xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 2845f512232de9e436b9e3b5529e906e62414013)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
312 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
313 				 uint8_t *granularity, uint32_t *flags)
314 {
315 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*granularity = 9;
318 	*flags =
319 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
320 }
321 
322 static struct
323 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
324 			 uint64_t last, bool update_mem_usage)
325 {
326 	uint64_t size = last - start + 1;
327 	struct svm_range *prange;
328 	struct kfd_process *p;
329 
330 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
331 	if (!prange)
332 		return NULL;
333 
334 	p = container_of(svms, struct kfd_process, svms);
335 	if (!p->xnack_enabled && update_mem_usage &&
336 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
337 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
338 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
339 		kfree(prange);
340 		return NULL;
341 	}
342 	prange->npages = size;
343 	prange->svms = svms;
344 	prange->start = start;
345 	prange->last = last;
346 	INIT_LIST_HEAD(&prange->list);
347 	INIT_LIST_HEAD(&prange->update_list);
348 	INIT_LIST_HEAD(&prange->svm_bo_list);
349 	INIT_LIST_HEAD(&prange->deferred_list);
350 	INIT_LIST_HEAD(&prange->child_list);
351 	atomic_set(&prange->invalid, 0);
352 	prange->validate_timestamp = 0;
353 	prange->vram_pages = 0;
354 	mutex_init(&prange->migrate_mutex);
355 	mutex_init(&prange->lock);
356 
357 	if (p->xnack_enabled)
358 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
359 			    MAX_GPU_INSTANCE);
360 
361 	svm_range_set_default_attributes(&prange->preferred_loc,
362 					 &prange->prefetch_loc,
363 					 &prange->granularity, &prange->flags);
364 
365 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
366 
367 	return prange;
368 }
369 
370 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
371 {
372 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
373 		return false;
374 
375 	return true;
376 }
377 
378 static void svm_range_bo_release(struct kref *kref)
379 {
380 	struct svm_range_bo *svm_bo;
381 
382 	svm_bo = container_of(kref, struct svm_range_bo, kref);
383 	pr_debug("svm_bo 0x%p\n", svm_bo);
384 
385 	spin_lock(&svm_bo->list_lock);
386 	while (!list_empty(&svm_bo->range_list)) {
387 		struct svm_range *prange =
388 				list_first_entry(&svm_bo->range_list,
389 						struct svm_range, svm_bo_list);
390 		/* list_del_init tells a concurrent svm_range_vram_node_new when
391 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
392 		 */
393 		list_del_init(&prange->svm_bo_list);
394 		spin_unlock(&svm_bo->list_lock);
395 
396 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
397 			 prange->start, prange->last);
398 		mutex_lock(&prange->lock);
399 		prange->svm_bo = NULL;
400 		/* prange should not hold vram page now */
401 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
402 		mutex_unlock(&prange->lock);
403 
404 		spin_lock(&svm_bo->list_lock);
405 	}
406 	spin_unlock(&svm_bo->list_lock);
407 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
408 		/* We're not in the eviction worker. Signal the fence. */
409 		dma_fence_signal(&svm_bo->eviction_fence->base);
410 	dma_fence_put(&svm_bo->eviction_fence->base);
411 	amdgpu_bo_unref(&svm_bo->bo);
412 	kfree(svm_bo);
413 }
414 
415 static void svm_range_bo_wq_release(struct work_struct *work)
416 {
417 	struct svm_range_bo *svm_bo;
418 
419 	svm_bo = container_of(work, struct svm_range_bo, release_work);
420 	svm_range_bo_release(&svm_bo->kref);
421 }
422 
423 static void svm_range_bo_release_async(struct kref *kref)
424 {
425 	struct svm_range_bo *svm_bo;
426 
427 	svm_bo = container_of(kref, struct svm_range_bo, kref);
428 	pr_debug("svm_bo 0x%p\n", svm_bo);
429 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
430 	schedule_work(&svm_bo->release_work);
431 }
432 
433 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
434 {
435 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
436 }
437 
438 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
439 {
440 	if (svm_bo)
441 		kref_put(&svm_bo->kref, svm_range_bo_release);
442 }
443 
444 static bool
445 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
446 {
447 	mutex_lock(&prange->lock);
448 	if (!prange->svm_bo) {
449 		mutex_unlock(&prange->lock);
450 		return false;
451 	}
452 	if (prange->ttm_res) {
453 		/* We still have a reference, all is well */
454 		mutex_unlock(&prange->lock);
455 		return true;
456 	}
457 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
458 		/*
459 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
460 		 * range list, and return false to allocate svm_bo from destination
461 		 * node.
462 		 */
463 		if (prange->svm_bo->node != node) {
464 			mutex_unlock(&prange->lock);
465 
466 			spin_lock(&prange->svm_bo->list_lock);
467 			list_del_init(&prange->svm_bo_list);
468 			spin_unlock(&prange->svm_bo->list_lock);
469 
470 			svm_range_bo_unref(prange->svm_bo);
471 			return false;
472 		}
473 		if (READ_ONCE(prange->svm_bo->evicting)) {
474 			struct dma_fence *f;
475 			struct svm_range_bo *svm_bo;
476 			/* The BO is getting evicted,
477 			 * we need to get a new one
478 			 */
479 			mutex_unlock(&prange->lock);
480 			svm_bo = prange->svm_bo;
481 			f = dma_fence_get(&svm_bo->eviction_fence->base);
482 			svm_range_bo_unref(prange->svm_bo);
483 			/* wait for the fence to avoid long spin-loop
484 			 * at list_empty_careful
485 			 */
486 			dma_fence_wait(f, false);
487 			dma_fence_put(f);
488 		} else {
489 			/* The BO was still around and we got
490 			 * a new reference to it
491 			 */
492 			mutex_unlock(&prange->lock);
493 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
494 				 prange->svms, prange->start, prange->last);
495 
496 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
497 			return true;
498 		}
499 
500 	} else {
501 		mutex_unlock(&prange->lock);
502 	}
503 
504 	/* We need a new svm_bo. Spin-loop to wait for concurrent
505 	 * svm_range_bo_release to finish removing this range from
506 	 * its range list and set prange->svm_bo to null. After this,
507 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
508 	 */
509 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
510 		cond_resched();
511 
512 	return false;
513 }
514 
515 static struct svm_range_bo *svm_range_bo_new(void)
516 {
517 	struct svm_range_bo *svm_bo;
518 
519 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
520 	if (!svm_bo)
521 		return NULL;
522 
523 	kref_init(&svm_bo->kref);
524 	INIT_LIST_HEAD(&svm_bo->range_list);
525 	spin_lock_init(&svm_bo->list_lock);
526 
527 	return svm_bo;
528 }
529 
530 int
531 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
532 			bool clear)
533 {
534 	struct amdgpu_bo_param bp;
535 	struct svm_range_bo *svm_bo;
536 	struct amdgpu_bo_user *ubo;
537 	struct amdgpu_bo *bo;
538 	struct kfd_process *p;
539 	struct mm_struct *mm;
540 	int r;
541 
542 	p = container_of(prange->svms, struct kfd_process, svms);
543 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
544 		 prange->start, prange->last);
545 
546 	if (svm_range_validate_svm_bo(node, prange))
547 		return 0;
548 
549 	svm_bo = svm_range_bo_new();
550 	if (!svm_bo) {
551 		pr_debug("failed to alloc svm bo\n");
552 		return -ENOMEM;
553 	}
554 	mm = get_task_mm(p->lead_thread);
555 	if (!mm) {
556 		pr_debug("failed to get mm\n");
557 		kfree(svm_bo);
558 		return -ESRCH;
559 	}
560 	svm_bo->node = node;
561 	svm_bo->eviction_fence =
562 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
563 					   mm,
564 					   svm_bo);
565 	mmput(mm);
566 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
567 	svm_bo->evicting = 0;
568 	memset(&bp, 0, sizeof(bp));
569 	bp.size = prange->npages * PAGE_SIZE;
570 	bp.byte_align = PAGE_SIZE;
571 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
572 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
573 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
574 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
575 	bp.type = ttm_bo_type_device;
576 	bp.resv = NULL;
577 	if (node->xcp)
578 		bp.xcp_id_plus1 = node->xcp->id + 1;
579 
580 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
581 	if (r) {
582 		pr_debug("failed %d to create bo\n", r);
583 		goto create_bo_failed;
584 	}
585 	bo = &ubo->bo;
586 
587 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
588 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
589 		 bp.xcp_id_plus1 - 1);
590 
591 	r = amdgpu_bo_reserve(bo, true);
592 	if (r) {
593 		pr_debug("failed %d to reserve bo\n", r);
594 		goto reserve_bo_failed;
595 	}
596 
597 	if (clear) {
598 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
599 		if (r) {
600 			pr_debug("failed %d to sync bo\n", r);
601 			amdgpu_bo_unreserve(bo);
602 			goto reserve_bo_failed;
603 		}
604 	}
605 
606 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
607 	if (r) {
608 		pr_debug("failed %d to reserve bo\n", r);
609 		amdgpu_bo_unreserve(bo);
610 		goto reserve_bo_failed;
611 	}
612 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
613 
614 	amdgpu_bo_unreserve(bo);
615 
616 	svm_bo->bo = bo;
617 	prange->svm_bo = svm_bo;
618 	prange->ttm_res = bo->tbo.resource;
619 	prange->offset = 0;
620 
621 	spin_lock(&svm_bo->list_lock);
622 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
623 	spin_unlock(&svm_bo->list_lock);
624 
625 	return 0;
626 
627 reserve_bo_failed:
628 	amdgpu_bo_unref(&bo);
629 create_bo_failed:
630 	dma_fence_put(&svm_bo->eviction_fence->base);
631 	kfree(svm_bo);
632 	prange->ttm_res = NULL;
633 
634 	return r;
635 }
636 
637 void svm_range_vram_node_free(struct svm_range *prange)
638 {
639 	/* serialize prange->svm_bo unref */
640 	mutex_lock(&prange->lock);
641 	/* prange->svm_bo has not been unref */
642 	if (prange->ttm_res) {
643 		prange->ttm_res = NULL;
644 		mutex_unlock(&prange->lock);
645 		svm_range_bo_unref(prange->svm_bo);
646 	} else
647 		mutex_unlock(&prange->lock);
648 }
649 
650 struct kfd_node *
651 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
652 {
653 	struct kfd_process *p;
654 	struct kfd_process_device *pdd;
655 
656 	p = container_of(prange->svms, struct kfd_process, svms);
657 	pdd = kfd_process_device_data_by_id(p, gpu_id);
658 	if (!pdd) {
659 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
660 		return NULL;
661 	}
662 
663 	return pdd->dev;
664 }
665 
666 struct kfd_process_device *
667 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
668 {
669 	struct kfd_process *p;
670 
671 	p = container_of(prange->svms, struct kfd_process, svms);
672 
673 	return kfd_get_process_device_data(node, p);
674 }
675 
676 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
677 {
678 	struct ttm_operation_ctx ctx = { false, false };
679 
680 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
681 
682 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
683 }
684 
685 static int
686 svm_range_check_attr(struct kfd_process *p,
687 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
688 {
689 	uint32_t i;
690 
691 	for (i = 0; i < nattr; i++) {
692 		uint32_t val = attrs[i].value;
693 		int gpuidx = MAX_GPU_INSTANCE;
694 
695 		switch (attrs[i].type) {
696 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
697 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
698 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
699 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
700 			break;
701 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
702 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
703 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
704 			break;
705 		case KFD_IOCTL_SVM_ATTR_ACCESS:
706 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
707 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
708 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
709 			break;
710 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
711 			break;
712 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
713 			break;
714 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
715 			break;
716 		default:
717 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
718 			return -EINVAL;
719 		}
720 
721 		if (gpuidx < 0) {
722 			pr_debug("no GPU 0x%x found\n", val);
723 			return -EINVAL;
724 		} else if (gpuidx < MAX_GPU_INSTANCE &&
725 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
726 			pr_debug("GPU 0x%x not supported\n", val);
727 			return -EINVAL;
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 static void
735 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
736 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
737 		      bool *update_mapping)
738 {
739 	uint32_t i;
740 	int gpuidx;
741 
742 	for (i = 0; i < nattr; i++) {
743 		switch (attrs[i].type) {
744 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
745 			prange->preferred_loc = attrs[i].value;
746 			break;
747 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
748 			prange->prefetch_loc = attrs[i].value;
749 			break;
750 		case KFD_IOCTL_SVM_ATTR_ACCESS:
751 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
752 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
753 			if (!p->xnack_enabled)
754 				*update_mapping = true;
755 
756 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
757 							       attrs[i].value);
758 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
759 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
760 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
761 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
762 				bitmap_set(prange->bitmap_access, gpuidx, 1);
763 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
764 			} else {
765 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
766 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
767 			}
768 			break;
769 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
770 			*update_mapping = true;
771 			prange->flags |= attrs[i].value;
772 			break;
773 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
774 			*update_mapping = true;
775 			prange->flags &= ~attrs[i].value;
776 			break;
777 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
778 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
779 			break;
780 		default:
781 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
782 		}
783 	}
784 }
785 
786 static bool
787 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
788 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
789 {
790 	uint32_t i;
791 	int gpuidx;
792 
793 	for (i = 0; i < nattr; i++) {
794 		switch (attrs[i].type) {
795 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
796 			if (prange->preferred_loc != attrs[i].value)
797 				return false;
798 			break;
799 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
800 			/* Prefetch should always trigger a migration even
801 			 * if the value of the attribute didn't change.
