dma_fence *fence = NULL;
1439 	uint32_t gpuidx;
1440 	int r = 0;
1441 
1442 	if (prange->svm_bo && prange->ttm_res)
1443 		bo_adev = prange->svm_bo->node->adev;
1444 
1445 	p = container_of(prange->svms, struct kfd_process, svms);
1446 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1447 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1448 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1449 		if (!pdd) {
1450 			pr_debug("failed to find device idx %d\n", gpuidx);
1451 			return -EINVAL;
1452 		}
1453 
1454 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1455 		if (IS_ERR(pdd))
1456 			return -EINVAL;
1457 
1458 		if (bo_adev && pdd->dev->adev != bo_adev &&
1459 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1460 			pr_debug("cannot map to device idx %d\n", gpuidx);
1461 			continue;
1462 		}
1463 
1464 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1465 					 prange->dma_addr[gpuidx],
1466 					 bo_adev, wait ? &fence : NULL,
1467 					 flush_tlb);
1468 		if (r)
1469 			break;
1470 
1471 		if (fence) {
1472 			r = dma_fence_wait(fence, false);
1473 			dma_fence_put(fence);
1474 			fence = NULL;
1475 			if (r) {
1476 				pr_debug("failed %d to dma fence wait\n", r);
1477 				break;
1478 			}
1479 		}
1480 
1481 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1482 	}
1483 
1484 	return r;
1485 }
1486 
1487 struct svm_validate_context {
1488 	struct kfd_process *process;
1489 	struct svm_range *prange;
1490 	bool intr;
1491 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1492 	struct drm_exec exec;
1493 };
1494 
1495 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1496 {
1497 	struct kfd_process_device *pdd;
1498 	struct amdgpu_vm *vm;
1499 	uint32_t gpuidx;
1500 	int r;
1501 
1502 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1503 	drm_exec_until_all_locked(&ctx->exec) {
1504 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1505 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1506 			if (!pdd) {
1507 				pr_debug("failed to find device idx %d\n", gpuidx);
1508 				r = -EINVAL;
1509 				goto unreserve_out;
1510 			}
1511 			vm = drm_priv_to_vm(pdd->drm_priv);
1512 
1513 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1514 			drm_exec_retry_on_contention(&ctx->exec);
1515 			if (unlikely(r)) {
1516 				pr_debug("failed %d to reserve bo\n", r);
1517 				goto unreserve_out;
1518 			}
1519 		}
1520 	}
1521 
1522 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1523 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1524 		if (!pdd) {
1525 			pr_debug("failed to find device idx %d\n", gpuidx);
1526 			r = -EINVAL;
1527 			goto unreserve_out;
1528 		}
1529 
1530 		r = amdgpu_vm_validate(pdd->dev->adev,
1531 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1532 				       svm_range_bo_validate, NULL);
1533 		if (r) {
1534 			pr_debug("failed %d validate pt bos\n", r);
1535 			goto unreserve_out;
1536 		}
1537 	}
1538 
1539 	return 0;
1540 
1541 unreserve_out:
1542 	drm_exec_fini(&ctx->exec);
1543 	return r;
1544 }
1545 
1546 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1547 {
1548 	drm_exec_fini(&ctx->exec);
1549 }
1550 
1551 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1552 {
1553 	struct kfd_process_device *pdd;
1554 
1555 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1556 	if (!pdd)
1557 		return NULL;
1558 
1559 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1560 }
1561 
1562 /*
1563  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1564  *
1565  * To prevent concurrent destruction or change of range attributes, the
1566  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1567  * because that would block concurrent evictions and lead to deadlocks. To
1568  * serialize concurrent migrations or validations of the same range, the
1569  * prange->migrate_mutex must be held.
1570  *
1571  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1572  * eviction fence.
1573  *
1574  * The following sequence ensures race-free validation and GPU mapping:
1575  *
1576  * 1. Reserve page table (and SVM BO if range is in VRAM)
1577  * 2. hmm_range_fault to get page addresses (if system memory)
1578  * 3. DMA-map pages (if system memory)
1579  * 4-a. Take notifier lock
1580  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1581  * 4-c. Check that the range was not split or otherwise invalidated
1582  * 4-d. Update GPU page table
1583  * 4.e. Release notifier lock
1584  * 5. Release page table (and SVM BO) reservation
1585  */
1586 static int svm_range_validate_and_map(struct mm_struct *mm,
1587 				      unsigned long map_start, unsigned long map_last,
1588 				      struct svm_range *prange, int32_t gpuidx,
1589 				      bool intr, bool wait, bool flush_tlb)
1590 {
1591 	struct svm_validate_context *ctx;
1592 	unsigned long start, end, addr;
1593 	struct kfd_process *p;
1594 	void *owner;
1595 	int32_t idx;
1596 	int r = 0;
1597 
1598 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1599 	if (!ctx)
1600 		return -ENOMEM;
1601 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1602 	ctx->prange = prange;
1603 	ctx->intr = intr;
1604 
1605 	if (gpuidx < MAX_GPU_INSTANCE) {
1606 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1607 		bitmap_set(ctx->bitmap, gpuidx, 1);
1608 	} else if (ctx->process->xnack_enabled) {
1609 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1610 
1611 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1612 		 * GPU, which has ACCESS attribute to the range, create mapping
1613 		 * on that GPU.
1614 		 */
1615 		if (prange->actual_loc) {
1616 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1617 							prange->actual_loc);
1618 			if (gpuidx < 0) {
1619 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1620 					 prange->actual_loc);
1621 				r = -EINVAL;
1622 				goto free_ctx;
1623 			}
1624 			if (test_bit(gpuidx, prange->bitmap_access))
1625 				bitmap_set(ctx->bitmap, gpuidx, 1);
1626 		}
1627 
1628 		/*
1629 		 * If prange is already mapped or with always mapped flag,
1630 		 * update mapping on GPUs with ACCESS attribute
1631 		 */
1632 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1633 			if (prange->mapped_to_gpu ||
1634 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1635 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1636 		}
1637 	} else {
1638 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1639 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1640 	}
1641 
1642 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1643 		r = 0;
1644 		goto free_ctx;
1645 	}
1646 
1647 	if (prange->actual_loc && !prange->ttm_res) {
1648 		/* This should never happen. actual_loc gets set by
1649 		 * svm_migrate_ram_to_vram after allocating a BO.
1650 		 */
1651 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1652 		r = -EINVAL;
1653 		goto free_ctx;
1654 	}
1655 
1656 	r = svm_range_reserve_bos(ctx, intr);
1657 	if (r)
1658 		goto free_ctx;
1659 
1660 	p = container_of(prange->svms, struct kfd_process, svms);
1661 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1662 						MAX_GPU_INSTANCE));
1663 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1664 		if (kfd_svm_page_owner(p, idx) != owner) {
1665 			owner = NULL;
1666 			break;
1667 		}
1668 	}
1669 
1670 	start = map_start << PAGE_SHIFT;
1671 	end = (map_last + 1) << PAGE_SHIFT;
1672 	for (addr = start; !r && addr < end; ) {
1673 		struct hmm_range *hmm_range = NULL;
1674 		unsigned long map_start_vma;
1675 		unsigned long map_last_vma;
1676 		struct vm_area_struct *vma;
1677 		unsigned long next = 0;
1678 		unsigned long offset;
1679 		unsigned long npages;
1680 		bool readonly;
1681 
1682 		vma = vma_lookup(mm, addr);
1683 		if (vma) {
1684 			readonly = !(vma->vm_flags & VM_WRITE);
1685 
1686 			next = min(vma->vm_end, end);
1687 			npages = (next - addr) >> PAGE_SHIFT;
1688 			WRITE_ONCE(p->svms.faulting_task, current);
1689 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1690 						       readonly, owner, NULL,
1691 						       &hmm_range);
1692 			WRITE_ONCE(p->svms.faulting_task, NULL);
1693 			if (r)
1694 				pr_debug("failed %d to get svm range pages\n", r);
1695 		} else {
1696 			r = -EFAULT;
1697 		}
1698 
1699 		if (!r) {
1700 			offset = (addr >> PAGE_SHIFT) - prange->start;
1701 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1702 					      hmm_range->hmm_pfns);
1703 			if (r)
1704 				pr_debug("failed %d to dma map range\n", r);
1705 		}
1706 
1707 		svm_range_lock(prange);
1708 
1709 		/* Free backing memory of hmm_range if it was initialized
1710 		 * Overrride return value to TRY AGAIN only if prior returns
1711 		 * were successful
1712 		 */
1713 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1714 			pr_debug("hmm update the range, need validate again\n");
1715 			r = -EAGAIN;
1716 		}
1717 
1718 		if (!r && !list_empty(&prange->child_list)) {
1719 			pr_debug("range split by unmap in parallel, validate again\n");
1720 			r = -EAGAIN;
1721 		}
1722 
1723 		if (!r) {
1724 			map_start_vma = max(map_start, prange->start + offset);
1725 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1726 			if (map_start_vma <= map_last_vma) {
1727 				offset = map_start_vma - prange->start;
1728 				npages = map_last_vma - map_start_vma + 1;
1729 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1730 							  ctx->bitmap, wait, flush_tlb);
1731 			}
1732 		}
1733 
1734 		if (!r && next == end)
1735 			prange->mapped_to_gpu = true;
1736 
1737 		svm_range_unlock(prange);
1738 
1739 		addr = next;
1740 	}
1741 
1742 	svm_range_unreserve_bos(ctx);
1743 	if (!r)
1744 		prange->validate_timestamp = ktime_get_boottime();
1745 
1746 free_ctx:
1747 	kfree(ctx);
1748 
1749 	return r;
1750 }
1751 
1752 /**
1753  * svm_range_list_lock_and_flush_work - flush pending deferred work
1754  *
1755  * @svms: the svm range list
1756  * @mm: the mm structure
1757  *
1758  * Context: Returns with mmap write lock held, pending deferred work flushed
1759  *
1760  */
1761 void
1762 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1763 				   struct mm_struct *mm)
1764 {
1765 retry_flush_work:
1766 	flush_work(&svms->deferred_list_work);
1767 	mmap_write_lock(mm);
1768 
1769 	if (list_empty(&svms->deferred_range_list))
1770 		return;
1771 	mmap_write_unlock(mm);
1772 	pr_debug("retry flush\n");
1773 	goto retry_flush_work;
1774 }
1775 
1776 static void svm_range_restore_work(struct work_struct *work)
1777 {
1778 	struct delayed_work *dwork = to_delayed_work(work);
1779 	struct amdkfd_process_info *process_info;
1780 	struct svm_range_list *svms;
1781 	struct svm_range *prange;
1782 	struct kfd_process *p;
1783 	struct mm_struct *mm;
1784 	int evicted_ranges;
1785 	int invalid;
1786 	int r;
1787 
1788 	svms = container_of(dwork, struct svm_range_list, restore_work);
1789 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1790 	if (!evicted_ranges)
1791 		return;
1792 
1793 	pr_debug("restore svm ranges\n");
1794 
1795 	p = container_of(svms, struct kfd_process, svms);
1796 	process_info = p->kgd_process_info;
1797 
1798 	/* Keep mm reference when svm_range_validate_and_map ranges */
1799 	mm = get_task_mm(p->lead_thread);
1800 	if (!mm) {
1801 		pr_debug("svms 0x%p process mm gone\n", svms);
1802 		return;
1803 	}
1804 
1805 	mutex_lock(&process_info->lock);
1806 	svm_range_list_lock_and_flush_work(svms, mm);
1807 	mutex_lock(&svms->lock);
1808 
1809 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1810 
1811 	list_for_each_entry(prange, &svms->list, list) {
1812 		invalid = atomic_read(&prange->invalid);
1813 		if (!invalid)
1814 			continue;
1815 
1816 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1817 			 prange->svms, prange, prange->start, prange->last,
1818 			 invalid);
1819 
1820 		/*
1821 		 * If range is migrating, wait for migration is done.
