xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 25396684b57f7d16306ca149c545db60b2d08dda)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 	return 0;
202 }
203 
204 static int
205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 		  unsigned long offset, unsigned long npages,
207 		  unsigned long *hmm_pfns)
208 {
209 	struct kfd_process *p;
210 	uint32_t gpuidx;
211 	int r;
212 
213 	p = container_of(prange->svms, struct kfd_process, svms);
214 
215 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 		struct kfd_process_device *pdd;
217 
218 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 		if (!pdd) {
221 			pr_debug("failed to find device idx %d\n", gpuidx);
222 			return -EINVAL;
223 		}
224 
225 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 					  hmm_pfns, gpuidx);
227 		if (r)
228 			break;
229 	}
230 
231 	return r;
232 }
233 
234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235 			 unsigned long offset, unsigned long npages)
236 {
237 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 	int i;
239 
240 	if (!dma_addr)
241 		return;
242 
243 	for (i = offset; i < offset + npages; i++) {
244 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 			continue;
246 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 		dma_addr[i] = 0;
249 	}
250 }
251 
252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253 {
254 	struct kfd_process_device *pdd;
255 	dma_addr_t *dma_addr;
256 	struct device *dev;
257 	struct kfd_process *p;
258 	uint32_t gpuidx;
259 
260 	p = container_of(prange->svms, struct kfd_process, svms);
261 
262 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 		dma_addr = prange->dma_addr[gpuidx];
264 		if (!dma_addr)
265 			continue;
266 
267 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 		if (!pdd) {
269 			pr_debug("failed to find device idx %d\n", gpuidx);
270 			continue;
271 		}
272 		dev = &pdd->dev->adev->pdev->dev;
273 		if (unmap_dma)
274 			svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275 		kvfree(dma_addr);
276 		prange->dma_addr[gpuidx] = NULL;
277 	}
278 }
279 
280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	svm_range_free_dma_mappings(prange, do_unmap);
290 
291 	if (do_unmap && !p->xnack_enabled) {
292 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 	}
296 	mutex_destroy(&prange->lock);
297 	mutex_destroy(&prange->migrate_mutex);
298 	kfree(prange);
299 }
300 
301 static void
302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303 				 uint8_t *granularity, uint32_t *flags)
304 {
305 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307 	*granularity = 9;
308 	*flags =
309 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310 }
311 
312 static struct
313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314 			 uint64_t last, bool update_mem_usage)
315 {
316 	uint64_t size = last - start + 1;
317 	struct svm_range *prange;
318 	struct kfd_process *p;
319 
320 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321 	if (!prange)
322 		return NULL;
323 
324 	p = container_of(svms, struct kfd_process, svms);
325 	if (!p->xnack_enabled && update_mem_usage &&
326 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329 		kfree(prange);
330 		return NULL;
331 	}
332 	prange->npages = size;
333 	prange->svms = svms;
334 	prange->start = start;
335 	prange->last = last;
336 	INIT_LIST_HEAD(&prange->list);
337 	INIT_LIST_HEAD(&prange->update_list);
338 	INIT_LIST_HEAD(&prange->svm_bo_list);
339 	INIT_LIST_HEAD(&prange->deferred_list);
340 	INIT_LIST_HEAD(&prange->child_list);
341 	atomic_set(&prange->invalid, 0);
342 	prange->validate_timestamp = 0;
343 	mutex_init(&prange->migrate_mutex);
344 	mutex_init(&prange->lock);
345 
346 	if (p->xnack_enabled)
347 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348 			    MAX_GPU_INSTANCE);
349 
350 	svm_range_set_default_attributes(&prange->preferred_loc,
351 					 &prange->prefetch_loc,
352 					 &prange->granularity, &prange->flags);
353 
354 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355 
356 	return prange;
357 }
358 
359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360 {
361 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362 		return false;
363 
364 	return true;
365 }
366 
367 static void svm_range_bo_release(struct kref *kref)
368 {
369 	struct svm_range_bo *svm_bo;
370 
371 	svm_bo = container_of(kref, struct svm_range_bo, kref);
372 	pr_debug("svm_bo 0x%p\n", svm_bo);
373 
374 	spin_lock(&svm_bo->list_lock);
375 	while (!list_empty(&svm_bo->range_list)) {
376 		struct svm_range *prange =
377 				list_first_entry(&svm_bo->range_list,
378 						struct svm_range, svm_bo_list);
379 		/* list_del_init tells a concurrent svm_range_vram_node_new when
380 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381 		 */
382 		list_del_init(&prange->svm_bo_list);
383 		spin_unlock(&svm_bo->list_lock);
384 
385 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386 			 prange->start, prange->last);
387 		mutex_lock(&prange->lock);
388 		prange->svm_bo = NULL;
389 		mutex_unlock(&prange->lock);
390 
391 		spin_lock(&svm_bo->list_lock);
392 	}
393 	spin_unlock(&svm_bo->list_lock);
394 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
395 		/* We're not in the eviction worker.
396 		 * Signal the fence and synchronize with any
397 		 * pending eviction work.
398 		 */
399 		dma_fence_signal(&svm_bo->eviction_fence->base);
400 		cancel_work_sync(&svm_bo->eviction_work);
401 	}
402 	dma_fence_put(&svm_bo->eviction_fence->base);
403 	amdgpu_bo_unref(&svm_bo->bo);
404 	kfree(svm_bo);
405 }
406 
407 static void svm_range_bo_wq_release(struct work_struct *work)
408 {
409 	struct svm_range_bo *svm_bo;
410 
411 	svm_bo = container_of(work, struct svm_range_bo, release_work);
412 	svm_range_bo_release(&svm_bo->kref);
413 }
414 
415 static void svm_range_bo_release_async(struct kref *kref)
416 {
417 	struct svm_range_bo *svm_bo;
418 
419 	svm_bo = container_of(kref, struct svm_range_bo, kref);
420 	pr_debug("svm_bo 0x%p\n", svm_bo);
421 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
422 	schedule_work(&svm_bo->release_work);
423 }
424 
425 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
426 {
427 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
428 }
429 
430 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
431 {
432 	if (svm_bo)
433 		kref_put(&svm_bo->kref, svm_range_bo_release);
434 }
435 
436 static bool
437 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
438 {
439 	mutex_lock(&prange->lock);
440 	if (!prange->svm_bo) {
441 		mutex_unlock(&prange->lock);
442 		return false;
443 	}
444 	if (prange->ttm_res) {
445 		/* We still have a reference, all is well */
446 		mutex_unlock(&prange->lock);
447 		return true;
448 	}
449 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
450 		/*
451 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
452 		 * range list, and return false to allocate svm_bo from destination
453 		 * node.
454 		 */
455 		if (prange->svm_bo->node != node) {
456 			mutex_unlock(&prange->lock);
457 
458 			spin_lock(&prange->svm_bo->list_lock);
459 			list_del_init(&prange->svm_bo_list);
460 			spin_unlock(&prange->svm_bo->list_lock);
461 
462 			svm_range_bo_unref(prange->svm_bo);
463 			return false;
464 		}
465 		if (READ_ONCE(prange->svm_bo->evicting)) {
466 			struct dma_fence *f;
467 			struct svm_range_bo *svm_bo;
468 			/* The BO is getting evicted,
469 			 * we need to get a new one
470 			 */
471 			mutex_unlock(&prange->lock);
472 			svm_bo = prange->svm_bo;
473 			f = dma_fence_get(&svm_bo->eviction_fence->base);
474 			svm_range_bo_unref(prange->svm_bo);
475 			/* wait for the fence to avoid long spin-loop
476 			 * at list_empty_careful
477 			 */
478 			dma_fence_wait(f, false);
479 			dma_fence_put(f);
480 		} else {
481 			/* The BO was still around and we got
482 			 * a new reference to it
483 			 */
484 			mutex_unlock(&prange->lock);
485 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
486 				 prange->svms, prange->start, prange->last);
487 
488 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
489 			return true;
490 		}
491 
492 	} else {
493 		mutex_unlock(&prange->lock);
494 	}
495 
496 	/* We need a new svm_bo. Spin-loop to wait for concurrent
497 	 * svm_range_bo_release to finish removing this range from
498 	 * its range list. After this, it is safe to reuse the
499 	 * svm_bo pointer and svm_bo_list head.
500 	 */
501 	while (!list_empty_careful(&prange->svm_bo_list))
502 		;
503 
504 	return false;
505 }
506 
507 static struct svm_range_bo *svm_range_bo_new(void)
508 {
509 	struct svm_range_bo *svm_bo;
510 
511 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
512 	if (!svm_bo)
513 		return NULL;
514 
515 	kref_init(&svm_bo->kref);
516 	INIT_LIST_HEAD(&svm_bo->range_list);
517 	spin_lock_init(&svm_bo->list_lock);
518 
519 	return svm_bo;
520 }
521 
522 int
523 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
524 			bool clear)
525 {
526 	struct amdgpu_bo_param bp;
527 	struct svm_range_bo *svm_bo;
528 	struct amdgpu_bo_user *ubo;
529 	struct amdgpu_bo *bo;
530 	struct kfd_process *p;
531 	struct mm_struct *mm;
532 	int r;
533 
534 	p = container_of(prange->svms, struct kfd_process, svms);
535 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
536 		 prange->start, prange->last);
537 
538 	if (svm_range_validate_svm_bo(node, prange))
539 		return 0;
540 
541 	svm_bo = svm_range_bo_new();
542 	if (!svm_bo) {
543 		pr_debug("failed to alloc svm bo\n");
544 		return -ENOMEM;
545 	}
546 	mm = get_task_mm(p->lead_thread);
547 	if (!mm) {
548 		pr_debug("failed to get mm\n");
549 		kfree(svm_bo);
550 		return -ESRCH;
551 	}
552 	svm_bo->node = node;
553 	svm_bo->eviction_fence =
554 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
555 					   mm,
556 					   svm_bo);
557 	mmput(mm);
558 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
559 	svm_bo->evicting = 0;
560 	memset(&bp, 0, sizeof(bp));
561 	bp.size = prange->npages * PAGE_SIZE;
562 	bp.byte_align = PAGE_SIZE;
563 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
564 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
565 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
566 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
567 	bp.type = ttm_bo_type_device;
568 	bp.resv = NULL;
569 	if (node->xcp)
570 		bp.xcp_id_plus1 = node->xcp->id + 1;
571 
572 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
573 	if (r) {
574 		pr_debug("failed %d to create bo\n", r);
575 		goto create_bo_failed;
576 	}
577 	bo = &ubo->bo;
578 
579 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
580 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
581 		 bp.xcp_id_plus1 - 1);
582 
583 	r = amdgpu_bo_reserve(bo, true);
584 	if (r) {
585 		pr_debug("failed %d to reserve bo\n", r);
586 		goto reserve_bo_failed;
587 	}
588 
589 	if (clear) {
590 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
591 		if (r) {
592 			pr_debug("failed %d to sync bo\n", r);
593 			amdgpu_bo_unreserve(bo);
594 			goto reserve_bo_failed;
595 		}
596 	}
597 
598 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
599 	if (r) {
600 		pr_debug("failed %d to reserve bo\n", r);
601 		amdgpu_bo_unreserve(bo);
602 		goto reserve_bo_failed;
603 	}
604 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
605 
606 	amdgpu_bo_unreserve(bo);
607 
608 	svm_bo->bo = bo;
609 	prange->svm_bo = svm_bo;
610 	prange->ttm_res = bo->tbo.resource;
611 	prange->offset = 0;
612 
613 	spin_lock(&svm_bo->list_lock);
614 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
615 	spin_unlock(&svm_bo->list_lock);
616 
617 	return 0;
618 
619 reserve_bo_failed:
620 	amdgpu_bo_unref(&bo);
621 create_bo_failed:
622 	dma_fence_put(&svm_bo->eviction_fence->base);
623 	kfree(svm_bo);
624 	prange->ttm_res = NULL;
625 
626 	return r;
627 }
628 
629 void svm_range_vram_node_free(struct svm_range *prange)
630 {
631 	svm_range_bo_unref(prange->svm_bo);
632 	prange->ttm_res = NULL;
633 }
634 
635 struct kfd_node *
636 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
637 {
638 	struct kfd_process *p;
639 	struct kfd_process_device *pdd;
640 
641 	p = container_of(prange->svms, struct kfd_process, svms);
642 	pdd = kfd_process_device_data_by_id(p, gpu_id);
643 	if (!pdd) {
644 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
645 		return NULL;
646 	}
647 
648 	return pdd->dev;
649 }
650 
651 struct kfd_process_device *
652 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
653 {
654 	struct kfd_process *p;
655 
656 	p = container_of(prange->svms, struct kfd_process, svms);
657 
658 	return kfd_get_process_device_data(node, p);
659 }
660 
661 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
662 {
663 	struct ttm_operation_ctx ctx = { false, false };
664 
665 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
666 
667 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
668 }
669 
670 static int
671 svm_range_check_attr(struct kfd_process *p,
672 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
673 {
674 	uint32_t i;
675 
676 	for (i = 0; i < nattr; i++) {
677 		uint32_t val = attrs[i].value;
678 		int gpuidx = MAX_GPU_INSTANCE;
679 
680 		switch (attrs[i].type) {
681 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
682 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
683 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
684 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
685 			break;
686 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
687 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
688 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
689 			break;
690 		case KFD_IOCTL_SVM_ATTR_ACCESS:
691 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
692 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
693 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
694 			break;
695 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
696 			break;
697 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
698 			break;
699 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
700 			break;
701 		default:
702 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
703 			return -EINVAL;
704 		}
705 
706 		if (gpuidx < 0) {
707 			pr_debug("no GPU 0x%x found\n", val);
708 			return -EINVAL;
709 		} else if (gpuidx < MAX_GPU_INSTANCE &&
710 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
711 			pr_debug("GPU 0x%x not supported\n", val);
712 			return -EINVAL;
713 		}
714 	}
715 
716 	return 0;
717 }
718 
719 static void
720 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
721 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
722 		      bool *update_mapping)
723 {
724 	uint32_t i;
725 	int gpuidx;
726 
727 	for (i = 0; i < nattr; i++) {
728 		switch (attrs[i].type) {
729 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
730 			prange->preferred_loc = attrs[i].value;
731 			break;
732 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
733 			prange->prefetch_loc = attrs[i].value;
734 			break;
735 		case KFD_IOCTL_SVM_ATTR_ACCESS:
736 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
737 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
738 			if (!p->xnack_enabled)
739 				*update_mapping = true;
740 
741 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
742 							       attrs[i].value);
743 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
744 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
745 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
746 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
747 				bitmap_set(prange->bitmap_access, gpuidx, 1);
748 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
749 			} else {
750 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
751 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
752 			}
753 			break;
754 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
755 			*update_mapping = true;
756 			prange->flags |= attrs[i].value;
757 			break;
758 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
759 			*update_mapping = true;
760 			prange->flags &= ~attrs[i].value;
761 			break;
762 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
763 			prange->granularity = attrs[i].value;
764 			break;
765 		default:
766 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
767 		}
768 	}
769 }
770 
771 static bool
772 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
773 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
774 {
775 	uint32_t i;
776 	int gpuidx;
777 
778 	for (i = 0; i < nattr; i++) {
779 		switch (attrs[i].type) {
780 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
781 			if (prange->preferred_loc != attrs[i].value)
782 				return false;
783 			break;
784 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
785 			/* Prefetch should always trigger a migration even
786 			 * if the value of the attribute didn't change.
