xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 	return 0;
202 }
203 
204 static int
205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 		  unsigned long offset, unsigned long npages,
207 		  unsigned long *hmm_pfns)
208 {
209 	struct kfd_process *p;
210 	uint32_t gpuidx;
211 	int r;
212 
213 	p = container_of(prange->svms, struct kfd_process, svms);
214 
215 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 		struct kfd_process_device *pdd;
217 
218 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 		if (!pdd) {
221 			pr_debug("failed to find device idx %d\n", gpuidx);
222 			return -EINVAL;
223 		}
224 
225 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 					  hmm_pfns, gpuidx);
227 		if (r)
228 			break;
229 	}
230 
231 	return r;
232 }
233 
234 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
235 			 unsigned long offset, unsigned long npages)
236 {
237 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 	int i;
239 
240 	if (!dma_addr)
241 		return;
242 
243 	for (i = offset; i < offset + npages; i++) {
244 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 			continue;
246 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 		dma_addr[i] = 0;
249 	}
250 }
251 
252 void svm_range_dma_unmap(struct svm_range *prange)
253 {
254 	struct kfd_process_device *pdd;
255 	dma_addr_t *dma_addr;
256 	struct device *dev;
257 	struct kfd_process *p;
258 	uint32_t gpuidx;
259 
260 	p = container_of(prange->svms, struct kfd_process, svms);
261 
262 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 		dma_addr = prange->dma_addr[gpuidx];
264 		if (!dma_addr)
265 			continue;
266 
267 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 		if (!pdd) {
269 			pr_debug("failed to find device idx %d\n", gpuidx);
270 			continue;
271 		}
272 		dev = &pdd->dev->adev->pdev->dev;
273 
274 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
275 	}
276 }
277 
278 static void svm_range_free(struct svm_range *prange, bool do_unmap)
279 {
280 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
281 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
282 	uint32_t gpuidx;
283 
284 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
285 		 prange->start, prange->last);
286 
287 	svm_range_vram_node_free(prange);
288 	if (do_unmap)
289 		svm_range_dma_unmap(prange);
290 
291 	if (do_unmap && !p->xnack_enabled) {
292 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 	}
296 
297 	/* free dma_addr array for each gpu */
298 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
299 		if (prange->dma_addr[gpuidx]) {
300 			kvfree(prange->dma_addr[gpuidx]);
301 			prange->dma_addr[gpuidx] = NULL;
302 		}
303 	}
304 
305 	mutex_destroy(&prange->lock);
306 	mutex_destroy(&prange->migrate_mutex);
307 	kfree(prange);
308 }
309 
310 static void
311 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
312 				 uint8_t *granularity, uint32_t *flags)
313 {
314 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
315 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 	*granularity = 9;
317 	*flags =
318 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
319 }
320 
321 static struct
322 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
323 			 uint64_t last, bool update_mem_usage)
324 {
325 	uint64_t size = last - start + 1;
326 	struct svm_range *prange;
327 	struct kfd_process *p;
328 
329 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
330 	if (!prange)
331 		return NULL;
332 
333 	p = container_of(svms, struct kfd_process, svms);
334 	if (!p->xnack_enabled && update_mem_usage &&
335 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
336 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
337 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
338 		kfree(prange);
339 		return NULL;
340 	}
341 	prange->npages = size;
342 	prange->svms = svms;
343 	prange->start = start;
344 	prange->last = last;
345 	INIT_LIST_HEAD(&prange->list);
346 	INIT_LIST_HEAD(&prange->update_list);
347 	INIT_LIST_HEAD(&prange->svm_bo_list);
348 	INIT_LIST_HEAD(&prange->deferred_list);
349 	INIT_LIST_HEAD(&prange->child_list);
350 	atomic_set(&prange->invalid, 0);
351 	prange->validate_timestamp = 0;
352 	mutex_init(&prange->migrate_mutex);
353 	mutex_init(&prange->lock);
354 
355 	if (p->xnack_enabled)
356 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
357 			    MAX_GPU_INSTANCE);
358 
359 	svm_range_set_default_attributes(&prange->preferred_loc,
360 					 &prange->prefetch_loc,
361 					 &prange->granularity, &prange->flags);
362 
363 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
364 
365 	return prange;
366 }
367 
368 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
369 {
370 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
371 		return false;
372 
373 	return true;
374 }
375 
376 static void svm_range_bo_release(struct kref *kref)
377 {
378 	struct svm_range_bo *svm_bo;
379 
380 	svm_bo = container_of(kref, struct svm_range_bo, kref);
381 	pr_debug("svm_bo 0x%p\n", svm_bo);
382 
383 	spin_lock(&svm_bo->list_lock);
384 	while (!list_empty(&svm_bo->range_list)) {
385 		struct svm_range *prange =
386 				list_first_entry(&svm_bo->range_list,
387 						struct svm_range, svm_bo_list);
388 		/* list_del_init tells a concurrent svm_range_vram_node_new when
389 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
390 		 */
391 		list_del_init(&prange->svm_bo_list);
392 		spin_unlock(&svm_bo->list_lock);
393 
394 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
395 			 prange->start, prange->last);
396 		mutex_lock(&prange->lock);
397 		prange->svm_bo = NULL;
398 		mutex_unlock(&prange->lock);
399 
400 		spin_lock(&svm_bo->list_lock);
401 	}
402 	spin_unlock(&svm_bo->list_lock);
403 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
404 		/* We're not in the eviction worker.
405 		 * Signal the fence and synchronize with any
406 		 * pending eviction work.
407 		 */
408 		dma_fence_signal(&svm_bo->eviction_fence->base);
409 		cancel_work_sync(&svm_bo->eviction_work);
410 	}
411 	dma_fence_put(&svm_bo->eviction_fence->base);
412 	amdgpu_bo_unref(&svm_bo->bo);
413 	kfree(svm_bo);
414 }
415 
416 static void svm_range_bo_wq_release(struct work_struct *work)
417 {
418 	struct svm_range_bo *svm_bo;
419 
420 	svm_bo = container_of(work, struct svm_range_bo, release_work);
421 	svm_range_bo_release(&svm_bo->kref);
422 }
423 
424 static void svm_range_bo_release_async(struct kref *kref)
425 {
426 	struct svm_range_bo *svm_bo;
427 
428 	svm_bo = container_of(kref, struct svm_range_bo, kref);
429 	pr_debug("svm_bo 0x%p\n", svm_bo);
430 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
431 	schedule_work(&svm_bo->release_work);
432 }
433 
434 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
435 {
436 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
437 }
438 
439 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
440 {
441 	if (svm_bo)
442 		kref_put(&svm_bo->kref, svm_range_bo_release);
443 }
444 
445 static bool
446 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
447 {
448 	mutex_lock(&prange->lock);
449 	if (!prange->svm_bo) {
450 		mutex_unlock(&prange->lock);
451 		return false;
452 	}
453 	if (prange->ttm_res) {
454 		/* We still have a reference, all is well */
455 		mutex_unlock(&prange->lock);
456 		return true;
457 	}
458 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
459 		/*
460 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
461 		 * range list, and return false to allocate svm_bo from destination
462 		 * node.