1822 		 */
1823 		mutex_lock(&prange->migrate_mutex);
1824 
1825 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1826 					       MAX_GPU_INSTANCE, false, true, false);
1827 		if (r)
1828 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1829 				 prange->start);
1830 
1831 		mutex_unlock(&prange->migrate_mutex);
1832 		if (r)
1833 			goto out_reschedule;
1834 
1835 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1836 			goto out_reschedule;
1837 	}
1838 
1839 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1840 	    evicted_ranges)
1841 		goto out_reschedule;
1842 
1843 	evicted_ranges = 0;
1844 
1845 	r = kgd2kfd_resume_mm(mm);
1846 	if (r) {
1847 		/* No recovery from this failure. Probably the CP is
1848 		 * hanging. No point trying again.
1849 		 */
1850 		pr_debug("failed %d to resume KFD\n", r);
1851 	}
1852 
1853 	pr_debug("restore svm ranges successfully\n");
1854 
1855 out_reschedule:
1856 	mutex_unlock(&svms->lock);
1857 	mmap_write_unlock(mm);
1858 	mutex_unlock(&process_info->lock);
1859 
1860 	/* If validation failed, reschedule another attempt */
1861 	if (evicted_ranges) {
1862 		pr_debug("reschedule to restore svm range\n");
1863 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1864 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1865 
1866 		kfd_smi_event_queue_restore_rescheduled(mm);
1867 	}
1868 	mmput(mm);
1869 }
1870 
1871 /**
1872  * svm_range_evict - evict svm range
1873  * @prange: svm range structure
1874  * @mm: current process mm_struct
1875  * @start: starting process queue number
1876  * @last: last process queue number
1877  * @event: mmu notifier event when range is evicted or migrated
1878  *
1879  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1880  * return to let CPU evict the buffer and proceed CPU pagetable update.
1881  *
1882  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1883  * If invalidation happens while restore work is running, restore work will
1884  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1885  * the queues.
1886  */
1887 static int
1888 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1889 		unsigned long start, unsigned long last,
1890 		enum mmu_notifier_event event)
1891 {
1892 	struct svm_range_list *svms = prange->svms;
1893 	struct svm_range *pchild;
1894 	struct kfd_process *p;
1895 	int r = 0;
1896 
1897 	p = container_of(svms, struct kfd_process, svms);
1898 
1899 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1900 		 svms, prange->start, prange->last, start, last);
1901 
1902 	if (!p->xnack_enabled ||
1903 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1904 		int evicted_ranges;
1905 		bool mapped = prange->mapped_to_gpu;
1906 
1907 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1908 			if (!pchild->mapped_to_gpu)
1909 				continue;
1910 			mapped = true;
1911 			mutex_lock_nested(&pchild->lock, 1);
1912 			if (pchild->start <= last && pchild->last >= start) {
1913 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1914 					 pchild->start, pchild->last);
1915 				atomic_inc(&pchild->invalid);
1916 			}
1917 			mutex_unlock(&pchild->lock);
1918 		}
1919 
1920 		if (!mapped)
1921 			return r;
1922 
1923 		if (prange->start <= last && prange->last >= start)
1924 			atomic_inc(&prange->invalid);
1925 
1926 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1927 		if (evicted_ranges != 1)
1928 			return r;
1929 
1930 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1931 			 prange->svms, prange->start, prange->last);
1932 
1933 		/* First eviction, stop the queues */
1934 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1935 		if (r)
1936 			pr_debug("failed to quiesce KFD\n");
1937 
1938 		pr_debug("schedule to restore svm %p ranges\n", svms);
1939 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1940 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1941 	} else {
1942 		unsigned long s, l;
1943 		uint32_t trigger;
1944 
1945 		if (event == MMU_NOTIFY_MIGRATE)
1946 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1947 		else
1948 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1949 
1950 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1951 			 prange->svms, start, last);
1952 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1953 			mutex_lock_nested(&pchild->lock, 1);
1954 			s = max(start, pchild->start);
1955 			l = min(last, pchild->last);
1956 			if (l >= s)
1957 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1958 			mutex_unlock(&pchild->lock);
1959 		}
1960 		s = max(start, prange->start);
1961 		l = min(last, prange->last);
1962 		if (l >= s)
1963 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1964 	}
1965 
1966 	return r;
1967 }
1968 
1969 static struct svm_range *svm_range_clone(struct svm_range *old)
1970 {
1971 	struct svm_range *new;
1972 
1973 	new = svm_range_new(old->svms, old->start, old->last, false);
1974 	if (!new)
1975 		return NULL;
1976 	if (svm_range_copy_dma_addrs(new, old)) {
1977 		svm_range_free(new, false);
1978 		return NULL;
1979 	}
1980 	if (old->svm_bo) {
1981 		new->ttm_res = old->ttm_res;
1982 		new->offset = old->offset;
1983 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1984 		spin_lock(&new->svm_bo->list_lock);
1985 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1986 		spin_unlock(&new->svm_bo->list_lock);
1987 	}
1988 	new->flags = old->flags;
1989 	new->preferred_loc = old->preferred_loc;
1990 	new->prefetch_loc = old->prefetch_loc;
1991 	new->actual_loc = old->actual_loc;
1992 	new->granularity = old->granularity;
1993 	new->mapped_to_gpu = old->mapped_to_gpu;
1994 	new->vram_pages = old->vram_pages;
1995 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1996 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1997 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1998 
1999 	return new;
2000 }
2001 
2002 void svm_range_set_max_pages(struct amdgpu_device *adev)
2003 {
2004 	uint64_t max_pages;
2005 	uint64_t pages, _pages;
2006 	uint64_t min_pages = 0;
2007 	int i, id;
2008 
2009 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2010 		if (adev->kfd.dev->nodes[i]->xcp)
2011 			id = adev->kfd.dev->nodes[i]->xcp->id;
2012 		else
2013 			id = -1;
2014 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2015 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2016 		pages = rounddown_pow_of_two(pages);
2017 		min_pages = min_not_zero(min_pages, pages);
2018 	}
2019 
2020 	do {
2021 		max_pages = READ_ONCE(max_svm_range_pages);
2022 		_pages = min_not_zero(max_pages, min_pages);
2023 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2024 }
2025 
2026 static int
2027 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2028 		    uint64_t max_pages, struct list_head *insert_list,
2029 		    struct list_head *update_list)
2030 {
2031 	struct svm_range *prange;
2032 	uint64_t l;
2033 
2034 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2035 		 max_pages, start, last);
2036 
2037 	while (last >= start) {
2038 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2039 
2040 		prange = svm_range_new(svms, start, l, true);
2041 		if (!prange)
2042 			return -ENOMEM;
2043 		list_add(&prange->list, insert_list);
2044 		list_add(&prange->update_list, update_list);
2045 
2046 		start = l + 1;
2047 	}
2048 	return 0;
2049 }
2050 
2051 /**
2052  * svm_range_add - add svm range and handle overlap
2053  * @p: the range add to this process svms
2054  * @start: page size aligned
2055  * @size: page size aligned
2056  * @nattr: number of attributes
2057  * @attrs: array of attributes
2058  * @update_list: output, the ranges need validate and update GPU mapping
2059  * @insert_list: output, the ranges need insert to svms
2060  * @remove_list: output, the ranges are replaced and need remove from svms
2061  * @remap_list: output, remap unaligned svm ranges
2062  *
2063  * Check if the virtual address range has overlap with any existing ranges,
2064  * split partly overlapping ranges and add new ranges in the gaps. All changes
2065  * should be applied to the range_list and interval tree transactionally. If
2066  * any range split or allocation fails, the entire update fails. Therefore any
2067  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2068  * unchanged.
2069  *
2070  * If the transaction succeeds, the caller can update and insert clones and
2071  * new ranges, then free the originals.
2072  *
2073  * Otherwise the caller can free the clones and new ranges, while the old
2074  * svm_ranges remain unchanged.