802 			 */
803 			return false;
804 		case KFD_IOCTL_SVM_ATTR_ACCESS:
805 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
806 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
807 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
808 							       attrs[i].value);
809 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
810 				if (test_bit(gpuidx, prange->bitmap_access) ||
811 				    test_bit(gpuidx, prange->bitmap_aip))
812 					return false;
813 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
814 				if (!test_bit(gpuidx, prange->bitmap_access))
815 					return false;
816 			} else {
817 				if (!test_bit(gpuidx, prange->bitmap_aip))
818 					return false;
819 			}
820 			break;
821 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
822 			if ((prange->flags & attrs[i].value) != attrs[i].value)
823 				return false;
824 			break;
825 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
826 			if ((prange->flags & attrs[i].value) != 0)
827 				return false;
828 			break;
829 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
830 			if (prange->granularity != attrs[i].value)
831 				return false;
832 			break;
833 		default:
834 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
835 		}
836 	}
837 
838 	return true;
839 }
840 
841 /**
842  * svm_range_debug_dump - print all range information from svms
843  * @svms: svm range list header
844  *
845  * debug output svm range start, end, prefetch location from svms
846  * interval tree and link list
847  *
848  * Context: The caller must hold svms->lock
849  */
850 static void svm_range_debug_dump(struct svm_range_list *svms)
851 {
852 	struct interval_tree_node *node;
853 	struct svm_range *prange;
854 
855 	pr_debug("dump svms 0x%p list\n", svms);
856 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
857 
858 	list_for_each_entry(prange, &svms->list, list) {
859 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
860 			 prange, prange->start, prange->npages,
861 			 prange->start + prange->npages - 1,
862 			 prange->actual_loc);
863 	}
864 
865 	pr_debug("dump svms 0x%p interval tree\n", svms);
866 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
867 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
868 	while (node) {
869 		prange = container_of(node, struct svm_range, it_node);
870 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
871 			 prange, prange->start, prange->npages,
872 			 prange->start + prange->npages - 1,
873 			 prange->actual_loc);
874 		node = interval_tree_iter_next(node, 0, ~0ULL);
875 	}
876 }
877 
878 static void *
879 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
880 		     uint64_t offset, uint64_t *vram_pages)
881 {
882 	unsigned char *src = (unsigned char *)psrc + offset;
883 	unsigned char *dst;
884 	uint64_t i;
885 
886 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
887 	if (!dst)
888 		return NULL;
889 
890 	if (!vram_pages) {
891 		memcpy(dst, src, num_elements * size);
892 		return (void *)dst;
893 	}
894 
895 	*vram_pages = 0;
896 	for (i = 0; i < num_elements; i++) {
897 		dma_addr_t *temp;
898 		temp = (dma_addr_t *)dst + i;
899 		*temp = *((dma_addr_t *)src + i);
900 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
901 			(*vram_pages)++;
902 	}
903 
904 	return (void *)dst;
905 }
906 
907 static int
908 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
909 {
910 	int i;
911 
912 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
913 		if (!src->dma_addr[i])
914 			continue;
915 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
916 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
917 		if (!dst->dma_addr[i])
918 			return -ENOMEM;
919 	}
920 
921 	return 0;
922 }
923 
924 static int
925 svm_range_split_array(void *ppnew, void *ppold, size_t size,
926 		      uint64_t old_start, uint64_t old_n,
927 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
928 {
929 	unsigned char *new, *old, *pold;
930 	uint64_t d;
931 
932 	if (!ppold)
933 		return 0;
934 	pold = *(unsigned char **)ppold;
935 	if (!pold)
936 		return 0;
937 
938 	d = (new_start - old_start) * size;
939 	/* get dma addr array for new range and calculte its vram page number */
940 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
941 	if (!new)
942 		return -ENOMEM;
943 	d = (new_start == old_start) ? new_n * size : 0;
944 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
945 	if (!old) {
946 		kvfree(new);
947 		return -ENOMEM;
948 	}
949 	kvfree(pold);
950 	*(void **)ppold = old;
951 	*(void **)ppnew = new;
952 
953 	return 0;
954 }
955 
956 static int
957 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
958 		      uint64_t start, uint64_t last)
959 {
960 	uint64_t npages = last - start + 1;
961 	int i, r;
962 
963 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
964 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
965 					  sizeof(*old->dma_addr[i]), old->start,
966 					  npages, new->start, new->npages,
967 					  old->actual_loc ? &new->vram_pages : NULL);
968 		if (r)
969 			return r;
970 	}
971 	if (old->actual_loc)
972 		old->vram_pages -= new->vram_pages;
973 
974 	return 0;
975 }
976 
977 static int
978 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
979 		      uint64_t start, uint64_t last)
980 {
981 	uint64_t npages = last - start + 1;
982 
983 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
984 		 new->svms, new, new->start, start, last);
985 
986 	if (new->start == old->start) {
987 		new->offset = old->offset;
988 		old->offset += new->npages;
989 	} else {
990 		new->offset = old->offset + npages;
991 	}
992 
993 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
994 	new->ttm_res = old->ttm_res;
995 
996 	spin_lock(&new->svm_bo->list_lock);
997 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
998 	spin_unlock(&new->svm_bo->list_lock);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * svm_range_split_adjust - split range and adjust
1005  *
1006  * @new: new range
1007  * @old: the old range
1008  * @start: the old range adjust to start address in pages
1009  * @last: the old range adjust to last address in pages
1010  *
1011  * Copy system memory dma_addr or vram ttm_res in old range to new
1012  * range from new_start up to size new->npages, the remaining old range is from
1013  * start to last
1014  *
1015  * Return:
1016  * 0 - OK, -ENOMEM - out of memory
1017  */
1018 static int
1019 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1020 		      uint64_t start, uint64_t last)
1021 {
1022 	int r;
1023 
1024 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1025 		 new->svms, new->start, old->start, old->last, start, last);
1026 
1027 	if (new->start < old->start ||
1028 	    new->last > old->last) {
1029 		WARN_ONCE(1, "invalid new range start or last\n");
1030 		return -EINVAL;
1031 	}
1032 
1033 	r = svm_range_split_pages(new, old, start, last);
1034 	if (r)
1035 		return r;
1036 
1037 	if (old->actual_loc && old->ttm_res) {
1038 		r = svm_range_split_nodes(new, old, start, last);
1039 		if (r)
1040 			return r;
1041 	}
1042 
1043 	old->npages = last - start + 1;
1044 	old->start = start;
1045 	old->last = last;
1046 	new->flags = old->flags;
1047 	new->preferred_loc = old->preferred_loc;
1048 	new->prefetch_loc = old->prefetch_loc;
1049 	new->actual_loc = old->actual_loc;
1050 	new->granularity = old->granularity;
1051 	new->mapped_to_gpu = old->mapped_to_gpu;
1052 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1053 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1054 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  * svm_range_split - split a range in 2 ranges
1061  *
1062  * @prange: the svm range to split
1063  * @start: the remaining range start address in pages
1064  * @last: the remaining range last address in pages
1065  * @new: the result new range generated
1066  *
1067  * Two cases only:
1068  * case 1: if start == prange->start
1069  *         prange ==> prange[start, last]
1070  *         new range [last + 1, prange->last]
1071  *
1072  * case 2: if last == prange->last
1073  *         prange ==> prange[start, last]
1074  *         new range [prange->start, start - 1]
1075  *
1076  * Return:
1077  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1078  */
1079 static int
1080 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1081 		struct svm_range **new)
1082 {
1083 	uint64_t old_start = prange->start;
1084 	uint64_t old_last = prange->last;
1085 	struct svm_range_list *svms;
1086 	int r = 0;
1087 
1088 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1089 		 old_start, old_last, start, last);
1090 
1091 	if (old_start != start && old_last != last)
1092 		return -EINVAL;
1093 	if (start < old_start || last > old_last)
1094 		return -EINVAL;
1095 
1096 	svms = prange->svms;
1097 	if (old_start == start)
1098 		*new = svm_range_new(svms, last + 1, old_last, false);
1099 	else
1100 		*new = svm_range_new(svms, old_start, start - 1, false);
1101 	if (!*new)
1102 		return -ENOMEM;
1103 
1104 	r = svm_range_split_adjust(*new, prange, start, last);
1105 	if (r) {
1106 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1107 			 r, old_start, old_last, start, last);
1108 		svm_range_free(*new, false);
1109 		*new = NULL;
1110 	}
1111 
1112 	return r;
1113 }
1114 
1115 static int
1116 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1117 		     struct list_head *insert_list, struct list_head *remap_list)
1118 {
1119 	struct svm_range *tail = NULL;
1120 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1121 
1122 	if (!r) {
1123 		list_add(&tail->list, insert_list);
1124 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1125 			list_add(&tail->update_list, remap_list);
1126 	}
1127 	return r;
1128 }
1129 
1130 static int
1131 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1132 		     struct list_head *insert_list, struct list_head *remap_list)
1133 {
1134 	struct svm_range *head = NULL;
1135 	int r = svm_range_split(prange, new_start, prange->last, &head);
1136 
1137 	if (!r) {
1138 		list_add(&head->list, insert_list);
1139 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1140 			list_add(&head->update_list, remap_list);
1141 	}
1142 	return r;
1143 }
1144 
1145 static void
1146 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1147 		    struct svm_range *pchild, enum svm_work_list_ops op)
1148 {
1149 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1150 		 pchild, pchild->start, pchild->last, prange, op);
1151 
1152 	pchild->work_item.mm = mm;
1153 	pchild->work_item.op = op;
1154 	list_add_tail(&pchild->child_list, &prange->child_list);
1155 }
1156 
1157 static bool
1158 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1159 {
1160 	return (node_a->adev == node_b->adev ||
1161 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1162 }
1163 
1164 static uint64_t
1165 svm_range_get_pte_flags(struct kfd_node *node,
1166 			struct svm_range *prange, int domain)
1167 {
1168 	struct kfd_node *bo_node;
1169 	uint32_t flags = prange->flags;
1170 	uint32_t mapping_flags = 0;
1171 	uint64_t pte_flags;
1172 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1173 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1174 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1175 	unsigned int mtype_local;
1176 
1177 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1178 		bo_node = prange->svm_bo->node;
1179 
1180 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1181 	case IP_VERSION(9, 4, 1):
1182 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1183 			if (bo_node == node) {
1184 				mapping_flags |= coherent ?
1185 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1186 			} else {
1187 				mapping_flags |= coherent ?
1188 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1189 				if (svm_nodes_in_same_hive(node, bo_node))
1190 					snoop = true;
1191 			}
1192 		} else {
1193 			mapping_flags |= coherent ?
1194 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1195 		}
1196 		break;
1197 	case IP_VERSION(9, 4, 2):
1198 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1199 			if (bo_node == node) {
1200 				mapping_flags |= coherent ?
1201 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1202 				if (node->adev->gmc.xgmi.connected_to_cpu)
1203 					snoop = true;
1204 			} else {
1205 				mapping_flags |= coherent ?
1206 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1207 				if (svm_nodes_in_same_hive(node, bo_node))
1208 					snoop = true;
1209 			}
1210 		} else {
1211 			mapping_flags |= coherent ?
1212 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1213 		}
1214 		break;
1215 	case IP_VERSION(9, 4, 3):
1216 	case IP_VERSION(9, 4, 4):
1217 		if (ext_coherent)
1218 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1219 		else
1220 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1221 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1222 		snoop = true;
1223 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1224 			/* local HBM region close to partition */
1225 			if (bo_node->adev == node->adev &&
1226 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1227 				mapping_flags |= mtype_local;
1228 			/* local HBM region far from partition or remote XGMI GPU
1229 			 * with regular system scope coherence
1230 			 */
1231 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1232 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1233 			/* PCIe P2P or extended system scope coherence */
1234 			else
1235 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1236 		/* system memory accessed by the APU */
1237 		} else if (node->adev->flags & AMD_IS_APU) {
1238 			/* On NUMA systems, locality is determined per-page
1239 			 * in amdgpu_gmc_override_vm_pte_flags
1240 			 */
1241 			if (num_possible_nodes() <= 1)
1242 				mapping_flags |= mtype_local;
1243 			else
1244 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1245 		/* system memory accessed by the dGPU */
1246 		} else {
1247 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1248 		}
1249 		break;
1250 	case IP_VERSION(12, 0, 0):
1251 	case IP_VERSION(12, 0, 1):
1252 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1253 			if (bo_node != node)
1254 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1255 		} else {
1256 			mapping_flags |= coherent ?
1257 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1258 		}
1259 		break;
1260 	default:
1261 		mapping_flags |= coherent ?
1262 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1263 	}
1264 
1265 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1266 
1267 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1268 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1269 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1270 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1271 
1272 	pte_flags = AMDGPU_PTE_VALID;
1273 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1274 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1275 	if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1276 		pte_flags |= AMDGPU_PTE_IS_PTE;
1277 
1278 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1279 	return pte_flags;
1280 }
1281 
1282 static int
1283 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1284 			 uint64_t start, uint64_t last,
1285 			 struct dma_fence **fence)
1286 {
1287 	uint64_t init_pte_value = 0;
1288 
1289 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1290 
1291 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1292 				      last, init_pte_value, 0, 0, NULL, NULL,
1293 				      fence);
1294 }
1295 
1296 static int
1297 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1298 			  unsigned long last, uint32_t trigger)
1299 {
1300 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1301 	struct kfd_process_device *pdd;
1302 	struct dma_fence *fence = NULL;
1303 	struct kfd_process *p;
1304 	uint32_t gpuidx;
1305 	int r = 0;
1306 
1307 	if (!prange->mapped_to_gpu) {
1308 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1309 			 prange, prange->start, prange->last);
1310 		return 0;
1311 	}
1312 
1313 	if (prange->start == start && prange->last == last) {
1314 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1315 		prange->mapped_to_gpu = false;
1316 	}
1317 
1318 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1319 		  MAX_GPU_INSTANCE);
1320 	p = container_of(prange->svms, struct kfd_process, svms);
1321 
1322 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1323 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1324 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1325 		if (!pdd) {
1326 			pr_debug("failed to find device idx %d\n", gpuidx);
1327 			return -EINVAL;
1328 		}
1329 
1330 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1331 					     start, last, trigger);
1332 
1333 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1334 					     drm_priv_to_vm(pdd->drm_priv),
1335 					     start, last, &fence);
1336 		if (r)
1337 			break;
1338 
1339 		if (fence) {
1340 			r = dma_fence_wait(fence, false);
1341 			dma_fence_put(fence);
1342 			fence = NULL;
1343 			if (r)
1344 				break;
1345 		}
1346 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1347 	}
1348 
1349 	return r;
1350 }
1351 
1352 static int
1353 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1354 		     unsigned long offset, unsigned long npages, bool readonly,
1355 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1356 		     struct dma_fence **fence, bool flush_tlb)
1357 {
1358 	struct amdgpu_device *adev = pdd->dev->adev;
1359 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1360 	uint64_t pte_flags;
1361 	unsigned long last_start;
1362 	int last_domain;
1363 	int r = 0;
1364 	int64_t i, j;
1365 
1366 	last_start = prange->start + offset;
1367 
1368 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1369 		 last_start, last_start + npages - 1, readonly);
1370 
1371 	for (i = offset; i < offset + npages; i++) {
1372 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1373 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1374 
1375 		/* Collect all pages in the same address range and memory domain
1376 		 * that can be mapped with a single call to update mapping.