463 		 */
464 		if (prange->svm_bo->node != node) {
465 			mutex_unlock(&prange->lock);
466 
467 			spin_lock(&prange->svm_bo->list_lock);
468 			list_del_init(&prange->svm_bo_list);
469 			spin_unlock(&prange->svm_bo->list_lock);
470 
471 			svm_range_bo_unref(prange->svm_bo);
472 			return false;
473 		}
474 		if (READ_ONCE(prange->svm_bo->evicting)) {
475 			struct dma_fence *f;
476 			struct svm_range_bo *svm_bo;
477 			/* The BO is getting evicted,
478 			 * we need to get a new one
479 			 */
480 			mutex_unlock(&prange->lock);
481 			svm_bo = prange->svm_bo;
482 			f = dma_fence_get(&svm_bo->eviction_fence->base);
483 			svm_range_bo_unref(prange->svm_bo);
484 			/* wait for the fence to avoid long spin-loop
485 			 * at list_empty_careful
486 			 */
487 			dma_fence_wait(f, false);
488 			dma_fence_put(f);
489 		} else {
490 			/* The BO was still around and we got
491 			 * a new reference to it
492 			 */
493 			mutex_unlock(&prange->lock);
494 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
495 				 prange->svms, prange->start, prange->last);
496 
497 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
498 			return true;
499 		}
500 
501 	} else {
502 		mutex_unlock(&prange->lock);
503 	}
504 
505 	/* We need a new svm_bo. Spin-loop to wait for concurrent
506 	 * svm_range_bo_release to finish removing this range from
507 	 * its range list and set prange->svm_bo to null. After this,
508 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
509 	 */
510 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
511 		cond_resched();
512 
513 	return false;
514 }
515 
516 static struct svm_range_bo *svm_range_bo_new(void)
517 {
518 	struct svm_range_bo *svm_bo;
519 
520 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
521 	if (!svm_bo)
522 		return NULL;
523 
524 	kref_init(&svm_bo->kref);
525 	INIT_LIST_HEAD(&svm_bo->range_list);
526 	spin_lock_init(&svm_bo->list_lock);
527 
528 	return svm_bo;
529 }
530 
531 int
532 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
533 			bool clear)
534 {
535 	struct amdgpu_bo_param bp;
536 	struct svm_range_bo *svm_bo;
537 	struct amdgpu_bo_user *ubo;
538 	struct amdgpu_bo *bo;
539 	struct kfd_process *p;
540 	struct mm_struct *mm;
541 	int r;
542 
543 	p = container_of(prange->svms, struct kfd_process, svms);
544 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
545 		 prange->start, prange->last);
546 
547 	if (svm_range_validate_svm_bo(node, prange))
548 		return 0;
549 
550 	svm_bo = svm_range_bo_new();
551 	if (!svm_bo) {
552 		pr_debug("failed to alloc svm bo\n");
553 		return -ENOMEM;
554 	}
555 	mm = get_task_mm(p->lead_thread);
556 	if (!mm) {
557 		pr_debug("failed to get mm\n");
558 		kfree(svm_bo);
559 		return -ESRCH;
560 	}
561 	svm_bo->node = node;
562 	svm_bo->eviction_fence =
563 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
564 					   mm,
565 					   svm_bo);
566 	mmput(mm);
567 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
568 	svm_bo->evicting = 0;
569 	memset(&bp, 0, sizeof(bp));
570 	bp.size = prange->npages * PAGE_SIZE;
571 	bp.byte_align = PAGE_SIZE;
572 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
573 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
574 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
575 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
576 	bp.type = ttm_bo_type_device;
577 	bp.resv = NULL;
578 	if (node->xcp)
579 		bp.xcp_id_plus1 = node->xcp->id + 1;
580 
581 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
582 	if (r) {
583 		pr_debug("failed %d to create bo\n", r);
584 		goto create_bo_failed;
585 	}
586 	bo = &ubo->bo;
587 
588 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
589 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
590 		 bp.xcp_id_plus1 - 1);
591 
592 	r = amdgpu_bo_reserve(bo, true);
593 	if (r) {
594 		pr_debug("failed %d to reserve bo\n", r);
595 		goto reserve_bo_failed;
596 	}
597 
598 	if (clear) {
599 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
600 		if (r) {
601 			pr_debug("failed %d to sync bo\n", r);
602 			amdgpu_bo_unreserve(bo);
603 			goto reserve_bo_failed;
604 		}
605 	}
606 
607 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
608 	if (r) {
609 		pr_debug("failed %d to reserve bo\n", r);
610 		amdgpu_bo_unreserve(bo);
611 		goto reserve_bo_failed;
612 	}
613 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
614 
615 	amdgpu_bo_unreserve(bo);
616 
617 	svm_bo->bo = bo;
618 	prange->svm_bo = svm_bo;
619 	prange->ttm_res = bo->tbo.resource;
620 	prange->offset = 0;
621 
622 	spin_lock(&svm_bo->list_lock);
623 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
624 	spin_unlock(&svm_bo->list_lock);
625 
626 	return 0;
627 
628 reserve_bo_failed:
629 	amdgpu_bo_unref(&bo);
630 create_bo_failed:
631 	dma_fence_put(&svm_bo->eviction_fence->base);
632 	kfree(svm_bo);
633 	prange->ttm_res = NULL;
634 
635 	return r;
636 }
637 
638 void svm_range_vram_node_free(struct svm_range *prange)
639 {
640 	/* serialize prange->svm_bo unref */
641 	mutex_lock(&prange->lock);
642 	/* prange->svm_bo has not been unref */
643 	if (prange->ttm_res) {
644 		prange->ttm_res = NULL;
645 		mutex_unlock(&prange->lock);
646 		svm_range_bo_unref(prange->svm_bo);
647 	} else
648 		mutex_unlock(&prange->lock);
649 }
650 
651 struct kfd_node *
652 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
653 {
654 	struct kfd_process *p;
655 	struct kfd_process_device *pdd;
656 
657 	p = container_of(prange->svms, struct kfd_process, svms);
658 	pdd = kfd_process_device_data_by_id(p, gpu_id);
659 	if (!pdd) {
660 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
661 		return NULL;
662 	}
663 
664 	return pdd->dev;
665 }
666 
667 struct kfd_process_device *
668 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
669 {
670 	struct kfd_process *p;
671 
672 	p = container_of(prange->svms, struct kfd_process, svms);
673 
674 	return kfd_get_process_device_data(node, p);
675 }
676 
677 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
678 {
679 	struct ttm_operation_ctx ctx = { false, false };
680 
681 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
682 
683 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
684 }
685 
686 static int
687 svm_range_check_attr(struct kfd_process *p,
688 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
689 {
690 	uint32_t i;
691 
692 	for (i = 0; i < nattr; i++) {
693 		uint32_t val = attrs[i].value;
694 		int gpuidx = MAX_GPU_INSTANCE;
695 
696 		switch (attrs[i].type) {
697 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
698 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
699 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
700 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
701 			break;
702 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
703 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
704 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
705 			break;
706 		case KFD_IOCTL_SVM_ATTR_ACCESS:
707 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
708 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
709 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
710 			break;
711 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
712 			break;
713 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
714 			break;
715 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
716 			break;
717 		default:
718 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
719 			return -EINVAL;
720 		}
721 
722 		if (gpuidx < 0) {
723 			pr_debug("no GPU 0x%x found\n", val);
724 			return -EINVAL;
725 		} else if (gpuidx < MAX_GPU_INSTANCE &&
726 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
727 			pr_debug("GPU 0x%x not supported\n", val);