787 			 */
788 			return false;
789 		case KFD_IOCTL_SVM_ATTR_ACCESS:
790 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
791 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
792 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
793 							       attrs[i].value);
794 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
795 				if (test_bit(gpuidx, prange->bitmap_access) ||
796 				    test_bit(gpuidx, prange->bitmap_aip))
797 					return false;
798 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
799 				if (!test_bit(gpuidx, prange->bitmap_access))
800 					return false;
801 			} else {
802 				if (!test_bit(gpuidx, prange->bitmap_aip))
803 					return false;
804 			}
805 			break;
806 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
807 			if ((prange->flags & attrs[i].value) != attrs[i].value)
808 				return false;
809 			break;
810 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
811 			if ((prange->flags & attrs[i].value) != 0)
812 				return false;
813 			break;
814 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
815 			if (prange->granularity != attrs[i].value)
816 				return false;
817 			break;
818 		default:
819 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
820 		}
821 	}
822 
823 	return !prange->is_error_flag;
824 }
825 
826 /**
827  * svm_range_debug_dump - print all range information from svms
828  * @svms: svm range list header
829  *
830  * debug output svm range start, end, prefetch location from svms
831  * interval tree and link list
832  *
833  * Context: The caller must hold svms->lock
834  */
835 static void svm_range_debug_dump(struct svm_range_list *svms)
836 {
837 	struct interval_tree_node *node;
838 	struct svm_range *prange;
839 
840 	pr_debug("dump svms 0x%p list\n", svms);
841 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
842 
843 	list_for_each_entry(prange, &svms->list, list) {
844 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
845 			 prange, prange->start, prange->npages,
846 			 prange->start + prange->npages - 1,
847 			 prange->actual_loc);
848 	}
849 
850 	pr_debug("dump svms 0x%p interval tree\n", svms);
851 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
852 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
853 	while (node) {
854 		prange = container_of(node, struct svm_range, it_node);
855 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
856 			 prange, prange->start, prange->npages,
857 			 prange->start + prange->npages - 1,
858 			 prange->actual_loc);
859 		node = interval_tree_iter_next(node, 0, ~0ULL);
860 	}
861 }
862 
863 static void *
864 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
865 		     uint64_t offset)
866 {
867 	unsigned char *dst;
868 
869 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
870 	if (!dst)
871 		return NULL;
872 	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
873 
874 	return (void *)dst;
875 }
876 
877 static int
878 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
879 {
880 	int i;
881 
882 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
883 		if (!src->dma_addr[i])
884 			continue;
885 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
886 					sizeof(*src->dma_addr[i]), src->npages, 0);
887 		if (!dst->dma_addr[i])
888 			return -ENOMEM;
889 	}
890 
891 	return 0;
892 }
893 
894 static int
895 svm_range_split_array(void *ppnew, void *ppold, size_t size,
896 		      uint64_t old_start, uint64_t old_n,
897 		      uint64_t new_start, uint64_t new_n)
898 {
899 	unsigned char *new, *old, *pold;
900 	uint64_t d;
901 
902 	if (!ppold)
903 		return 0;
904 	pold = *(unsigned char **)ppold;
905 	if (!pold)
906 		return 0;
907 
908 	d = (new_start - old_start) * size;
909 	new = svm_range_copy_array(pold, size, new_n, d);
910 	if (!new)
911 		return -ENOMEM;
912 	d = (new_start == old_start) ? new_n * size : 0;
913 	old = svm_range_copy_array(pold, size, old_n, d);
914 	if (!old) {
915 		kvfree(new);
916 		return -ENOMEM;
917 	}
918 	kvfree(pold);
919 	*(void **)ppold = old;
920 	*(void **)ppnew = new;
921 
922 	return 0;
923 }
924 
925 static int
926 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
927 		      uint64_t start, uint64_t last)
928 {
929 	uint64_t npages = last - start + 1;
930 	int i, r;
931 
932 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
933 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
934 					  sizeof(*old->dma_addr[i]), old->start,
935 					  npages, new->start, new->npages);
936 		if (r)
937 			return r;
938 	}
939 
940 	return 0;
941 }
942 
943 static int
944 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
945 		      uint64_t start, uint64_t last)
946 {
947 	uint64_t npages = last - start + 1;
948 
949 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
950 		 new->svms, new, new->start, start, last);
951 
952 	if (new->start == old->start) {
953 		new->offset = old->offset;
954 		old->offset += new->npages;
955 	} else {
956 		new->offset = old->offset + npages;
957 	}
958 
959 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
960 	new->ttm_res = old->ttm_res;
961 
962 	spin_lock(&new->svm_bo->list_lock);
963 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
964 	spin_unlock(&new->svm_bo->list_lock);
965 
966 	return 0;
967 }
968 
969 /**
970  * svm_range_split_adjust - split range and adjust
971  *
972  * @new: new range
973  * @old: the old range
974  * @start: the old range adjust to start address in pages
975  * @last: the old range adjust to last address in pages
976  *
977  * Copy system memory dma_addr or vram ttm_res in old range to new
978  * range from new_start up to size new->npages, the remaining old range is from
979  * start to last
980  *
981  * Return:
982  * 0 - OK, -ENOMEM - out of memory
983  */
984 static int
985 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
986 		      uint64_t start, uint64_t last)
987 {
988 	int r;
989 
990 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
991 		 new->svms, new->start, old->start, old->last, start, last);
992 
993 	if (new->start < old->start ||
994 	    new->last > old->last) {
995 		WARN_ONCE(1, "invalid new range start or last\n");
996 		return -EINVAL;
997 	}
998 
999 	r = svm_range_split_pages(new, old, start, last);
1000 	if (r)
1001 		return r;
1002 
1003 	if (old->actual_loc && old->ttm_res) {
1004 		r = svm_range_split_nodes(new, old, start, last);
1005 		if (r)
1006 			return r;
1007 	}
1008 
1009 	old->npages = last - start + 1;
1010 	old->start = start;
1011 	old->last = last;
1012 	new->flags = old->flags;
1013 	new->preferred_loc = old->preferred_loc;
1014 	new->prefetch_loc = old->prefetch_loc;
1015 	new->actual_loc = old->actual_loc;
1016 	new->granularity = old->granularity;
1017 	new->mapped_to_gpu = old->mapped_to_gpu;
1018 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1019 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * svm_range_split - split a range in 2 ranges
1026  *
1027  * @prange: the svm range to split
1028  * @start: the remaining range start address in pages
1029  * @last: the remaining range last address in pages
1030  * @new: the result new range generated
1031  *
1032  * Two cases only:
1033  * case 1: if start == prange->start
1034  *         prange ==> prange[start, last]
1035  *         new range [last + 1, prange->last]
1036  *
1037  * case 2: if last == prange->last
1038  *         prange ==> prange[start, last]
1039  *         new range [prange->start, start - 1]
1040  *
1041  * Return:
1042  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1043  */
1044 static int
1045 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1046 		struct svm_range **new)
1047 {
1048 	uint64_t old_start = prange->start;
1049 	uint64_t old_last = prange->last;
1050 	struct svm_range_list *svms;
1051 	int r = 0;
1052 
1053 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1054 		 old_start, old_last, start, last);
1055 
1056 	if (old_start != start && old_last != last)
1057 		return -EINVAL;
1058 	if (start < old_start || last > old_last)
1059 		return -EINVAL;
1060 
1061 	svms = prange->svms;
1062 	if (old_start == start)
1063 		*new = svm_range_new(svms, last + 1, old_last, false);
1064 	else
1065 		*new = svm_range_new(svms, old_start, start - 1, false);
1066 	if (!*new)
1067 		return -ENOMEM;
1068 
1069 	r = svm_range_split_adjust(*new, prange, start, last);
1070 	if (r) {
1071 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1072 			 r, old_start, old_last, start, last);
1073 		svm_range_free(*new, false);
1074 		*new = NULL;
1075 	}
1076 
1077 	return r;
1078 }
1079 
1080 static int
1081 svm_range_split_tail(struct svm_range *prange,
1082 		     uint64_t new_last, struct list_head *insert_list)
1083 {
1084 	struct svm_range *tail;
1085 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1086 
1087 	if (!r)
1088 		list_add(&tail->list, insert_list);
1089 	return r;
1090 }
1091 
1092 static int
1093 svm_range_split_head(struct svm_range *prange,
1094 		     uint64_t new_start, struct list_head *insert_list)
1095 {
1096 	struct svm_range *head;
1097 	int r = svm_range_split(prange, new_start, prange->last, &head);
1098 
1099 	if (!r)
1100 		list_add(&head->list, insert_list);
1101 	return r;
1102 }
1103 
1104 static void
1105 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1106 		    struct svm_range *pchild, enum svm_work_list_ops op)
1107 {
1108 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1109 		 pchild, pchild->start, pchild->last, prange, op);
1110 
1111 	pchild->work_item.mm = mm;
1112 	pchild->work_item.op = op;
1113 	list_add_tail(&pchild->child_list, &prange->child_list);
1114 }
1115 
1116 /**
1117  * svm_range_split_by_granularity - collect ranges within granularity boundary
1118  *
1119  * @p: the process with svms list
1120  * @mm: mm structure
1121  * @addr: the vm fault address in pages, to split the prange
1122  * @parent: parent range if prange is from child list
1123  * @prange: prange to split
1124  *
1125  * Trims @prange to be a single aligned block of prange->granularity if
1126  * possible. The head and tail are added to the child_list in @parent.
1127  *
1128  * Context: caller must hold mmap_read_lock and prange->lock
1129  *
1130  * Return:
1131  * 0 - OK, otherwise error code
1132  */
1133 int
1134 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1135 			       unsigned long addr, struct svm_range *parent,
1136 			       struct svm_range *prange)
1137 {
1138 	struct svm_range *head, *tail;
1139 	unsigned long start, last, size;
1140 	int r;
1141 
1142 	/* Align splited range start and size to granularity size, then a single
1143 	 * PTE will be used for whole range, this reduces the number of PTE
1144 	 * updated and the L1 TLB space used for translation.
1145 	 */
1146 	size = 1UL << prange->granularity;
1147 	start = ALIGN_DOWN(addr, size);
1148 	last = ALIGN(addr + 1, size) - 1;
1149 
1150 	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1151 		 prange->svms, prange->start, prange->last, start, last, size);
1152 
1153 	if (start > prange->start) {
1154 		r = svm_range_split(prange, start, prange->last, &head);
1155 		if (r)
1156 			return r;
1157 		svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1158 	}
1159 
1160 	if (last < prange->last) {
1161 		r = svm_range_split(prange, prange->start, last, &tail);
1162 		if (r)
1163 			return r;
1164 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1165 	}
1166 
1167 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1168 	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1169 		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1170 		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1171 			 prange, prange->start, prange->last,
1172 			 SVM_OP_ADD_RANGE_AND_MAP);
1173 	}
1174 	return 0;
1175 }
1176 static bool
1177 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1178 {
1179 	return (node_a->adev == node_b->adev ||
1180 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1181 }
1182 
1183 static uint64_t
1184 svm_range_get_pte_flags(struct kfd_node *node,
1185 			struct svm_range *prange, int domain)
1186 {
1187 	struct kfd_node *bo_node;
1188 	uint32_t flags = prange->flags;
1189 	uint32_t mapping_flags = 0;
1190 	uint64_t pte_flags;
1191 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1192 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1193 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1194 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1195 	unsigned int mtype_local;
1196 
1197 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1198 		bo_node = prange->svm_bo->node;
1199 
1200 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1201 	case IP_VERSION(9, 4, 1):
1202 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1203 			if (bo_node == node) {
1204 				mapping_flags |= coherent ?
1205 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1206 			} else {
1207 				mapping_flags |= coherent ?
1208 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1209 				if (svm_nodes_in_same_hive(node, bo_node))
1210 					snoop = true;
1211 			}
1212 		} else {
1213 			mapping_flags |= coherent ?
1214 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1215 		}
1216 		break;
1217 	case IP_VERSION(9, 4, 2):
1218 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1219 			if (bo_node == node) {
1220 				mapping_flags |= coherent ?
1221 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1222 				if (node->adev->gmc.xgmi.connected_to_cpu)
1223 					snoop = true;
1224 			} else {
1225 				mapping_flags |= coherent ?
1226 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1227 				if (svm_nodes_in_same_hive(node, bo_node))
1228 					snoop = true;
1229 			}
1230 		} else {
1231 			mapping_flags |= coherent ?