2075  *
2076  * Context: Process context, caller must hold svms->lock
2077  *
2078  * Return:
2079  * 0 - OK, otherwise error code
2080  */
2081 static int
2082 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2083 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2084 	      struct list_head *update_list, struct list_head *insert_list,
2085 	      struct list_head *remove_list, struct list_head *remap_list)
2086 {
2087 	unsigned long last = start + size - 1UL;
2088 	struct svm_range_list *svms = &p->svms;
2089 	struct interval_tree_node *node;
2090 	struct svm_range *prange;
2091 	struct svm_range *tmp;
2092 	struct list_head new_list;
2093 	int r = 0;
2094 
2095 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2096 
2097 	INIT_LIST_HEAD(update_list);
2098 	INIT_LIST_HEAD(insert_list);
2099 	INIT_LIST_HEAD(remove_list);
2100 	INIT_LIST_HEAD(&new_list);
2101 	INIT_LIST_HEAD(remap_list);
2102 
2103 	node = interval_tree_iter_first(&svms->objects, start, last);
2104 	while (node) {
2105 		struct interval_tree_node *next;
2106 		unsigned long next_start;
2107 
2108 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2109 			 node->last);
2110 
2111 		prange = container_of(node, struct svm_range, it_node);
2112 		next = interval_tree_iter_next(node, start, last);
2113 		next_start = min(node->last, last) + 1;
2114 
2115 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2116 		    prange->mapped_to_gpu) {
2117 			/* nothing to do */
2118 		} else if (node->start < start || node->last > last) {
2119 			/* node intersects the update range and its attributes
2120 			 * will change. Clone and split it, apply updates only
2121 			 * to the overlapping part
2122 			 */
2123 			struct svm_range *old = prange;
2124 
2125 			prange = svm_range_clone(old);
2126 			if (!prange) {
2127 				r = -ENOMEM;
2128 				goto out;
2129 			}
2130 
2131 			list_add(&old->update_list, remove_list);
2132 			list_add(&prange->list, insert_list);
2133 			list_add(&prange->update_list, update_list);
2134 
2135 			if (node->start < start) {
2136 				pr_debug("change old range start\n");
2137 				r = svm_range_split_head(prange, start,
2138 							 insert_list, remap_list);
2139 				if (r)
2140 					goto out;
2141 			}
2142 			if (node->last > last) {
2143 				pr_debug("change old range last\n");
2144 				r = svm_range_split_tail(prange, last,
2145 							 insert_list, remap_list);
2146 				if (r)
2147 					goto out;
2148 			}
2149 		} else {
2150 			/* The node is contained within start..last,
2151 			 * just update it
2152 			 */
2153 			list_add(&prange->update_list, update_list);
2154 		}
2155 
2156 		/* insert a new node if needed */
2157 		if (node->start > start) {
2158 			r = svm_range_split_new(svms, start, node->start - 1,
2159 						READ_ONCE(max_svm_range_pages),
2160 						&new_list, update_list);
2161 			if (r)
2162 				goto out;
2163 		}
2164 
2165 		node = next;
2166 		start = next_start;
2167 	}
2168 
2169 	/* add a final range at the end if needed */
2170 	if (start <= last)
2171 		r = svm_range_split_new(svms, start, last,
2172 					READ_ONCE(max_svm_range_pages),
2173 					&new_list, update_list);
2174 
2175 out:
2176 	if (r) {
2177 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2178 			svm_range_free(prange, false);
2179 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2180 			svm_range_free(prange, true);
2181 	} else {
2182 		list_splice(&new_list, insert_list);
2183 	}
2184 
2185 	return r;
2186 }
2187 
2188 static void
2189 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2190 					    struct svm_range *prange)
2191 {
2192 	unsigned long start;
2193 	unsigned long last;
2194 
2195 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2196 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2197 
2198 	if (prange->start == start && prange->last == last)
2199 		return;
2200 
2201 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2202 		  prange->svms, prange, start, last, prange->start,
2203 		  prange->last);
2204 
2205 	if (start != 0 && last != 0) {
2206 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2207 		svm_range_remove_notifier(prange);
2208 	}
2209 	prange->it_node.start = prange->start;
2210 	prange->it_node.last = prange->last;
2211 
2212 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2213 	svm_range_add_notifier_locked(mm, prange);
2214 }
2215 
2216 static void
2217 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2218 			 struct mm_struct *mm)
2219 {
2220 	switch (prange->work_item.op) {
2221 	case SVM_OP_NULL:
2222 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2223 			 svms, prange, prange->start, prange->last);
2224 		break;
2225 	case SVM_OP_UNMAP_RANGE:
2226 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2227 			 svms, prange, prange->start, prange->last);
2228 		svm_range_unlink(prange);
2229 		svm_range_remove_notifier(prange);
2230 		svm_range_free(prange, true);
2231 		break;
2232 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2233 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2234 			 svms, prange, prange->start, prange->last);
2235 		svm_range_update_notifier_and_interval_tree(mm, prange);
2236 		break;
2237 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2238 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2239 			 svms, prange, prange->start, prange->last);
2240 		svm_range_update_notifier_and_interval_tree(mm, prange);
2241 		/* TODO: implement deferred validation and mapping */
2242 		break;
2243 	case SVM_OP_ADD_RANGE:
2244 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2245 			 prange->start, prange->last);
2246 		svm_range_add_to_svms(prange);
2247 		svm_range_add_notifier_locked(mm, prange);
2248 		break;
2249 	case SVM_OP_ADD_RANGE_AND_MAP:
2250 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2251 			 prange, prange->start, prange->last);
2252 		svm_range_add_to_svms(prange);
2253 		svm_range_add_notifier_locked(mm, prange);
2254 		/* TODO: implement deferred validation and mapping */
2255 		break;
2256 	default:
2257 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2258 			 prange->work_item.op);
2259 	}
2260 }
2261 
2262 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2263 {
2264 	struct kfd_process_device *pdd;
2265 	struct kfd_process *p;
2266 	uint32_t i;
2267 
2268 	p = container_of(svms, struct kfd_process, svms);
2269 
2270 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2271 		pdd = p->pdds[i];
2272 		if (!pdd)
2273 			continue;
2274 
2275 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2276 
2277 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2278 				pdd->dev->adev->irq.retry_cam_enabled ?
2279 				&pdd->dev->adev->irq.ih :
2280 				&pdd->dev->adev->irq.ih1);
2281 
2282 		if (pdd->dev->adev->irq.retry_cam_enabled)
2283 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2284 				&pdd->dev->adev->irq.ih_soft);
2285 
2286 
2287 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2288 	}
2289 }
2290 
2291 static void svm_range_deferred_list_work(struct work_struct *work)
2292 {
2293 	struct svm_range_list *svms;
2294 	struct svm_range *prange;
2295 	struct mm_struct *mm;
2296 
2297 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2298 	pr_debug("enter svms 0x%p\n", svms);
2299 
2300 	spin_lock(&svms->deferred_list_lock);
2301 	while (!list_empty(&svms->deferred_range_list)) {
2302 		prange = list_first_entry(&svms->deferred_range_list,
2303 					  struct svm_range, deferred_list);
2304 		spin_unlock(&svms->deferred_list_lock);
2305 
2306 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2307 			 prange->start, prange->last, prange->work_item.op);
2308 
2309 		mm = prange->work_item.mm;
2310 
2311 		mmap_write_lock(mm);
2312 
2313 		/* Remove from deferred_list must be inside mmap write lock, for
2314 		 * two race cases:
2315 		 * 1. unmap_from_cpu may change work_item.op and add the range
2316 		 *    to deferred_list again, cause use after free bug.
2317 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2318 		 *    lock and continue because deferred_list is empty, but
2319 		 *    deferred_list work is actually waiting for mmap lock.
2320 		 */
2321 		spin_lock(&svms->deferred_list_lock);
2322 		list_del_init(&prange->deferred_list);
2323 		spin_unlock(&svms->deferred_list_lock);
2324 
2325 		mutex_lock(&svms->lock);
2326 		mutex_lock(&prange->migrate_mutex);
2327 		while (!list_empty(&prange->child_list)) {
2328 			struct svm_range *pchild;
2329 
2330 			pchild = list_first_entry(&prange->child_list,
2331 						struct svm_range, child_list);
2332 			pr_debug("child prange 0x%p op %d\n", pchild,
2333 				 pchild->work_item.op);
2334 			list_del_init(&pchild->child_list);
2335 			svm_range_handle_list_op(svms, pchild, mm);
2336 		}
2337 		mutex_unlock(&prange->migrate_mutex);
2338 
2339 		svm_range_handle_list_op(svms, prange, mm);
2340 		mutex_unlock(&svms->lock);
2341 		mmap_write_unlock(mm);
2342 
2343 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2344 		 * last mm refcount, schedule release work to avoid circular locking
2345 		 */
2346 		mmput_async(mm);
2347 
2348 		spin_lock(&svms->deferred_list_lock);
2349 	}
2350 	spin_unlock(&svms->deferred_list_lock);
2351 	pr_debug("exit svms 0x%p\n", svms);
2352 }
2353 
2354 void
2355 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2356 			struct mm_struct *mm, enum svm_work_list_ops op)
2357 {
2358 	spin_lock(&svms->deferred_list_lock);
2359 	/* if prange is on the deferred list */
2360 	if (!list_empty(&prange->deferred_list)) {
2361 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2362 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2363 		if (op != SVM_OP_NULL &&
2364 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2365 			prange->work_item.op = op;
2366 	} else {
2367 		prange->work_item.op = op;
2368 
2369 		/* Pairs with mmput in deferred_list_work */
2370 		mmget(mm);
2371 		prange->work_item.mm = mm;
2372 		list_add_tail(&prange->deferred_list,
2373 			      &prange->svms->deferred_range_list);
2374 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2375 			 prange, prange->start, prange->last, op);
2376 	}
2377 	spin_unlock(&svms->deferred_list_lock);
2378 }
2379 
2380 void schedule_deferred_list_work(struct svm_range_list *svms)
2381 {
2382 	spin_lock(&svms->deferred_list_lock);
2383 	if (!list_empty(&svms->deferred_range_list))
2384 		schedule_work(&svms->deferred_list_work);
2385 	spin_unlock(&svms->deferred_list_lock);
2386 }
2387 
2388 static void
2389 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2390 		      struct svm_range *prange, unsigned long start,
2391 		      unsigned long last)
2392 {
2393 	struct svm_range *head;
2394 	struct svm_range *tail;
2395 
2396 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2397 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2398 			 prange->start, prange->last);
2399 		return;
2400 	}
2401 	if (start > prange->last || last < prange->start)
2402 		return;
2403 
2404 	head = tail = prange;
2405 	if (start > prange->start)
2406 		svm_range_split(prange, prange->start, start - 1, &tail);
2407 	if (last < tail->last)
2408 		svm_range_split(tail, last + 1, tail->last, &head);
2409 
2410 	if (head != prange && tail != prange) {
2411 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2412 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2413 	} else if (tail != prange) {
2414 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2415 	} else if (head != prange) {
2416 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2417 	} else if (parent != prange) {
2418 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2419 	}
2420 }
2421 
2422 static void
2423 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2424 			 unsigned long start, unsigned long last)
2425 {
2426 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2427 	struct svm_range_list *svms;
2428 	struct svm_range *pchild;
2429 	struct kfd_process *p;
2430 	unsigned long s, l;
2431 	bool unmap_parent;
2432 	uint32_t i;
2433 
2434 	if (atomic_read(&prange->queue_refcount)) {
2435 		int r;
2436 
2437 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2438 			prange->start << PAGE_SHIFT);
2439 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2440 		if (r)
2441 			pr_debug("failed %d to quiesce KFD queues\n", r);
2442 	}
2443 
2444 	p = kfd_lookup_process_by_mm(mm);
2445 	if (!p)
2446 		return;
2447 	svms = &p->svms;
2448 
2449 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2450 		 prange, prange->start, prange->last, start, last);
2451 
2452 	/* calculate time stamps that are used to decide which page faults need be
2453 	 * dropped or handled before unmap pages from gpu vm
2454 	 */
2455 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2456 		struct kfd_process_device *pdd;
2457 		struct amdgpu_device *adev;
2458 		struct amdgpu_ih_ring *ih;
2459 		uint32_t checkpoint_wptr;
2460 
2461 		pdd = p->pdds[i];
2462 		if (!pdd)
2463 			continue;
2464 
2465 		adev = pdd->dev->adev;
2466 
2467 		/* Check and drain ih1 ring if cam not available */
2468 		if (adev->irq.ih1.ring_size) {
2469 			ih = &adev->irq.ih1;
2470 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2471 			if (ih->rptr != checkpoint_wptr) {
2472 				svms->checkpoint_ts[i] =
2473 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2474 				continue;
2475 			}
2476 		}
2477 
2478 		/* check if dev->irq.ih_soft is not empty */
2479 		ih = &adev->irq.ih_soft;
2480 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2481 		if (ih->rptr != checkpoint_wptr)
2482 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2483 	}
2484 
2485 	unmap_parent = start <= prange->start && last >= prange->last;
2486 
2487 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2488 		mutex_lock_nested(&pchild->lock, 1);
2489 		s = max(start, pchild->start);
2490 		l = min(last, pchild->last);
2491 		if (l >= s)
2492 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2493 		svm_range_unmap_split(mm, prange, pchild, start, last);
2494 		mutex_unlock(&pchild->lock);
2495 	}
2496 	s = max(start, prange->start);
2497 	l = min(last, prange->last);
2498 	if (l >= s)
2499 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2500 	svm_range_unmap_split(mm, prange, prange, start, last);
2501 
2502 	if (unmap_parent)
2503 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2504 	else
2505 		svm_range_add_list_work(svms, prange, mm,
2506 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2507 	schedule_deferred_list_work(svms);
2508 
2509 	kfd_unref_process(p);
2510 }
2511 
2512 /**
2513  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2514  * @mni: mmu_interval_notifier struct
2515  * @range: mmu_notifier_range struct
2516  * @cur_seq: value to pass to mmu_interval_set_seq()
2517  *
2518  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2519  * is from migration, or CPU page invalidation callback.