728 			return -EINVAL;
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 static void
736 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
737 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
738 		      bool *update_mapping)
739 {
740 	uint32_t i;
741 	int gpuidx;
742 
743 	for (i = 0; i < nattr; i++) {
744 		switch (attrs[i].type) {
745 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
746 			prange->preferred_loc = attrs[i].value;
747 			break;
748 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
749 			prange->prefetch_loc = attrs[i].value;
750 			break;
751 		case KFD_IOCTL_SVM_ATTR_ACCESS:
752 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
753 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
754 			if (!p->xnack_enabled)
755 				*update_mapping = true;
756 
757 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
758 							       attrs[i].value);
759 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
760 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
761 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
762 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
763 				bitmap_set(prange->bitmap_access, gpuidx, 1);
764 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
765 			} else {
766 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
767 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
768 			}
769 			break;
770 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
771 			*update_mapping = true;
772 			prange->flags |= attrs[i].value;
773 			break;
774 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
775 			*update_mapping = true;
776 			prange->flags &= ~attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
779 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
780 			break;
781 		default:
782 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
783 		}
784 	}
785 }
786 
787 static bool
788 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
789 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
790 {
791 	uint32_t i;
792 	int gpuidx;
793 
794 	for (i = 0; i < nattr; i++) {
795 		switch (attrs[i].type) {
796 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
797 			if (prange->preferred_loc != attrs[i].value)
798 				return false;
799 			break;
800 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
801 			/* Prefetch should always trigger a migration even
802 			 * if the value of the attribute didn't change.
803 			 */
804 			return false;
805 		case KFD_IOCTL_SVM_ATTR_ACCESS:
806 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
807 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
808 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
809 							       attrs[i].value);
810 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
811 				if (test_bit(gpuidx, prange->bitmap_access) ||
812 				    test_bit(gpuidx, prange->bitmap_aip))
813 					return false;
814 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
815 				if (!test_bit(gpuidx, prange->bitmap_access))
816 					return false;
817 			} else {
818 				if (!test_bit(gpuidx, prange->bitmap_aip))
819 					return false;
820 			}
821 			break;
822 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
823 			if ((prange->flags & attrs[i].value) != attrs[i].value)
824 				return false;
825 			break;
826 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
827 			if ((prange->flags & attrs[i].value) != 0)
828 				return false;
829 			break;
830 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
831 			if (prange->granularity != attrs[i].value)
832 				return false;
833 			break;
834 		default:
835 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
836 		}
837 	}
838 
839 	return true;
840 }
841 
842 /**
843  * svm_range_debug_dump - print all range information from svms
844  * @svms: svm range list header
845  *
846  * debug output svm range start, end, prefetch location from svms
847  * interval tree and link list
848  *
849  * Context: The caller must hold svms->lock
850  */
851 static void svm_range_debug_dump(struct svm_range_list *svms)
852 {
853 	struct interval_tree_node *node;
854 	struct svm_range *prange;
855 
856 	pr_debug("dump svms 0x%p list\n", svms);
857 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
858 
859 	list_for_each_entry(prange, &svms->list, list) {
860 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
861 			 prange, prange->start, prange->npages,
862 			 prange->start + prange->npages - 1,
863 			 prange->actual_loc);
864 	}
865 
866 	pr_debug("dump svms 0x%p interval tree\n", svms);
867 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
868 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
869 	while (node) {
870 		prange = container_of(node, struct svm_range, it_node);
871 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
872 			 prange, prange->start, prange->npages,
873 			 prange->start + prange->npages - 1,
874 			 prange->actual_loc);
875 		node = interval_tree_iter_next(node, 0, ~0ULL);
876 	}
877 }
878 
879 static void *
880 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
881 		     uint64_t offset)
882 {
883 	unsigned char *dst;
884 
885 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
886 	if (!dst)
887 		return NULL;
888 	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
889 
890 	return (void *)dst;
891 }
892 
893 static int
894 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
895 {
896 	int i;
897 
898 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
899 		if (!src->dma_addr[i])
900 			continue;
901 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
902 					sizeof(*src->dma_addr[i]), src->npages, 0);
903 		if (!dst->dma_addr[i])
904 			return -ENOMEM;
905 	}
906 
907 	return 0;
908 }
909 
910 static int
911 svm_range_split_array(void *ppnew, void *ppold, size_t size,
912 		      uint64_t old_start, uint64_t old_n,
913 		      uint64_t new_start, uint64_t new_n)
914 {
915 	unsigned char *new, *old, *pold;
916 	uint64_t d;
917 
918 	if (!ppold)
919 		return 0;
920 	pold = *(unsigned char **)ppold;
921 	if (!pold)
922 		return 0;
923 
924 	d = (new_start - old_start) * size;
925 	new = svm_range_copy_array(pold, size, new_n, d);
926 	if (!new)
927 		return -ENOMEM;
928 	d = (new_start == old_start) ? new_n * size : 0;
929 	old = svm_range_copy_array(pold, size, old_n, d);
930 	if (!old) {
931 		kvfree(new);
932 		return -ENOMEM;
933 	}
934 	kvfree(pold);
935 	*(void **)ppold = old;
936 	*(void **)ppnew = new;
937 
938 	return 0;
939 }
940 
941 static int
942 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
943 		      uint64_t start, uint64_t last)
944 {
945 	uint64_t npages = last - start + 1;
946 	int i, r;
947 
948 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
949 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
950 					  sizeof(*old->dma_addr[i]), old->start,
951 					  npages, new->start, new->npages);
952 		if (r)
953 			return r;
954 	}
955 
956 	return 0;
957 }
958 
959 static int
960 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
961 		      uint64_t start, uint64_t last)
962 {
963 	uint64_t npages = last - start + 1;
964 
965 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
966 		 new->svms, new, new->start, start, last);
967 
968 	if (new->start == old->start) {
969 		new->offset = old->offset;
970 		old->offset += new->npages;
971 	} else {
972 		new->offset = old->offset + npages;
973 	}
974 
975 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
976 	new->ttm_res = old->ttm_res;
977 
978 	spin_lock(&new->svm_bo->list_lock);
979 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
980 	spin_unlock(&new->svm_bo->list_lock);
981 
982 	return 0;
983 }
984 
985 /**
986  * svm_range_split_adjust - split range and adjust
987  *