1232 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1233 		}
1234 		break;
1235 	case IP_VERSION(9, 4, 3):
1236 		mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1237 			     (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1238 		snoop = true;
1239 		if (uncached) {
1240 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1241 		} else if (ext_coherent) {
1242 			/* local HBM region close to partition */
1243 			if (bo_node->adev == node->adev &&
1244 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1245 				mapping_flags |= AMDGPU_VM_MTYPE_CC;
1246 			else
1247 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1248 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1249 			/* local HBM region close to partition */
1250 			if (bo_node->adev == node->adev &&
1251 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1252 				mapping_flags |= mtype_local;
1253 			/* local HBM region far from partition or remote XGMI GPU */
1254 			else if (svm_nodes_in_same_hive(bo_node, node))
1255 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1256 			/* PCIe P2P */
1257 			else
1258 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1259 		/* system memory accessed by the APU */
1260 		} else if (node->adev->flags & AMD_IS_APU) {
1261 			/* On NUMA systems, locality is determined per-page
1262 			 * in amdgpu_gmc_override_vm_pte_flags
1263 			 */
1264 			if (num_possible_nodes() <= 1)
1265 				mapping_flags |= mtype_local;
1266 			else
1267 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1268 		/* system memory accessed by the dGPU */
1269 		} else {
1270 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1271 		}
1272 		break;
1273 	default:
1274 		mapping_flags |= coherent ?
1275 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1276 	}
1277 
1278 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1279 
1280 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1281 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1282 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1283 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1284 
1285 	pte_flags = AMDGPU_PTE_VALID;
1286 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1287 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1288 
1289 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1290 	return pte_flags;
1291 }
1292 
1293 static int
1294 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1295 			 uint64_t start, uint64_t last,
1296 			 struct dma_fence **fence)
1297 {
1298 	uint64_t init_pte_value = 0;
1299 
1300 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1301 
1302 	return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1303 				      last, init_pte_value, 0, 0, NULL, NULL,
1304 				      fence);
1305 }
1306 
1307 static int
1308 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1309 			  unsigned long last, uint32_t trigger)
1310 {
1311 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1312 	struct kfd_process_device *pdd;
1313 	struct dma_fence *fence = NULL;
1314 	struct kfd_process *p;
1315 	uint32_t gpuidx;
1316 	int r = 0;
1317 
1318 	if (!prange->mapped_to_gpu) {
1319 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1320 			 prange, prange->start, prange->last);
1321 		return 0;
1322 	}
1323 
1324 	if (prange->start == start && prange->last == last) {
1325 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1326 		prange->mapped_to_gpu = false;
1327 	}
1328 
1329 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1330 		  MAX_GPU_INSTANCE);
1331 	p = container_of(prange->svms, struct kfd_process, svms);
1332 
1333 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1334 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1335 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1336 		if (!pdd) {
1337 			pr_debug("failed to find device idx %d\n", gpuidx);
1338 			return -EINVAL;
1339 		}
1340 
1341 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1342 					     start, last, trigger);
1343 
1344 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1345 					     drm_priv_to_vm(pdd->drm_priv),
1346 					     start, last, &fence);
1347 		if (r)
1348 			break;
1349 
1350 		if (fence) {
1351 			r = dma_fence_wait(fence, false);
1352 			dma_fence_put(fence);
1353 			fence = NULL;
1354 			if (r)
1355 				break;
1356 		}
1357 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1358 	}
1359 
1360 	return r;
1361 }
1362 
1363 static int
1364 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1365 		     unsigned long offset, unsigned long npages, bool readonly,
1366 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1367 		     struct dma_fence **fence, bool flush_tlb)
1368 {
1369 	struct amdgpu_device *adev = pdd->dev->adev;
1370 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1371 	uint64_t pte_flags;
1372 	unsigned long last_start;
1373 	int last_domain;
1374 	int r = 0;
1375 	int64_t i, j;
1376 
1377 	last_start = prange->start + offset;
1378 
1379 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1380 		 last_start, last_start + npages - 1, readonly);
1381 
1382 	for (i = offset; i < offset + npages; i++) {
1383 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1384 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1385 
1386 		/* Collect all pages in the same address range and memory domain
1387 		 * that can be mapped with a single call to update mapping.
1388 		 */
1389 		if (i < offset + npages - 1 &&
1390 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1391 			continue;
1392 
1393 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1394 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1395 
1396 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1397 		if (readonly)
1398 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1399 
1400 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1401 			 prange->svms, last_start, prange->start + i,
1402 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1403 			 pte_flags);
1404 
1405 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1406 		 * different memory partition based on fpfn/lpfn, we should use
1407 		 * same vm_manager.vram_base_offset regardless memory partition.
1408 		 */
1409 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1410 					   last_start, prange->start + i,
1411 					   pte_flags,
1412 					   (last_start - prange->start) << PAGE_SHIFT,
1413 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1414 					   NULL, dma_addr, &vm->last_update);
1415 
1416 		for (j = last_start - prange->start; j <= i; j++)
1417 			dma_addr[j] |= last_domain;
1418 
1419 		if (r) {
1420 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1421 			goto out;
1422 		}
1423 		last_start = prange->start + i + 1;
1424 	}
1425 
1426 	r = amdgpu_vm_update_pdes(adev, vm, false);
1427 	if (r) {
1428 		pr_debug("failed %d to update directories 0x%lx\n", r,
1429 			 prange->start);
1430 		goto out;
1431 	}
1432 
1433 	if (fence)
1434 		*fence = dma_fence_get(vm->last_update);
1435 
1436 out:
1437 	return r;
1438 }
1439 
1440 static int
1441 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1442 		      unsigned long npages, bool readonly,
1443 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1444 {
1445 	struct kfd_process_device *pdd;
1446 	struct amdgpu_device *bo_adev = NULL;
1447 	struct kfd_process *p;
1448 	struct dma_fence *fence = NULL;
1449 	uint32_t gpuidx;
1450 	int r = 0;
1451 
1452 	if (prange->svm_bo && prange->ttm_res)
1453 		bo_adev = prange->svm_bo->node->adev;
1454 
1455 	p = container_of(prange->svms, struct kfd_process, svms);
1456 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1457 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1458 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1459 		if (!pdd) {
1460 			pr_debug("failed to find device idx %d\n", gpuidx);
1461 			return -EINVAL;
1462 		}
1463 
1464 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1465 		if (IS_ERR(pdd))
1466 			return -EINVAL;
1467 
1468 		if (bo_adev && pdd->dev->adev != bo_adev &&
1469 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1470 			pr_debug("cannot map to device idx %d\n", gpuidx);
1471 			continue;
1472 		}
1473 
1474 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1475 					 prange->dma_addr[gpuidx],
1476 					 bo_adev, wait ? &fence : NULL,
1477 					 flush_tlb);
1478 		if (r)
1479 			break;
1480 
1481 		if (fence) {
1482 			r = dma_fence_wait(fence, false);
1483 			dma_fence_put(fence);
1484 			fence = NULL;
1485 			if (r) {
1486 				pr_debug("failed %d to dma fence wait\n", r);
1487 				break;
1488 			}
1489 		}
1490 
1491 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1492 	}
1493 
1494 	return r;
1495 }
1496 
1497 struct svm_validate_context {
1498 	struct kfd_process *process;
1499 	struct svm_range *prange;
1500 	bool intr;
1501 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1502 	struct drm_exec exec;
1503 };
1504 
1505 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1506 {
1507 	struct kfd_process_device *pdd;
1508 	struct amdgpu_vm *vm;
1509 	uint32_t gpuidx;
1510 	int r;
1511 
1512 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1513 	drm_exec_until_all_locked(&ctx->exec) {
1514 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1515 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1516 			if (!pdd) {
1517 				pr_debug("failed to find device idx %d\n", gpuidx);
1518 				r = -EINVAL;
1519 				goto unreserve_out;
1520 			}
1521 			vm = drm_priv_to_vm(pdd->drm_priv);
1522 
1523 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1524 			drm_exec_retry_on_contention(&ctx->exec);
1525 			if (unlikely(r)) {
1526 				pr_debug("failed %d to reserve bo\n", r);
1527 				goto unreserve_out;
1528 			}
1529 		}
1530 	}
1531 
1532 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1533 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1534 		if (!pdd) {
1535 			pr_debug("failed to find device idx %d\n", gpuidx);
1536 			r = -EINVAL;
1537 			goto unreserve_out;
1538 		}
1539 
1540 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1541 					      drm_priv_to_vm(pdd->drm_priv),
1542 					      svm_range_bo_validate, NULL);
1543 		if (r) {
1544 			pr_debug("failed %d validate pt bos\n", r);
1545 			goto unreserve_out;
1546 		}
1547 	}
1548 
1549 	return 0;
1550 
1551 unreserve_out:
1552 	drm_exec_fini(&ctx->exec);
1553 	return r;
1554 }
1555 
1556 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1557 {
1558 	drm_exec_fini(&ctx->exec);
1559 }
1560 
1561 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1562 {
1563 	struct kfd_process_device *pdd;
1564 
1565 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1566 	if (!pdd)
1567 		return NULL;
1568 
1569 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1570 }
1571 
1572 /*
1573  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1574  *
1575  * To prevent concurrent destruction or change of range attributes, the
1576  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1577  * because that would block concurrent evictions and lead to deadlocks. To
1578  * serialize concurrent migrations or validations of the same range, the
1579  * prange->migrate_mutex must be held.
1580  *
1581  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1582  * eviction fence.
1583  *
1584  * The following sequence ensures race-free validation and GPU mapping:
1585  *
1586  * 1. Reserve page table (and SVM BO if range is in VRAM)
1587  * 2. hmm_range_fault to get page addresses (if system memory)
1588  * 3. DMA-map pages (if system memory)
1589  * 4-a. Take notifier lock
1590  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1591  * 4-c. Check that the range was not split or otherwise invalidated
1592  * 4-d. Update GPU page table
1593  * 4.e. Release notifier lock
1594  * 5. Release page table (and SVM BO) reservation
1595  */
1596 static int svm_range_validate_and_map(struct mm_struct *mm,
1597 				      struct svm_range *prange, int32_t gpuidx,
1598 				      bool intr, bool wait, bool flush_tlb)
1599 {
1600 	struct svm_validate_context *ctx;
1601 	unsigned long start, end, addr;
1602 	struct kfd_process *p;
1603 	void *owner;
1604 	int32_t idx;
1605 	int r = 0;
1606 
1607 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1608 	if (!ctx)
1609 		return -ENOMEM;
1610 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1611 	ctx->prange = prange;
1612 	ctx->intr = intr;
1613 
1614 	if (gpuidx < MAX_GPU_INSTANCE) {
1615 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1616 		bitmap_set(ctx->bitmap, gpuidx, 1);
1617 	} else if (ctx->process->xnack_enabled) {
1618 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1619 
1620 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1621 		 * GPU, which has ACCESS attribute to the range, create mapping
1622 		 * on that GPU.
1623 		 */
1624 		if (prange->actual_loc) {
1625 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1626 							prange->actual_loc);
1627 			if (gpuidx < 0) {
1628 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1629 					 prange->actual_loc);
1630 				r = -EINVAL;
1631 				goto free_ctx;
1632 			}
1633 			if (test_bit(gpuidx, prange->bitmap_access))
1634 				bitmap_set(ctx->bitmap, gpuidx, 1);
1635 		}
1636 	} else {
1637 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1638 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1639 	}
1640 
1641 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1642 		bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1643 		if (!prange->mapped_to_gpu ||
1644 		    bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1645 			r = 0;
1646 			goto free_ctx;
1647 		}
1648 	}
1649 
1650 	if (prange->actual_loc && !prange->ttm_res) {
1651 		/* This should never happen. actual_loc gets set by
1652 		 * svm_migrate_ram_to_vram after allocating a BO.
1653 		 */
1654 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1655 		r = -EINVAL;
1656 		goto free_ctx;
1657 	}
1658 
1659 	svm_range_reserve_bos(ctx, intr);
1660 
1661 	p = container_of(prange->svms, struct kfd_process, svms);
1662 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1663 						MAX_GPU_INSTANCE));
1664 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1665 		if (kfd_svm_page_owner(p, idx) != owner) {
1666 			owner = NULL;
1667 			break;
1668 		}
1669 	}
1670 
1671 	start = prange->start << PAGE_SHIFT;
1672 	end = (prange->last + 1) << PAGE_SHIFT;
1673 	for (addr = start; addr < end && !r; ) {
1674 		struct hmm_range *hmm_range;
1675 		struct vm_area_struct *vma;
1676 		unsigned long next;
1677 		unsigned long offset;
1678 		unsigned long npages;
1679 		bool readonly;
1680 
1681 		vma = vma_lookup(mm, addr);
1682 		if (!vma) {
1683 			r = -EFAULT;
1684 			goto unreserve_out;
1685 		}
1686 		readonly = !(vma->vm_flags & VM_WRITE);
1687 
1688 		next = min(vma->vm_end, end);
1689 		npages = (next - addr) >> PAGE_SHIFT;
1690 		WRITE_ONCE(p->svms.faulting_task, current);
1691 		r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1692 					       readonly, owner, NULL,
1693 					       &hmm_range);
1694 		WRITE_ONCE(p->svms.faulting_task, NULL);
1695 		if (r) {
1696 			pr_debug("failed %d to get svm range pages\n", r);
1697 			if (r == -EBUSY)
1698 				r = -EAGAIN;
1699 			goto unreserve_out;
1700 		}
1701 
1702 		offset = (addr - start) >> PAGE_SHIFT;
1703 		r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1704 				      hmm_range->hmm_pfns);
1705 		if (r) {
1706 			pr_debug("failed %d to dma map range\n", r);
1707 			goto unreserve_out;
1708 		}
1709 
1710 		svm_range_lock(prange);
1711 		if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
1712 			pr_debug("hmm update the range, need validate again\n");
1713 			r = -EAGAIN;
1714 			goto unlock_out;
1715 		}
1716 		if (!list_empty(&prange->child_list)) {
1717 			pr_debug("range split by unmap in parallel, validate again\n");
1718 			r = -EAGAIN;
1719 			goto unlock_out;
1720 		}
1721 
1722 		r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1723 					  ctx->bitmap, wait, flush_tlb);
1724 
1725 unlock_out:
1726 		svm_range_unlock(prange);
1727 
1728 		addr = next;
1729 	}
1730 
1731 	if (addr == end) {
1732 		prange->validated_once = true;
1733 		prange->mapped_to_gpu = true;
1734 	}
1735 
1736 unreserve_out:
1737 	svm_range_unreserve_bos(ctx);
1738 
1739 	prange->is_error_flag = !!r;
1740 	if (!r)
1741 		prange->validate_timestamp = ktime_get_boottime();
1742 
1743 free_ctx:
1744 	kfree(ctx);
1745 
1746 	return r;
1747 }
1748 
1749 /**
1750  * svm_range_list_lock_and_flush_work - flush pending deferred work
1751  *
1752  * @svms: the svm range list
1753  * @mm: the mm structure
1754  *
1755  * Context: Returns with mmap write lock held, pending deferred work flushed
1756  *
1757  */
1758 void
1759 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1760 				   struct mm_struct *mm)
1761 {
1762 retry_flush_work:
1763 	flush_work(&svms->deferred_list_work);
1764 	mmap_write_lock(mm);
1765 
1766 	if (list_empty(&svms->deferred_range_list))
1767 		return;
1768 	mmap_write_unlock(mm);
1769 	pr_debug("retry flush\n");
1770 	goto retry_flush_work;
1771 }
1772 
1773 static void svm_range_restore_work(struct work_struct *work)
1774 {
1775 	struct delayed_work *dwork = to_delayed_work(work);
1776 	struct amdkfd_process_info *process_info;
1777 	struct svm_range_list *svms;
1778 	struct svm_range *prange;
1779 	struct kfd_process *p;
1780 	struct mm_struct *mm;
1781 	int evicted_ranges;
1782 	int invalid;
1783 	int r;
1784 
1785 	svms = container_of(dwork, struct svm_range_list, restore_work);
1786 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1787 	if (!evicted_ranges)
1788 		return;
1789 
1790 	pr_debug("restore svm ranges\n");
1791 
1792 	p = container_of(svms, struct kfd_process, svms);
1793 	process_info = p->kgd_process_info;
1794 
1795 	/* Keep mm reference when svm_range_validate_and_map ranges */
1796 	mm = get_task_mm(p->lead_thread);
1797 	if (!mm) {
1798 		pr_debug("svms 0x%p process mm gone\n", svms);
1799 		return;
1800 	}
1801 
1802 	mutex_lock(&process_info->lock);
1803 	svm_range_list_lock_and_flush_work(svms, mm);
1804 	mutex_lock(&svms->lock);
1805 
1806 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1807 
1808 	list_for_each_entry(prange, &svms->list, list) {
1809 		invalid = atomic_read(&prange->invalid);
1810 		if (!invalid)
1811 			continue;
1812 
1813 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1814 			 prange->svms, prange, prange->start, prange->last,
1815 			 invalid);
1816 
1817 		/*
1818 		 * If range is migrating, wait for migration is done.