1377 		 */
1378 		if (i < offset + npages - 1 &&
1379 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1380 			continue;
1381 
1382 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1383 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1384 
1385 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1386 		if (readonly)
1387 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1388 
1389 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1390 			 prange->svms, last_start, prange->start + i,
1391 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1392 			 pte_flags);
1393 
1394 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1395 		 * different memory partition based on fpfn/lpfn, we should use
1396 		 * same vm_manager.vram_base_offset regardless memory partition.
1397 		 */
1398 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1399 					   NULL, last_start, prange->start + i,
1400 					   pte_flags,
1401 					   (last_start - prange->start) << PAGE_SHIFT,
1402 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1403 					   NULL, dma_addr, &vm->last_update);
1404 
1405 		for (j = last_start - prange->start; j <= i; j++)
1406 			dma_addr[j] |= last_domain;
1407 
1408 		if (r) {
1409 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1410 			goto out;
1411 		}
1412 		last_start = prange->start + i + 1;
1413 	}
1414 
1415 	r = amdgpu_vm_update_pdes(adev, vm, false);
1416 	if (r) {
1417 		pr_debug("failed %d to update directories 0x%lx\n", r,
1418 			 prange->start);
1419 		goto out;
1420 	}
1421 
1422 	if (fence)
1423 		*fence = dma_fence_get(vm->last_update);
1424 
1425 out:
1426 	return r;
1427 }
1428 
1429 static int
1430 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1431 		      unsigned long npages, bool readonly,
1432 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1433 {
1434 	struct kfd_process_device *pdd;
1435 	struct amdgpu_device *bo_adev = NULL;
1436 	struct kfd_process *p;
1437 	struct dma_fence *fence = NULL;
1438 	uint32_t gpuidx;
1439 	int r = 0;
1440 
1441 	if (prange->svm_bo && prange->ttm_res)
1442 		bo_adev = prange->svm_bo->node->adev;
1443 
1444 	p = container_of(prange->svms, struct kfd_process, svms);
1445 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1446 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1447 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1448 		if (!pdd) {
1449 			pr_debug("failed to find device idx %d\n", gpuidx);
1450 			return -EINVAL;
1451 		}
1452 
1453 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1454 		if (IS_ERR(pdd))
1455 			return -EINVAL;
1456 
1457 		if (bo_adev && pdd->dev->adev != bo_adev &&
1458 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1459 			pr_debug("cannot map to device idx %d\n", gpuidx);
1460 			continue;
1461 		}
1462 
1463 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1464 					 prange->dma_addr[gpuidx],
1465 					 bo_adev, wait ? &fence : NULL,
1466 					 flush_tlb);
1467 		if (r)
1468 			break;
1469 
1470 		if (fence) {
1471 			r = dma_fence_wait(fence, false);
1472 			dma_fence_put(fence);
1473 			fence = NULL;
1474 			if (r) {
1475 				pr_debug("failed %d to dma fence wait\n", r);
1476 				break;
1477 			}
1478 		}
1479 
1480 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1481 	}
1482 
1483 	return r;
1484 }
1485 
1486 struct svm_validate_context {
1487 	struct kfd_process *process;
1488 	struct svm_range *prange;
1489 	bool intr;
1490 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1491 	struct drm_exec exec;
1492 };
1493 
1494 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1495 {
1496 	struct kfd_process_device *pdd;
1497 	struct amdgpu_vm *vm;
1498 	uint32_t gpuidx;
1499 	int r;
1500 
1501 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1502 	drm_exec_until_all_locked(&ctx->exec) {
1503 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1504 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1505 			if (!pdd) {
1506 				pr_debug("failed to find device idx %d\n", gpuidx);
1507 				r = -EINVAL;
1508 				goto unreserve_out;
1509 			}
1510 			vm = drm_priv_to_vm(pdd->drm_priv);
1511 
1512 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1513 			drm_exec_retry_on_contention(&ctx->exec);
1514 			if (unlikely(r)) {
1515 				pr_debug("failed %d to reserve bo\n", r);
1516 				goto unreserve_out;
1517 			}
1518 		}
1519 	}
1520 
1521 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1522 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1523 		if (!pdd) {
1524 			pr_debug("failed to find device idx %d\n", gpuidx);
1525 			r = -EINVAL;
1526 			goto unreserve_out;
1527 		}
1528 
1529 		r = amdgpu_vm_validate(pdd->dev->adev,
1530 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1531 				       svm_range_bo_validate, NULL);
1532 		if (r) {
1533 			pr_debug("failed %d validate pt bos\n", r);
1534 			goto unreserve_out;
1535 		}
1536 	}
1537 
1538 	return 0;
1539 
1540 unreserve_out:
1541 	drm_exec_fini(&ctx->exec);
1542 	return r;
1543 }
1544 
1545 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1546 {
1547 	drm_exec_fini(&ctx->exec);
1548 }
1549 
1550 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1551 {
1552 	struct kfd_process_device *pdd;
1553 
1554 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1555 	if (!pdd)
1556 		return NULL;
1557 
1558 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1559 }
1560 
1561 /*
1562  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1563  *
1564  * To prevent concurrent destruction or change of range attributes, the
1565  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1566  * because that would block concurrent evictions and lead to deadlocks. To
1567  * serialize concurrent migrations or validations of the same range, the
1568  * prange->migrate_mutex must be held.
1569  *
1570  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1571  * eviction fence.
1572  *
1573  * The following sequence ensures race-free validation and GPU mapping:
1574  *
1575  * 1. Reserve page table (and SVM BO if range is in VRAM)
1576  * 2. hmm_range_fault to get page addresses (if system memory)
1577  * 3. DMA-map pages (if system memory)
1578  * 4-a. Take notifier lock
1579  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1580  * 4-c. Check that the range was not split or otherwise invalidated
1581  * 4-d. Update GPU page table
1582  * 4.e. Release notifier lock
1583  * 5. Release page table (and SVM BO) reservation
1584  */
1585 static int svm_range_validate_and_map(struct mm_struct *mm,
1586 				      unsigned long map_start, unsigned long map_last,
1587 				      struct svm_range *prange, int32_t gpuidx,
1588 				      bool intr, bool wait, bool flush_tlb)
1589 {
1590 	struct svm_validate_context *ctx;
1591 	unsigned long start, end, addr;
1592 	struct kfd_process *p;
1593 	void *owner;
1594 	int32_t idx;
1595 	int r = 0;
1596 
1597 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1598 	if (!ctx)
1599 		return -ENOMEM;
1600 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1601 	ctx->prange = prange;
1602 	ctx->intr = intr;
1603 
1604 	if (gpuidx < MAX_GPU_INSTANCE) {
1605 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1606 		bitmap_set(ctx->bitmap, gpuidx, 1);
1607 	} else if (ctx->process->xnack_enabled) {
1608 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1609 
1610 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1611 		 * GPU, which has ACCESS attribute to the range, create mapping
1612 		 * on that GPU.
1613 		 */
1614 		if (prange->actual_loc) {
1615 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1616 							prange->actual_loc);
1617 			if (gpuidx < 0) {
1618 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1619 					 prange->actual_loc);
1620 				r = -EINVAL;
1621 				goto free_ctx;
1622 			}
1623 			if (test_bit(gpuidx, prange->bitmap_access))
1624 				bitmap_set(ctx->bitmap, gpuidx, 1);
1625 		}
1626 
1627 		/*
1628 		 * If prange is already mapped or with always mapped flag,
1629 		 * update mapping on GPUs with ACCESS attribute
1630 		 */
1631 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1632 			if (prange->mapped_to_gpu ||
1633 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1634 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1635 		}
1636 	} else {
1637 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1638 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1639 	}
1640 
1641 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1642 		r = 0;
1643 		goto free_ctx;
1644 	}
1645 
1646 	if (prange->actual_loc && !prange->ttm_res) {
1647 		/* This should never happen. actual_loc gets set by
1648 		 * svm_migrate_ram_to_vram after allocating a BO.
1649 		 */
1650 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1651 		r = -EINVAL;
1652 		goto free_ctx;
1653 	}
1654 
1655 	r = svm_range_reserve_bos(ctx, intr);
1656 	if (r)
1657 		goto free_ctx;
1658 
1659 	p = container_of(prange->svms, struct kfd_process, svms);
1660 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1661 						MAX_GPU_INSTANCE));
1662 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1663 		if (kfd_svm_page_owner(p, idx) != owner) {
1664 			owner = NULL;
1665 			break;
1666 		}
1667 	}
1668 
1669 	start = map_start << PAGE_SHIFT;
1670 	end = (map_last + 1) << PAGE_SHIFT;
1671 	for (addr = start; !r && addr < end; ) {
1672 		struct hmm_range *hmm_range = NULL;
1673 		unsigned long map_start_vma;
1674 		unsigned long map_last_vma;
1675 		struct vm_area_struct *vma;
1676 		unsigned long next = 0;
1677 		unsigned long offset;
1678 		unsigned long npages;
1679 		bool readonly;
1680 
1681 		vma = vma_lookup(mm, addr);
1682 		if (vma) {
1683 			readonly = !(vma->vm_flags & VM_WRITE);
1684 
1685 			next = min(vma->vm_end, end);
1686 			npages = (next - addr) >> PAGE_SHIFT;
1687 			WRITE_ONCE(p->svms.faulting_task, current);
1688 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1689 						       readonly, owner, NULL,
1690 						       &hmm_range);
1691 			WRITE_ONCE(p->svms.faulting_task, NULL);
1692 			if (r)
1693 				pr_debug("failed %d to get svm range pages\n", r);
1694 		} else {
1695 			r = -EFAULT;
1696 		}
1697 
1698 		if (!r) {
1699 			offset = (addr >> PAGE_SHIFT) - prange->start;
1700 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1701 					      hmm_range->hmm_pfns);
1702 			if (r)
1703 				pr_debug("failed %d to dma map range\n", r);
1704 		}
1705 
1706 		svm_range_lock(prange);
1707 
1708 		/* Free backing memory of hmm_range if it was initialized
1709 		 * Overrride return value to TRY AGAIN only if prior returns
1710 		 * were successful
1711 		 */
1712 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1713 			pr_debug("hmm update the range, need validate again\n");
1714 			r = -EAGAIN;
1715 		}
1716 
1717 		if (!r && !list_empty(&prange->child_list)) {
1718 			pr_debug("range split by unmap in parallel, validate again\n");
1719 			r = -EAGAIN;
1720 		}
1721 
1722 		if (!r) {
1723 			map_start_vma = max(map_start, prange->start + offset);
1724 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1725 			if (map_start_vma <= map_last_vma) {
1726 				offset = map_start_vma - prange->start;
1727 				npages = map_last_vma - map_start_vma + 1;
1728 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1729 							  ctx->bitmap, wait, flush_tlb);
1730 			}
1731 		}
1732 
1733 		if (!r && next == end)
1734 			prange->mapped_to_gpu = true;
1735 
1736 		svm_range_unlock(prange);
1737 
1738 		addr = next;
1739 	}
1740 
1741 	svm_range_unreserve_bos(ctx);
1742 	if (!r)
1743 		prange->validate_timestamp = ktime_get_boottime();
1744 
1745 free_ctx:
1746 	kfree(ctx);
1747 
1748 	return r;
1749 }
1750 
1751 /**
1752  * svm_range_list_lock_and_flush_work - flush pending deferred work
1753  *
1754  * @svms: the svm range list
1755  * @mm: the mm structure
1756  *
1757  * Context: Returns with mmap write lock held, pending deferred work flushed
1758  *
1759  */
1760 void
1761 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1762 				   struct mm_struct *mm)
1763 {
1764 retry_flush_work:
1765 	flush_work(&svms->deferred_list_work);
1766 	mmap_write_lock(mm);
1767 
1768 	if (list_empty(&svms->deferred_range_list))
1769 		return;
1770 	mmap_write_unlock(mm);
1771 	pr_debug("retry flush\n");
1772 	goto retry_flush_work;
1773 }
1774 
1775 static void svm_range_restore_work(struct work_struct *work)
1776 {
1777 	struct delayed_work *dwork = to_delayed_work(work);
1778 	struct amdkfd_process_info *process_info;
1779 	struct svm_range_list *svms;
1780 	struct svm_range *prange;
1781 	struct kfd_process *p;
1782 	struct mm_struct *mm;
1783 	int evicted_ranges;
1784 	int invalid;
1785 	int r;
1786 
1787 	svms = container_of(dwork, struct svm_range_list, restore_work);
1788 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1789 	if (!evicted_ranges)
1790 		return;
1791 
1792 	pr_debug("restore svm ranges\n");
1793 
1794 	p = container_of(svms, struct kfd_process, svms);
1795 	process_info = p->kgd_process_info;
1796 
1797 	/* Keep mm reference when svm_range_validate_and_map ranges */
1798 	mm = get_task_mm(p->lead_thread);
1799 	if (!mm) {
1800 		pr_debug("svms 0x%p process mm gone\n", svms);
1801 		return;
1802 	}
1803 
1804 	mutex_lock(&process_info->lock);
1805 	svm_range_list_lock_and_flush_work(svms, mm);
1806 	mutex_lock(&svms->lock);
1807 
1808 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1809 
1810 	list_for_each_entry(prange, &svms->list, list) {
1811 		invalid = atomic_read(&prange->invalid);
1812 		if (!invalid)
1813 			continue;
1814 
1815 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1816 			 prange->svms, prange, prange->start, prange->last,
1817 			 invalid);
1818 
1819 		/*
1820 		 * If range is migrating, wait for migration is done.