988  * @new: new range
989  * @old: the old range
990  * @start: the old range adjust to start address in pages
991  * @last: the old range adjust to last address in pages
992  *
993  * Copy system memory dma_addr or vram ttm_res in old range to new
994  * range from new_start up to size new->npages, the remaining old range is from
995  * start to last
996  *
997  * Return:
998  * 0 - OK, -ENOMEM - out of memory
999  */
1000 static int
1001 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1002 		      uint64_t start, uint64_t last)
1003 {
1004 	int r;
1005 
1006 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1007 		 new->svms, new->start, old->start, old->last, start, last);
1008 
1009 	if (new->start < old->start ||
1010 	    new->last > old->last) {
1011 		WARN_ONCE(1, "invalid new range start or last\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	r = svm_range_split_pages(new, old, start, last);
1016 	if (r)
1017 		return r;
1018 
1019 	if (old->actual_loc && old->ttm_res) {
1020 		r = svm_range_split_nodes(new, old, start, last);
1021 		if (r)
1022 			return r;
1023 	}
1024 
1025 	old->npages = last - start + 1;
1026 	old->start = start;
1027 	old->last = last;
1028 	new->flags = old->flags;
1029 	new->preferred_loc = old->preferred_loc;
1030 	new->prefetch_loc = old->prefetch_loc;
1031 	new->actual_loc = old->actual_loc;
1032 	new->granularity = old->granularity;
1033 	new->mapped_to_gpu = old->mapped_to_gpu;
1034 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1035 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * svm_range_split - split a range in 2 ranges
1042  *
1043  * @prange: the svm range to split
1044  * @start: the remaining range start address in pages
1045  * @last: the remaining range last address in pages
1046  * @new: the result new range generated
1047  *
1048  * Two cases only:
1049  * case 1: if start == prange->start
1050  *         prange ==> prange[start, last]
1051  *         new range [last + 1, prange->last]
1052  *
1053  * case 2: if last == prange->last
1054  *         prange ==> prange[start, last]
1055  *         new range [prange->start, start - 1]
1056  *
1057  * Return:
1058  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1059  */
1060 static int
1061 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1062 		struct svm_range **new)
1063 {
1064 	uint64_t old_start = prange->start;
1065 	uint64_t old_last = prange->last;
1066 	struct svm_range_list *svms;
1067 	int r = 0;
1068 
1069 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1070 		 old_start, old_last, start, last);
1071 
1072 	if (old_start != start && old_last != last)
1073 		return -EINVAL;
1074 	if (start < old_start || last > old_last)
1075 		return -EINVAL;
1076 
1077 	svms = prange->svms;
1078 	if (old_start == start)
1079 		*new = svm_range_new(svms, last + 1, old_last, false);
1080 	else
1081 		*new = svm_range_new(svms, old_start, start - 1, false);
1082 	if (!*new)
1083 		return -ENOMEM;
1084 
1085 	r = svm_range_split_adjust(*new, prange, start, last);
1086 	if (r) {
1087 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1088 			 r, old_start, old_last, start, last);
1089 		svm_range_free(*new, false);
1090 		*new = NULL;
1091 	}
1092 
1093 	return r;
1094 }
1095 
1096 static int
1097 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1098 		     struct list_head *insert_list, struct list_head *remap_list)
1099 {
1100 	struct svm_range *tail;
1101 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1102 
1103 	if (!r) {
1104 		list_add(&tail->list, insert_list);
1105 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1106 			list_add(&tail->update_list, remap_list);
1107 	}
1108 	return r;
1109 }
1110 
1111 static int
1112 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1113 		     struct list_head *insert_list, struct list_head *remap_list)
1114 {
1115 	struct svm_range *head;
1116 	int r = svm_range_split(prange, new_start, prange->last, &head);
1117 
1118 	if (!r) {
1119 		list_add(&head->list, insert_list);
1120 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1121 			list_add(&head->update_list, remap_list);
1122 	}
1123 	return r;
1124 }
1125 
1126 static void
1127 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1128 		    struct svm_range *pchild, enum svm_work_list_ops op)
1129 {
1130 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1131 		 pchild, pchild->start, pchild->last, prange, op);
1132 
1133 	pchild->work_item.mm = mm;
1134 	pchild->work_item.op = op;
1135 	list_add_tail(&pchild->child_list, &prange->child_list);
1136 }
1137 
1138 /**
1139  * svm_range_split_by_granularity - collect ranges within granularity boundary
1140  *
1141  * @p: the process with svms list
1142  * @mm: mm structure
1143  * @addr: the vm fault address in pages, to split the prange
1144  * @parent: parent range if prange is from child list
1145  * @prange: prange to split
1146  *
1147  * Trims @prange to be a single aligned block of prange->granularity if
1148  * possible. The head and tail are added to the child_list in @parent.
1149  *
1150  * Context: caller must hold mmap_read_lock and prange->lock
1151  *
1152  * Return:
1153  * 0 - OK, otherwise error code
1154  */
1155 int
1156 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1157 			       unsigned long addr, struct svm_range *parent,
1158 			       struct svm_range *prange)
1159 {
1160 	struct svm_range *head, *tail;
1161 	unsigned long start, last, size;
1162 	int r;
1163 
1164 	/* Align splited range start and size to granularity size, then a single
1165 	 * PTE will be used for whole range, this reduces the number of PTE
1166 	 * updated and the L1 TLB space used for translation.
1167 	 */
1168 	size = 1UL << prange->granularity;
1169 	start = ALIGN_DOWN(addr, size);
1170 	last = ALIGN(addr + 1, size) - 1;
1171 
1172 	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1173 		 prange->svms, prange->start, prange->last, start, last, size);
1174 
1175 	if (start > prange->start) {
1176 		r = svm_range_split(prange, start, prange->last, &head);
1177 		if (r)
1178 			return r;
1179 		svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1180 	}
1181 
1182 	if (last < prange->last) {
1183 		r = svm_range_split(prange, prange->start, last, &tail);
1184 		if (r)
1185 			return r;
1186 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1187 	}
1188 
1189 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1190 	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1191 		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1192 		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1193 			 prange, prange->start, prange->last,
1194 			 SVM_OP_ADD_RANGE_AND_MAP);
1195 	}
1196 	return 0;
1197 }
1198 static bool
1199 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1200 {
1201 	return (node_a->adev == node_b->adev ||
1202 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1203 }
1204 
1205 static uint64_t
1206 svm_range_get_pte_flags(struct kfd_node *node,
1207 			struct svm_range *prange, int domain)
1208 {
1209 	struct kfd_node *bo_node;
1210 	uint32_t flags = prange->flags;
1211 	uint32_t mapping_flags = 0;
1212 	uint64_t pte_flags;
1213 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1214 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1215 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1216 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1217 	unsigned int mtype_local;
1218 
1219 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1220 		bo_node = prange->svm_bo->node;
1221 
1222 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1223 	case IP_VERSION(9, 4, 1):
1224 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 			if (bo_node == node) {
1226 				mapping_flags |= coherent ?