1819 		 */
1820 		mutex_lock(&prange->migrate_mutex);
1821 
1822 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1823 					       false, true, false);
1824 		if (r)
1825 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1826 				 prange->start);
1827 
1828 		mutex_unlock(&prange->migrate_mutex);
1829 		if (r)
1830 			goto out_reschedule;
1831 
1832 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1833 			goto out_reschedule;
1834 	}
1835 
1836 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1837 	    evicted_ranges)
1838 		goto out_reschedule;
1839 
1840 	evicted_ranges = 0;
1841 
1842 	r = kgd2kfd_resume_mm(mm);
1843 	if (r) {
1844 		/* No recovery from this failure. Probably the CP is
1845 		 * hanging. No point trying again.
1846 		 */
1847 		pr_debug("failed %d to resume KFD\n", r);
1848 	}
1849 
1850 	pr_debug("restore svm ranges successfully\n");
1851 
1852 out_reschedule:
1853 	mutex_unlock(&svms->lock);
1854 	mmap_write_unlock(mm);
1855 	mutex_unlock(&process_info->lock);
1856 
1857 	/* If validation failed, reschedule another attempt */
1858 	if (evicted_ranges) {
1859 		pr_debug("reschedule to restore svm range\n");
1860 		schedule_delayed_work(&svms->restore_work,
1861 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1862 
1863 		kfd_smi_event_queue_restore_rescheduled(mm);
1864 	}
1865 	mmput(mm);
1866 }
1867 
1868 /**
1869  * svm_range_evict - evict svm range
1870  * @prange: svm range structure
1871  * @mm: current process mm_struct
1872  * @start: starting process queue number
1873  * @last: last process queue number
1874  * @event: mmu notifier event when range is evicted or migrated
1875  *
1876  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1877  * return to let CPU evict the buffer and proceed CPU pagetable update.
1878  *
1879  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1880  * If invalidation happens while restore work is running, restore work will
1881  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1882  * the queues.
1883  */
1884 static int
1885 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1886 		unsigned long start, unsigned long last,
1887 		enum mmu_notifier_event event)
1888 {
1889 	struct svm_range_list *svms = prange->svms;
1890 	struct svm_range *pchild;
1891 	struct kfd_process *p;
1892 	int r = 0;
1893 
1894 	p = container_of(svms, struct kfd_process, svms);
1895 
1896 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1897 		 svms, prange->start, prange->last, start, last);
1898 
1899 	if (!p->xnack_enabled ||
1900 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1901 		int evicted_ranges;
1902 		bool mapped = prange->mapped_to_gpu;
1903 
1904 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1905 			if (!pchild->mapped_to_gpu)
1906 				continue;
1907 			mapped = true;
1908 			mutex_lock_nested(&pchild->lock, 1);
1909 			if (pchild->start <= last && pchild->last >= start) {
1910 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1911 					 pchild->start, pchild->last);
1912 				atomic_inc(&pchild->invalid);
1913 			}
1914 			mutex_unlock(&pchild->lock);
1915 		}
1916 
1917 		if (!mapped)
1918 			return r;
1919 
1920 		if (prange->start <= last && prange->last >= start)
1921 			atomic_inc(&prange->invalid);
1922 
1923 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1924 		if (evicted_ranges != 1)
1925 			return r;
1926 
1927 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1928 			 prange->svms, prange->start, prange->last);
1929 
1930 		/* First eviction, stop the queues */
1931 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1932 		if (r)
1933 			pr_debug("failed to quiesce KFD\n");
1934 
1935 		pr_debug("schedule to restore svm %p ranges\n", svms);
1936 		schedule_delayed_work(&svms->restore_work,
1937 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1938 	} else {
1939 		unsigned long s, l;
1940 		uint32_t trigger;
1941 
1942 		if (event == MMU_NOTIFY_MIGRATE)
1943 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1944 		else
1945 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1946 
1947 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1948 			 prange->svms, start, last);
1949 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1950 			mutex_lock_nested(&pchild->lock, 1);
1951 			s = max(start, pchild->start);
1952 			l = min(last, pchild->last);
1953 			if (l >= s)
1954 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1955 			mutex_unlock(&pchild->lock);
1956 		}
1957 		s = max(start, prange->start);
1958 		l = min(last, prange->last);
1959 		if (l >= s)
1960 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1961 	}
1962 
1963 	return r;
1964 }
1965 
1966 static struct svm_range *svm_range_clone(struct svm_range *old)
1967 {
1968 	struct svm_range *new;
1969 
1970 	new = svm_range_new(old->svms, old->start, old->last, false);
1971 	if (!new)
1972 		return NULL;
1973 	if (svm_range_copy_dma_addrs(new, old)) {
1974 		svm_range_free(new, false);
1975 		return NULL;
1976 	}
1977 	if (old->svm_bo) {
1978 		new->ttm_res = old->ttm_res;
1979 		new->offset = old->offset;
1980 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1981 		spin_lock(&new->svm_bo->list_lock);
1982 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1983 		spin_unlock(&new->svm_bo->list_lock);
1984 	}
1985 	new->flags = old->flags;
1986 	new->preferred_loc = old->preferred_loc;
1987 	new->prefetch_loc = old->prefetch_loc;
1988 	new->actual_loc = old->actual_loc;
1989 	new->granularity = old->granularity;
1990 	new->mapped_to_gpu = old->mapped_to_gpu;
1991 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1992 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1993 
1994 	return new;
1995 }
1996 
1997 void svm_range_set_max_pages(struct amdgpu_device *adev)
1998 {
1999 	uint64_t max_pages;
2000 	uint64_t pages, _pages;
2001 	uint64_t min_pages = 0;
2002 	int i, id;
2003 
2004 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2005 		if (adev->kfd.dev->nodes[i]->xcp)
2006 			id = adev->kfd.dev->nodes[i]->xcp->id;
2007 		else
2008 			id = -1;
2009 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2010 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2011 		pages = rounddown_pow_of_two(pages);
2012 		min_pages = min_not_zero(min_pages, pages);
2013 	}
2014 
2015 	do {
2016 		max_pages = READ_ONCE(max_svm_range_pages);
2017 		_pages = min_not_zero(max_pages, min_pages);
2018 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2019 }
2020 
2021 static int
2022 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2023 		    uint64_t max_pages, struct list_head *insert_list,
2024 		    struct list_head *update_list)
2025 {
2026 	struct svm_range *prange;
2027 	uint64_t l;
2028 
2029 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2030 		 max_pages, start, last);
2031 
2032 	while (last >= start) {
2033 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2034 
2035 		prange = svm_range_new(svms, start, l, true);
2036 		if (!prange)
2037 			return -ENOMEM;
2038 		list_add(&prange->list, insert_list);
2039 		list_add(&prange->update_list, update_list);
2040 
2041 		start = l + 1;
2042 	}
2043 	return 0;
2044 }
2045 
2046 /**
2047  * svm_range_add - add svm range and handle overlap
2048  * @p: the range add to this process svms
2049  * @start: page size aligned
2050  * @size: page size aligned
2051  * @nattr: number of attributes
2052  * @attrs: array of attributes
2053  * @update_list: output, the ranges need validate and update GPU mapping
2054  * @insert_list: output, the ranges need insert to svms
2055  * @remove_list: output, the ranges are replaced and need remove from svms
2056  *
2057  * Check if the virtual address range has overlap with any existing ranges,
2058  * split partly overlapping ranges and add new ranges in the gaps. All changes
2059  * should be applied to the range_list and interval tree transactionally. If
2060  * any range split or allocation fails, the entire update fails. Therefore any
2061  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2062  * unchanged.
2063  *
2064  * If the transaction succeeds, the caller can update and insert clones and
2065  * new ranges, then free the originals.
2066  *
2067  * Otherwise the caller can free the clones and new ranges, while the old
2068  * svm_ranges remain unchanged.
2069  *
2070  * Context: Process context, caller must hold svms->lock
2071  *
2072  * Return:
2073  * 0 - OK, otherwise error code
2074  */
2075 static int
2076 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2077 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2078 	      struct list_head *update_list, struct list_head *insert_list,
2079 	      struct list_head *remove_list)
2080 {
2081 	unsigned long last = start + size - 1UL;
2082 	struct svm_range_list *svms = &p->svms;
2083 	struct interval_tree_node *node;
2084 	struct svm_range *prange;
2085 	struct svm_range *tmp;
2086 	struct list_head new_list;
2087 	int r = 0;
2088 
2089 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2090 
2091 	INIT_LIST_HEAD(update_list);
2092 	INIT_LIST_HEAD(insert_list);
2093 	INIT_LIST_HEAD(remove_list);
2094 	INIT_LIST_HEAD(&new_list);
2095 
2096 	node = interval_tree_iter_first(&svms->objects, start, last);
2097 	while (node) {
2098 		struct interval_tree_node *next;
2099 		unsigned long next_start;
2100 
2101 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2102 			 node->last);
2103 
2104 		prange = container_of(node, struct svm_range, it_node);
2105 		next = interval_tree_iter_next(node, start, last);
2106 		next_start = min(node->last, last) + 1;
2107 
2108 		if (svm_range_is_same_attrs(p, prange, nattr, attrs)) {
2109 			/* nothing to do */
2110 		} else if (node->start < start || node->last > last) {
2111 			/* node intersects the update range and its attributes
2112 			 * will change. Clone and split it, apply updates only
2113 			 * to the overlapping part
2114 			 */
2115 			struct svm_range *old = prange;
2116 
2117 			prange = svm_range_clone(old);
2118 			if (!prange) {
2119 				r = -ENOMEM;
2120 				goto out;
2121 			}
2122 
2123 			list_add(&old->update_list, remove_list);
2124 			list_add(&prange->list, insert_list);
2125 			list_add(&prange->update_list, update_list);
2126 
2127 			if (node->start < start) {
2128 				pr_debug("change old range start\n");
2129 				r = svm_range_split_head(prange, start,
2130 							 insert_list);
2131 				if (r)
2132 					goto out;
2133 			}
2134 			if (node->last > last) {
2135 				pr_debug("change old range last\n");
2136 				r = svm_range_split_tail(prange, last,
2137 							 insert_list);
2138 				if (r)
2139 					goto out;
2140 			}
2141 		} else {
2142 			/* The node is contained within start..last,
2143 			 * just update it
2144 			 */
2145 			list_add(&prange->update_list, update_list);
2146 		}
2147 
2148 		/* insert a new node if needed */
2149 		if (node->start > start) {
2150 			r = svm_range_split_new(svms, start, node->start - 1,
2151 						READ_ONCE(max_svm_range_pages),
2152 						&new_list, update_list);
2153 			if (r)
2154 				goto out;
2155 		}
2156 
2157 		node = next;
2158 		start = next_start;
2159 	}
2160 
2161 	/* add a final range at the end if needed */
2162 	if (start <= last)
2163 		r = svm_range_split_new(svms, start, last,
2164 					READ_ONCE(max_svm_range_pages),
2165 					&new_list, update_list);
2166 
2167 out:
2168 	if (r) {
2169 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2170 			svm_range_free(prange, false);
2171 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2172 			svm_range_free(prange, true);
2173 	} else {
2174 		list_splice(&new_list, insert_list);
2175 	}
2176 
2177 	return r;
2178 }
2179 
2180 static void
2181 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2182 					    struct svm_range *prange)
2183 {
2184 	unsigned long start;
2185 	unsigned long last;
2186 
2187 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2188 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2189 
2190 	if (prange->start == start && prange->last == last)
2191 		return;
2192 
2193 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2194 		  prange->svms, prange, start, last, prange->start,
2195 		  prange->last);
2196 
2197 	if (start != 0 && last != 0) {
2198 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2199 		svm_range_remove_notifier(prange);
2200 	}
2201 	prange->it_node.start = prange->start;
2202 	prange->it_node.last = prange->last;
2203 
2204 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2205 	svm_range_add_notifier_locked(mm, prange);
2206 }
2207 
2208 static void
2209 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2210 			 struct mm_struct *mm)
2211 {
2212 	switch (prange->work_item.op) {
2213 	case SVM_OP_NULL:
2214 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2215 			 svms, prange, prange->start, prange->last);
2216 		break;
2217 	case SVM_OP_UNMAP_RANGE:
2218 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2219 			 svms, prange, prange->start, prange->last);
2220 		svm_range_unlink(prange);
2221 		svm_range_remove_notifier(prange);
2222 		svm_range_free(prange, true);
2223 		break;
2224 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2225 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2226 			 svms, prange, prange->start, prange->last);
2227 		svm_range_update_notifier_and_interval_tree(mm, prange);
2228 		break;
2229 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2230 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2231 			 svms, prange, prange->start, prange->last);
2232 		svm_range_update_notifier_and_interval_tree(mm, prange);
2233 		/* TODO: implement deferred validation and mapping */
2234 		break;
2235 	case SVM_OP_ADD_RANGE:
2236 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2237 			 prange->start, prange->last);
2238 		svm_range_add_to_svms(prange);
2239 		svm_range_add_notifier_locked(mm, prange);
2240 		break;
2241 	case SVM_OP_ADD_RANGE_AND_MAP:
2242 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2243 			 prange, prange->start, prange->last);
2244 		svm_range_add_to_svms(prange);
2245 		svm_range_add_notifier_locked(mm, prange);
2246 		/* TODO: implement deferred validation and mapping */
2247 		break;
2248 	default:
2249 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2250 			 prange->work_item.op);
2251 	}
2252 }
2253 
2254 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2255 {
2256 	struct kfd_process_device *pdd;
2257 	struct kfd_process *p;
2258 	int drain;
2259 	uint32_t i;
2260 
2261 	p = container_of(svms, struct kfd_process, svms);
2262 
2263 restart:
2264 	drain = atomic_read(&svms->drain_pagefaults);
2265 	if (!drain)
2266 		return;
2267 
2268 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2269 		pdd = p->pdds[i];
2270 		if (!pdd)
2271 			continue;
2272 
2273 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2274 
2275 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2276 				pdd->dev->adev->irq.retry_cam_enabled ?