2520  *
2521  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2522  * work thread, and split prange if only part of prange is unmapped.
2523  *
2524  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2525  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2526  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2527  * update GPU mapping to recover.
2528  *
2529  * Context: mmap lock, notifier_invalidate_start lock are held
2530  *          for invalidate event, prange lock is held if this is from migration
2531  */
2532 static bool
2533 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2534 				    const struct mmu_notifier_range *range,
2535 				    unsigned long cur_seq)
2536 {
2537 	struct svm_range *prange;
2538 	unsigned long start;
2539 	unsigned long last;
2540 
2541 	if (range->event == MMU_NOTIFY_RELEASE)
2542 		return true;
2543 	if (!mmget_not_zero(mni->mm))
2544 		return true;
2545 
2546 	start = mni->interval_tree.start;
2547 	last = mni->interval_tree.last;
2548 	start = max(start, range->start) >> PAGE_SHIFT;
2549 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2550 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2551 		 start, last, range->start >> PAGE_SHIFT,
2552 		 (range->end - 1) >> PAGE_SHIFT,
2553 		 mni->interval_tree.start >> PAGE_SHIFT,
2554 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2555 
2556 	prange = container_of(mni, struct svm_range, notifier);
2557 
2558 	svm_range_lock(prange);
2559 	mmu_interval_set_seq(mni, cur_seq);
2560 
2561 	switch (range->event) {
2562 	case MMU_NOTIFY_UNMAP:
2563 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2564 		break;
2565 	default:
2566 		svm_range_evict(prange, mni->mm, start, last, range->event);
2567 		break;
2568 	}
2569 
2570 	svm_range_unlock(prange);
2571 	mmput(mni->mm);
2572 
2573 	return true;
2574 }
2575 
2576 /**
2577  * svm_range_from_addr - find svm range from fault address
2578  * @svms: svm range list header
2579  * @addr: address to search range interval tree, in pages
2580  * @parent: parent range if range is on child list
2581  *
2582  * Context: The caller must hold svms->lock
2583  *
2584  * Return: the svm_range found or NULL
2585  */
2586 struct svm_range *
2587 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2588 		    struct svm_range **parent)
2589 {
2590 	struct interval_tree_node *node;
2591 	struct svm_range *prange;
2592 	struct svm_range *pchild;
2593 
2594 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2595 	if (!node)
2596 		return NULL;
2597 
2598 	prange = container_of(node, struct svm_range, it_node);
2599 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2600 		 addr, prange->start, prange->last, node->start, node->last);
2601 
2602 	if (addr >= prange->start && addr <= prange->last) {
2603 		if (parent)
2604 			*parent = prange;
2605 		return prange;
2606 	}
2607 	list_for_each_entry(pchild, &prange->child_list, child_list)
2608 		if (addr >= pchild->start && addr <= pchild->last) {
2609 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2610 				 addr, pchild->start, pchild->last);
2611 			if (parent)
2612 				*parent = prange;
2613 			return pchild;
2614 		}
2615 
2616 	return NULL;
2617 }
2618 
2619 /* svm_range_best_restore_location - decide the best fault restore location
2620  * @prange: svm range structure
2621  * @adev: the GPU on which vm fault happened
2622  *
2623  * This is only called when xnack is on, to decide the best location to restore
2624  * the range mapping after GPU vm fault. Caller uses the best location to do
2625  * migration if actual loc is not best location, then update GPU page table
2626  * mapping to the best location.
2627  *
2628  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2629  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2630  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2631  *    if range actual loc is cpu, best_loc is cpu
2632  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2633  *    range actual loc.
2634  * Otherwise, GPU no access, best_loc is -1.
2635  *
2636  * Return:
2637  * -1 means vm fault GPU no access
2638  * 0 for CPU or GPU id
2639  */
2640 static int32_t
2641 svm_range_best_restore_location(struct svm_range *prange,
2642 				struct kfd_node *node,
2643 				int32_t *gpuidx)
2644 {
2645 	struct kfd_node *bo_node, *preferred_node;
2646 	struct kfd_process *p;
2647 	uint32_t gpuid;
2648 	int r;
2649 
2650 	p = container_of(prange->svms, struct kfd_process, svms);
2651 
2652 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2653 	if (r < 0) {
2654 		pr_debug("failed to get gpuid from kgd\n");
2655 		return -1;
2656 	}
2657 
2658 	if (node->adev->flags & AMD_IS_APU)
2659 		return 0;
2660 
2661 	if (prange->preferred_loc == gpuid ||
2662 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2663 		return prange->preferred_loc;
2664 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2665 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2666 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2667 			return prange->preferred_loc;
2668 		/* fall through */
2669 	}
2670 
2671 	if (test_bit(*gpuidx, prange->bitmap_access))
2672 		return gpuid;
2673 
2674 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2675 		if (!prange->actual_loc)
2676 			return 0;
2677 
2678 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2679 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2680 			return prange->actual_loc;
2681 		else
2682 			return 0;
2683 	}
2684 
2685 	return -1;
2686 }
2687 
2688 static int
2689 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2690 			       unsigned long *start, unsigned long *last,
2691 			       bool *is_heap_stack)
2692 {
2693 	struct vm_area_struct *vma;
2694 	struct interval_tree_node *node;
2695 	struct rb_node *rb_node;
2696 	unsigned long start_limit, end_limit;
2697 
2698 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2699 	if (!vma) {
2700 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2701 		return -EFAULT;
2702 	}
2703 
2704 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2705 
2706 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2707 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2708 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2709 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2710 
2711 	/* First range that starts after the fault address */
2712 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2713 	if (node) {
2714 		end_limit = min(end_limit, node->start);
2715 		/* Last range that ends before the fault address */
2716 		rb_node = rb_prev(&node->rb);
2717 	} else {
2718 		/* Last range must end before addr because
2719 		 * there was no range after addr
2720 		 */
2721 		rb_node = rb_last(&p->svms.objects.rb_root);
2722 	}
2723 	if (rb_node) {
2724 		node = container_of(rb_node, struct interval_tree_node, rb);
2725 		if (node->last >= addr) {
2726 			WARN(1, "Overlap with prev node and page fault addr\n");
2727 			return -EFAULT;
2728 		}
2729 		start_limit = max(start_limit, node->last + 1);
2730 	}
2731 
2732 	*start = start_limit;
2733 	*last = end_limit - 1;
2734 
2735 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2736 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2737 		 *start, *last, *is_heap_stack);
2738 
2739 	return 0;
2740 }
2741 
2742 static int
2743 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2744 			   uint64_t *bo_s, uint64_t *bo_l)
2745 {
2746 	struct amdgpu_bo_va_mapping *mapping;
2747 	struct interval_tree_node *node;
2748 	struct amdgpu_bo *bo = NULL;
2749 	unsigned long userptr;
2750 	uint32_t i;
2751 	int r;
2752 
2753 	for (i = 0; i < p->n_pdds; i++) {
2754 		struct amdgpu_vm *vm;
2755 
2756 		if (!p->pdds[i]->drm_priv)
2757 			continue;
2758 
2759 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2760 		r = amdgpu_bo_reserve(vm->root.bo, false);
2761 		if (r)
2762 			return r;
2763 
2764 		/* Check userptr by searching entire vm->va interval tree */
2765 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2766 		while (node) {
2767 			mapping = container_of((struct rb_node *)node,
2768 					       struct amdgpu_bo_va_mapping, rb);
2769 			bo = mapping->bo_va->base.bo;
2770 
2771 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2772 							 start << PAGE_SHIFT,
2773 							 last << PAGE_SHIFT,
2774 							 &userptr)) {
2775 				node = interval_tree_iter_next(node, 0, ~0ULL);
2776 				continue;
2777 			}
2778 
2779 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2780 				 start, last);
2781 			if (bo_s && bo_l) {
2782 				*bo_s = userptr >> PAGE_SHIFT;
2783 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2784 			}
2785 			amdgpu_bo_unreserve(vm->root.bo);
2786 			return -EADDRINUSE;
2787 		}
2788 		amdgpu_bo_unreserve(vm->root.bo);
2789 	}
2790 	return 0;
2791 }
2792 
2793 static struct
2794 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2795 						struct kfd_process *p,
2796 						struct mm_struct *mm,
2797 						int64_t addr)
2798 {
2799 	struct svm_range *prange = NULL;
2800 	unsigned long start, last;
2801 	uint32_t gpuid, gpuidx;
2802 	bool is_heap_stack;
2803 	uint64_t bo_s = 0;
2804 	uint64_t bo_l = 0;
2805 	int r;
2806 
2807 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2808 					   &is_heap_stack))
2809 		return NULL;
2810 
2811 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2812 	if (r != -EADDRINUSE)
2813 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2814 
2815 	if (r == -EADDRINUSE) {
2816 		if (addr >= bo_s && addr <= bo_l)
2817 			return NULL;
2818 
2819 		/* Create one page svm range if 2MB range overlapping */
2820 		start = addr;
2821 		last = addr;
2822 	}
2823 
2824 	prange = svm_range_new(&p->svms, start, last, true);
2825 	if (!prange) {
2826 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2827 		return NULL;
2828 	}
2829 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2830 		pr_debug("failed to get gpuid from kgd\n");
2831 		svm_range_free(prange, true);
2832 		return NULL;
2833 	}
2834 
2835 	if (is_heap_stack)
2836 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2837 
2838 	svm_range_add_to_svms(prange);
2839 	svm_range_add_notifier_locked(mm, prange);
2840 
2841 	return prange;
2842 }
2843 
2844 /* svm_range_skip_recover - decide if prange can be recovered
2845  * @prange: svm range structure
2846  *
2847  * GPU vm retry fault handle skip recover the range for cases:
2848  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2849  *    deferred list work will drain the stale fault before free the prange.