1227 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1228 			} else {
1229 				mapping_flags |= coherent ?
1230 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1231 				if (svm_nodes_in_same_hive(node, bo_node))
1232 					snoop = true;
1233 			}
1234 		} else {
1235 			mapping_flags |= coherent ?
1236 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1237 		}
1238 		break;
1239 	case IP_VERSION(9, 4, 2):
1240 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1241 			if (bo_node == node) {
1242 				mapping_flags |= coherent ?
1243 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1244 				if (node->adev->gmc.xgmi.connected_to_cpu)
1245 					snoop = true;
1246 			} else {
1247 				mapping_flags |= coherent ?
1248 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1249 				if (svm_nodes_in_same_hive(node, bo_node))
1250 					snoop = true;
1251 			}
1252 		} else {
1253 			mapping_flags |= coherent ?
1254 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1255 		}
1256 		break;
1257 	case IP_VERSION(9, 4, 3):
1258 		mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1259 			      (amdgpu_mtype_local == 2 || ext_coherent ?
1260 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1261 		snoop = true;
1262 		if (uncached) {
1263 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1264 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1265 			/* local HBM region close to partition */
1266 			if (bo_node->adev == node->adev &&
1267 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1268 				mapping_flags |= mtype_local;
1269 			/* local HBM region far from partition or remote XGMI GPU
1270 			 * with regular system scope coherence
1271 			 */
1272 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1273 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1274 			/* PCIe P2P or extended system scope coherence */
1275 			else
1276 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1277 		/* system memory accessed by the APU */
1278 		} else if (node->adev->flags & AMD_IS_APU) {
1279 			/* On NUMA systems, locality is determined per-page
1280 			 * in amdgpu_gmc_override_vm_pte_flags
1281 			 */
1282 			if (num_possible_nodes() <= 1)
1283 				mapping_flags |= mtype_local;
1284 			else
1285 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1286 		/* system memory accessed by the dGPU */
1287 		} else {
1288 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1289 		}
1290 		break;
1291 	default:
1292 		mapping_flags |= coherent ?
1293 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1294 	}
1295 
1296 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1297 
1298 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1299 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1300 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1301 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1302 
1303 	pte_flags = AMDGPU_PTE_VALID;
1304 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1305 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1306 
1307 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1308 	return pte_flags;
1309 }
1310 
1311 static int
1312 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1313 			 uint64_t start, uint64_t last,
1314 			 struct dma_fence **fence)
1315 {
1316 	uint64_t init_pte_value = 0;
1317 
1318 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1319 
1320 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1321 				      last, init_pte_value, 0, 0, NULL, NULL,
1322 				      fence);
1323 }
1324 
1325 static int
1326 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1327 			  unsigned long last, uint32_t trigger)
1328 {
1329 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1330 	struct kfd_process_device *pdd;
1331 	struct dma_fence *fence = NULL;
1332 	struct kfd_process *p;
1333 	uint32_t gpuidx;
1334 	int r = 0;
1335 
1336 	if (!prange->mapped_to_gpu) {
1337 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1338 			 prange, prange->start, prange->last);
1339 		return 0;
1340 	}
1341 
1342 	if (prange->start == start && prange->last == last) {
1343 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1344 		prange->mapped_to_gpu = false;
1345 	}
1346 
1347 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1348 		  MAX_GPU_INSTANCE);
1349 	p = container_of(prange->svms, struct kfd_process, svms);
1350 
1351 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1352 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1353 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1354 		if (!pdd) {
1355 			pr_debug("failed to find device idx %d\n", gpuidx);
1356 			return -EINVAL;
1357 		}
1358 
1359 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1360 					     start, last, trigger);
1361 
1362 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1363 					     drm_priv_to_vm(pdd->drm_priv),
1364 					     start, last, &fence);
1365 		if (r)
1366 			break;
1367 
1368 		if (fence) {
1369 			r = dma_fence_wait(fence, false);
1370 			dma_fence_put(fence);
1371 			fence = NULL;
1372 			if (r)
1373 				break;
1374 		}
1375 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1376 	}
1377 
1378 	return r;
1379 }
1380 
1381 static int
1382 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1383 		     unsigned long offset, unsigned long npages, bool readonly,
1384 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1385 		     struct dma_fence **fence, bool flush_tlb)
1386 {
1387 	struct amdgpu_device *adev = pdd->dev->adev;
1388 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1389 	uint64_t pte_flags;
1390 	unsigned long last_start;
1391 	int last_domain;
1392 	int r = 0;
1393 	int64_t i, j;
1394 
1395 	last_start = prange->start + offset;
1396 
1397 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1398 		 last_start, last_start + npages - 1, readonly);
1399 
1400 	for (i = offset; i < offset + npages; i++) {
1401 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1402 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1403 
1404 		/* Collect all pages in the same address range and memory domain
1405 		 * that can be mapped with a single call to update mapping.
1406 		 */
1407 		if (i < offset + npages - 1 &&
1408 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1409 			continue;
1410 
1411 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1412 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1413 
1414 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1415 		if (readonly)
1416 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1417 
1418 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1419 			 prange->svms, last_start, prange->start + i,
1420 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1421 			 pte_flags);
1422 
1423 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1424 		 * different memory partition based on fpfn/lpfn, we should use
1425 		 * same vm_manager.vram_base_offset regardless memory partition.