2277 				&pdd->dev->adev->irq.ih :
2278 				&pdd->dev->adev->irq.ih1);
2279 
2280 		if (pdd->dev->adev->irq.retry_cam_enabled)
2281 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2282 				&pdd->dev->adev->irq.ih_soft);
2283 
2284 
2285 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2286 	}
2287 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2288 		goto restart;
2289 }
2290 
2291 static void svm_range_deferred_list_work(struct work_struct *work)
2292 {
2293 	struct svm_range_list *svms;
2294 	struct svm_range *prange;
2295 	struct mm_struct *mm;
2296 
2297 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2298 	pr_debug("enter svms 0x%p\n", svms);
2299 
2300 	spin_lock(&svms->deferred_list_lock);
2301 	while (!list_empty(&svms->deferred_range_list)) {
2302 		prange = list_first_entry(&svms->deferred_range_list,
2303 					  struct svm_range, deferred_list);
2304 		spin_unlock(&svms->deferred_list_lock);
2305 
2306 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2307 			 prange->start, prange->last, prange->work_item.op);
2308 
2309 		mm = prange->work_item.mm;
2310 retry:
2311 		mmap_write_lock(mm);
2312 
2313 		/* Checking for the need to drain retry faults must be inside
2314 		 * mmap write lock to serialize with munmap notifiers.
2315 		 */
2316 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2317 			mmap_write_unlock(mm);
2318 			svm_range_drain_retry_fault(svms);
2319 			goto retry;
2320 		}
2321 
2322 		/* Remove from deferred_list must be inside mmap write lock, for
2323 		 * two race cases:
2324 		 * 1. unmap_from_cpu may change work_item.op and add the range
2325 		 *    to deferred_list again, cause use after free bug.
2326 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2327 		 *    lock and continue because deferred_list is empty, but
2328 		 *    deferred_list work is actually waiting for mmap lock.
2329 		 */
2330 		spin_lock(&svms->deferred_list_lock);
2331 		list_del_init(&prange->deferred_list);
2332 		spin_unlock(&svms->deferred_list_lock);
2333 
2334 		mutex_lock(&svms->lock);
2335 		mutex_lock(&prange->migrate_mutex);
2336 		while (!list_empty(&prange->child_list)) {
2337 			struct svm_range *pchild;
2338 
2339 			pchild = list_first_entry(&prange->child_list,
2340 						struct svm_range, child_list);
2341 			pr_debug("child prange 0x%p op %d\n", pchild,
2342 				 pchild->work_item.op);
2343 			list_del_init(&pchild->child_list);
2344 			svm_range_handle_list_op(svms, pchild, mm);
2345 		}
2346 		mutex_unlock(&prange->migrate_mutex);
2347 
2348 		svm_range_handle_list_op(svms, prange, mm);
2349 		mutex_unlock(&svms->lock);
2350 		mmap_write_unlock(mm);
2351 
2352 		/* Pairs with mmget in svm_range_add_list_work */
2353 		mmput(mm);
2354 
2355 		spin_lock(&svms->deferred_list_lock);
2356 	}
2357 	spin_unlock(&svms->deferred_list_lock);
2358 	pr_debug("exit svms 0x%p\n", svms);
2359 }
2360 
2361 void
2362 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2363 			struct mm_struct *mm, enum svm_work_list_ops op)
2364 {
2365 	spin_lock(&svms->deferred_list_lock);
2366 	/* if prange is on the deferred list */
2367 	if (!list_empty(&prange->deferred_list)) {
2368 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2369 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2370 		if (op != SVM_OP_NULL &&
2371 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2372 			prange->work_item.op = op;
2373 	} else {
2374 		prange->work_item.op = op;
2375 
2376 		/* Pairs with mmput in deferred_list_work */
2377 		mmget(mm);
2378 		prange->work_item.mm = mm;
2379 		list_add_tail(&prange->deferred_list,
2380 			      &prange->svms->deferred_range_list);
2381 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2382 			 prange, prange->start, prange->last, op);
2383 	}
2384 	spin_unlock(&svms->deferred_list_lock);
2385 }
2386 
2387 void schedule_deferred_list_work(struct svm_range_list *svms)
2388 {
2389 	spin_lock(&svms->deferred_list_lock);
2390 	if (!list_empty(&svms->deferred_range_list))
2391 		schedule_work(&svms->deferred_list_work);
2392 	spin_unlock(&svms->deferred_list_lock);
2393 }
2394 
2395 static void
2396 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2397 		      struct svm_range *prange, unsigned long start,
2398 		      unsigned long last)
2399 {
2400 	struct svm_range *head;
2401 	struct svm_range *tail;
2402 
2403 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2404 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2405 			 prange->start, prange->last);
2406 		return;
2407 	}
2408 	if (start > prange->last || last < prange->start)
2409 		return;
2410 
2411 	head = tail = prange;
2412 	if (start > prange->start)
2413 		svm_range_split(prange, prange->start, start - 1, &tail);
2414 	if (last < tail->last)
2415 		svm_range_split(tail, last + 1, tail->last, &head);
2416 
2417 	if (head != prange && tail != prange) {
2418 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2419 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2420 	} else if (tail != prange) {
2421 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2422 	} else if (head != prange) {
2423 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2424 	} else if (parent != prange) {
2425 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2426 	}
2427 }
2428 
2429 static void
2430 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2431 			 unsigned long start, unsigned long last)
2432 {
2433 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2434 	struct svm_range_list *svms;
2435 	struct svm_range *pchild;
2436 	struct kfd_process *p;
2437 	unsigned long s, l;
2438 	bool unmap_parent;
2439 
2440 	p = kfd_lookup_process_by_mm(mm);
2441 	if (!p)
2442 		return;
2443 	svms = &p->svms;
2444 
2445 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2446 		 prange, prange->start, prange->last, start, last);
2447 
2448 	/* Make sure pending page faults are drained in the deferred worker
2449 	 * before the range is freed to avoid straggler interrupts on
2450 	 * unmapped memory causing "phantom faults".
2451 	 */
2452 	atomic_inc(&svms->drain_pagefaults);
2453 
2454 	unmap_parent = start <= prange->start && last >= prange->last;
2455 
2456 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2457 		mutex_lock_nested(&pchild->lock, 1);
2458 		s = max(start, pchild->start);
2459 		l = min(last, pchild->last);
2460 		if (l >= s)
2461 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2462 		svm_range_unmap_split(mm, prange, pchild, start, last);
2463 		mutex_unlock(&pchild->lock);
2464 	}
2465 	s = max(start, prange->start);
2466 	l = min(last, prange->last);
2467 	if (l >= s)
2468 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2469 	svm_range_unmap_split(mm, prange, prange, start, last);
2470 
2471 	if (unmap_parent)
2472 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2473 	else
2474 		svm_range_add_list_work(svms, prange, mm,
2475 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2476 	schedule_deferred_list_work(svms);
2477 
2478 	kfd_unref_process(p);
2479 }
2480 
2481 /**
2482  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2483  * @mni: mmu_interval_notifier struct
2484  * @range: mmu_notifier_range struct
2485  * @cur_seq: value to pass to mmu_interval_set_seq()
2486  *
2487  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2488  * is from migration, or CPU page invalidation callback.
2489  *
2490  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2491  * work thread, and split prange if only part of prange is unmapped.
2492  *
2493  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2494  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2495  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2496  * update GPU mapping to recover.
2497  *
2498  * Context: mmap lock, notifier_invalidate_start lock are held
2499  *          for invalidate event, prange lock is held if this is from migration
2500  */
2501 static bool
2502 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2503 				    const struct mmu_notifier_range *range,
2504 				    unsigned long cur_seq)
2505 {
2506 	struct svm_range *prange;
2507 	unsigned long start;
2508 	unsigned long last;
2509 
2510 	if (range->event == MMU_NOTIFY_RELEASE)
2511 		return true;
2512 	if (!mmget_not_zero(mni->mm))
2513 		return true;
2514 
2515 	start = mni->interval_tree.start;
2516 	last = mni->interval_tree.last;
2517 	start = max(start, range->start) >> PAGE_SHIFT;
2518 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2519 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2520 		 start, last, range->start >> PAGE_SHIFT,
2521 		 (range->end - 1) >> PAGE_SHIFT,
2522 		 mni->interval_tree.start >> PAGE_SHIFT,
2523 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2524 
2525 	prange = container_of(mni, struct svm_range, notifier);
2526 
2527 	svm_range_lock(prange);
2528 	mmu_interval_set_seq(mni, cur_seq);
2529 
2530 	switch (range->event) {
2531 	case MMU_NOTIFY_UNMAP:
2532 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2533 		break;
2534 	default:
2535 		svm_range_evict(prange, mni->mm, start, last, range->event);
2536 		break;
2537 	}
2538 
2539 	svm_range_unlock(prange);
2540 	mmput(mni->mm);
2541 
2542 	return true;
2543 }
2544 
2545 /**
2546  * svm_range_from_addr - find svm range from fault address
2547  * @svms: svm range list header
2548  * @addr: address to search range interval tree, in pages
2549  * @parent: parent range if range is on child list
2550  *
2551  * Context: The caller must hold svms->lock
2552  *
2553  * Return: the svm_range found or NULL
2554  */
2555 struct svm_range *
2556 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2557 		    struct svm_range **parent)
2558 {
2559 	struct interval_tree_node *node;
2560 	struct svm_range *prange;
2561 	struct svm_range *pchild;
2562 
2563 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2564 	if (!node)
2565 		return NULL;
2566 
2567 	prange = container_of(node, struct svm_range, it_node);
2568 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2569 		 addr, prange->start, prange->last, node->start, node->last);
2570 
2571 	if (addr >= prange->start && addr <= prange->last) {
2572 		if (parent)
2573 			*parent = prange;
2574 		return prange;
2575 	}
2576 	list_for_each_entry(pchild, &prange->child_list, child_list)
2577 		if (addr >= pchild->start && addr <= pchild->last) {
2578 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2579 				 addr, pchild->start, pchild->last);
2580 			if (parent)
2581 				*parent = prange;
2582 			return pchild;
2583 		}
2584 
2585 	return NULL;
2586 }
2587 
2588 /* svm_range_best_restore_location - decide the best fault restore location
2589  * @prange: svm range structure
2590  * @adev: the GPU on which vm fault happened
2591  *
2592  * This is only called when xnack is on, to decide the best location to restore
2593  * the range mapping after GPU vm fault. Caller uses the best location to do
2594  * migration if actual loc is not best location, then update GPU page table
2595  * mapping to the best location.
2596  *
2597  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2598  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2599  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2600  *    if range actual loc is cpu, best_loc is cpu
2601  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2602  *    range actual loc.
2603  * Otherwise, GPU no access, best_loc is -1.