1821 		 */
1822 		mutex_lock(&prange->migrate_mutex);
1823 
1824 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1825 					       MAX_GPU_INSTANCE, false, true, false);
1826 		if (r)
1827 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1828 				 prange->start);
1829 
1830 		mutex_unlock(&prange->migrate_mutex);
1831 		if (r)
1832 			goto out_reschedule;
1833 
1834 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1835 			goto out_reschedule;
1836 	}
1837 
1838 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1839 	    evicted_ranges)
1840 		goto out_reschedule;
1841 
1842 	evicted_ranges = 0;
1843 
1844 	r = kgd2kfd_resume_mm(mm);
1845 	if (r) {
1846 		/* No recovery from this failure. Probably the CP is
1847 		 * hanging. No point trying again.
1848 		 */
1849 		pr_debug("failed %d to resume KFD\n", r);
1850 	}
1851 
1852 	pr_debug("restore svm ranges successfully\n");
1853 
1854 out_reschedule:
1855 	mutex_unlock(&svms->lock);
1856 	mmap_write_unlock(mm);
1857 	mutex_unlock(&process_info->lock);
1858 
1859 	/* If validation failed, reschedule another attempt */
1860 	if (evicted_ranges) {
1861 		pr_debug("reschedule to restore svm range\n");
1862 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1863 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1864 
1865 		kfd_smi_event_queue_restore_rescheduled(mm);
1866 	}
1867 	mmput(mm);
1868 }
1869 
1870 /**
1871  * svm_range_evict - evict svm range
1872  * @prange: svm range structure
1873  * @mm: current process mm_struct
1874  * @start: starting process queue number
1875  * @last: last process queue number
1876  * @event: mmu notifier event when range is evicted or migrated
1877  *
1878  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1879  * return to let CPU evict the buffer and proceed CPU pagetable update.
1880  *
1881  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1882  * If invalidation happens while restore work is running, restore work will
1883  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1884  * the queues.
1885  */
1886 static int
1887 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1888 		unsigned long start, unsigned long last,
1889 		enum mmu_notifier_event event)
1890 {
1891 	struct svm_range_list *svms = prange->svms;
1892 	struct svm_range *pchild;
1893 	struct kfd_process *p;
1894 	int r = 0;
1895 
1896 	p = container_of(svms, struct kfd_process, svms);
1897 
1898 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1899 		 svms, prange->start, prange->last, start, last);
1900 
1901 	if (!p->xnack_enabled ||
1902 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1903 		int evicted_ranges;
1904 		bool mapped = prange->mapped_to_gpu;
1905 
1906 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1907 			if (!pchild->mapped_to_gpu)
1908 				continue;
1909 			mapped = true;
1910 			mutex_lock_nested(&pchild->lock, 1);
1911 			if (pchild->start <= last && pchild->last >= start) {
1912 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1913 					 pchild->start, pchild->last);
1914 				atomic_inc(&pchild->invalid);
1915 			}
1916 			mutex_unlock(&pchild->lock);
1917 		}
1918 
1919 		if (!mapped)
1920 			return r;
1921 
1922 		if (prange->start <= last && prange->last >= start)
1923 			atomic_inc(&prange->invalid);
1924 
1925 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1926 		if (evicted_ranges != 1)
1927 			return r;
1928 
1929 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1930 			 prange->svms, prange->start, prange->last);
1931 
1932 		/* First eviction, stop the queues */
1933 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1934 		if (r)
1935 			pr_debug("failed to quiesce KFD\n");
1936 
1937 		pr_debug("schedule to restore svm %p ranges\n", svms);
1938 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1939 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1940 	} else {
1941 		unsigned long s, l;
1942 		uint32_t trigger;
1943 
1944 		if (event == MMU_NOTIFY_MIGRATE)
1945 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1946 		else
1947 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1948 
1949 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1950 			 prange->svms, start, last);
1951 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1952 			mutex_lock_nested(&pchild->lock, 1);
1953 			s = max(start, pchild->start);
1954 			l = min(last, pchild->last);
1955 			if (l >= s)
1956 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1957 			mutex_unlock(&pchild->lock);
1958 		}
1959 		s = max(start, prange->start);
1960 		l = min(last, prange->last);
1961 		if (l >= s)
1962 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1963 	}
1964 
1965 	return r;
1966 }
1967 
1968 static struct svm_range *svm_range_clone(struct svm_range *old)
1969 {
1970 	struct svm_range *new;
1971 
1972 	new = svm_range_new(old->svms, old->start, old->last, false);
1973 	if (!new)
1974 		return NULL;
1975 	if (svm_range_copy_dma_addrs(new, old)) {
1976 		svm_range_free(new, false);
1977 		return NULL;
1978 	}
1979 	if (old->svm_bo) {
1980 		new->ttm_res = old->ttm_res;
1981 		new->offset = old->offset;
1982 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1983 		spin_lock(&new->svm_bo->list_lock);
1984 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1985 		spin_unlock(&new->svm_bo->list_lock);
1986 	}
1987 	new->flags = old->flags;
1988 	new->preferred_loc = old->preferred_loc;
1989 	new->prefetch_loc = old->prefetch_loc;
1990 	new->actual_loc = old->actual_loc;
1991 	new->granularity = old->granularity;
1992 	new->mapped_to_gpu = old->mapped_to_gpu;
1993 	new->vram_pages = old->vram_pages;
1994 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1995 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1996 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1997 
1998 	return new;
1999 }
2000 
2001 void svm_range_set_max_pages(struct amdgpu_device *adev)
2002 {
2003 	uint64_t max_pages;
2004 	uint64_t pages, _pages;
2005 	uint64_t min_pages = 0;
2006 	int i, id;
2007 
2008 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2009 		if (adev->kfd.dev->nodes[i]->xcp)
2010 			id = adev->kfd.dev->nodes[i]->xcp->id;
2011 		else
2012 			id = -1;
2013 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2014 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2015 		pages = rounddown_pow_of_two(pages);
2016 		min_pages = min_not_zero(min_pages, pages);
2017 	}
2018 
2019 	do {
2020 		max_pages = READ_ONCE(max_svm_range_pages);
2021 		_pages = min_not_zero(max_pages, min_pages);
2022 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2023 }
2024 
2025 static int
2026 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2027 		    uint64_t max_pages, struct list_head *insert_list,
2028 		    struct list_head *update_list)
2029 {
2030 	struct svm_range *prange;
2031 	uint64_t l;
2032 
2033 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2034 		 max_pages, start, last);
2035 
2036 	while (last >= start) {
2037 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2038 
2039 		prange = svm_range_new(svms, start, l, true);
2040 		if (!prange)
2041 			return -ENOMEM;
2042 		list_add(&prange->list, insert_list);
2043 		list_add(&prange->update_list, update_list);
2044 
2045 		start = l + 1;
2046 	}
2047 	return 0;
2048 }
2049 
2050 /**
2051  * svm_range_add - add svm range and handle overlap
2052  * @p: the range add to this process svms
2053  * @start: page size aligned
2054  * @size: page size aligned
2055  * @nattr: number of attributes
2056  * @attrs: array of attributes
2057  * @update_list: output, the ranges need validate and update GPU mapping
2058  * @insert_list: output, the ranges need insert to svms
2059  * @remove_list: output, the ranges are replaced and need remove from svms
2060  * @remap_list: output, remap unaligned svm ranges
2061  *
2062  * Check if the virtual address range has overlap with any existing ranges,
2063  * split partly overlapping ranges and add new ranges in the gaps. All changes
2064  * should be applied to the range_list and interval tree transactionally. If
2065  * any range split or allocation fails, the entire update fails. Therefore any
2066  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2067  * unchanged.
2068  *
2069  * If the transaction succeeds, the caller can update and insert clones and
2070  * new ranges, then free the originals.
2071  *
2072  * Otherwise the caller can free the clones and new ranges, while the old
2073  * svm_ranges remain unchanged.
2074  *
2075  * Context: Process context, caller must hold svms->lock
2076  *
2077  * Return:
2078  * 0 - OK, otherwise error code
2079  */
2080 static int
2081 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2082 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2083 	      struct list_head *update_list, struct list_head *insert_list,
2084 	      struct list_head *remove_list, struct list_head *remap_list)
2085 {
2086 	unsigned long last = start + size - 1UL;
2087 	struct svm_range_list *svms = &p->svms;
2088 	struct interval_tree_node *node;
2089 	struct svm_range *prange;
2090 	struct svm_range *tmp;
2091 	struct list_head new_list;
2092 	int r = 0;
2093 
2094 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2095 
2096 	INIT_LIST_HEAD(update_list);
2097 	INIT_LIST_HEAD(insert_list);
2098 	INIT_LIST_HEAD(remove_list);
2099 	INIT_LIST_HEAD(&new_list);
2100 	INIT_LIST_HEAD(remap_list);
2101 
2102 	node = interval_tree_iter_first(&svms->objects, start, last);
2103 	while (node) {
2104 		struct interval_tree_node *next;
2105 		unsigned long next_start;
2106 
2107 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2108 			 node->last);
2109 
2110 		prange = container_of(node, struct svm_range, it_node);
2111 		next = interval_tree_iter_next(node, start, last);
2112 		next_start = min(node->last, last) + 1;
2113 
2114 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2115 		    prange->mapped_to_gpu) {
2116 			/* nothing to do */
2117 		} else if (node->start < start || node->last > last) {
2118 			/* node intersects the update range and its attributes
2119 			 * will change. Clone and split it, apply updates only
2120 			 * to the overlapping part
2121 			 */
2122 			struct svm_range *old = prange;
2123 
2124 			prange = svm_range_clone(old);
2125 			if (!prange) {
2126 				r = -ENOMEM;
2127 				goto out;
2128 			}
2129 
2130 			list_add(&old->update_list, remove_list);
2131 			list_add(&prange->list, insert_list);
2132 			list_add(&prange->update_list, update_list);
2133 
2134 			if (node->start < start) {
2135 				pr_debug("change old range start\n");
2136 				r = svm_range_split_head(prange, start,
2137 							 insert_list, remap_list);
2138 				if (r)
2139 					goto out;
2140 			}
2141 			if (node->last > last) {
2142 				pr_debug("change old range last\n");
2143 				r = svm_range_split_tail(prange, last,
2144 							 insert_list, remap_list);
2145 				if (r)
2146 					goto out;
2147 			}
2148 		} else {
2149 			/* The node is contained within start..last,
2150 			 * just update it
2151 			 */
2152 			list_add(&prange->update_list, update_list);
2153 		}
2154 
2155 		/* insert a new node if needed */
2156 		if (node->start > start) {
2157 			r = svm_range_split_new(svms, start, node->start - 1,
2158 						READ_ONCE(max_svm_range_pages),
2159 						&new_list, update_list);
2160 			if (r)
2161 				goto out;
2162 		}
2163 
2164 		node = next;
2165 		start = next_start;
2166 	}
2167 
2168 	/* add a final range at the end if needed */
2169 	if (start <= last)
2170 		r = svm_range_split_new(svms, start, last,
2171 					READ_ONCE(max_svm_range_pages),
2172 					&new_list, update_list);
2173 
2174 out:
2175 	if (r) {
2176 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2177 			svm_range_free(prange, false);
2178 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2179 			svm_range_free(prange, true);
2180 	} else {
2181 		list_splice(&new_list, insert_list);
2182 	}
2183 
2184 	return r;
2185 }
2186 
2187 static void
2188 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2189 					    struct svm_range *prange)
2190 {
2191 	unsigned long start;
2192 	unsigned long last;
2193 
2194 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2195 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2196 
2197 	if (prange->start == start && prange->last == last)
2198 		return;
2199 
2200 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2201 		  prange->svms, prange, start, last, prange->start,
2202 		  prange->last);
2203 
2204 	if (start != 0 && last != 0) {
2205 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2206 		svm_range_remove_notifier(prange);
2207 	}
2208 	prange->it_node.start = prange->start;
2209 	prange->it_node.last = prange->last;
2210 
2211 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2212 	svm_range_add_notifier_locked(mm, prange);
2213 }
2214 
2215 static void
2216 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2217 			 struct mm_struct *mm)
2218 {
2219 	switch (prange->work_item.op) {
2220 	case SVM_OP_NULL:
2221 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2222 			 svms, prange, prange->start, prange->last);
2223 		break;
2224 	case SVM_OP_UNMAP_RANGE:
2225 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2226 			 svms, prange, prange->start, prange->last);
2227 		svm_range_unlink(prange);
2228 		svm_range_remove_notifier(prange);
2229 		svm_range_free(prange, true);
2230 		break;
2231 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2232 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2233 			 svms, prange, prange->start, prange->last);
2234 		svm_range_update_notifier_and_interval_tree(mm, prange);
2235 		break;
2236 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2237 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2238 			 svms, prange, prange->start, prange->last);
2239 		svm_range_update_notifier_and_interval_tree(mm, prange);
2240 		/* TODO: implement deferred validation and mapping */
2241 		break;
2242 	case SVM_OP_ADD_RANGE:
2243 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2244 			 prange->start, prange->last);
2245 		svm_range_add_to_svms(prange);
2246 		svm_range_add_notifier_locked(mm, prange);
2247 		break;
2248 	case SVM_OP_ADD_RANGE_AND_MAP:
2249 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2250 			 prange, prange->start, prange->last);
2251 		svm_range_add_to_svms(prange);
2252 		svm_range_add_notifier_locked(mm, prange);
2253 		/* TODO: implement deferred validation and mapping */
2254 		break;
2255 	default:
2256 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2257 			 prange->work_item.op);
2258 	}
2259 }
2260 
2261 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2262 {
2263 	struct kfd_process_device *pdd;
2264 	struct kfd_process *p;
2265 	int drain;
2266 	uint32_t i;
2267 
2268 	p = container_of(svms, struct kfd_process, svms);
2269 
2270 restart:
2271 	drain = atomic_read(&svms->drain_pagefaults);
2272 	if (!drain)
2273 		return;
2274 
2275 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2276 		pdd = p->pdds[i];
2277 		if (!pdd)
2278 			continue;
2279 
2280 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2281 
2282 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2283 				pdd->dev->adev->irq.retry_cam_enabled ?