2850  * 2. prange is on deferred list to add interval notifier after split, or
2851  * 3. prange is child range, it is split from parent prange, recover later
2852  *    after interval notifier is added.
2853  *
2854  * Return: true to skip recover, false to recover
2855  */
2856 static bool svm_range_skip_recover(struct svm_range *prange)
2857 {
2858 	struct svm_range_list *svms = prange->svms;
2859 
2860 	spin_lock(&svms->deferred_list_lock);
2861 	if (list_empty(&prange->deferred_list) &&
2862 	    list_empty(&prange->child_list)) {
2863 		spin_unlock(&svms->deferred_list_lock);
2864 		return false;
2865 	}
2866 	spin_unlock(&svms->deferred_list_lock);
2867 
2868 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2869 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2870 			 svms, prange, prange->start, prange->last);
2871 		return true;
2872 	}
2873 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2874 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2875 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2876 			 svms, prange, prange->start, prange->last);
2877 		return true;
2878 	}
2879 	return false;
2880 }
2881 
2882 static void
2883 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2884 		      int32_t gpuidx)
2885 {
2886 	struct kfd_process_device *pdd;
2887 
2888 	/* fault is on different page of same range
2889 	 * or fault is skipped to recover later
2890 	 * or fault is on invalid virtual address
2891 	 */
2892 	if (gpuidx == MAX_GPU_INSTANCE) {
2893 		uint32_t gpuid;
2894 		int r;
2895 
2896 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2897 		if (r < 0)
2898 			return;
2899 	}
2900 
2901 	/* fault is recovered
2902 	 * or fault cannot recover because GPU no access on the range
2903 	 */
2904 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2905 	if (pdd)
2906 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2907 }
2908 
2909 static bool
2910 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2911 {
2912 	unsigned long requested = VM_READ;
2913 
2914 	if (write_fault)
2915 		requested |= VM_WRITE;
2916 
2917 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2918 		vma->vm_flags);
2919 	return (vma->vm_flags & requested) == requested;
2920 }
2921 
2922 int
2923 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2924 			uint32_t vmid, uint32_t node_id,
2925 			uint64_t addr, uint64_t ts, bool write_fault)
2926 {
2927 	unsigned long start, last, size;
2928 	struct mm_struct *mm = NULL;
2929 	struct svm_range_list *svms;
2930 	struct svm_range *prange;
2931 	struct kfd_process *p;
2932 	ktime_t timestamp = ktime_get_boottime();
2933 	struct kfd_node *node;
2934 	int32_t best_loc;
2935 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2936 	bool write_locked = false;
2937 	struct vm_area_struct *vma;
2938 	bool migration = false;
2939 	int r = 0;
2940 
2941 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2942 		pr_debug("device does not support SVM\n");
2943 		return -EFAULT;
2944 	}
2945 
2946 	p = kfd_lookup_process_by_pasid(pasid);
2947 	if (!p) {
2948 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2949 		return 0;
2950 	}
2951 	svms = &p->svms;
2952 
2953 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2954 
2955 	if (atomic_read(&svms->drain_pagefaults)) {
2956 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2957 		r = 0;
2958 		goto out;
2959 	}
2960 
2961 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2962 	if (!node) {
2963 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2964 			 vmid);
2965 		r = -EFAULT;
2966 		goto out;
2967 	}
2968 
2969 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2970 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2971 		r = -EFAULT;
2972 		goto out;
2973 	}
2974 
2975 	/* check if this page fault time stamp is before svms->checkpoint_ts */
2976 	if (svms->checkpoint_ts[gpuidx] != 0) {
2977 		if (amdgpu_ih_ts_after(ts,  svms->checkpoint_ts[gpuidx])) {
2978 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2979 			r = 0;
2980 			goto out;
2981 		} else
2982 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
2983 			 * to zero to avoid following ts wrap around give wrong comparing
2984 			 */
2985 			svms->checkpoint_ts[gpuidx] = 0;
2986 	}
2987 
2988 	if (!p->xnack_enabled) {
2989 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2990 		r = -EFAULT;
2991 		goto out;
2992 	}
2993 
2994 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2995 	 * before releasing task ref.
2996 	 */
2997 	mm = get_task_mm(p->lead_thread);
2998 	if (!mm) {
2999 		pr_debug("svms 0x%p failed to get mm\n", svms);
3000 		r = 0;
3001 		goto out;
3002 	}
3003 
3004 	mmap_read_lock(mm);
3005 retry_write_locked:
3006 	mutex_lock(&svms->lock);
3007 	prange = svm_range_from_addr(svms, addr, NULL);
3008 	if (!prange) {
3009 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3010 			 svms, addr);
3011 		if (!write_locked) {
3012 			/* Need the write lock to create new range with MMU notifier.
3013 			 * Also flush pending deferred work to make sure the interval
3014 			 * tree is up to date before we add a new range
3015 			 */
3016 			mutex_unlock(&svms->lock);
3017 			mmap_read_unlock(mm);
3018 			mmap_write_lock(mm);
3019 			write_locked = true;
3020 			goto retry_write_locked;
3021 		}
3022 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3023 		if (!prange) {
3024 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3025 				 svms, addr);
3026 			mmap_write_downgrade(mm);
3027 			r = -EFAULT;
3028 			goto out_unlock_svms;
3029 		}
3030 	}
3031 	if (write_locked)
3032 		mmap_write_downgrade(mm);
3033 
3034 	mutex_lock(&prange->migrate_mutex);
3035 
3036 	if (svm_range_skip_recover(prange)) {
3037 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3038 		r = 0;
3039 		goto out_unlock_range;
3040 	}
3041 
3042 	/* skip duplicate vm fault on different pages of same range */
3043 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3044 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3045 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3046 			 svms, prange->start, prange->last);
3047 		r = 0;
3048 		goto out_unlock_range;
3049 	}
3050 
3051 	/* __do_munmap removed VMA, return success as we are handling stale
3052 	 * retry fault.
3053 	 */
3054 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3055 	if (!vma) {
3056 		pr_debug("address 0x%llx VMA is removed\n", addr);
3057 		r = 0;
3058 		goto out_unlock_range;
3059 	}
3060 
3061 	if (!svm_fault_allowed(vma, write_fault)) {
3062 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3063 			write_fault ? "write" : "read");
3064 		r = -EPERM;
3065 		goto out_unlock_range;
3066 	}
3067 
3068 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3069 	if (best_loc == -1) {
3070 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3071 			 svms, prange->start, prange->last);
3072 		r = -EACCES;
3073 		goto out_unlock_range;
3074 	}
3075 
3076 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3077 		 svms, prange->start, prange->last, best_loc,
3078 		 prange->actual_loc);
3079 
3080 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3081 				       write_fault, timestamp);
3082 
3083 	/* Align migration range start and size to granularity size */
3084 	size = 1UL << prange->granularity;
3085 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3086 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3087 	if (prange->actual_loc != 0 || best_loc != 0) {
3088 		migration = true;
3089 
3090 		if (best_loc) {
3091 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3092 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3093 			if (r) {
3094 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3095 					 r, addr);
3096 				/* Fallback to system memory if migration to
3097 				 * VRAM failed
3098 				 */
3099 				if (prange->actual_loc && prange->actual_loc != best_loc)
3100 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3101 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3102 				else
3103 					r = 0;
3104 			}
3105 		} else {
3106 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3107 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3108 		}
3109 		if (r) {
3110 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3111 				 r, svms, start, last);
3112 			goto out_unlock_range;
3113 		}
3114 	}
3115 
3116 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3117 				       false, false);
3118 	if (r)
3119 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3120 			 r, svms, start, last);
3121 
3122 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3123 				     migration);
3124 
3125 out_unlock_range:
3126 	mutex_unlock(&prange->migrate_mutex);
3127 out_unlock_svms:
3128 	mutex_unlock(&svms->lock);
3129 	mmap_read_unlock(mm);
3130 
3131 	svm_range_count_fault(node, p, gpuidx);
3132 
3133 	mmput(mm);
3134 out:
3135 	kfd_unref_process(p);
3136 
3137 	if (r == -EAGAIN) {
3138 		pr_debug("recover vm fault later\n");
3139 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3140 		r = 0;
3141 	}
3142 	return r;
3143 }
3144 
3145 int
3146 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3147 {
3148 	struct svm_range *prange, *pchild;
3149 	uint64_t reserved_size = 0;
3150 	uint64_t size;
3151 	int r = 0;
3152 
3153 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3154 
3155 	mutex_lock(&p->svms.lock);
3156 
3157 	list_for_each_entry(prange, &p->svms.list, list) {
3158 		svm_range_lock(prange);
3159 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3160 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3161 			if (xnack_enabled) {
3162 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3163 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3164 			} else {
3165 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3166 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3167 				if (r)
3168 					goto out_unlock;
3169 				reserved_size += size;
3170 			}
3171 		}
3172 
3173 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3174 		if (xnack_enabled) {
3175 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3176 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3177 		} else {
3178 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3179 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3180 			if (r)
3181 				goto out_unlock;
3182 			reserved_size += size;
3183 		}
3184 out_unlock:
3185 		svm_range_unlock(prange);
3186 		if (r)
3187 			break;
3188 	}
3189 
3190 	if (r)
3191 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3192 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3193 	else
3194 		/* Change xnack mode must be inside svms lock, to avoid race with
3195 		 * svm_range_deferred_list_work unreserve memory in parallel.