2604  *
2605  * Return:
2606  * -1 means vm fault GPU no access
2607  * 0 for CPU or GPU id
2608  */
2609 static int32_t
2610 svm_range_best_restore_location(struct svm_range *prange,
2611 				struct kfd_node *node,
2612 				int32_t *gpuidx)
2613 {
2614 	struct kfd_node *bo_node, *preferred_node;
2615 	struct kfd_process *p;
2616 	uint32_t gpuid;
2617 	int r;
2618 
2619 	p = container_of(prange->svms, struct kfd_process, svms);
2620 
2621 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2622 	if (r < 0) {
2623 		pr_debug("failed to get gpuid from kgd\n");
2624 		return -1;
2625 	}
2626 
2627 	if (node->adev->gmc.is_app_apu)
2628 		return 0;
2629 
2630 	if (prange->preferred_loc == gpuid ||
2631 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2632 		return prange->preferred_loc;
2633 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2634 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2635 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2636 			return prange->preferred_loc;
2637 		/* fall through */
2638 	}
2639 
2640 	if (test_bit(*gpuidx, prange->bitmap_access))
2641 		return gpuid;
2642 
2643 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2644 		if (!prange->actual_loc)
2645 			return 0;
2646 
2647 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2648 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2649 			return prange->actual_loc;
2650 		else
2651 			return 0;
2652 	}
2653 
2654 	return -1;
2655 }
2656 
2657 static int
2658 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2659 			       unsigned long *start, unsigned long *last,
2660 			       bool *is_heap_stack)
2661 {
2662 	struct vm_area_struct *vma;
2663 	struct interval_tree_node *node;
2664 	unsigned long start_limit, end_limit;
2665 
2666 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2667 	if (!vma) {
2668 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2669 		return -EFAULT;
2670 	}
2671 
2672 	*is_heap_stack = (vma->vm_start <= vma->vm_mm->brk &&
2673 			  vma->vm_end >= vma->vm_mm->start_brk) ||
2674 			 (vma->vm_start <= vma->vm_mm->start_stack &&
2675 			  vma->vm_end >= vma->vm_mm->start_stack);
2676 
2677 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2678 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2679 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2680 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2681 	/* First range that starts after the fault address */
2682 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2683 	if (node) {
2684 		end_limit = min(end_limit, node->start);
2685 		/* Last range that ends before the fault address */
2686 		node = container_of(rb_prev(&node->rb),
2687 				    struct interval_tree_node, rb);
2688 	} else {
2689 		/* Last range must end before addr because
2690 		 * there was no range after addr
2691 		 */
2692 		node = container_of(rb_last(&p->svms.objects.rb_root),
2693 				    struct interval_tree_node, rb);
2694 	}
2695 	if (node) {
2696 		if (node->last >= addr) {
2697 			WARN(1, "Overlap with prev node and page fault addr\n");
2698 			return -EFAULT;
2699 		}
2700 		start_limit = max(start_limit, node->last + 1);
2701 	}
2702 
2703 	*start = start_limit;
2704 	*last = end_limit - 1;
2705 
2706 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2707 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2708 		 *start, *last, *is_heap_stack);
2709 
2710 	return 0;
2711 }
2712 
2713 static int
2714 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2715 			   uint64_t *bo_s, uint64_t *bo_l)
2716 {
2717 	struct amdgpu_bo_va_mapping *mapping;
2718 	struct interval_tree_node *node;
2719 	struct amdgpu_bo *bo = NULL;
2720 	unsigned long userptr;
2721 	uint32_t i;
2722 	int r;
2723 
2724 	for (i = 0; i < p->n_pdds; i++) {
2725 		struct amdgpu_vm *vm;
2726 
2727 		if (!p->pdds[i]->drm_priv)
2728 			continue;
2729 
2730 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2731 		r = amdgpu_bo_reserve(vm->root.bo, false);
2732 		if (r)
2733 			return r;
2734 
2735 		/* Check userptr by searching entire vm->va interval tree */
2736 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2737 		while (node) {
2738 			mapping = container_of((struct rb_node *)node,
2739 					       struct amdgpu_bo_va_mapping, rb);
2740 			bo = mapping->bo_va->base.bo;
2741 
2742 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2743 							 start << PAGE_SHIFT,
2744 							 last << PAGE_SHIFT,
2745 							 &userptr)) {
2746 				node = interval_tree_iter_next(node, 0, ~0ULL);
2747 				continue;
2748 			}
2749 
2750 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2751 				 start, last);
2752 			if (bo_s && bo_l) {
2753 				*bo_s = userptr >> PAGE_SHIFT;
2754 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2755 			}
2756 			amdgpu_bo_unreserve(vm->root.bo);
2757 			return -EADDRINUSE;
2758 		}
2759 		amdgpu_bo_unreserve(vm->root.bo);
2760 	}
2761 	return 0;
2762 }
2763 
2764 static struct
2765 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2766 						struct kfd_process *p,
2767 						struct mm_struct *mm,
2768 						int64_t addr)
2769 {
2770 	struct svm_range *prange = NULL;
2771 	unsigned long start, last;
2772 	uint32_t gpuid, gpuidx;
2773 	bool is_heap_stack;
2774 	uint64_t bo_s = 0;
2775 	uint64_t bo_l = 0;
2776 	int r;
2777 
2778 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2779 					   &is_heap_stack))
2780 		return NULL;
2781 
2782 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2783 	if (r != -EADDRINUSE)
2784 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2785 
2786 	if (r == -EADDRINUSE) {
2787 		if (addr >= bo_s && addr <= bo_l)
2788 			return NULL;
2789 
2790 		/* Create one page svm range if 2MB range overlapping */
2791 		start = addr;
2792 		last = addr;
2793 	}
2794 
2795 	prange = svm_range_new(&p->svms, start, last, true);
2796 	if (!prange) {
2797 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2798 		return NULL;
2799 	}
2800 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2801 		pr_debug("failed to get gpuid from kgd\n");
2802 		svm_range_free(prange, true);
2803 		return NULL;
2804 	}
2805 
2806 	if (is_heap_stack)
2807 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2808 
2809 	svm_range_add_to_svms(prange);
2810 	svm_range_add_notifier_locked(mm, prange);
2811 
2812 	return prange;
2813 }
2814 
2815 /* svm_range_skip_recover - decide if prange can be recovered
2816  * @prange: svm range structure
2817  *
2818  * GPU vm retry fault handle skip recover the range for cases:
2819  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2820  *    deferred list work will drain the stale fault before free the prange.
2821  * 2. prange is on deferred list to add interval notifier after split, or
2822  * 3. prange is child range, it is split from parent prange, recover later
2823  *    after interval notifier is added.
2824  *
2825  * Return: true to skip recover, false to recover
2826  */
2827 static bool svm_range_skip_recover(struct svm_range *prange)
2828 {
2829 	struct svm_range_list *svms = prange->svms;
2830 
2831 	spin_lock(&svms->deferred_list_lock);
2832 	if (list_empty(&prange->deferred_list) &&
2833 	    list_empty(&prange->child_list)) {
2834 		spin_unlock(&svms->deferred_list_lock);
2835 		return false;
2836 	}
2837 	spin_unlock(&svms->deferred_list_lock);
2838 
2839 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2840 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2841 			 svms, prange, prange->start, prange->last);
2842 		return true;
2843 	}
2844 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2845 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2846 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2847 			 svms, prange, prange->start, prange->last);
2848 		return true;
2849 	}
2850 	return false;
2851 }
2852 
2853 static void
2854 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2855 		      int32_t gpuidx)
2856 {
2857 	struct kfd_process_device *pdd;
2858 
2859 	/* fault is on different page of same range
2860 	 * or fault is skipped to recover later
2861 	 * or fault is on invalid virtual address
2862 	 */
2863 	if (gpuidx == MAX_GPU_INSTANCE) {
2864 		uint32_t gpuid;
2865 		int r;
2866 
2867 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2868 		if (r < 0)
2869 			return;
2870 	}
2871 
2872 	/* fault is recovered
2873 	 * or fault cannot recover because GPU no access on the range
2874 	 */
2875 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2876 	if (pdd)
2877 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2878 }
2879 
2880 static bool
2881 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2882 {
2883 	unsigned long requested = VM_READ;
2884 
2885 	if (write_fault)
2886 		requested |= VM_WRITE;
2887 
2888 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2889 		vma->vm_flags);
2890 	return (vma->vm_flags & requested) == requested;
2891 }
2892 
2893 int
2894 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2895 			uint32_t vmid, uint32_t node_id,
2896 			uint64_t addr, bool write_fault)
2897 {
2898 	struct mm_struct *mm = NULL;
2899 	struct svm_range_list *svms;
2900 	struct svm_range *prange;
2901 	struct kfd_process *p;
2902 	ktime_t timestamp = ktime_get_boottime();
2903 	struct kfd_node *node;
2904 	int32_t best_loc;
2905 	int32_t gpuidx = MAX_GPU_INSTANCE;
2906 	bool write_locked = false;
2907 	struct vm_area_struct *vma;
2908 	bool migration = false;
2909 	int r = 0;
2910 
2911 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2912 		pr_debug("device does not support SVM\n");
2913 		return -EFAULT;
2914 	}
2915 
2916 	p = kfd_lookup_process_by_pasid(pasid);
2917 	if (!p) {
2918 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2919 		return 0;
2920 	}
2921 	svms = &p->svms;
2922 
2923 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2924 
2925 	if (atomic_read(&svms->drain_pagefaults)) {
2926 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2927 		r = 0;
2928 		goto out;
2929 	}
2930 
2931 	if (!p->xnack_enabled) {
2932 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2933 		r = -EFAULT;
2934 		goto out;
2935 	}
2936 
2937 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2938 	 * before releasing task ref.
2939 	 */
2940 	mm = get_task_mm(p->lead_thread);
2941 	if (!mm) {
2942 		pr_debug("svms 0x%p failed to get mm\n", svms);
2943 		r = 0;
2944 		goto out;
2945 	}
2946 
2947 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2948 	if (!node) {
2949 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2950 			 vmid);
2951 		r = -EFAULT;
2952 		goto out;
2953 	}
2954 	mmap_read_lock(mm);
2955 retry_write_locked:
2956 	mutex_lock(&svms->lock);
2957 	prange = svm_range_from_addr(svms, addr, NULL);
2958 	if (!prange) {
2959 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2960 			 svms, addr);
2961 		if (!write_locked) {
2962 			/* Need the write lock to create new range with MMU notifier.
2963 			 * Also flush pending deferred work to make sure the interval
2964 			 * tree is up to date before we add a new range
2965 			 */
2966 			mutex_unlock(&svms->lock);
2967 			mmap_read_unlock(mm);
2968 			mmap_write_lock(mm);
2969 			write_locked = true;
2970 			goto retry_write_locked;
2971 		}
2972 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2973 		if (!prange) {
2974 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2975 				 svms, addr);
2976 			mmap_write_downgrade(mm);
2977 			r = -EFAULT;
2978 			goto out_unlock_svms;
2979 		}
2980 	}
2981 	if (write_locked)
2982 		mmap_write_downgrade(mm);
2983 
2984 	mutex_lock(&prange->migrate_mutex);
2985 
2986 	if (svm_range_skip_recover(prange)) {
2987 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2988 		r = 0;
2989 		goto out_unlock_range;
2990 	}
2991 
2992 	/* skip duplicate vm fault on different pages of same range */
2993 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2994 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2995 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2996 			 svms, prange->start, prange->last);
2997 		r = 0;
2998 		goto out_unlock_range;
2999 	}
3000 
3001 	/* __do_munmap removed VMA, return success as we are handling stale
3002 	 * retry fault.
3003 	 */
3004 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3005 	if (!vma) {
3006 		pr_debug("address 0x%llx VMA is removed\n", addr);
3007 		r = 0;
3008 		goto out_unlock_range;
3009 	}
3010 
3011 	if (!svm_fault_allowed(vma, write_fault)) {
3012 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3013 			write_fault ? "write" : "read");
3014 		r = -EPERM;
3015 		goto out_unlock_range;
3016 	}
3017 
3018 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3019 	if (best_loc == -1) {
3020 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3021 			 svms, prange->start, prange->last);
3022 		r = -EACCES;
3023 		goto out_unlock_range;
3024 	}
3025 
3026 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3027 		 svms, prange->start, prange->last, best_loc,
3028 		 prange->actual_loc);
3029 
3030 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3031 				       write_fault, timestamp);
3032 
3033 	if (prange->actual_loc != best_loc) {
3034 		migration = true;
3035 		if (best_loc) {
3036 			r = svm_migrate_to_vram(prange, best_loc, mm,
3037 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3038 			if (r) {
3039 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3040 					 r, addr);
3041 				/* Fallback to system memory if migration to
3042 				 * VRAM failed
3043 				 */
3044 				if (prange->actual_loc)
3045 					r = svm_migrate_vram_to_ram(prange, mm,
3046 					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3047 					   NULL);
3048 				else
3049 					r = 0;
3050 			}
3051 		} else {
3052 			r = svm_migrate_vram_to_ram(prange, mm,
3053 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3054 					NULL);
3055 		}
3056 		if (r) {
3057 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3058 				 r, svms, prange->start, prange->last);
3059 			goto out_unlock_range;
3060 		}
3061 	}
3062 
3063 	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3064 	if (r)
3065 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3066 			 r, svms, prange->start, prange->last);
3067 
3068 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3069 				     migration);
3070 
3071 out_unlock_range:
3072 	mutex_unlock(&prange->migrate_mutex);
3073 out_unlock_svms:
3074 	mutex_unlock(&svms->lock);
3075 	mmap_read_unlock(mm);
3076 
3077 	svm_range_count_fault(node, p, gpuidx);
3078 
3079 	mmput(mm);
3080 out:
3081 	kfd_unref_process(p);
3082 
3083 	if (r == -EAGAIN) {
3084 		pr_debug("recover vm fault later\n");
3085 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3086 		r = 0;
3087 	}
3088 	return r;
3089 }
3090 
3091 int
3092 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3093 {
3094 	struct svm_range *prange, *pchild;
3095 	uint64_t reserved_size = 0;
3096 	uint64_t size;
3097 	int r = 0;
3098 
3099 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3100 
3101 	mutex_lock(&p->svms.lock);
3102 
3103 	list_for_each_entry(prange, &p->svms.list, list) {
3104 		svm_range_lock(prange);
3105 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3106 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3107 			if (xnack_enabled) {
3108 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3109 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3110 			} else {
3111 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3112 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3113 				if (r)
3114 					goto out_unlock;
3115 				reserved_size += size;
3116 			}
3117 		}
3118 
3119 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3120 		if (xnack_enabled) {
3121 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3122 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3123 		} else {
3124 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3125 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3126 			if (r)
3127 				goto out_unlock;
3128 			reserved_size += size;
3129 		}
3130 out_unlock:
3131 		svm_range_unlock(prange);
3132 		if (r)
3133 			break;
3134 	}
3135 
3136 	if (r)
3137 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3138 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3139 	else
3140 		/* Change xnack mode must be inside svms lock, to avoid race with
3141 		 * svm_range_deferred_list_work unreserve memory in parallel.
3142 		 */
3143 		p->xnack_enabled = xnack_enabled;
3144 
3145 	mutex_unlock(&p->svms.lock);
3146 	return r;
3147 }
3148 
3149 void svm_range_list_fini(struct kfd_process *p)
3150 {
3151 	struct svm_range *prange;
3152 	struct svm_range *next;
3153 
3154 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3155 
3156 	cancel_delayed_work_sync(&p->svms.restore_work);
3157 
3158 	/* Ensure list work is finished before process is destroyed */
3159 	flush_work(&p->svms.deferred_list_work);
3160 
3161 	/*
3162 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3163 	 * not find kfd process and take mm lock to recover fault.