2284 				&pdd->dev->adev->irq.ih :
2285 				&pdd->dev->adev->irq.ih1);
2286 
2287 		if (pdd->dev->adev->irq.retry_cam_enabled)
2288 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2289 				&pdd->dev->adev->irq.ih_soft);
2290 
2291 
2292 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2293 	}
2294 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2295 		goto restart;
2296 }
2297 
2298 static void svm_range_deferred_list_work(struct work_struct *work)
2299 {
2300 	struct svm_range_list *svms;
2301 	struct svm_range *prange;
2302 	struct mm_struct *mm;
2303 
2304 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2305 	pr_debug("enter svms 0x%p\n", svms);
2306 
2307 	spin_lock(&svms->deferred_list_lock);
2308 	while (!list_empty(&svms->deferred_range_list)) {
2309 		prange = list_first_entry(&svms->deferred_range_list,
2310 					  struct svm_range, deferred_list);
2311 		spin_unlock(&svms->deferred_list_lock);
2312 
2313 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2314 			 prange->start, prange->last, prange->work_item.op);
2315 
2316 		mm = prange->work_item.mm;
2317 retry:
2318 		mmap_write_lock(mm);
2319 
2320 		/* Checking for the need to drain retry faults must be inside
2321 		 * mmap write lock to serialize with munmap notifiers.
2322 		 */
2323 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2324 			mmap_write_unlock(mm);
2325 			svm_range_drain_retry_fault(svms);
2326 			goto retry;
2327 		}
2328 
2329 		/* Remove from deferred_list must be inside mmap write lock, for
2330 		 * two race cases:
2331 		 * 1. unmap_from_cpu may change work_item.op and add the range
2332 		 *    to deferred_list again, cause use after free bug.
2333 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2334 		 *    lock and continue because deferred_list is empty, but
2335 		 *    deferred_list work is actually waiting for mmap lock.
2336 		 */
2337 		spin_lock(&svms->deferred_list_lock);
2338 		list_del_init(&prange->deferred_list);
2339 		spin_unlock(&svms->deferred_list_lock);
2340 
2341 		mutex_lock(&svms->lock);
2342 		mutex_lock(&prange->migrate_mutex);
2343 		while (!list_empty(&prange->child_list)) {
2344 			struct svm_range *pchild;
2345 
2346 			pchild = list_first_entry(&prange->child_list,
2347 						struct svm_range, child_list);
2348 			pr_debug("child prange 0x%p op %d\n", pchild,
2349 				 pchild->work_item.op);
2350 			list_del_init(&pchild->child_list);
2351 			svm_range_handle_list_op(svms, pchild, mm);
2352 		}
2353 		mutex_unlock(&prange->migrate_mutex);
2354 
2355 		svm_range_handle_list_op(svms, prange, mm);
2356 		mutex_unlock(&svms->lock);
2357 		mmap_write_unlock(mm);
2358 
2359 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2360 		 * last mm refcount, schedule release work to avoid circular locking
2361 		 */
2362 		mmput_async(mm);
2363 
2364 		spin_lock(&svms->deferred_list_lock);
2365 	}
2366 	spin_unlock(&svms->deferred_list_lock);
2367 	pr_debug("exit svms 0x%p\n", svms);
2368 }
2369 
2370 void
2371 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2372 			struct mm_struct *mm, enum svm_work_list_ops op)
2373 {
2374 	spin_lock(&svms->deferred_list_lock);
2375 	/* if prange is on the deferred list */
2376 	if (!list_empty(&prange->deferred_list)) {
2377 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2378 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2379 		if (op != SVM_OP_NULL &&
2380 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2381 			prange->work_item.op = op;
2382 	} else {
2383 		prange->work_item.op = op;
2384 
2385 		/* Pairs with mmput in deferred_list_work */
2386 		mmget(mm);
2387 		prange->work_item.mm = mm;
2388 		list_add_tail(&prange->deferred_list,
2389 			      &prange->svms->deferred_range_list);
2390 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2391 			 prange, prange->start, prange->last, op);
2392 	}
2393 	spin_unlock(&svms->deferred_list_lock);
2394 }
2395 
2396 void schedule_deferred_list_work(struct svm_range_list *svms)
2397 {
2398 	spin_lock(&svms->deferred_list_lock);
2399 	if (!list_empty(&svms->deferred_range_list))
2400 		schedule_work(&svms->deferred_list_work);
2401 	spin_unlock(&svms->deferred_list_lock);
2402 }
2403 
2404 static void
2405 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2406 		      struct svm_range *prange, unsigned long start,
2407 		      unsigned long last)
2408 {
2409 	struct svm_range *head;
2410 	struct svm_range *tail;
2411 
2412 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2413 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2414 			 prange->start, prange->last);
2415 		return;
2416 	}
2417 	if (start > prange->last || last < prange->start)
2418 		return;
2419 
2420 	head = tail = prange;
2421 	if (start > prange->start)
2422 		svm_range_split(prange, prange->start, start - 1, &tail);
2423 	if (last < tail->last)
2424 		svm_range_split(tail, last + 1, tail->last, &head);
2425 
2426 	if (head != prange && tail != prange) {
2427 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2428 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2429 	} else if (tail != prange) {
2430 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2431 	} else if (head != prange) {
2432 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2433 	} else if (parent != prange) {
2434 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2435 	}
2436 }
2437 
2438 static void
2439 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2440 			 unsigned long start, unsigned long last)
2441 {
2442 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2443 	struct svm_range_list *svms;
2444 	struct svm_range *pchild;
2445 	struct kfd_process *p;
2446 	unsigned long s, l;
2447 	bool unmap_parent;
2448 
2449 	if (atomic_read(&prange->queue_refcount)) {
2450 		int r;
2451 
2452 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2453 			prange->start << PAGE_SHIFT);
2454 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2455 		if (r)
2456 			pr_debug("failed %d to quiesce KFD queues\n", r);
2457 	}
2458 
2459 	p = kfd_lookup_process_by_mm(mm);
2460 	if (!p)
2461 		return;
2462 	svms = &p->svms;
2463 
2464 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2465 		 prange, prange->start, prange->last, start, last);
2466 
2467 	/* Make sure pending page faults are drained in the deferred worker
2468 	 * before the range is freed to avoid straggler interrupts on
2469 	 * unmapped memory causing "phantom faults".
2470 	 */
2471 	atomic_inc(&svms->drain_pagefaults);
2472 
2473 	unmap_parent = start <= prange->start && last >= prange->last;
2474 
2475 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2476 		mutex_lock_nested(&pchild->lock, 1);
2477 		s = max(start, pchild->start);
2478 		l = min(last, pchild->last);
2479 		if (l >= s)
2480 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2481 		svm_range_unmap_split(mm, prange, pchild, start, last);
2482 		mutex_unlock(&pchild->lock);
2483 	}
2484 	s = max(start, prange->start);
2485 	l = min(last, prange->last);
2486 	if (l >= s)
2487 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2488 	svm_range_unmap_split(mm, prange, prange, start, last);
2489 
2490 	if (unmap_parent)
2491 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2492 	else
2493 		svm_range_add_list_work(svms, prange, mm,
2494 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2495 	schedule_deferred_list_work(svms);
2496 
2497 	kfd_unref_process(p);
2498 }
2499 
2500 /**
2501  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2502  * @mni: mmu_interval_notifier struct
2503  * @range: mmu_notifier_range struct
2504  * @cur_seq: value to pass to mmu_interval_set_seq()
2505  *
2506  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2507  * is from migration, or CPU page invalidation callback.
2508  *
2509  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2510  * work thread, and split prange if only part of prange is unmapped.
2511  *
2512  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2513  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2514  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2515  * update GPU mapping to recover.
2516  *
2517  * Context: mmap lock, notifier_invalidate_start lock are held
2518  *          for invalidate event, prange lock is held if this is from migration
2519  */
2520 static bool
2521 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2522 				    const struct mmu_notifier_range *range,
2523 				    unsigned long cur_seq)
2524 {
2525 	struct svm_range *prange;
2526 	unsigned long start;
2527 	unsigned long last;
2528 
2529 	if (range->event == MMU_NOTIFY_RELEASE)
2530 		return true;
2531 	if (!mmget_not_zero(mni->mm))
2532 		return true;
2533 
2534 	start = mni->interval_tree.start;
2535 	last = mni->interval_tree.last;
2536 	start = max(start, range->start) >> PAGE_SHIFT;
2537 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2538 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2539 		 start, last, range->start >> PAGE_SHIFT,
2540 		 (range->end - 1) >> PAGE_SHIFT,
2541 		 mni->interval_tree.start >> PAGE_SHIFT,
2542 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2543 
2544 	prange = container_of(mni, struct svm_range, notifier);
2545 
2546 	svm_range_lock(prange);
2547 	mmu_interval_set_seq(mni, cur_seq);
2548 
2549 	switch (range->event) {
2550 	case MMU_NOTIFY_UNMAP:
2551 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2552 		break;
2553 	default:
2554 		svm_range_evict(prange, mni->mm, start, last, range->event);
2555 		break;
2556 	}
2557 
2558 	svm_range_unlock(prange);
2559 	mmput(mni->mm);
2560 
2561 	return true;
2562 }
2563 
2564 /**
2565  * svm_range_from_addr - find svm range from fault address
2566  * @svms: svm range list header
2567  * @addr: address to search range interval tree, in pages
2568  * @parent: parent range if range is on child list
2569  *
2570  * Context: The caller must hold svms->lock
2571  *
2572  * Return: the svm_range found or NULL
2573  */
2574 struct svm_range *
2575 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2576 		    struct svm_range **parent)
2577 {
2578 	struct interval_tree_node *node;
2579 	struct svm_range *prange;
2580 	struct svm_range *pchild;
2581 
2582 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2583 	if (!node)
2584 		return NULL;
2585 
2586 	prange = container_of(node, struct svm_range, it_node);
2587 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2588 		 addr, prange->start, prange->last, node->start, node->last);
2589 
2590 	if (addr >= prange->start && addr <= prange->last) {
2591 		if (parent)
2592 			*parent = prange;
2593 		return prange;
2594 	}
2595 	list_for_each_entry(pchild, &prange->child_list, child_list)
2596 		if (addr >= pchild->start && addr <= pchild->last) {
2597 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2598 				 addr, pchild->start, pchild->last);
2599 			if (parent)
2600 				*parent = prange;
2601 			return pchild;
2602 		}
2603 
2604 	return NULL;
2605 }
2606 
2607 /* svm_range_best_restore_location - decide the best fault restore location
2608  * @prange: svm range structure
2609  * @adev: the GPU on which vm fault happened
2610  *
2611  * This is only called when xnack is on, to decide the best location to restore
2612  * the range mapping after GPU vm fault. Caller uses the best location to do
2613  * migration if actual loc is not best location, then update GPU page table
2614  * mapping to the best location.
2615  *
2616  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2617  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2618  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2619  *    if range actual loc is cpu, best_loc is cpu
2620  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2621  *    range actual loc.
2622  * Otherwise, GPU no access, best_loc is -1.