1426 		 */
1427 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1428 					   NULL, last_start, prange->start + i,
1429 					   pte_flags,
1430 					   (last_start - prange->start) << PAGE_SHIFT,
1431 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1432 					   NULL, dma_addr, &vm->last_update);
1433 
1434 		for (j = last_start - prange->start; j <= i; j++)
1435 			dma_addr[j] |= last_domain;
1436 
1437 		if (r) {
1438 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1439 			goto out;
1440 		}
1441 		last_start = prange->start + i + 1;
1442 	}
1443 
1444 	r = amdgpu_vm_update_pdes(adev, vm, false);
1445 	if (r) {
1446 		pr_debug("failed %d to update directories 0x%lx\n", r,
1447 			 prange->start);
1448 		goto out;
1449 	}
1450 
1451 	if (fence)
1452 		*fence = dma_fence_get(vm->last_update);
1453 
1454 out:
1455 	return r;
1456 }
1457 
1458 static int
1459 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1460 		      unsigned long npages, bool readonly,
1461 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1462 {
1463 	struct kfd_process_device *pdd;
1464 	struct amdgpu_device *bo_adev = NULL;
1465 	struct kfd_process *p;
1466 	struct dma_fence *fence = NULL;
1467 	uint32_t gpuidx;
1468 	int r = 0;
1469 
1470 	if (prange->svm_bo && prange->ttm_res)
1471 		bo_adev = prange->svm_bo->node->adev;
1472 
1473 	p = container_of(prange->svms, struct kfd_process, svms);
1474 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1475 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1476 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1477 		if (!pdd) {
1478 			pr_debug("failed to find device idx %d\n", gpuidx);
1479 			return -EINVAL;
1480 		}
1481 
1482 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1483 		if (IS_ERR(pdd))
1484 			return -EINVAL;
1485 
1486 		if (bo_adev && pdd->dev->adev != bo_adev &&
1487 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1488 			pr_debug("cannot map to device idx %d\n", gpuidx);
1489 			continue;
1490 		}
1491 
1492 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1493 					 prange->dma_addr[gpuidx],
1494 					 bo_adev, wait ? &fence : NULL,
1495 					 flush_tlb);
1496 		if (r)
1497 			break;
1498 
1499 		if (fence) {
1500 			r = dma_fence_wait(fence, false);
1501 			dma_fence_put(fence);
1502 			fence = NULL;
1503 			if (r) {
1504 				pr_debug("failed %d to dma fence wait\n", r);
1505 				break;
1506 			}
1507 		}
1508 
1509 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1510 	}
1511 
1512 	return r;
1513 }
1514 
1515 struct svm_validate_context {
1516 	struct kfd_process *process;
1517 	struct svm_range *prange;
1518 	bool intr;
1519 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1520 	struct drm_exec exec;
1521 };
1522 
1523 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1524 {
1525 	struct kfd_process_device *pdd;
1526 	struct amdgpu_vm *vm;
1527 	uint32_t gpuidx;
1528 	int r;
1529 
1530 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1531 	drm_exec_until_all_locked(&ctx->exec) {
1532 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1533 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1534 			if (!pdd) {
1535 				pr_debug("failed to find device idx %d\n", gpuidx);
1536 				r = -EINVAL;
1537 				goto unreserve_out;
1538 			}
1539 			vm = drm_priv_to_vm(pdd->drm_priv);
1540 
1541 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1542 			drm_exec_retry_on_contention(&ctx->exec);
1543 			if (unlikely(r)) {
1544 				pr_debug("failed %d to reserve bo\n", r);
1545 				goto unreserve_out;
1546 			}
1547 		}
1548 	}
1549 
1550 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1551 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1552 		if (!pdd) {
1553 			pr_debug("failed to find device idx %d\n", gpuidx);
1554 			r = -EINVAL;
1555 			goto unreserve_out;
1556 		}
1557 
1558 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1559 					      drm_priv_to_vm(pdd->drm_priv),
1560 					      svm_range_bo_validate, NULL);
1561 		if (r) {
1562 			pr_debug("failed %d validate pt bos\n", r);
1563 			goto unreserve_out;
1564 		}
1565 	}
1566 
1567 	return 0;
1568 
1569 unreserve_out:
1570 	drm_exec_fini(&ctx->exec);
1571 	return r;
1572 }
1573 
1574 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1575 {
1576 	drm_exec_fini(&ctx->exec);
1577 }
1578 
1579 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1580 {
1581 	struct kfd_process_device *pdd;
1582 
1583 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1584 	if (!pdd)
1585 		return NULL;
1586 
1587 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1588 }
1589 
1590 /*
1591  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1592  *
1593  * To prevent concurrent destruction or change of range attributes, the
1594  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1595  * because that would block concurrent evictions and lead to deadlocks. To
1596  * serialize concurrent migrations or validations of the same range, the
1597  * prange->migrate_mutex must be held.
1598  *
1599  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1600  * eviction fence.
1601  *
1602  * The following sequence ensures race-free validation and GPU mapping:
1603  *
1604  * 1. Reserve page table (and SVM BO if range is in VRAM)
1605  * 2. hmm_range_fault to get page addresses (if system memory)
1606  * 3. DMA-map pages (if system memory)
1607  * 4-a. Take notifier lock
1608  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1609  * 4-c. Check that the range was not split or otherwise invalidated
1610  * 4-d. Update GPU page table
1611  * 4.e. Release notifier lock
1612  * 5. Release page table (and SVM BO) reservation
1613  */
1614 static int svm_range_validate_and_map(struct mm_struct *mm,
1615 				      struct svm_range *prange, int32_t gpuidx,
1616 				      bool intr, bool wait, bool flush_tlb)
1617 {
1618 	struct svm_validate_context *ctx;
1619 	unsigned long start, end, addr;
1620 	struct kfd_process *p;
1621 	void *owner;
1622 	int32_t idx;
1623 	int r = 0;
1624 
1625 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1626 	if (!ctx)
1627 		return -ENOMEM;
1628 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1629 	ctx->prange = prange;
1630 	ctx->intr = intr;
1631 
1632 	if (gpuidx < MAX_GPU_INSTANCE) {
1633 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1634 		bitmap_set(ctx->bitmap, gpuidx, 1);
1635 	} else if (ctx->process->xnack_enabled) {
1636 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1637 
1638 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1639 		 * GPU, which has ACCESS attribute to the range, create mapping
1640 		 * on that GPU.
1641 		 */
1642 		if (prange->actual_loc) {
1643 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1644 							prange->actual_loc);
1645 			if (gpuidx < 0) {
1646 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1647 					 prange->actual_loc);
1648 				r = -EINVAL;
1649 				goto free_ctx;
1650 			}
1651 			if (test_bit(gpuidx, prange->bitmap_access))
1652 				bitmap_set(ctx->bitmap, gpuidx, 1);
1653 		}
1654 	} else {
1655 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1656 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1657 	}
1658 
1659 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1660 		bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1661 		if (!prange->mapped_to_gpu ||
1662 		    bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1663 			r = 0;
1664 			goto free_ctx;
1665 		}
1666 	}
1667 
1668 	if (prange->actual_loc && !prange->ttm_res) {
1669 		/* This should never happen. actual_loc gets set by
1670 		 * svm_migrate_ram_to_vram after allocating a BO.