3164 	 */
3165 	atomic_inc(&p->svms.drain_pagefaults);
3166 	svm_range_drain_retry_fault(&p->svms);
3167 
3168 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3169 		svm_range_unlink(prange);
3170 		svm_range_remove_notifier(prange);
3171 		svm_range_free(prange, true);
3172 	}
3173 
3174 	mutex_destroy(&p->svms.lock);
3175 
3176 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3177 }
3178 
3179 int svm_range_list_init(struct kfd_process *p)
3180 {
3181 	struct svm_range_list *svms = &p->svms;
3182 	int i;
3183 
3184 	svms->objects = RB_ROOT_CACHED;
3185 	mutex_init(&svms->lock);
3186 	INIT_LIST_HEAD(&svms->list);
3187 	atomic_set(&svms->evicted_ranges, 0);
3188 	atomic_set(&svms->drain_pagefaults, 0);
3189 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3190 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3191 	INIT_LIST_HEAD(&svms->deferred_range_list);
3192 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3193 	spin_lock_init(&svms->deferred_list_lock);
3194 
3195 	for (i = 0; i < p->n_pdds; i++)
3196 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3197 			bitmap_set(svms->bitmap_supported, i, 1);
3198 
3199 	return 0;
3200 }
3201 
3202 /**
3203  * svm_range_check_vm - check if virtual address range mapped already
3204  * @p: current kfd_process
3205  * @start: range start address, in pages
3206  * @last: range last address, in pages
3207  * @bo_s: mapping start address in pages if address range already mapped
3208  * @bo_l: mapping last address in pages if address range already mapped
3209  *
3210  * The purpose is to avoid virtual address ranges already allocated by
3211  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3212  * It looks for each pdd in the kfd_process.
3213  *
3214  * Context: Process context
3215  *
3216  * Return 0 - OK, if the range is not mapped.
3217  * Otherwise error code:
3218  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3219  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3220  * a signal. Release all buffer reservations and return to user-space.
3221  */
3222 static int
3223 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3224 		   uint64_t *bo_s, uint64_t *bo_l)
3225 {
3226 	struct amdgpu_bo_va_mapping *mapping;
3227 	struct interval_tree_node *node;
3228 	uint32_t i;
3229 	int r;
3230 
3231 	for (i = 0; i < p->n_pdds; i++) {
3232 		struct amdgpu_vm *vm;
3233 
3234 		if (!p->pdds[i]->drm_priv)
3235 			continue;
3236 
3237 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3238 		r = amdgpu_bo_reserve(vm->root.bo, false);
3239 		if (r)
3240 			return r;
3241 
3242 		node = interval_tree_iter_first(&vm->va, start, last);
3243 		if (node) {
3244 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3245 				 start, last);
3246 			mapping = container_of((struct rb_node *)node,
3247 					       struct amdgpu_bo_va_mapping, rb);
3248 			if (bo_s && bo_l) {
3249 				*bo_s = mapping->start;
3250 				*bo_l = mapping->last;
3251 			}
3252 			amdgpu_bo_unreserve(vm->root.bo);
3253 			return -EADDRINUSE;
3254 		}
3255 		amdgpu_bo_unreserve(vm->root.bo);
3256 	}
3257 
3258 	return 0;
3259 }
3260 
3261 /**
3262  * svm_range_is_valid - check if virtual address range is valid
3263  * @p: current kfd_process
3264  * @start: range start address, in pages
3265  * @size: range size, in pages
3266  *
3267  * Valid virtual address range means it belongs to one or more VMAs
3268  *
3269  * Context: Process context
3270  *
3271  * Return:
3272  *  0 - OK, otherwise error code
3273  */
3274 static int
3275 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3276 {
3277 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3278 	struct vm_area_struct *vma;
3279 	unsigned long end;
3280 	unsigned long start_unchg = start;
3281 
3282 	start <<= PAGE_SHIFT;
3283 	end = start + (size << PAGE_SHIFT);
3284 	do {
3285 		vma = vma_lookup(p->mm, start);
3286 		if (!vma || (vma->vm_flags & device_vma))
3287 			return -EFAULT;
3288 		start = min(end, vma->vm_end);
3289 	} while (start < end);
3290 
3291 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3292 				  NULL);
3293 }
3294 
3295 /**
3296  * svm_range_best_prefetch_location - decide the best prefetch location
3297  * @prange: svm range structure
3298  *
3299  * For xnack off:
3300  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3301  * can be CPU or GPU.
3302  *
3303  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3304  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3305  * the best prefetch location is always CPU, because GPU can not have coherent
3306  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3307  *
3308  * For xnack on:
3309  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3310  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3311  *
3312  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3313  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3314  * prefetch location is always CPU.
3315  *
3316  * Context: Process context
3317  *
3318  * Return:
3319  * 0 for CPU or GPU id
3320  */
3321 static uint32_t
3322 svm_range_best_prefetch_location(struct svm_range *prange)
3323 {
3324 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3325 	uint32_t best_loc = prange->prefetch_loc;
3326 	struct kfd_process_device *pdd;
3327 	struct kfd_node *bo_node;
3328 	struct kfd_process *p;
3329 	uint32_t gpuidx;
3330 
3331 	p = container_of(prange->svms, struct kfd_process, svms);
3332 
3333 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3334 		goto out;
3335 
3336 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3337 	if (!bo_node) {
3338 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3339 		best_loc = 0;
3340 		goto out;
3341 	}
3342 
3343 	if (bo_node->adev->gmc.is_app_apu) {
3344 		best_loc = 0;
3345 		goto out;
3346 	}
3347 
3348 	if (p->xnack_enabled)
3349 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3350 	else
3351 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3352 			  MAX_GPU_INSTANCE);
3353 
3354 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3355 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3356 		if (!pdd) {
3357 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3358 			continue;
3359 		}
3360 
3361 		if (pdd->dev->adev == bo_node->adev)
3362 			continue;
3363 
3364 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3365 			best_loc = 0;
3366 			break;
3367 		}
3368 	}
3369 
3370 out:
3371 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3372 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3373 		 best_loc);
3374 
3375 	return best_loc;
3376 }
3377 
3378 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3379  * @mm: current process mm_struct
3380  * @prange: svm range structure
3381  * @migrated: output, true if migration is triggered
3382  *
3383  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3384  * from ram to vram.
3385  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3386  * from vram to ram.
3387  *
3388  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3389  * and restore work:
3390  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3391  *    stops all queues, schedule restore work
3392  * 2. svm_range_restore_work wait for migration is done by
3393  *    a. svm_range_validate_vram takes prange->migrate_mutex
3394  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3395  * 3. restore work update mappings of GPU, resume all queues.
3396  *
3397  * Context: Process context
3398  *
3399  * Return:
3400  * 0 - OK, otherwise - error code of migration
3401  */
3402 static int
3403 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3404 			    bool *migrated)
3405 {
3406 	uint32_t best_loc;
3407 	int r = 0;
3408 
3409 	*migrated = false;
3410 	best_loc = svm_range_best_prefetch_location(prange);
3411 
3412 	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3413 	    best_loc == prange->actual_loc)
3414 		return 0;
3415 
3416 	if (!best_loc) {
3417 		r = svm_migrate_vram_to_ram(prange, mm,
3418 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3419 		*migrated = !r;
3420 		return r;
3421 	}
3422 
3423 	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3424 	*migrated = !r;
3425 
3426 	return r;
3427 }
3428 
3429 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3430 {
3431 	if (!fence)
3432 		return -EINVAL;
3433 
3434 	if (dma_fence_is_signaled(&fence->base))
3435 		return 0;
3436 
3437 	if (fence->svm_bo) {
3438 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3439 		schedule_work(&fence->svm_bo->eviction_work);
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3446 {
3447 	struct svm_range_bo *svm_bo;
3448 	struct mm_struct *mm;
3449 	int r = 0;
3450 
3451 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3452 	if (!svm_bo_ref_unless_zero(svm_bo))
3453 		return; /* svm_bo was freed while eviction was pending */
3454 
3455 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3456 		mm = svm_bo->eviction_fence->mm;
3457 	} else {
3458 		svm_range_bo_unref(svm_bo);
3459 		return;
3460 	}
3461 
3462 	mmap_read_lock(mm);
3463 	spin_lock(&svm_bo->list_lock);
3464 	while (!list_empty(&svm_bo->range_list) && !r) {
3465 		struct svm_range *prange =
3466 				list_first_entry(&svm_bo->range_list,
3467 						struct svm_range, svm_bo_list);
3468 		int retries = 3;
3469 
3470 		list_del_init(&prange->svm_bo_list);
3471 		spin_unlock(&svm_bo->list_lock);
3472 
3473 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3474 			 prange->start, prange->last);
3475 
3476 		mutex_lock(&prange->migrate_mutex);
3477 		do {
3478 			r = svm_migrate_vram_to_ram(prange, mm,
3479 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3480 		} while (!r && prange->actual_loc && --retries);
3481 
3482 		if (!r && prange->actual_loc)
3483 			pr_info_once("Migration failed during eviction");
3484 
3485 		if (!prange->actual_loc) {
3486 			mutex_lock(&prange->lock);
3487 			prange->svm_bo = NULL;
3488 			mutex_unlock(&prange->lock);
3489 		}
3490 		mutex_unlock(&prange->migrate_mutex);
3491 
3492 		spin_lock(&svm_bo->list_lock);
3493 	}
3494 	spin_unlock(&svm_bo->list_lock);
3495 	mmap_read_unlock(mm);
3496 	mmput(mm);
3497 
3498 	dma_fence_signal(&svm_bo->eviction_fence->base);
3499 
3500 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3501 	 * has been called in svm_migrate_vram_to_ram
3502 	 */
3503 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3504 	svm_range_bo_unref(svm_bo);
3505 }
3506 
3507 static int
3508 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3509 		   uint64_t start, uint64_t size, uint32_t nattr,
3510 		   struct kfd_ioctl_svm_attribute *attrs)
3511 {
3512 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3513 	struct list_head update_list;
3514 	struct list_head insert_list;
3515 	struct list_head remove_list;
3516 	struct svm_range_list *svms;
3517 	struct svm_range *prange;
3518 	struct svm_range *next;
3519 	bool update_mapping = false;
3520 	bool flush_tlb;
3521 	int r = 0;
3522 
3523 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3524 		 p->pasid, &p->svms, start, start + size - 1, size);
3525 
3526 	r = svm_range_check_attr(p, nattr, attrs);
3527 	if (r)
3528 		return r;
3529 
3530 	svms = &p->svms;
3531 
3532 	mutex_lock(&process_info->lock);
3533 
3534 	svm_range_list_lock_and_flush_work(svms, mm);
3535 
3536 	r = svm_range_is_valid(p, start, size);
3537 	if (r) {
3538 		pr_debug("invalid range r=%d\n", r);
3539 		mmap_write_unlock(mm);
3540 		goto out;
3541 	}
3542 
3543 	mutex_lock(&svms->lock);
3544 
3545 	/* Add new range and split existing ranges as needed */
3546 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3547 			  &insert_list, &remove_list);
3548 	if (r) {
3549 		mutex_unlock(&svms->lock);
3550 		mmap_write_unlock(mm);
3551 		goto out;
3552 	}
3553 	/* Apply changes as a transaction */
3554 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3555 		svm_range_add_to_svms(prange);
3556 		svm_range_add_notifier_locked(mm, prange);
3557 	}
3558 	list_for_each_entry(prange, &update_list, update_list) {
3559 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3560 		/* TODO: unmap ranges from GPU that lost access */
3561 	}
3562 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3563 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3564 			 prange->svms, prange, prange->start,
3565 			 prange->last);
3566 		svm_range_unlink(prange);
3567 		svm_range_remove_notifier(prange);
3568 		svm_range_free(prange, false);
3569 	}
3570 
3571 	mmap_write_downgrade(mm);
3572 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3573 	 * this fails we may be left with partially completed actions. There
3574 	 * is no clean way of rolling back to the previous state in such a
3575 	 * case because the rollback wouldn't be guaranteed to work either.
3576 	 */
3577 	list_for_each_entry(prange, &update_list, update_list) {
3578 		bool migrated;
3579 
3580 		mutex_lock(&prange->migrate_mutex);
3581 
3582 		r = svm_range_trigger_migration(mm, prange, &migrated);
3583 		if (r)
3584 			goto out_unlock_range;
3585 
3586 		if (migrated && (!p->xnack_enabled ||
3587 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3588 		    prange->mapped_to_gpu) {
3589 			pr_debug("restore_work will update mappings of GPUs\n");
3590 			mutex_unlock(&prange->migrate_mutex);
3591 			continue;
3592 		}
3593 
3594 		if (!migrated && !update_mapping) {
3595 			mutex_unlock(&prange->migrate_mutex);
3596 			continue;
3597 		}
3598 
3599 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3600 
3601 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3602 					       true, true, flush_tlb);
3603 		if (r)
3604 			pr_debug("failed %d to map svm range\n", r);
3605 
3606 out_unlock_range:
3607 		mutex_unlock(&prange->migrate_mutex);
3608 		if (r)
3609 			break;
3610 	}
3611 
3612 	dynamic_svm_range_dump(svms);
3613 
3614 	mutex_unlock(&svms->lock);
3615 	mmap_read_unlock(mm);
3616 out:
3617 	mutex_unlock(&process_info->lock);
3618 
3619 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3620 		 &p->svms, start, start + size - 1, r);
3621 
3622 	return r;
3623 }
3624 
3625 static int
3626 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3627 		   uint64_t start, uint64_t size, uint32_t nattr,
3628 		   struct kfd_ioctl_svm_attribute *attrs)
3629 {
3630 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3631 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3632 	bool get_preferred_loc = false;
3633 	bool get_prefetch_loc = false;
3634 	bool get_granularity = false;
3635 	bool get_accessible = false;
3636 	bool get_flags = false;
3637 	uint64_t last = start + size - 1UL;
3638 	uint8_t granularity = 0xff;
3639 	struct interval_tree_node *node;
3640 	struct svm_range_list *svms;
3641 	struct svm_range *prange;
3642 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3643 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3644 	uint32_t flags_and = 0xffffffff;
3645 	uint32_t flags_or = 0;
3646 	int gpuidx;
3647 	uint32_t i;
3648 	int r = 0;
3649 
3650 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3651 		 start + size - 1, nattr);
3652 
3653 	/* Flush pending deferred work to avoid racing with deferred actions from
3654 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3655 	 * can still race with get_attr because we don't hold the mmap lock. But that
3656 	 * would be a race condition in the application anyway, and undefined
3657 	 * behaviour is acceptable in that case.