2623  *
2624  * Return:
2625  * -1 means vm fault GPU no access
2626  * 0 for CPU or GPU id
2627  */
2628 static int32_t
2629 svm_range_best_restore_location(struct svm_range *prange,
2630 				struct kfd_node *node,
2631 				int32_t *gpuidx)
2632 {
2633 	struct kfd_node *bo_node, *preferred_node;
2634 	struct kfd_process *p;
2635 	uint32_t gpuid;
2636 	int r;
2637 
2638 	p = container_of(prange->svms, struct kfd_process, svms);
2639 
2640 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2641 	if (r < 0) {
2642 		pr_debug("failed to get gpuid from kgd\n");
2643 		return -1;
2644 	}
2645 
2646 	if (node->adev->flags & AMD_IS_APU)
2647 		return 0;
2648 
2649 	if (prange->preferred_loc == gpuid ||
2650 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2651 		return prange->preferred_loc;
2652 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2653 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2654 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2655 			return prange->preferred_loc;
2656 		/* fall through */
2657 	}
2658 
2659 	if (test_bit(*gpuidx, prange->bitmap_access))
2660 		return gpuid;
2661 
2662 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2663 		if (!prange->actual_loc)
2664 			return 0;
2665 
2666 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2667 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2668 			return prange->actual_loc;
2669 		else
2670 			return 0;
2671 	}
2672 
2673 	return -1;
2674 }
2675 
2676 static int
2677 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2678 			       unsigned long *start, unsigned long *last,
2679 			       bool *is_heap_stack)
2680 {
2681 	struct vm_area_struct *vma;
2682 	struct interval_tree_node *node;
2683 	struct rb_node *rb_node;
2684 	unsigned long start_limit, end_limit;
2685 
2686 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2687 	if (!vma) {
2688 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2689 		return -EFAULT;
2690 	}
2691 
2692 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2693 
2694 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2695 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2696 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2697 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2698 	/* First range that starts after the fault address */
2699 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2700 	if (node) {
2701 		end_limit = min(end_limit, node->start);
2702 		/* Last range that ends before the fault address */
2703 		rb_node = rb_prev(&node->rb);
2704 	} else {
2705 		/* Last range must end before addr because
2706 		 * there was no range after addr
2707 		 */
2708 		rb_node = rb_last(&p->svms.objects.rb_root);
2709 	}
2710 	if (rb_node) {
2711 		node = container_of(rb_node, struct interval_tree_node, rb);
2712 		if (node->last >= addr) {
2713 			WARN(1, "Overlap with prev node and page fault addr\n");
2714 			return -EFAULT;
2715 		}
2716 		start_limit = max(start_limit, node->last + 1);
2717 	}
2718 
2719 	*start = start_limit;
2720 	*last = end_limit - 1;
2721 
2722 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2723 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2724 		 *start, *last, *is_heap_stack);
2725 
2726 	return 0;
2727 }
2728 
2729 static int
2730 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2731 			   uint64_t *bo_s, uint64_t *bo_l)
2732 {
2733 	struct amdgpu_bo_va_mapping *mapping;
2734 	struct interval_tree_node *node;
2735 	struct amdgpu_bo *bo = NULL;
2736 	unsigned long userptr;
2737 	uint32_t i;
2738 	int r;
2739 
2740 	for (i = 0; i < p->n_pdds; i++) {
2741 		struct amdgpu_vm *vm;
2742 
2743 		if (!p->pdds[i]->drm_priv)
2744 			continue;
2745 
2746 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2747 		r = amdgpu_bo_reserve(vm->root.bo, false);
2748 		if (r)
2749 			return r;
2750 
2751 		/* Check userptr by searching entire vm->va interval tree */
2752 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2753 		while (node) {
2754 			mapping = container_of((struct rb_node *)node,
2755 					       struct amdgpu_bo_va_mapping, rb);
2756 			bo = mapping->bo_va->base.bo;
2757 
2758 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2759 							 start << PAGE_SHIFT,
2760 							 last << PAGE_SHIFT,
2761 							 &userptr)) {
2762 				node = interval_tree_iter_next(node, 0, ~0ULL);
2763 				continue;
2764 			}
2765 
2766 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2767 				 start, last);
2768 			if (bo_s && bo_l) {
2769 				*bo_s = userptr >> PAGE_SHIFT;
2770 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2771 			}
2772 			amdgpu_bo_unreserve(vm->root.bo);
2773 			return -EADDRINUSE;
2774 		}
2775 		amdgpu_bo_unreserve(vm->root.bo);
2776 	}
2777 	return 0;
2778 }
2779 
2780 static struct
2781 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2782 						struct kfd_process *p,
2783 						struct mm_struct *mm,
2784 						int64_t addr)
2785 {
2786 	struct svm_range *prange = NULL;
2787 	unsigned long start, last;
2788 	uint32_t gpuid, gpuidx;
2789 	bool is_heap_stack;
2790 	uint64_t bo_s = 0;
2791 	uint64_t bo_l = 0;
2792 	int r;
2793 
2794 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2795 					   &is_heap_stack))
2796 		return NULL;
2797 
2798 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2799 	if (r != -EADDRINUSE)
2800 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2801 
2802 	if (r == -EADDRINUSE) {
2803 		if (addr >= bo_s && addr <= bo_l)
2804 			return NULL;
2805 
2806 		/* Create one page svm range if 2MB range overlapping */
2807 		start = addr;
2808 		last = addr;
2809 	}
2810 
2811 	prange = svm_range_new(&p->svms, start, last, true);
2812 	if (!prange) {
2813 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2814 		return NULL;
2815 	}
2816 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2817 		pr_debug("failed to get gpuid from kgd\n");
2818 		svm_range_free(prange, true);
2819 		return NULL;
2820 	}
2821 
2822 	if (is_heap_stack)
2823 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2824 
2825 	svm_range_add_to_svms(prange);
2826 	svm_range_add_notifier_locked(mm, prange);
2827 
2828 	return prange;
2829 }
2830 
2831 /* svm_range_skip_recover - decide if prange can be recovered
2832  * @prange: svm range structure
2833  *
2834  * GPU vm retry fault handle skip recover the range for cases:
2835  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2836  *    deferred list work will drain the stale fault before free the prange.
2837  * 2. prange is on deferred list to add interval notifier after split, or
2838  * 3. prange is child range, it is split from parent prange, recover later
2839  *    after interval notifier is added.
2840  *
2841  * Return: true to skip recover, false to recover
2842  */
2843 static bool svm_range_skip_recover(struct svm_range *prange)
2844 {
2845 	struct svm_range_list *svms = prange->svms;
2846 
2847 	spin_lock(&svms->deferred_list_lock);
2848 	if (list_empty(&prange->deferred_list) &&
2849 	    list_empty(&prange->child_list)) {
2850 		spin_unlock(&svms->deferred_list_lock);
2851 		return false;
2852 	}
2853 	spin_unlock(&svms->deferred_list_lock);
2854 
2855 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2856 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2857 			 svms, prange, prange->start, prange->last);
2858 		return true;
2859 	}
2860 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2861 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2862 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2863 			 svms, prange, prange->start, prange->last);
2864 		return true;
2865 	}
2866 	return false;
2867 }
2868 
2869 static void
2870 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2871 		      int32_t gpuidx)
2872 {
2873 	struct kfd_process_device *pdd;
2874 
2875 	/* fault is on different page of same range
2876 	 * or fault is skipped to recover later
2877 	 * or fault is on invalid virtual address
2878 	 */
2879 	if (gpuidx == MAX_GPU_INSTANCE) {
2880 		uint32_t gpuid;
2881 		int r;
2882 
2883 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2884 		if (r < 0)
2885 			return;
2886 	}
2887 
2888 	/* fault is recovered
2889 	 * or fault cannot recover because GPU no access on the range
2890 	 */
2891 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2892 	if (pdd)
2893 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2894 }
2895 
2896 static bool
2897 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2898 {
2899 	unsigned long requested = VM_READ;
2900 
2901 	if (write_fault)
2902 		requested |= VM_WRITE;
2903 
2904 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2905 		vma->vm_flags);
2906 	return (vma->vm_flags & requested) == requested;
2907 }
2908 
2909 int
2910 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2911 			uint32_t vmid, uint32_t node_id,
2912 			uint64_t addr, bool write_fault)
2913 {
2914 	unsigned long start, last, size;
2915 	struct mm_struct *mm = NULL;
2916 	struct svm_range_list *svms;
2917 	struct svm_range *prange;
2918 	struct kfd_process *p;
2919 	ktime_t timestamp = ktime_get_boottime();
2920 	struct kfd_node *node;
2921 	int32_t best_loc;
2922 	int32_t gpuidx = MAX_GPU_INSTANCE;
2923 	bool write_locked = false;
2924 	struct vm_area_struct *vma;
2925 	bool migration = false;
2926 	int r = 0;
2927 
2928 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2929 		pr_debug("device does not support SVM\n");
2930 		return -EFAULT;
2931 	}
2932 
2933 	p = kfd_lookup_process_by_pasid(pasid);
2934 	if (!p) {
2935 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2936 		return 0;
2937 	}
2938 	svms = &p->svms;
2939 
2940 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2941 
2942 	if (atomic_read(&svms->drain_pagefaults)) {
2943 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2944 		r = 0;
2945 		goto out;
2946 	}
2947 
2948 	if (!p->xnack_enabled) {
2949 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2950 		r = -EFAULT;
2951 		goto out;
2952 	}
2953 
2954 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2955 	 * before releasing task ref.
2956 	 */
2957 	mm = get_task_mm(p->lead_thread);
2958 	if (!mm) {
2959 		pr_debug("svms 0x%p failed to get mm\n", svms);
2960 		r = 0;
2961 		goto out;
2962 	}
2963 
2964 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2965 	if (!node) {
2966 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2967 			 vmid);
2968 		r = -EFAULT;
2969 		goto out;
2970 	}
2971 	mmap_read_lock(mm);
2972 retry_write_locked:
2973 	mutex_lock(&svms->lock);
2974 	prange = svm_range_from_addr(svms, addr, NULL);
2975 	if (!prange) {
2976 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2977 			 svms, addr);
2978 		if (!write_locked) {
2979 			/* Need the write lock to create new range with MMU notifier.
2980 			 * Also flush pending deferred work to make sure the interval
2981 			 * tree is up to date before we add a new range
2982 			 */
2983 			mutex_unlock(&svms->lock);
2984 			mmap_read_unlock(mm);
2985 			mmap_write_lock(mm);
2986 			write_locked = true;
2987 			goto retry_write_locked;
2988 		}
2989 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2990 		if (!prange) {
2991 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2992 				 svms, addr);
2993 			mmap_write_downgrade(mm);
2994 			r = -EFAULT;
2995 			goto out_unlock_svms;
2996 		}
2997 	}
2998 	if (write_locked)
2999 		mmap_write_downgrade(mm);
3000 
3001 	mutex_lock(&prange->migrate_mutex);
3002 
3003 	if (svm_range_skip_recover(prange)) {
3004 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3005 		r = 0;
3006 		goto out_unlock_range;
3007 	}
3008 
3009 	/* skip duplicate vm fault on different pages of same range */
3010 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3011 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3012 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3013 			 svms, prange->start, prange->last);
3014 		r = 0;
3015 		goto out_unlock_range;
3016 	}
3017 
3018 	/* __do_munmap removed VMA, return success as we are handling stale
3019 	 * retry fault.
3020 	 */
3021 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3022 	if (!vma) {
3023 		pr_debug("address 0x%llx VMA is removed\n", addr);
3024 		r = 0;
3025 		goto out_unlock_range;
3026 	}
3027 
3028 	if (!svm_fault_allowed(vma, write_fault)) {
3029 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3030 			write_fault ? "write" : "read");
3031 		r = -EPERM;
3032 		goto out_unlock_range;
3033 	}
3034 
3035 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3036 	if (best_loc == -1) {
3037 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3038 			 svms, prange->start, prange->last);
3039 		r = -EACCES;
3040 		goto out_unlock_range;
3041 	}
3042 
3043 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3044 		 svms, prange->start, prange->last, best_loc,
3045 		 prange->actual_loc);
3046 
3047 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3048 				       write_fault, timestamp);
3049 
3050 	/* Align migration range start and size to granularity size */
3051 	size = 1UL << prange->granularity;
3052 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3053 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3054 	if (prange->actual_loc != 0 || best_loc != 0) {
3055 		migration = true;
3056 
3057 		if (best_loc) {
3058 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3059 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3060 			if (r) {
3061 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3062 					 r, addr);
3063 				/* Fallback to system memory if migration to
3064 				 * VRAM failed
3065 				 */
3066 				if (prange->actual_loc && prange->actual_loc != best_loc)
3067 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3068 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3069 				else
3070 					r = 0;
3071 			}
3072 		} else {
3073 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3074 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3075 		}
3076 		if (r) {
3077 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3078 				 r, svms, start, last);
3079 			goto out_unlock_range;
3080 		}
3081 	}
3082 
3083 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3084 				       false, false);
3085 	if (r)
3086 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3087 			 r, svms, start, last);
3088 
3089 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3090 				     migration);
3091 
3092 out_unlock_range:
3093 	mutex_unlock(&prange->migrate_mutex);
3094 out_unlock_svms:
3095 	mutex_unlock(&svms->lock);
3096 	mmap_read_unlock(mm);
3097 
3098 	svm_range_count_fault(node, p, gpuidx);
3099 
3100 	mmput(mm);
3101 out:
3102 	kfd_unref_process(p);
3103 
3104 	if (r == -EAGAIN) {
3105 		pr_debug("recover vm fault later\n");
3106 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3107 		r = 0;
3108 	}
3109 	return r;
3110 }
3111 
3112 int
3113 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3114 {
3115 	struct svm_range *prange, *pchild;
3116 	uint64_t reserved_size = 0;
3117 	uint64_t size;
3118 	int r = 0;
3119 
3120 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3121 
3122 	mutex_lock(&p->svms.lock);
3123 
3124 	list_for_each_entry(prange, &p->svms.list, list) {
3125 		svm_range_lock(prange);
3126 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3127 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3128 			if (xnack_enabled) {
3129 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3130 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3131 			} else {
3132 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3133 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3134 				if (r)
3135 					goto out_unlock;
3136 				reserved_size += size;
3137 			}
3138 		}
3139 
3140 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3141 		if (xnack_enabled) {
3142 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3143 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3144 		} else {
3145 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3146 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3147 			if (r)
3148 				goto out_unlock;
3149 			reserved_size += size;
3150 		}
3151 out_unlock:
3152 		svm_range_unlock(prange);
3153 		if (r)
3154 			break;
3155 	}
3156 
3157 	if (r)
3158 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3159 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3160 	else
3161 		/* Change xnack mode must be inside svms lock, to avoid race with
3162 		 * svm_range_deferred_list_work unreserve memory in parallel.
3163 		 */
3164 		p->xnack_enabled = xnack_enabled;
3165 
3166 	mutex_unlock(&p->svms.lock);
3167 	return r;
3168 }
3169 
3170 void svm_range_list_fini(struct kfd_process *p)
3171 {
3172 	struct svm_range *prange;
3173 	struct svm_range *next;
3174 
3175 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3176 
3177 	cancel_delayed_work_sync(&p->svms.restore_work);
3178 
3179 	/* Ensure list work is finished before process is destroyed */
3180 	flush_work(&p->svms.deferred_list_work);
3181 
3182 	/*
3183 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3184 	 * not find kfd process and take mm lock to recover fault.