1671 		 */
1672 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1673 		r = -EINVAL;
1674 		goto free_ctx;
1675 	}
1676 
1677 	svm_range_reserve_bos(ctx, intr);
1678 
1679 	p = container_of(prange->svms, struct kfd_process, svms);
1680 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1681 						MAX_GPU_INSTANCE));
1682 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1683 		if (kfd_svm_page_owner(p, idx) != owner) {
1684 			owner = NULL;
1685 			break;
1686 		}
1687 	}
1688 
1689 	start = prange->start << PAGE_SHIFT;
1690 	end = (prange->last + 1) << PAGE_SHIFT;
1691 	for (addr = start; !r && addr < end; ) {
1692 		struct hmm_range *hmm_range;
1693 		struct vm_area_struct *vma;
1694 		unsigned long next = 0;
1695 		unsigned long offset;
1696 		unsigned long npages;
1697 		bool readonly;
1698 
1699 		vma = vma_lookup(mm, addr);
1700 		if (vma) {
1701 			readonly = !(vma->vm_flags & VM_WRITE);
1702 
1703 			next = min(vma->vm_end, end);
1704 			npages = (next - addr) >> PAGE_SHIFT;
1705 			WRITE_ONCE(p->svms.faulting_task, current);
1706 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1707 						       readonly, owner, NULL,
1708 						       &hmm_range);
1709 			WRITE_ONCE(p->svms.faulting_task, NULL);
1710 			if (r) {
1711 				pr_debug("failed %d to get svm range pages\n", r);
1712 				if (r == -EBUSY)
1713 					r = -EAGAIN;
1714 			}
1715 		} else {
1716 			r = -EFAULT;
1717 		}
1718 
1719 		if (!r) {
1720 			offset = (addr - start) >> PAGE_SHIFT;
1721 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1722 					      hmm_range->hmm_pfns);
1723 			if (r)
1724 				pr_debug("failed %d to dma map range\n", r);
1725 		}
1726 
1727 		svm_range_lock(prange);
1728 		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1729 			pr_debug("hmm update the range, need validate again\n");
1730 			r = -EAGAIN;
1731 		}
1732 
1733 		if (!r && !list_empty(&prange->child_list)) {
1734 			pr_debug("range split by unmap in parallel, validate again\n");
1735 			r = -EAGAIN;
1736 		}
1737 
1738 		if (!r)
1739 			r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1740 						  ctx->bitmap, wait, flush_tlb);
1741 
1742 		if (!r && next == end)
1743 			prange->mapped_to_gpu = true;
1744 
1745 		svm_range_unlock(prange);
1746 
1747 		addr = next;
1748 	}
1749 
1750 	svm_range_unreserve_bos(ctx);
1751 	if (!r)
1752 		prange->validate_timestamp = ktime_get_boottime();
1753 
1754 free_ctx:
1755 	kfree(ctx);
1756 
1757 	return r;
1758 }
1759 
1760 /**
1761  * svm_range_list_lock_and_flush_work - flush pending deferred work
1762  *
1763  * @svms: the svm range list
1764  * @mm: the mm structure
1765  *
1766  * Context: Returns with mmap write lock held, pending deferred work flushed
1767  *
1768  */
1769 void
1770 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1771 				   struct mm_struct *mm)
1772 {
1773 retry_flush_work:
1774 	flush_work(&svms->deferred_list_work);
1775 	mmap_write_lock(mm);
1776 
1777 	if (list_empty(&svms->deferred_range_list))
1778 		return;
1779 	mmap_write_unlock(mm);
1780 	pr_debug("retry flush\n");
1781 	goto retry_flush_work;
1782 }
1783 
1784 static void svm_range_restore_work(struct work_struct *work)
1785 {
1786 	struct delayed_work *dwork = to_delayed_work(work);
1787 	struct amdkfd_process_info *process_info;
1788 	struct svm_range_list *svms;
1789 	struct svm_range *prange;
1790 	struct kfd_process *p;
1791 	struct mm_struct *mm;
1792 	int evicted_ranges;
1793 	int invalid;
1794 	int r;
1795 
1796 	svms = container_of(dwork, struct svm_range_list, restore_work);
1797 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1798 	if (!evicted_ranges)
1799 		return;
1800 
1801 	pr_debug("restore svm ranges\n");
1802 
1803 	p = container_of(svms, struct kfd_process, svms);
1804 	process_info = p->kgd_process_info;
1805 
1806 	/* Keep mm reference when svm_range_validate_and_map ranges */
1807 	mm = get_task_mm(p->lead_thread);
1808 	if (!mm) {
1809 		pr_debug("svms 0x%p process mm gone\n", svms);
1810 		return;
1811 	}
1812 
1813 	mutex_lock(&process_info->lock);
1814 	svm_range_list_lock_and_flush_work(svms, mm);
1815 	mutex_lock(&svms->lock);
1816 
1817 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1818 
1819 	list_for_each_entry(prange, &svms->list, list) {
1820 		invalid = atomic_read(&prange->invalid);
1821 		if (!invalid)
1822 			continue;
1823 
1824 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1825 			 prange->svms, prange, prange->start, prange->last,
1826 			 invalid);
1827 
1828 		/*
1829 		 * If range is migrating, wait for migration is done.
1830 		 */
1831 		mutex_lock(&prange->migrate_mutex);
1832 
1833 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1834 					       false, true, false);
1835 		if (r)
1836 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1837 				 prange->start);
1838 
1839 		mutex_unlock(&prange->migrate_mutex);
1840 		if (r)
1841 			goto out_reschedule;
1842 
1843 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1844 			goto out_reschedule;
1845 	}
1846 
1847 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1848 	    evicted_ranges)
1849 		goto out_reschedule;
1850 
1851 	evicted_ranges = 0;
1852 
1853 	r = kgd2kfd_resume_mm(mm);
1854 	if (r) {
1855 		/* No recovery from this failure. Probably the CP is
1856 		 * hanging. No point trying again.
1857 		 */
1858 		pr_debug("failed %d to resume KFD\n", r);
1859 	}
1860 
1861 	pr_debug("restore svm ranges successfully\n");
1862 
1863 out_reschedule:
1864 	mutex_unlock(&svms->lock);
1865 	mmap_write_unlock(mm);
1866 	mutex_unlock(&process_info->lock);
1867 
1868 	/* If validation failed, reschedule another attempt */
1869 	if (evicted_ranges) {
1870 		pr_debug("reschedule to restore svm range\n");
1871 		schedule_delayed_work(&svms->restore_work,
1872 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1873 
1874 		kfd_smi_event_queue_restore_rescheduled(mm);
1875 	}
1876 	mmput(mm);
1877 }
1878 
1879 /**
1880  * svm_range_evict - evict svm range
1881  * @prange: svm range structure
1882  * @mm: current process mm_struct
1883  * @start: starting process queue number
1884  * @last: last process queue number
1885  * @event: mmu notifier event when range is evicted or migrated
1886  *
1887  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1888  * return to let CPU evict the buffer and proceed CPU pagetable update.
1889  *
1890  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1891  * If invalidation happens while restore work is running, restore work will
1892  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1893  * the queues.