3196 		 */
3197 		p->xnack_enabled = xnack_enabled;
3198 
3199 	mutex_unlock(&p->svms.lock);
3200 	return r;
3201 }
3202 
3203 void svm_range_list_fini(struct kfd_process *p)
3204 {
3205 	struct svm_range *prange;
3206 	struct svm_range *next;
3207 
3208 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3209 
3210 	cancel_delayed_work_sync(&p->svms.restore_work);
3211 
3212 	/* Ensure list work is finished before process is destroyed */
3213 	flush_work(&p->svms.deferred_list_work);
3214 
3215 	/*
3216 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3217 	 * not find kfd process and take mm lock to recover fault.
3218 	 * stop kfd page fault handing, then wait pending page faults got drained
3219 	 */
3220 	atomic_set(&p->svms.drain_pagefaults, 1);
3221 	svm_range_drain_retry_fault(&p->svms);
3222 
3223 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3224 		svm_range_unlink(prange);
3225 		svm_range_remove_notifier(prange);
3226 		svm_range_free(prange, true);
3227 	}
3228 
3229 	mutex_destroy(&p->svms.lock);
3230 
3231 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3232 }
3233 
3234 int svm_range_list_init(struct kfd_process *p)
3235 {
3236 	struct svm_range_list *svms = &p->svms;
3237 	int i;
3238 
3239 	svms->objects = RB_ROOT_CACHED;
3240 	mutex_init(&svms->lock);
3241 	INIT_LIST_HEAD(&svms->list);
3242 	atomic_set(&svms->evicted_ranges, 0);
3243 	atomic_set(&svms->drain_pagefaults, 0);
3244 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3245 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3246 	INIT_LIST_HEAD(&svms->deferred_range_list);
3247 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3248 	spin_lock_init(&svms->deferred_list_lock);
3249 
3250 	for (i = 0; i < p->n_pdds; i++)
3251 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3252 			bitmap_set(svms->bitmap_supported, i, 1);
3253 
3254 	 /* Value of default granularity cannot exceed 0x1B, the
3255 	  * number of pages supported by a 4-level paging table
3256 	  */
3257 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3258 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3259 
3260 	return 0;
3261 }
3262 
3263 /**
3264  * svm_range_check_vm - check if virtual address range mapped already
3265  * @p: current kfd_process
3266  * @start: range start address, in pages
3267  * @last: range last address, in pages
3268  * @bo_s: mapping start address in pages if address range already mapped
3269  * @bo_l: mapping last address in pages if address range already mapped
3270  *
3271  * The purpose is to avoid virtual address ranges already allocated by
3272  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3273  * It looks for each pdd in the kfd_process.
3274  *
3275  * Context: Process context
3276  *
3277  * Return 0 - OK, if the range is not mapped.
3278  * Otherwise error code:
3279  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3280  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3281  * a signal. Release all buffer reservations and return to user-space.
3282  */
3283 static int
3284 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3285 		   uint64_t *bo_s, uint64_t *bo_l)
3286 {
3287 	struct amdgpu_bo_va_mapping *mapping;
3288 	struct interval_tree_node *node;
3289 	uint32_t i;
3290 	int r;
3291 
3292 	for (i = 0; i < p->n_pdds; i++) {
3293 		struct amdgpu_vm *vm;
3294 
3295 		if (!p->pdds[i]->drm_priv)
3296 			continue;
3297 
3298 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3299 		r = amdgpu_bo_reserve(vm->root.bo, false);
3300 		if (r)
3301 			return r;
3302 
3303 		node = interval_tree_iter_first(&vm->va, start, last);
3304 		if (node) {
3305 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3306 				 start, last);
3307 			mapping = container_of((struct rb_node *)node,
3308 					       struct amdgpu_bo_va_mapping, rb);
3309 			if (bo_s && bo_l) {
3310 				*bo_s = mapping->start;
3311 				*bo_l = mapping->last;
3312 			}
3313 			amdgpu_bo_unreserve(vm->root.bo);
3314 			return -EADDRINUSE;
3315 		}
3316 		amdgpu_bo_unreserve(vm->root.bo);
3317 	}
3318 
3319 	return 0;
3320 }
3321 
3322 /**
3323  * svm_range_is_valid - check if virtual address range is valid
3324  * @p: current kfd_process
3325  * @start: range start address, in pages
3326  * @size: range size, in pages
3327  *
3328  * Valid virtual address range means it belongs to one or more VMAs
3329  *
3330  * Context: Process context
3331  *
3332  * Return:
3333  *  0 - OK, otherwise error code
3334  */
3335 static int
3336 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3337 {
3338 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3339 	struct vm_area_struct *vma;
3340 	unsigned long end;
3341 	unsigned long start_unchg = start;
3342 
3343 	start <<= PAGE_SHIFT;
3344 	end = start + (size << PAGE_SHIFT);
3345 	do {
3346 		vma = vma_lookup(p->mm, start);
3347 		if (!vma || (vma->vm_flags & device_vma))
3348 			return -EFAULT;
3349 		start = min(end, vma->vm_end);
3350 	} while (start < end);
3351 
3352 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3353 				  NULL);
3354 }
3355 
3356 /**
3357  * svm_range_best_prefetch_location - decide the best prefetch location
3358  * @prange: svm range structure
3359  *
3360  * For xnack off:
3361  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3362  * can be CPU or GPU.
3363  *
3364  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3365  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3366  * the best prefetch location is always CPU, because GPU can not have coherent
3367  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3368  *
3369  * For xnack on:
3370  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3371  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3372  *
3373  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3374  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3375  * prefetch location is always CPU.
3376  *
3377  * Context: Process context
3378  *
3379  * Return:
3380  * 0 for CPU or GPU id
3381  */
3382 static uint32_t
3383 svm_range_best_prefetch_location(struct svm_range *prange)
3384 {
3385 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3386 	uint32_t best_loc = prange->prefetch_loc;
3387 	struct kfd_process_device *pdd;
3388 	struct kfd_node *bo_node;
3389 	struct kfd_process *p;
3390 	uint32_t gpuidx;
3391 
3392 	p = container_of(prange->svms, struct kfd_process, svms);
3393 
3394 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3395 		goto out;
3396 
3397 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3398 	if (!bo_node) {
3399 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3400 		best_loc = 0;
3401 		goto out;
3402 	}
3403 
3404 	if (bo_node->adev->flags & AMD_IS_APU) {
3405 		best_loc = 0;
3406 		goto out;
3407 	}
3408 
3409 	if (p->xnack_enabled)
3410 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3411 	else
3412 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3413 			  MAX_GPU_INSTANCE);
3414 
3415 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3416 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3417 		if (!pdd) {
3418 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3419 			continue;
3420 		}
3421 
3422 		if (pdd->dev->adev == bo_node->adev)
3423 			continue;
3424 
3425 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3426 			best_loc = 0;
3427 			break;
3428 		}
3429 	}
3430 
3431 out:
3432 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3433 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3434 		 best_loc);
3435 
3436 	return best_loc;
3437 }
3438 
3439 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3440  * @mm: current process mm_struct
3441  * @prange: svm range structure
3442  * @migrated: output, true if migration is triggered
3443  *
3444  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3445  * from ram to vram.
3446  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3447  * from vram to ram.
3448  *
3449  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3450  * and restore work:
3451  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3452  *    stops all queues, schedule restore work
3453  * 2. svm_range_restore_work wait for migration is done by
3454  *    a. svm_range_validate_vram takes prange->migrate_mutex
3455  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3456  * 3. restore work update mappings of GPU, resume all queues.
3457  *
3458  * Context: Process context
3459  *
3460  * Return:
3461  * 0 - OK, otherwise - error code of migration
3462  */
3463 static int
3464 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3465 			    bool *migrated)
3466 {
3467 	uint32_t best_loc;
3468 	int r = 0;
3469 
3470 	*migrated = false;
3471 	best_loc = svm_range_best_prefetch_location(prange);
3472 
3473 	/* when best_loc is a gpu node and same as prange->actual_loc
3474 	 * we still need do migration as prange->actual_loc !=0 does
3475 	 * not mean all pages in prange are vram. hmm migrate will pick
3476 	 * up right pages during migration.
3477 	 */
3478 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3479 	    (best_loc == 0 && prange->actual_loc == 0))
3480 		return 0;
3481 
3482 	if (!best_loc) {
3483 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3484 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3485 		*migrated = !r;
3486 		return r;
3487 	}
3488 
3489 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3490 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3491 	*migrated = !r;
3492 
3493 	return 0;
3494 }
3495 
3496 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3497 {
3498 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3499 	 * signaled yet and we're under the protection of the fence->lock.
3500 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3501 	 * here any more.