3185 	 */
3186 	atomic_inc(&p->svms.drain_pagefaults);
3187 	svm_range_drain_retry_fault(&p->svms);
3188 
3189 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3190 		svm_range_unlink(prange);
3191 		svm_range_remove_notifier(prange);
3192 		svm_range_free(prange, true);
3193 	}
3194 
3195 	mutex_destroy(&p->svms.lock);
3196 
3197 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3198 }
3199 
3200 int svm_range_list_init(struct kfd_process *p)
3201 {
3202 	struct svm_range_list *svms = &p->svms;
3203 	int i;
3204 
3205 	svms->objects = RB_ROOT_CACHED;
3206 	mutex_init(&svms->lock);
3207 	INIT_LIST_HEAD(&svms->list);
3208 	atomic_set(&svms->evicted_ranges, 0);
3209 	atomic_set(&svms->drain_pagefaults, 0);
3210 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3211 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3212 	INIT_LIST_HEAD(&svms->deferred_range_list);
3213 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3214 	spin_lock_init(&svms->deferred_list_lock);
3215 
3216 	for (i = 0; i < p->n_pdds; i++)
3217 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3218 			bitmap_set(svms->bitmap_supported, i, 1);
3219 
3220 	return 0;
3221 }
3222 
3223 /**
3224  * svm_range_check_vm - check if virtual address range mapped already
3225  * @p: current kfd_process
3226  * @start: range start address, in pages
3227  * @last: range last address, in pages
3228  * @bo_s: mapping start address in pages if address range already mapped
3229  * @bo_l: mapping last address in pages if address range already mapped
3230  *
3231  * The purpose is to avoid virtual address ranges already allocated by
3232  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3233  * It looks for each pdd in the kfd_process.
3234  *
3235  * Context: Process context
3236  *
3237  * Return 0 - OK, if the range is not mapped.
3238  * Otherwise error code:
3239  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3240  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3241  * a signal. Release all buffer reservations and return to user-space.
3242  */
3243 static int
3244 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3245 		   uint64_t *bo_s, uint64_t *bo_l)
3246 {
3247 	struct amdgpu_bo_va_mapping *mapping;
3248 	struct interval_tree_node *node;
3249 	uint32_t i;
3250 	int r;
3251 
3252 	for (i = 0; i < p->n_pdds; i++) {
3253 		struct amdgpu_vm *vm;
3254 
3255 		if (!p->pdds[i]->drm_priv)
3256 			continue;
3257 
3258 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3259 		r = amdgpu_bo_reserve(vm->root.bo, false);
3260 		if (r)
3261 			return r;
3262 
3263 		node = interval_tree_iter_first(&vm->va, start, last);
3264 		if (node) {
3265 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3266 				 start, last);
3267 			mapping = container_of((struct rb_node *)node,
3268 					       struct amdgpu_bo_va_mapping, rb);
3269 			if (bo_s && bo_l) {
3270 				*bo_s = mapping->start;
3271 				*bo_l = mapping->last;
3272 			}
3273 			amdgpu_bo_unreserve(vm->root.bo);
3274 			return -EADDRINUSE;
3275 		}
3276 		amdgpu_bo_unreserve(vm->root.bo);
3277 	}
3278 
3279 	return 0;
3280 }
3281 
3282 /**
3283  * svm_range_is_valid - check if virtual address range is valid
3284  * @p: current kfd_process
3285  * @start: range start address, in pages
3286  * @size: range size, in pages
3287  *
3288  * Valid virtual address range means it belongs to one or more VMAs
3289  *
3290  * Context: Process context
3291  *
3292  * Return:
3293  *  0 - OK, otherwise error code
3294  */
3295 static int
3296 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3297 {
3298 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3299 	struct vm_area_struct *vma;
3300 	unsigned long end;
3301 	unsigned long start_unchg = start;
3302 
3303 	start <<= PAGE_SHIFT;
3304 	end = start + (size << PAGE_SHIFT);
3305 	do {
3306 		vma = vma_lookup(p->mm, start);
3307 		if (!vma || (vma->vm_flags & device_vma))
3308 			return -EFAULT;
3309 		start = min(end, vma->vm_end);
3310 	} while (start < end);
3311 
3312 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3313 				  NULL);
3314 }
3315 
3316 /**
3317  * svm_range_best_prefetch_location - decide the best prefetch location
3318  * @prange: svm range structure
3319  *
3320  * For xnack off:
3321  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3322  * can be CPU or GPU.
3323  *
3324  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3325  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3326  * the best prefetch location is always CPU, because GPU can not have coherent
3327  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3328  *
3329  * For xnack on:
3330  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3331  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3332  *
3333  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3334  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3335  * prefetch location is always CPU.
3336  *
3337  * Context: Process context
3338  *
3339  * Return:
3340  * 0 for CPU or GPU id
3341  */
3342 static uint32_t
3343 svm_range_best_prefetch_location(struct svm_range *prange)
3344 {
3345 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3346 	uint32_t best_loc = prange->prefetch_loc;
3347 	struct kfd_process_device *pdd;
3348 	struct kfd_node *bo_node;
3349 	struct kfd_process *p;
3350 	uint32_t gpuidx;
3351 
3352 	p = container_of(prange->svms, struct kfd_process, svms);
3353 
3354 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3355 		goto out;
3356 
3357 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3358 	if (!bo_node) {
3359 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3360 		best_loc = 0;
3361 		goto out;
3362 	}
3363 
3364 	if (bo_node->adev->flags & AMD_IS_APU) {
3365 		best_loc = 0;
3366 		goto out;
3367 	}
3368 
3369 	if (p->xnack_enabled)
3370 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3371 	else
3372 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3373 			  MAX_GPU_INSTANCE);
3374 
3375 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3376 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3377 		if (!pdd) {
3378 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3379 			continue;
3380 		}
3381 
3382 		if (pdd->dev->adev == bo_node->adev)
3383 			continue;
3384 
3385 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3386 			best_loc = 0;
3387 			break;
3388 		}
3389 	}
3390 
3391 out:
3392 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3393 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3394 		 best_loc);
3395 
3396 	return best_loc;
3397 }
3398 
3399 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3400  * @mm: current process mm_struct
3401  * @prange: svm range structure
3402  * @migrated: output, true if migration is triggered
3403  *
3404  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3405  * from ram to vram.
3406  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3407  * from vram to ram.
3408  *
3409  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3410  * and restore work:
3411  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3412  *    stops all queues, schedule restore work
3413  * 2. svm_range_restore_work wait for migration is done by
3414  *    a. svm_range_validate_vram takes prange->migrate_mutex
3415  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3416  * 3. restore work update mappings of GPU, resume all queues.
3417  *
3418  * Context: Process context
3419  *
3420  * Return:
3421  * 0 - OK, otherwise - error code of migration
3422  */
3423 static int
3424 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3425 			    bool *migrated)
3426 {
3427 	uint32_t best_loc;
3428 	int r = 0;
3429 
3430 	*migrated = false;
3431 	best_loc = svm_range_best_prefetch_location(prange);
3432 
3433 	/* when best_loc is a gpu node and same as prange->actual_loc
3434 	 * we still need do migration as prange->actual_loc !=0 does
3435 	 * not mean all pages in prange are vram. hmm migrate will pick
3436 	 * up right pages during migration.
3437 	 */
3438 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3439 	    (best_loc == 0 && prange->actual_loc == 0))
3440 		return 0;
3441 
3442 	if (!best_loc) {
3443 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3444 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3445 		*migrated = !r;
3446 		return r;
3447 	}
3448 
3449 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3450 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3451 	*migrated = !r;
3452 
3453 	return 0;
3454 }
3455 
3456 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3457 {
3458 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3459 	 * signaled yet and we're under the protection of the fence->lock.
3460 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3461 	 * here any more.
3462 	 *
3463 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3464 	 */
3465 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3466 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3467 		schedule_work(&fence->svm_bo->eviction_work);
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3474 {
3475 	struct svm_range_bo *svm_bo;
3476 	struct mm_struct *mm;
3477 	int r = 0;
3478 
3479 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3480 
3481 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3482 		mm = svm_bo->eviction_fence->mm;
3483 	} else {
3484 		svm_range_bo_unref(svm_bo);
3485 		return;
3486 	}
3487 
3488 	mmap_read_lock(mm);
3489 	spin_lock(&svm_bo->list_lock);
3490 	while (!list_empty(&svm_bo->range_list) && !r) {
3491 		struct svm_range *prange =
3492 				list_first_entry(&svm_bo->range_list,
3493 						struct svm_range, svm_bo_list);
3494 		int retries = 3;
3495 
3496 		list_del_init(&prange->svm_bo_list);
3497 		spin_unlock(&svm_bo->list_lock);
3498 
3499 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3500 			 prange->start, prange->last);
3501 
3502 		mutex_lock(&prange->migrate_mutex);
3503 		do {
3504 			/* migrate all vram pages in this prange to sys ram
3505 			 * after that prange->actual_loc should be zero
3506 			 */
3507 			r = svm_migrate_vram_to_ram(prange, mm,
3508 					prange->start, prange->last,
3509 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3510 		} while (!r && prange->actual_loc && --retries);
3511 
3512 		if (!r && prange->actual_loc)
3513 			pr_info_once("Migration failed during eviction");
3514 
3515 		if (!prange->actual_loc) {
3516 			mutex_lock(&prange->lock);
3517 			prange->svm_bo = NULL;
3518 			mutex_unlock(&prange->lock);
3519 		}
3520 		mutex_unlock(&prange->migrate_mutex);
3521 
3522 		spin_lock(&svm_bo->list_lock);
3523 	}
3524 	spin_unlock(&svm_bo->list_lock);
3525 	mmap_read_unlock(mm);
3526 	mmput(mm);
3527 
3528 	dma_fence_signal(&svm_bo->eviction_fence->base);
3529 
3530 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3531 	 * has been called in svm_migrate_vram_to_ram
3532 	 */
3533 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3534 	svm_range_bo_unref(svm_bo);
3535 }
3536 
3537 static int
3538 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3539 		   uint64_t start, uint64_t size, uint32_t nattr,
3540 		   struct kfd_ioctl_svm_attribute *attrs)
3541 {
3542 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3543 	struct list_head update_list;
3544 	struct list_head insert_list;
3545 	struct list_head remove_list;
3546 	struct list_head remap_list;
3547 	struct svm_range_list *svms;
3548 	struct svm_range *prange;
3549 	struct svm_range *next;
3550 	bool update_mapping = false;
3551 	bool flush_tlb;
3552 	int r, ret = 0;
3553 
3554 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3555 		 p->pasid, &p->svms, start, start + size - 1, size);
3556 
3557 	r = svm_range_check_attr(p, nattr, attrs);
3558 	if (r)
3559 		return r;
3560 
3561 	svms = &p->svms;
3562 
3563 	mutex_lock(&process_info->lock);
3564 
3565 	svm_range_list_lock_and_flush_work(svms, mm);
3566 
3567 	r = svm_range_is_valid(p, start, size);
3568 	if (r) {
3569 		pr_debug("invalid range r=%d\n", r);
3570 		mmap_write_unlock(mm);
3571 		goto out;
3572 	}
3573 
3574 	mutex_lock(&svms->lock);
3575 
3576 	/* Add new range and split existing ranges as needed */
3577 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3578 			  &insert_list, &remove_list, &remap_list);
3579 	if (r) {
3580 		mutex_unlock(&svms->lock);
3581 		mmap_write_unlock(mm);
3582 		goto out;
3583 	}
3584 	/* Apply changes as a transaction */
3585 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3586 		svm_range_add_to_svms(prange);
3587 		svm_range_add_notifier_locked(mm, prange);
3588 	}
3589 	list_for_each_entry(prange, &update_list, update_list) {
3590 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3591 		/* TODO: unmap ranges from GPU that lost access */
3592 	}
3593 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3594 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3595 			 prange->svms, prange, prange->start,
3596 			 prange->last);
3597 		svm_range_unlink(prange);
3598 		svm_range_remove_notifier(prange);
3599 		svm_range_free(prange, false);
3600 	}
3601 
3602 	mmap_write_downgrade(mm);
3603 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3604 	 * this fails we may be left with partially completed actions. There
3605 	 * is no clean way of rolling back to the previous state in such a
3606 	 * case because the rollback wouldn't be guaranteed to work either.
3607 	 */
3608 	list_for_each_entry(prange, &update_list, update_list) {
3609 		bool migrated;
3610 
3611 		mutex_lock(&prange->migrate_mutex);
3612 
3613 		r = svm_range_trigger_migration(mm, prange, &migrated);
3614 		if (r)
3615 			goto out_unlock_range;
3616 
3617 		if (migrated && (!p->xnack_enabled ||
3618 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3619 		    prange->mapped_to_gpu) {
3620 			pr_debug("restore_work will update mappings of GPUs\n");
3621 			mutex_unlock(&prange->migrate_mutex);
3622 			continue;
3623 		}
3624 
3625 		if (!migrated && !update_mapping) {
3626 			mutex_unlock(&prange->migrate_mutex);
3627 			continue;
3628 		}
3629 
3630 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3631 
3632 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3633 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3634 		if (r)
3635 			pr_debug("failed %d to map svm range\n", r);
3636 
3637 out_unlock_range:
3638 		mutex_unlock(&prange->migrate_mutex);
3639 		if (r)
3640 			ret = r;
3641 	}
3642 
3643 	list_for_each_entry(prange, &remap_list, update_list) {
3644 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3645 			 prange, prange->start, prange->last);
3646 		mutex_lock(&prange->migrate_mutex);
3647 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3648 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3649 		if (r)
3650 			pr_debug("failed %d on remap svm range\n", r);
3651 		mutex_unlock(&prange->migrate_mutex);
3652 		if (r)
3653 			ret = r;
3654 	}
3655 
3656 	dynamic_svm_range_dump(svms);
3657 
3658 	mutex_unlock(&svms->lock);
3659 	mmap_read_unlock(mm);
3660 out:
3661 	mutex_unlock(&process_info->lock);
3662 
3663 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3664 		 &p->svms, start, start + size - 1, r);
3665 
3666 	return ret ? ret : r;
3667 }
3668 
3669 static int
3670 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3671 		   uint64_t start, uint64_t size, uint32_t nattr,
3672 		   struct kfd_ioctl_svm_attribute *attrs)
3673 {
3674 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3675 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3676 	bool get_preferred_loc = false;
3677 	bool get_prefetch_loc = false;
3678 	bool get_granularity = false;
3679 	bool get_accessible = false;
3680 	bool get_flags = false;
3681 	uint64_t last = start + size - 1UL;
3682 	uint8_t granularity = 0xff;
3683 	struct interval_tree_node *node;
3684 	struct svm_range_list *svms;
3685 	struct svm_range *prange;
3686 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3687 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3688 	uint32_t flags_and = 0xffffffff;
3689 	uint32_t flags_or = 0;
3690 	int gpuidx;
3691 	uint32_t i;
3692 	int r = 0;
3693 
3694 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3695 		 start + size - 1, nattr);
3696 
3697 	/* Flush pending deferred work to avoid racing with deferred actions from
3698 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3699 	 * can still race with get_attr because we don't hold the mmap lock. But that
3700 	 * would be a race condition in the application anyway, and undefined
3701 	 * behaviour is acceptable in that case.