3658 	 */
3659 	flush_work(&p->svms.deferred_list_work);
3660 
3661 	mmap_read_lock(mm);
3662 	r = svm_range_is_valid(p, start, size);
3663 	mmap_read_unlock(mm);
3664 	if (r) {
3665 		pr_debug("invalid range r=%d\n", r);
3666 		return r;
3667 	}
3668 
3669 	for (i = 0; i < nattr; i++) {
3670 		switch (attrs[i].type) {
3671 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3672 			get_preferred_loc = true;
3673 			break;
3674 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3675 			get_prefetch_loc = true;
3676 			break;
3677 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3678 			get_accessible = true;
3679 			break;
3680 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3681 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3682 			get_flags = true;
3683 			break;
3684 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3685 			get_granularity = true;
3686 			break;
3687 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3688 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3689 			fallthrough;
3690 		default:
3691 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3692 			return -EINVAL;
3693 		}
3694 	}
3695 
3696 	svms = &p->svms;
3697 
3698 	mutex_lock(&svms->lock);
3699 
3700 	node = interval_tree_iter_first(&svms->objects, start, last);
3701 	if (!node) {
3702 		pr_debug("range attrs not found return default values\n");
3703 		svm_range_set_default_attributes(&location, &prefetch_loc,
3704 						 &granularity, &flags_and);
3705 		flags_or = flags_and;
3706 		if (p->xnack_enabled)
3707 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3708 				    MAX_GPU_INSTANCE);
3709 		else
3710 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3711 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3712 		goto fill_values;
3713 	}
3714 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3715 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3716 
3717 	while (node) {
3718 		struct interval_tree_node *next;
3719 
3720 		prange = container_of(node, struct svm_range, it_node);
3721 		next = interval_tree_iter_next(node, start, last);
3722 
3723 		if (get_preferred_loc) {
3724 			if (prange->preferred_loc ==
3725 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3726 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3727 			     location != prange->preferred_loc)) {
3728 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3729 				get_preferred_loc = false;
3730 			} else {
3731 				location = prange->preferred_loc;
3732 			}
3733 		}
3734 		if (get_prefetch_loc) {
3735 			if (prange->prefetch_loc ==
3736 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3737 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3738 			     prefetch_loc != prange->prefetch_loc)) {
3739 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3740 				get_prefetch_loc = false;
3741 			} else {
3742 				prefetch_loc = prange->prefetch_loc;
3743 			}
3744 		}
3745 		if (get_accessible) {
3746 			bitmap_and(bitmap_access, bitmap_access,
3747 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3748 			bitmap_and(bitmap_aip, bitmap_aip,
3749 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3750 		}
3751 		if (get_flags) {
3752 			flags_and &= prange->flags;
3753 			flags_or |= prange->flags;
3754 		}
3755 
3756 		if (get_granularity && prange->granularity < granularity)
3757 			granularity = prange->granularity;
3758 
3759 		node = next;
3760 	}
3761 fill_values:
3762 	mutex_unlock(&svms->lock);
3763 
3764 	for (i = 0; i < nattr; i++) {
3765 		switch (attrs[i].type) {
3766 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3767 			attrs[i].value = location;
3768 			break;
3769 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3770 			attrs[i].value = prefetch_loc;
3771 			break;
3772 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3773 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3774 							       attrs[i].value);
3775 			if (gpuidx < 0) {
3776 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3777 				return -EINVAL;
3778 			}
3779 			if (test_bit(gpuidx, bitmap_access))
3780 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3781 			else if (test_bit(gpuidx, bitmap_aip))
3782 				attrs[i].type =
3783 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3784 			else
3785 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3786 			break;
3787 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3788 			attrs[i].value = flags_and;
3789 			break;
3790 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3791 			attrs[i].value = ~flags_or;
3792 			break;
3793 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3794 			attrs[i].value = (uint32_t)granularity;
3795 			break;
3796 		}
3797 	}
3798 
3799 	return 0;
3800 }
3801 
3802 int kfd_criu_resume_svm(struct kfd_process *p)
3803 {
3804 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3805 	int nattr_common = 4, nattr_accessibility = 1;
3806 	struct criu_svm_metadata *criu_svm_md = NULL;
3807 	struct svm_range_list *svms = &p->svms;
3808 	struct criu_svm_metadata *next = NULL;
3809 	uint32_t set_flags = 0xffffffff;
3810 	int i, j, num_attrs, ret = 0;
3811 	uint64_t set_attr_size;
3812 	struct mm_struct *mm;
3813 
3814 	if (list_empty(&svms->criu_svm_metadata_list)) {
3815 		pr_debug("No SVM data from CRIU restore stage 2\n");
3816 		return ret;
3817 	}
3818 
3819 	mm = get_task_mm(p->lead_thread);
3820 	if (!mm) {
3821 		pr_err("failed to get mm for the target process\n");
3822 		return -ESRCH;
3823 	}
3824 
3825 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3826 
3827 	i = j = 0;
3828 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3829 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3830 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3831 
3832 		for (j = 0; j < num_attrs; j++) {
3833 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3834 				 i, j, criu_svm_md->data.attrs[j].type,
3835 				 i, j, criu_svm_md->data.attrs[j].value);
3836 			switch (criu_svm_md->data.attrs[j].type) {
3837 			/* During Checkpoint operation, the query for
3838 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3839 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3840 			 * not used by the range which was checkpointed. Care
3841 			 * must be taken to not restore with an invalid value
3842 			 * otherwise the gpuidx value will be invalid and
3843 			 * set_attr would eventually fail so just replace those
3844 			 * with another dummy attribute such as
3845 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3846 			 */
3847 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3848 				if (criu_svm_md->data.attrs[j].value ==
3849 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3850 					criu_svm_md->data.attrs[j].type =
3851 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3852 					criu_svm_md->data.attrs[j].value = 0;
3853 				}
3854 				break;
3855 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3856 				set_flags = criu_svm_md->data.attrs[j].value;
3857 				break;
3858 			default:
3859 				break;
3860 			}
3861 		}
3862 
3863 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3864 		 * it needs to be inserted before restoring the ranges so
3865 		 * allocate extra space for it before calling set_attr
3866 		 */
3867 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3868 						(num_attrs + 1);
3869 		set_attr_new = krealloc(set_attr, set_attr_size,
3870 					    GFP_KERNEL);
3871 		if (!set_attr_new) {
3872 			ret = -ENOMEM;
3873 			goto exit;
3874 		}
3875 		set_attr = set_attr_new;
3876 
3877 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3878 					sizeof(struct kfd_ioctl_svm_attribute));
3879 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3880 		set_attr[num_attrs].value = ~set_flags;
3881 
3882 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3883 					 criu_svm_md->data.size, num_attrs + 1,
3884 					 set_attr);
3885 		if (ret) {
3886 			pr_err("CRIU: failed to set range attributes\n");
3887 			goto exit;
3888 		}
3889 
3890 		i++;
3891 	}
3892 exit:
3893 	kfree(set_attr);
3894 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3895 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3896 						criu_svm_md->data.start_addr);
3897 		kfree(criu_svm_md);
3898 	}
3899 
3900 	mmput(mm);
3901 	return ret;
3902 
3903 }
3904 
3905 int kfd_criu_restore_svm(struct kfd_process *p,
3906 			 uint8_t __user *user_priv_ptr,
3907 			 uint64_t *priv_data_offset,
3908 			 uint64_t max_priv_data_size)
3909 {
3910 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3911 	int nattr_common = 4, nattr_accessibility = 1;
3912 	struct criu_svm_metadata *criu_svm_md = NULL;
3913 	struct svm_range_list *svms = &p->svms;
3914 	uint32_t num_devices;
3915 	int ret = 0;
3916 
3917 	num_devices = p->n_pdds;
3918 	/* Handle one SVM range object at a time, also the number of gpus are
3919 	 * assumed to be same on the restore node, checking must be done while
3920 	 * evaluating the topology earlier
3921 	 */
3922 
3923 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3924 		(nattr_common + nattr_accessibility * num_devices);
3925 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3926 
3927 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3928 								svm_attrs_size;
3929 
3930 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3931 	if (!criu_svm_md) {
3932 		pr_err("failed to allocate memory to store svm metadata\n");
3933 		return -ENOMEM;
3934 	}
3935 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3936 		ret = -EINVAL;
3937 		goto exit;
3938 	}
3939 
3940 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3941 			     svm_priv_data_size);
3942 	if (ret) {
3943 		ret = -EFAULT;
3944 		goto exit;
3945 	}
3946 	*priv_data_offset += svm_priv_data_size;
3947 
3948 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3949 
3950 	return 0;
3951 
3952 
3953 exit:
3954 	kfree(criu_svm_md);
3955 	return ret;
3956 }
3957 
3958 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3959 		       uint64_t *svm_priv_data_size)
3960 {
3961 	uint64_t total_size, accessibility_size, common_attr_size;
3962 	int nattr_common = 4, nattr_accessibility = 1;
3963 	int num_devices = p->n_pdds;
3964 	struct svm_range_list *svms;
3965 	struct svm_range *prange;
3966 	uint32_t count = 0;
3967 
3968 	*svm_priv_data_size = 0;
3969 
3970 	svms = &p->svms;
3971 	if (!svms)
3972 		return -EINVAL;
3973 
3974 	mutex_lock(&svms->lock);
3975 	list_for_each_entry(prange, &svms->list, list) {
3976 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3977 			 prange, prange->start, prange->npages,
3978 			 prange->start + prange->npages - 1);
3979 		count++;
3980 	}
3981 	mutex_unlock(&svms->lock);
3982 
3983 	*num_svm_ranges = count;
3984 	/* Only the accessbility attributes need to be queried for all the gpus
3985 	 * individually, remaining ones are spanned across the entire process
3986 	 * regardless of the various gpu nodes. Of the remaining attributes,
3987 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
3988 	 *
3989 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
3990 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
3991 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
3992 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
3993 	 *
3994 	 * ** ACCESSBILITY ATTRIBUTES **
3995 	 * (Considered as one, type is altered during query, value is gpuid)
3996 	 * KFD_IOCTL_SVM_ATTR_ACCESS
3997 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
3998 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
3999 	 */
4000 	if (*num_svm_ranges > 0) {
4001 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4002 			nattr_common;
4003 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4004 			nattr_accessibility * num_devices;
4005 
4006 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4007 			common_attr_size + accessibility_size;
4008 
4009 		*svm_priv_data_size = *num_svm_ranges * total_size;
4010 	}
4011 
4012 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4013 		 *svm_priv_data_size);
4014 	return 0;
4015 }
4016 
4017 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4018 			    uint8_t __user *user_priv_data,
4019 			    uint64_t *priv_data_offset)
4020 {
4021 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4022 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4023 	uint64_t svm_priv_data_size, query_attr_size = 0;
4024 	int index, nattr_common = 4, ret = 0;
4025 	struct svm_range_list *svms;
4026 	int num_devices = p->n_pdds;
4027 	struct svm_range *prange;
4028 	struct mm_struct *mm;
4029 
4030 	svms = &p->svms;
4031 	if (!svms)
4032 		return -EINVAL;
4033 
4034 	mm = get_task_mm(p->lead_thread);
4035 	if (!mm) {
4036 		pr_err("failed to get mm for the target process\n");
4037 		return -ESRCH;
4038 	}
4039 
4040 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4041 				(nattr_common + num_devices);
4042 
4043 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4044 	if (!query_attr) {
4045 		ret = -ENOMEM;
4046 		goto exit;
4047 	}
4048 
4049 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4050 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4051 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4052 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4053 
4054 	for (index = 0; index < num_devices; index++) {
4055 		struct kfd_process_device *pdd = p->pdds[index];
4056 
4057 		query_attr[index + nattr_common].type =
4058 			KFD_IOCTL_SVM_ATTR_ACCESS;
4059 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4060 	}
4061 
4062 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4063 
4064 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4065 	if (!svm_priv) {
4066 		ret = -ENOMEM;
4067 		goto exit_query;
4068 	}
4069 
4070 	index = 0;
4071 	list_for_each_entry(prange, &svms->list, list) {
4072 
4073 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4074 		svm_priv->start_addr = prange->start;
4075 		svm_priv->size = prange->npages;
4076 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4077 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4078 			 prange, prange->start, prange->npages,
4079 			 prange->start + prange->npages - 1,
4080 			 prange->npages * PAGE_SIZE);
4081 
4082 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4083 					 svm_priv->size,
4084 					 (nattr_common + num_devices),
4085 					 svm_priv->attrs);
4086 		if (ret) {
4087 			pr_err("CRIU: failed to obtain range attributes\n");
4088 			goto exit_priv;
4089 		}
4090 
4091 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4092 				 svm_priv_data_size)) {
4093 			pr_err("Failed to copy svm priv to user\n");
4094 			ret = -EFAULT;
4095 			goto exit_priv;
4096 		}
4097 
4098 		*priv_data_offset += svm_priv_data_size;
4099 
4100 	}
4101 
4102 
4103 exit_priv:
4104 	kfree(svm_priv);
4105 exit_query:
4106 	kfree(query_attr);
4107 exit:
4108 	mmput(mm);
4109 	return ret;
4110 }
4111 
4112 int
4113 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4114 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4115 {
4116 	struct mm_struct *mm = current->mm;
4117 	int r;
4118 
4119 	start >>= PAGE_SHIFT;
4120 	size >>= PAGE_SHIFT;
4121 
4122 	switch (op) {
4123 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4124 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4125 		break;
4126 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4127 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4128 		break;
4129 	default:
4130 		r = EINVAL;
4131 		break;
4132 	}
4133 
4134 	return r;
4135 }
4136