3502 	 *
3503 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3504 	 */
3505 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3506 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3507 		schedule_work(&fence->svm_bo->eviction_work);
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3514 {
3515 	struct svm_range_bo *svm_bo;
3516 	struct mm_struct *mm;
3517 	int r = 0;
3518 
3519 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3520 
3521 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3522 		mm = svm_bo->eviction_fence->mm;
3523 	} else {
3524 		svm_range_bo_unref(svm_bo);
3525 		return;
3526 	}
3527 
3528 	mmap_read_lock(mm);
3529 	spin_lock(&svm_bo->list_lock);
3530 	while (!list_empty(&svm_bo->range_list) && !r) {
3531 		struct svm_range *prange =
3532 				list_first_entry(&svm_bo->range_list,
3533 						struct svm_range, svm_bo_list);
3534 		int retries = 3;
3535 
3536 		list_del_init(&prange->svm_bo_list);
3537 		spin_unlock(&svm_bo->list_lock);
3538 
3539 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3540 			 prange->start, prange->last);
3541 
3542 		mutex_lock(&prange->migrate_mutex);
3543 		do {
3544 			/* migrate all vram pages in this prange to sys ram
3545 			 * after that prange->actual_loc should be zero
3546 			 */
3547 			r = svm_migrate_vram_to_ram(prange, mm,
3548 					prange->start, prange->last,
3549 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3550 		} while (!r && prange->actual_loc && --retries);
3551 
3552 		if (!r && prange->actual_loc)
3553 			pr_info_once("Migration failed during eviction");
3554 
3555 		if (!prange->actual_loc) {
3556 			mutex_lock(&prange->lock);
3557 			prange->svm_bo = NULL;
3558 			mutex_unlock(&prange->lock);
3559 		}
3560 		mutex_unlock(&prange->migrate_mutex);
3561 
3562 		spin_lock(&svm_bo->list_lock);
3563 	}
3564 	spin_unlock(&svm_bo->list_lock);
3565 	mmap_read_unlock(mm);
3566 	mmput(mm);
3567 
3568 	dma_fence_signal(&svm_bo->eviction_fence->base);
3569 
3570 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3571 	 * has been called in svm_migrate_vram_to_ram
3572 	 */
3573 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3574 	svm_range_bo_unref(svm_bo);
3575 }
3576 
3577 static int
3578 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3579 		   uint64_t start, uint64_t size, uint32_t nattr,
3580 		   struct kfd_ioctl_svm_attribute *attrs)
3581 {
3582 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3583 	struct list_head update_list;
3584 	struct list_head insert_list;
3585 	struct list_head remove_list;
3586 	struct list_head remap_list;
3587 	struct svm_range_list *svms;
3588 	struct svm_range *prange;
3589 	struct svm_range *next;
3590 	bool update_mapping = false;
3591 	bool flush_tlb;
3592 	int r, ret = 0;
3593 
3594 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3595 		 p->pasid, &p->svms, start, start + size - 1, size);
3596 
3597 	r = svm_range_check_attr(p, nattr, attrs);
3598 	if (r)
3599 		return r;
3600 
3601 	svms = &p->svms;
3602 
3603 	mutex_lock(&process_info->lock);
3604 
3605 	svm_range_list_lock_and_flush_work(svms, mm);
3606 
3607 	r = svm_range_is_valid(p, start, size);
3608 	if (r) {
3609 		pr_debug("invalid range r=%d\n", r);
3610 		mmap_write_unlock(mm);
3611 		goto out;
3612 	}
3613 
3614 	mutex_lock(&svms->lock);
3615 
3616 	/* Add new range and split existing ranges as needed */
3617 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3618 			  &insert_list, &remove_list, &remap_list);
3619 	if (r) {
3620 		mutex_unlock(&svms->lock);
3621 		mmap_write_unlock(mm);
3622 		goto out;
3623 	}
3624 	/* Apply changes as a transaction */
3625 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3626 		svm_range_add_to_svms(prange);
3627 		svm_range_add_notifier_locked(mm, prange);
3628 	}
3629 	list_for_each_entry(prange, &update_list, update_list) {
3630 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3631 		/* TODO: unmap ranges from GPU that lost access */
3632 	}
3633 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3634 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3635 			 prange->svms, prange, prange->start,
3636 			 prange->last);
3637 		svm_range_unlink(prange);
3638 		svm_range_remove_notifier(prange);
3639 		svm_range_free(prange, false);
3640 	}
3641 
3642 	mmap_write_downgrade(mm);
3643 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3644 	 * this fails we may be left with partially completed actions. There
3645 	 * is no clean way of rolling back to the previous state in such a
3646 	 * case because the rollback wouldn't be guaranteed to work either.
3647 	 */
3648 	list_for_each_entry(prange, &update_list, update_list) {
3649 		bool migrated;
3650 
3651 		mutex_lock(&prange->migrate_mutex);
3652 
3653 		r = svm_range_trigger_migration(mm, prange, &migrated);
3654 		if (r)
3655 			goto out_unlock_range;
3656 
3657 		if (migrated && (!p->xnack_enabled ||
3658 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3659 		    prange->mapped_to_gpu) {
3660 			pr_debug("restore_work will update mappings of GPUs\n");
3661 			mutex_unlock(&prange->migrate_mutex);
3662 			continue;
3663 		}
3664 
3665 		if (!migrated && !update_mapping) {
3666 			mutex_unlock(&prange->migrate_mutex);
3667 			continue;
3668 		}
3669 
3670 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3671 
3672 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3673 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3674 		if (r)
3675 			pr_debug("failed %d to map svm range\n", r);
3676 
3677 out_unlock_range:
3678 		mutex_unlock(&prange->migrate_mutex);
3679 		if (r)
3680 			ret = r;
3681 	}
3682 
3683 	list_for_each_entry(prange, &remap_list, update_list) {
3684 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3685 			 prange, prange->start, prange->last);
3686 		mutex_lock(&prange->migrate_mutex);
3687 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3688 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3689 		if (r)
3690 			pr_debug("failed %d on remap svm range\n", r);
3691 		mutex_unlock(&prange->migrate_mutex);
3692 		if (r)
3693 			ret = r;
3694 	}
3695 
3696 	dynamic_svm_range_dump(svms);
3697 
3698 	mutex_unlock(&svms->lock);
3699 	mmap_read_unlock(mm);
3700 out:
3701 	mutex_unlock(&process_info->lock);
3702 
3703 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3704 		 &p->svms, start, start + size - 1, r);
3705 
3706 	return ret ? ret : r;
3707 }
3708 
3709 static int
3710 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3711 		   uint64_t start, uint64_t size, uint32_t nattr,
3712 		   struct kfd_ioctl_svm_attribute *attrs)
3713 {
3714 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3715 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3716 	bool get_preferred_loc = false;
3717 	bool get_prefetch_loc = false;
3718 	bool get_granularity = false;
3719 	bool get_accessible = false;
3720 	bool get_flags = false;
3721 	uint64_t last = start + size - 1UL;
3722 	uint8_t granularity = 0xff;
3723 	struct interval_tree_node *node;
3724 	struct svm_range_list *svms;
3725 	struct svm_range *prange;
3726 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3727 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3728 	uint32_t flags_and = 0xffffffff;
3729 	uint32_t flags_or = 0;
3730 	int gpuidx;
3731 	uint32_t i;
3732 	int r = 0;
3733 
3734 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3735 		 start + size - 1, nattr);
3736 
3737 	/* Flush pending deferred work to avoid racing with deferred actions from
3738 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3739 	 * can still race with get_attr because we don't hold the mmap lock. But that
3740 	 * would be a race condition in the application anyway, and undefined
3741 	 * behaviour is acceptable in that case.
3742 	 */
3743 	flush_work(&p->svms.deferred_list_work);
3744 
3745 	mmap_read_lock(mm);
3746 	r = svm_range_is_valid(p, start, size);
3747 	mmap_read_unlock(mm);
3748 	if (r) {
3749 		pr_debug("invalid range r=%d\n", r);
3750 		return r;
3751 	}
3752 
3753 	for (i = 0; i < nattr; i++) {
3754 		switch (attrs[i].type) {
3755 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3756 			get_preferred_loc = true;
3757 			break;
3758 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3759 			get_prefetch_loc = true;
3760 			break;
3761 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3762 			get_accessible = true;
3763 			break;
3764 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3765 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3766 			get_flags = true;
3767 			break;
3768 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3769 			get_granularity = true;
3770 			break;
3771 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3772 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3773 			fallthrough;
3774 		default:
3775 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3776 			return -EINVAL;
3777 		}
3778 	}
3779 
3780 	svms = &p->svms;
3781 
3782 	mutex_lock(&svms->lock);
3783 
3784 	node = interval_tree_iter_first(&svms->objects, start, last);
3785 	if (!node) {
3786 		pr_debug("range attrs not found return default values\n");
3787 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3788 						 &granularity, &flags_and);
3789 		flags_or = flags_and;
3790 		if (p->xnack_enabled)
3791 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3792 				    MAX_GPU_INSTANCE);
3793 		else
3794 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3795 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3796 		goto fill_values;
3797 	}
3798 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3799 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3800 
3801 	while (node) {
3802 		struct interval_tree_node *next;
3803 
3804 		prange = container_of(node, struct svm_range, it_node);
3805 		next = interval_tree_iter_next(node, start, last);
3806 
3807 		if (get_preferred_loc) {
3808 			if (prange->preferred_loc ==
3809 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3810 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3811 			     location != prange->preferred_loc)) {
3812 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3813 				get_preferred_loc = false;
3814 			} else {
3815 				location = prange->preferred_loc;
3816 			}
3817 		}
3818 		if (get_prefetch_loc) {
3819 			if (prange->prefetch_loc ==
3820 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3821 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3822 			     prefetch_loc != prange->prefetch_loc)) {
3823 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3824 				get_prefetch_loc = false;
3825 			} else {
3826 				prefetch_loc = prange->prefetch_loc;
3827 			}
3828 		}
3829 		if (get_accessible) {
3830 			bitmap_and(bitmap_access, bitmap_access,
3831 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3832 			bitmap_and(bitmap_aip, bitmap_aip,
3833 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3834 		}
3835 		if (get_flags) {
3836 			flags_and &= prange->flags;
3837 			flags_or |= prange->flags;
3838 		}
3839 
3840 		if (get_granularity && prange->granularity < granularity)
3841 			granularity = prange->granularity;
3842 
3843 		node = next;
3844 	}
3845 fill_values:
3846 	mutex_unlock(&svms->lock);
3847 
3848 	for (i = 0; i < nattr; i++) {
3849 		switch (attrs[i].type) {
3850 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3851 			attrs[i].value = location;
3852 			break;
3853 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3854 			attrs[i].value = prefetch_loc;
3855 			break;
3856 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3857 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3858 							       attrs[i].value);