3702 	 */
3703 	flush_work(&p->svms.deferred_list_work);
3704 
3705 	mmap_read_lock(mm);
3706 	r = svm_range_is_valid(p, start, size);
3707 	mmap_read_unlock(mm);
3708 	if (r) {
3709 		pr_debug("invalid range r=%d\n", r);
3710 		return r;
3711 	}
3712 
3713 	for (i = 0; i < nattr; i++) {
3714 		switch (attrs[i].type) {
3715 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3716 			get_preferred_loc = true;
3717 			break;
3718 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3719 			get_prefetch_loc = true;
3720 			break;
3721 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3722 			get_accessible = true;
3723 			break;
3724 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3725 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3726 			get_flags = true;
3727 			break;
3728 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3729 			get_granularity = true;
3730 			break;
3731 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3732 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3733 			fallthrough;
3734 		default:
3735 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3736 			return -EINVAL;
3737 		}
3738 	}
3739 
3740 	svms = &p->svms;
3741 
3742 	mutex_lock(&svms->lock);
3743 
3744 	node = interval_tree_iter_first(&svms->objects, start, last);
3745 	if (!node) {
3746 		pr_debug("range attrs not found return default values\n");
3747 		svm_range_set_default_attributes(&location, &prefetch_loc,
3748 						 &granularity, &flags_and);
3749 		flags_or = flags_and;
3750 		if (p->xnack_enabled)
3751 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3752 				    MAX_GPU_INSTANCE);
3753 		else
3754 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3755 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3756 		goto fill_values;
3757 	}
3758 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3759 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3760 
3761 	while (node) {
3762 		struct interval_tree_node *next;
3763 
3764 		prange = container_of(node, struct svm_range, it_node);
3765 		next = interval_tree_iter_next(node, start, last);
3766 
3767 		if (get_preferred_loc) {
3768 			if (prange->preferred_loc ==
3769 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3770 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3771 			     location != prange->preferred_loc)) {
3772 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3773 				get_preferred_loc = false;
3774 			} else {
3775 				location = prange->preferred_loc;
3776 			}
3777 		}
3778 		if (get_prefetch_loc) {
3779 			if (prange->prefetch_loc ==
3780 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3781 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3782 			     prefetch_loc != prange->prefetch_loc)) {
3783 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3784 				get_prefetch_loc = false;
3785 			} else {
3786 				prefetch_loc = prange->prefetch_loc;
3787 			}
3788 		}
3789 		if (get_accessible) {
3790 			bitmap_and(bitmap_access, bitmap_access,
3791 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3792 			bitmap_and(bitmap_aip, bitmap_aip,
3793 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3794 		}
3795 		if (get_flags) {
3796 			flags_and &= prange->flags;
3797 			flags_or |= prange->flags;
3798 		}
3799 
3800 		if (get_granularity && prange->granularity < granularity)
3801 			granularity = prange->granularity;
3802 
3803 		node = next;
3804 	}
3805 fill_values:
3806 	mutex_unlock(&svms->lock);
3807 
3808 	for (i = 0; i < nattr; i++) {
3809 		switch (attrs[i].type) {
3810 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3811 			attrs[i].value = location;
3812 			break;
3813 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3814 			attrs[i].value = prefetch_loc;
3815 			break;
3816 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3817 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3818 							       attrs[i].value);
3819 			if (gpuidx < 0) {
3820 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3821 				return -EINVAL;
3822 			}
3823 			if (test_bit(gpuidx, bitmap_access))
3824 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3825 			else if (test_bit(gpuidx, bitmap_aip))
3826 				attrs[i].type =
3827 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3828 			else
3829 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3830 			break;
3831 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3832 			attrs[i].value = flags_and;
3833 			break;
3834 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3835 			attrs[i].value = ~flags_or;
3836 			break;
3837 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3838 			attrs[i].value = (uint32_t)granularity;
3839 			break;
3840 		}
3841 	}
3842 
3843 	return 0;
3844 }
3845 
3846 int kfd_criu_resume_svm(struct kfd_process *p)
3847 {
3848 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3849 	int nattr_common = 4, nattr_accessibility = 1;
3850 	struct criu_svm_metadata *criu_svm_md = NULL;
3851 	struct svm_range_list *svms = &p->svms;
3852 	struct criu_svm_metadata *next = NULL;
3853 	uint32_t set_flags = 0xffffffff;
3854 	int i, j, num_attrs, ret = 0;
3855 	uint64_t set_attr_size;
3856 	struct mm_struct *mm;
3857 
3858 	if (list_empty(&svms->criu_svm_metadata_list)) {
3859 		pr_debug("No SVM data from CRIU restore stage 2\n");
3860 		return ret;
3861 	}
3862 
3863 	mm = get_task_mm(p->lead_thread);
3864 	if (!mm) {
3865 		pr_err("failed to get mm for the target process\n");
3866 		return -ESRCH;
3867 	}
3868 
3869 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3870 
3871 	i = j = 0;
3872 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3873 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3874 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3875 
3876 		for (j = 0; j < num_attrs; j++) {
3877 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3878 				 i, j, criu_svm_md->data.attrs[j].type,
3879 				 i, j, criu_svm_md->data.attrs[j].value);
3880 			switch (criu_svm_md->data.attrs[j].type) {
3881 			/* During Checkpoint operation, the query for
3882 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3883 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3884 			 * not used by the range which was checkpointed. Care
3885 			 * must be taken to not restore with an invalid value
3886 			 * otherwise the gpuidx value will be invalid and
3887 			 * set_attr would eventually fail so just replace those
3888 			 * with another dummy attribute such as
3889 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3890 			 */
3891 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3892 				if (criu_svm_md->data.attrs[j].value ==
3893 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3894 					criu_svm_md->data.attrs[j].type =
3895 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3896 					criu_svm_md->data.attrs[j].value = 0;
3897 				}
3898 				break;
3899 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3900 				set_flags = criu_svm_md->data.attrs[j].value;
3901 				break;
3902 			default:
3903 				break;
3904 			}
3905 		}
3906 
3907 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3908 		 * it needs to be inserted before restoring the ranges so
3909 		 * allocate extra space for it before calling set_attr
3910 		 */
3911 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3912 						(num_attrs + 1);
3913 		set_attr_new = krealloc(set_attr, set_attr_size,
3914 					    GFP_KERNEL);
3915 		if (!set_attr_new) {
3916 			ret = -ENOMEM;
3917 			goto exit;
3918 		}
3919 		set_attr = set_attr_new;
3920 
3921 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3922 					sizeof(struct kfd_ioctl_svm_attribute));
3923 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3924 		set_attr[num_attrs].value = ~set_flags;
3925 
3926 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3927 					 criu_svm_md->data.size, num_attrs + 1,
3928 					 set_attr);
3929 		if (ret) {
3930 			pr_err("CRIU: failed to set range attributes\n");
3931 			goto exit;
3932 		}
3933 
3934 		i++;
3935 	}
3936 exit:
3937 	kfree(set_attr);
3938 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3939 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3940 						criu_svm_md->data.start_addr);
3941 		kfree(criu_svm_md);
3942 	}
3943 
3944 	mmput(mm);
3945 	return ret;
3946 
3947 }
3948 
3949 int kfd_criu_restore_svm(struct kfd_process *p,
3950 			 uint8_t __user *user_priv_ptr,
3951 			 uint64_t *priv_data_offset,
3952 			 uint64_t max_priv_data_size)
3953 {
3954 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3955 	int nattr_common = 4, nattr_accessibility = 1;
3956 	struct criu_svm_metadata *criu_svm_md = NULL;
3957 	struct svm_range_list *svms = &p->svms;
3958 	uint32_t num_devices;
3959 	int ret = 0;
3960 
3961 	num_devices = p->n_pdds;
3962 	/* Handle one SVM range object at a time, also the number of gpus are
3963 	 * assumed to be same on the restore node, checking must be done while
3964 	 * evaluating the topology earlier
3965 	 */
3966 
3967 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3968 		(nattr_common + nattr_accessibility * num_devices);
3969 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3970 
3971 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3972 								svm_attrs_size;
3973 
3974 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3975 	if (!criu_svm_md) {
3976 		pr_err("failed to allocate memory to store svm metadata\n");
3977 		return -ENOMEM;
3978 	}
3979 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3980 		ret = -EINVAL;
3981 		goto exit;
3982 	}
3983 
3984 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3985 			     svm_priv_data_size);
3986 	if (ret) {
3987 		ret = -EFAULT;
3988 		goto exit;
3989 	}
3990 	*priv_data_offset += svm_priv_data_size;
3991 
3992 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3993 
3994 	return 0;
3995 
3996 
3997 exit:
3998 	kfree(criu_svm_md);
3999 	return ret;
4000 }
4001 
4002 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4003 		       uint64_t *svm_priv_data_size)
4004 {
4005 	uint64_t total_size, accessibility_size, common_attr_size;
4006 	int nattr_common = 4, nattr_accessibility = 1;
4007 	int num_devices = p->n_pdds;
4008 	struct svm_range_list *svms;
4009 	struct svm_range *prange;
4010 	uint32_t count = 0;
4011 
4012 	*svm_priv_data_size = 0;
4013 
4014 	svms = &p->svms;
4015 	if (!svms)
4016 		return -EINVAL;
4017 
4018 	mutex_lock(&svms->lock);
4019 	list_for_each_entry(prange, &svms->list, list) {
4020 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4021 			 prange, prange->start, prange->npages,
4022 			 prange->start + prange->npages - 1);
4023 		count++;
4024 	}
4025 	mutex_unlock(&svms->lock);
4026 
4027 	*num_svm_ranges = count;
4028 	/* Only the accessbility attributes need to be queried for all the gpus
4029 	 * individually, remaining ones are spanned across the entire process
4030 	 * regardless of the various gpu nodes. Of the remaining attributes,
4031 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4032 	 *
4033 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4034 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4035 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4036 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4037 	 *
4038 	 * ** ACCESSBILITY ATTRIBUTES **
4039 	 * (Considered as one, type is altered during query, value is gpuid)
4040 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4041 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4042 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4043 	 */
4044 	if (*num_svm_ranges > 0) {
4045 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4046 			nattr_common;
4047 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4048 			nattr_accessibility * num_devices;
4049 
4050 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4051 			common_attr_size + accessibility_size;
4052 
4053 		*svm_priv_data_size = *num_svm_ranges * total_size;
4054 	}
4055 
4056 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4057 		 *svm_priv_data_size);
4058 	return 0;
4059 }
4060 
4061 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4062 			    uint8_t __user *user_priv_data,
4063 			    uint64_t *priv_data_offset)
4064 {
4065 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4066 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4067 	uint64_t svm_priv_data_size, query_attr_size = 0;
4068 	int index, nattr_common = 4, ret = 0;
4069 	struct svm_range_list *svms;
4070 	int num_devices = p->n_pdds;
4071 	struct svm_range *prange;
4072 	struct mm_struct *mm;
4073 
4074 	svms = &p->svms;
4075 	if (!svms)
4076 		return -EINVAL;
4077 
4078 	mm = get_task_mm(p->lead_thread);
4079 	if (!mm) {
4080 		pr_err("failed to get mm for the target process\n");
4081 		return -ESRCH;
4082 	}
4083 
4084 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4085 				(nattr_common + num_devices);
4086 
4087 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4088 	if (!query_attr) {
4089 		ret = -ENOMEM;
4090 		goto exit;
4091 	}
4092 
4093 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4094 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4095 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4096 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4097 
4098 	for (index = 0; index < num_devices; index++) {
4099 		struct kfd_process_device *pdd = p->pdds[index];
4100 
4101 		query_attr[index + nattr_common].type =
4102 			KFD_IOCTL_SVM_ATTR_ACCESS;
4103 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4104 	}
4105 
4106 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4107 
4108 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4109 	if (!svm_priv) {
4110 		ret = -ENOMEM;
4111 		goto exit_query;
4112 	}
4113 
4114 	index = 0;
4115 	list_for_each_entry(prange, &svms->list, list) {
4116 
4117 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4118 		svm_priv->start_addr = prange->start;
4119 		svm_priv->size = prange->npages;
4120 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4121 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4122 			 prange, prange->start, prange->npages,
4123 			 prange->start + prange->npages - 1,
4124 			 prange->npages * PAGE_SIZE);
4125 
4126 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4127 					 svm_priv->size,
4128 					 (nattr_common + num_devices),
4129 					 svm_priv->attrs);
4130 		if (ret) {
4131 			pr_err("CRIU: failed to obtain range attributes\n");
4132 			goto exit_priv;
4133 		}
4134 
4135 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4136 				 svm_priv_data_size)) {
4137 			pr_err("Failed to copy svm priv to user\n");
4138 			ret = -EFAULT;
4139 			goto exit_priv;
4140 		}
4141 
4142 		*priv_data_offset += svm_priv_data_size;
4143 
4144 	}
4145 
4146 
4147 exit_priv:
4148 	kfree(svm_priv);
4149 exit_query:
4150 	kfree(query_attr);
4151 exit:
4152 	mmput(mm);
4153 	return ret;
4154 }
4155 
4156 int
4157 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4158 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4159 {
4160 	struct mm_struct *mm = current->mm;
4161 	int r;
4162 
4163 	start >>= PAGE_SHIFT;
4164 	size >>= PAGE_SHIFT;
4165 
4166 	switch (op) {
4167 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4168 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4169 		break;
4170 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4171 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4172 		break;
4173 	default:
4174 		r = EINVAL;
4175 		break;
4176 	}
4177 
4178 	return r;
4179 }
4180