3859 			if (gpuidx < 0) {
3860 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3861 				return -EINVAL;
3862 			}
3863 			if (test_bit(gpuidx, bitmap_access))
3864 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3865 			else if (test_bit(gpuidx, bitmap_aip))
3866 				attrs[i].type =
3867 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3868 			else
3869 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3870 			break;
3871 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3872 			attrs[i].value = flags_and;
3873 			break;
3874 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3875 			attrs[i].value = ~flags_or;
3876 			break;
3877 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3878 			attrs[i].value = (uint32_t)granularity;
3879 			break;
3880 		}
3881 	}
3882 
3883 	return 0;
3884 }
3885 
3886 int kfd_criu_resume_svm(struct kfd_process *p)
3887 {
3888 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3889 	int nattr_common = 4, nattr_accessibility = 1;
3890 	struct criu_svm_metadata *criu_svm_md = NULL;
3891 	struct svm_range_list *svms = &p->svms;
3892 	struct criu_svm_metadata *next = NULL;
3893 	uint32_t set_flags = 0xffffffff;
3894 	int i, j, num_attrs, ret = 0;
3895 	uint64_t set_attr_size;
3896 	struct mm_struct *mm;
3897 
3898 	if (list_empty(&svms->criu_svm_metadata_list)) {
3899 		pr_debug("No SVM data from CRIU restore stage 2\n");
3900 		return ret;
3901 	}
3902 
3903 	mm = get_task_mm(p->lead_thread);
3904 	if (!mm) {
3905 		pr_err("failed to get mm for the target process\n");
3906 		return -ESRCH;
3907 	}
3908 
3909 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3910 
3911 	i = j = 0;
3912 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3913 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3914 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3915 
3916 		for (j = 0; j < num_attrs; j++) {
3917 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3918 				 i, j, criu_svm_md->data.attrs[j].type,
3919 				 i, j, criu_svm_md->data.attrs[j].value);
3920 			switch (criu_svm_md->data.attrs[j].type) {
3921 			/* During Checkpoint operation, the query for
3922 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3923 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3924 			 * not used by the range which was checkpointed. Care
3925 			 * must be taken to not restore with an invalid value
3926 			 * otherwise the gpuidx value will be invalid and
3927 			 * set_attr would eventually fail so just replace those
3928 			 * with another dummy attribute such as
3929 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3930 			 */
3931 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3932 				if (criu_svm_md->data.attrs[j].value ==
3933 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3934 					criu_svm_md->data.attrs[j].type =
3935 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3936 					criu_svm_md->data.attrs[j].value = 0;
3937 				}
3938 				break;
3939 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3940 				set_flags = criu_svm_md->data.attrs[j].value;
3941 				break;
3942 			default:
3943 				break;
3944 			}
3945 		}
3946 
3947 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3948 		 * it needs to be inserted before restoring the ranges so
3949 		 * allocate extra space for it before calling set_attr
3950 		 */
3951 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3952 						(num_attrs + 1);
3953 		set_attr_new = krealloc(set_attr, set_attr_size,
3954 					    GFP_KERNEL);
3955 		if (!set_attr_new) {
3956 			ret = -ENOMEM;
3957 			goto exit;
3958 		}
3959 		set_attr = set_attr_new;
3960 
3961 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3962 					sizeof(struct kfd_ioctl_svm_attribute));
3963 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3964 		set_attr[num_attrs].value = ~set_flags;
3965 
3966 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3967 					 criu_svm_md->data.size, num_attrs + 1,
3968 					 set_attr);
3969 		if (ret) {
3970 			pr_err("CRIU: failed to set range attributes\n");
3971 			goto exit;
3972 		}
3973 
3974 		i++;
3975 	}
3976 exit:
3977 	kfree(set_attr);
3978 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3979 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3980 						criu_svm_md->data.start_addr);
3981 		kfree(criu_svm_md);
3982 	}
3983 
3984 	mmput(mm);
3985 	return ret;
3986 
3987 }
3988 
3989 int kfd_criu_restore_svm(struct kfd_process *p,
3990 			 uint8_t __user *user_priv_ptr,
3991 			 uint64_t *priv_data_offset,
3992 			 uint64_t max_priv_data_size)
3993 {
3994 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3995 	int nattr_common = 4, nattr_accessibility = 1;
3996 	struct criu_svm_metadata *criu_svm_md = NULL;
3997 	struct svm_range_list *svms = &p->svms;
3998 	uint32_t num_devices;
3999 	int ret = 0;
4000 
4001 	num_devices = p->n_pdds;
4002 	/* Handle one SVM range object at a time, also the number of gpus are
4003 	 * assumed to be same on the restore node, checking must be done while
4004 	 * evaluating the topology earlier
4005 	 */
4006 
4007 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4008 		(nattr_common + nattr_accessibility * num_devices);
4009 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4010 
4011 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4012 								svm_attrs_size;
4013 
4014 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4015 	if (!criu_svm_md) {
4016 		pr_err("failed to allocate memory to store svm metadata\n");
4017 		return -ENOMEM;
4018 	}
4019 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4020 		ret = -EINVAL;
4021 		goto exit;
4022 	}
4023 
4024 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4025 			     svm_priv_data_size);
4026 	if (ret) {
4027 		ret = -EFAULT;
4028 		goto exit;
4029 	}
4030 	*priv_data_offset += svm_priv_data_size;
4031 
4032 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4033 
4034 	return 0;
4035 
4036 
4037 exit:
4038 	kfree(criu_svm_md);
4039 	return ret;
4040 }
4041 
4042 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4043 		       uint64_t *svm_priv_data_size)
4044 {
4045 	uint64_t total_size, accessibility_size, common_attr_size;
4046 	int nattr_common = 4, nattr_accessibility = 1;
4047 	int num_devices = p->n_pdds;
4048 	struct svm_range_list *svms;
4049 	struct svm_range *prange;
4050 	uint32_t count = 0;
4051 
4052 	*svm_priv_data_size = 0;
4053 
4054 	svms = &p->svms;
4055 	if (!svms)
4056 		return -EINVAL;
4057 
4058 	mutex_lock(&svms->lock);
4059 	list_for_each_entry(prange, &svms->list, list) {
4060 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4061 			 prange, prange->start, prange->npages,
4062 			 prange->start + prange->npages - 1);
4063 		count++;
4064 	}
4065 	mutex_unlock(&svms->lock);
4066 
4067 	*num_svm_ranges = count;
4068 	/* Only the accessbility attributes need to be queried for all the gpus
4069 	 * individually, remaining ones are spanned across the entire process
4070 	 * regardless of the various gpu nodes. Of the remaining attributes,
4071 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4072 	 *
4073 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4074 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4075 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4076 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4077 	 *
4078 	 * ** ACCESSBILITY ATTRIBUTES **
4079 	 * (Considered as one, type is altered during query, value is gpuid)
4080 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4081 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4082 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4083 	 */
4084 	if (*num_svm_ranges > 0) {
4085 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4086 			nattr_common;
4087 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4088 			nattr_accessibility * num_devices;
4089 
4090 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4091 			common_attr_size + accessibility_size;
4092 
4093 		*svm_priv_data_size = *num_svm_ranges * total_size;
4094 	}
4095 
4096 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4097 		 *svm_priv_data_size);
4098 	return 0;
4099 }
4100 
4101 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4102 			    uint8_t __user *user_priv_data,
4103 			    uint64_t *priv_data_offset)
4104 {
4105 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4106 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4107 	uint64_t svm_priv_data_size, query_attr_size = 0;
4108 	int index, nattr_common = 4, ret = 0;
4109 	struct svm_range_list *svms;
4110 	int num_devices = p->n_pdds;
4111 	struct svm_range *prange;
4112 	struct mm_struct *mm;
4113 
4114 	svms = &p->svms;
4115 	if (!svms)
4116 		return -EINVAL;
4117 
4118 	mm = get_task_mm(p->lead_thread);
4119 	if (!mm) {
4120 		pr_err("failed to get mm for the target process\n");
4121 		return -ESRCH;
4122 	}
4123 
4124 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4125 				(nattr_common + num_devices);
4126 
4127 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4128 	if (!query_attr) {
4129 		ret = -ENOMEM;
4130 		goto exit;
4131 	}
4132 
4133 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4134 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4135 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4136 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4137 
4138 	for (index = 0; index < num_devices; index++) {
4139 		struct kfd_process_device *pdd = p->pdds[index];
4140 
4141 		query_attr[index + nattr_common].type =
4142 			KFD_IOCTL_SVM_ATTR_ACCESS;
4143 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4144 	}
4145 
4146 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4147 
4148 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4149 	if (!svm_priv) {
4150 		ret = -ENOMEM;
4151 		goto exit_query;
4152 	}
4153 
4154 	index = 0;
4155 	list_for_each_entry(prange, &svms->list, list) {
4156 
4157 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4158 		svm_priv->start_addr = prange->start;
4159 		svm_priv->size = prange->npages;
4160 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4161 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4162 			 prange, prange->start, prange->npages,
4163 			 prange->start + prange->npages - 1,
4164 			 prange->npages * PAGE_SIZE);
4165 
4166 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4167 					 svm_priv->size,
4168 					 (nattr_common + num_devices),
4169 					 svm_priv->attrs);
4170 		if (ret) {
4171 			pr_err("CRIU: failed to obtain range attributes\n");
4172 			goto exit_priv;
4173 		}
4174 
4175 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4176 				 svm_priv_data_size)) {
4177 			pr_err("Failed to copy svm priv to user\n");
4178 			ret = -EFAULT;
4179 			goto exit_priv;
4180 		}
4181 
4182 		*priv_data_offset += svm_priv_data_size;
4183 
4184 	}
4185 
4186 
4187 exit_priv:
4188 	kfree(svm_priv);
4189 exit_query:
4190 	kfree(query_attr);
4191 exit:
4192 	mmput(mm);
4193 	return ret;
4194 }
4195 
4196 int
4197 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4198 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4199 {
4200 	struct mm_struct *mm = current->mm;
4201 	int r;
4202 
4203 	start >>= PAGE_SHIFT;
4204 	size >>= PAGE_SHIFT;
4205 
4206 	switch (op) {
4207 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4208 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4209 		break;
4210 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4211 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4212 		break;
4213 	default:
4214 		r = EINVAL;
4215 		break;
4216 	}
4217 
4218 	return r;
4219 }
4220