1894  */
1895 static int
1896 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1897 		unsigned long start, unsigned long last,
1898 		enum mmu_notifier_event event)
1899 {
1900 	struct svm_range_list *svms = prange->svms;
1901 	struct svm_range *pchild;
1902 	struct kfd_process *p;
1903 	int r = 0;
1904 
1905 	p = container_of(svms, struct kfd_process, svms);
1906 
1907 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1908 		 svms, prange->start, prange->last, start, last);
1909 
1910 	if (!p->xnack_enabled ||
1911 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1912 		int evicted_ranges;
1913 		bool mapped = prange->mapped_to_gpu;
1914 
1915 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1916 			if (!pchild->mapped_to_gpu)
1917 				continue;
1918 			mapped = true;
1919 			mutex_lock_nested(&pchild->lock, 1);
1920 			if (pchild->start <= last && pchild->last >= start) {
1921 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1922 					 pchild->start, pchild->last);
1923 				atomic_inc(&pchild->invalid);
1924 			}
1925 			mutex_unlock(&pchild->lock);
1926 		}
1927 
1928 		if (!mapped)
1929 			return r;
1930 
1931 		if (prange->start <= last && prange->last >= start)
1932 			atomic_inc(&prange->invalid);
1933 
1934 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1935 		if (evicted_ranges != 1)
1936 			return r;
1937 
1938 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1939 			 prange->svms, prange->start, prange->last);
1940 
1941 		/* First eviction, stop the queues */
1942 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1943 		if (r)
1944 			pr_debug("failed to quiesce KFD\n");
1945 
1946 		pr_debug("schedule to restore svm %p ranges\n", svms);
1947 		schedule_delayed_work(&svms->restore_work,
1948 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1949 	} else {
1950 		unsigned long s, l;
1951 		uint32_t trigger;
1952 
1953 		if (event == MMU_NOTIFY_MIGRATE)
1954 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1955 		else
1956 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1957 
1958 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1959 			 prange->svms, start, last);
1960 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1961 			mutex_lock_nested(&pchild->lock, 1);
1962 			s = max(start, pchild->start);
1963 			l = min(last, pchild->last);
1964 			if (l >= s)
1965 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1966 			mutex_unlock(&pchild->lock);
1967 		}
1968 		s = max(start, prange->start);
1969 		l = min(last, prange->last);
1970 		if (l >= s)
1971 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1972 	}
1973 
1974 	return r;
1975 }
1976 
1977 static struct svm_range *svm_range_clone(struct svm_range *old)
1978 {
1979 	struct svm_range *new;
1980 
1981 	new = svm_range_new(old->svms, old->start, old->last, false);
1982 	if (!new)
1983 		return NULL;
1984 	if (svm_range_copy_dma_addrs(new, old)) {
1985 		svm_range_free(new, false);
1986 		return NULL;
1987 	}
1988 	if (old->svm_bo) {
1989 		new->ttm_res = old->ttm_res;
1990 		new->offset = old->offset;
1991 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1992 		spin_lock(&new->svm_bo->list_lock);
1993 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1994 		spin_unlock(&new->svm_bo->list_lock);
1995 	}
1996 	new->flags = old->flags;
1997 	new->preferred_loc = old->preferred_loc;
1998 	new->prefetch_loc = old->prefetch_loc;
1999 	new->actual_loc = old->actual_loc;
2000 	new->granularity = old->granularity;
2001 	new->mapped_to_gpu = old->mapped_to_gpu;
2002 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2003 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2004 
2005 	return new;
2006 }
2007 
2008 void svm_range_set_max_pages(struct amdgpu_device *adev)
2009 {
2010 	uint64_t max_pages;
2011 	uint64_t pages, _pages;
2012 	uint64_t min_pages = 0;
2013 	int i, id;
2014 
2015 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2016 		if (adev->kfd.dev->nodes[i]->xcp)
2017 			id = adev->kfd.dev->nodes[i]->xcp->id;
2018 		else
2019 			id = -1;
2020 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2021 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2022 		pages = rounddown_pow_of_two(pages);
2023 		min_pages = min_not_zero(min_pages, pages);
2024 	}
2025 
2026 	do {
2027 		max_pages = READ_ONCE(max_svm_range_pages);
2028 		_pages = min_not_zero(max_pages, min_pages);
2029 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2030 }
2031 
2032 static int
2033 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2034 		    uint64_t max_pages, struct list_head *insert_list,
2035 		    struct list_head *update_list)
2036 {
2037 	struct svm_range *prange;
2038 	uint64_t l;
2039 
2040 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2041 		 max_pages, start, last);
2042 
2043 	while (last >= start) {
2044 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2045 
2046 		prange = svm_range_new(svms, start, l, true);
2047 		if (!prange)
2048 			return -ENOMEM;
2049 		list_add(&prange->list, insert_list);
2050 		list_add(&prange->update_list, update_list);
2051 
2052 		start = l + 1;
2053 	}
2054 	return 0;
2055 }
2056 
2057 /**
2058  * svm_range_add - add svm range and handle overlap
2059  * @p: the range add to this process svms
2060  * @start: page size aligned
2061  * @size: page size aligned
2062  * @nattr: number of attributes
2063  * @attrs: array of attributes
2064  * @update_list: output, the ranges need validate and update GPU mapping
2065  * @insert_list: output, the ranges need insert to svms
2066  * @remove_list: output, the ranges are replaced and need remove from svms
2067  * @remap_list: output, remap unaligned svm ranges
2068  *
2069  * Check if the virtual address range has overlap with any existing ranges,
2070  * split partly overlapping ranges and add new ranges in the gaps. All changes
2071  * should be applied to the range_list and interval tree transactionally. If
2072  * any range split or allocation fails, the entire update fails. Therefore any
2073  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2074  * unchanged.
2075  *
2076  * If the transaction succeeds, the caller can update and insert clones and
2077  * new ranges, then free the originals.
2078  *
2079  * Otherwise the caller can free the clones and new ranges, while the old
2080  * svm_ranges remain unchanged.
2081  *
2082  * Context: Process context, caller must hold svms->lock
2083  *
2084  * Return:
2085  * 0 - OK, otherwise error code
2086  */
2087 static int
2088 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2089 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2090 	      struct list_head *update_list, struct list_head *insert_list,
2091 	      struct list_head *remove_list, struct list_head *remap_list)
2092 {
2093 	unsigned long last = start + size - 1UL;
2094 	struct svm_range_list *svms = &p->svms;
2095 	struct interval_tree_node *node;
2096 	struct svm_range *prange;
2097 	struct svm_range *tmp;
2098 	struct list_head new_list;
2099 	int r = 0;
2100 
2101 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2102 
2103 	INIT_LIST_HEAD(update_list);
2104 	INIT_LIST_HEAD(insert_list);
2105 	INIT_LIST_HEAD(remove_list);
2106 	INIT_LIST_HEAD(&new_list);
2107 	INIT_LIST_HEAD(remap_list);
2108 
2109 	node = interval_tree_iter_first(&svms->objects, start, last);
2110 	while (node) {
2111 		struct interval_tree_node *next;
2112 		unsigned long next_start;
2113 
2114 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2115 			 node->last);
2116 
2117 		prange = container_of(node, struct svm_range, it_node);
2118 		next = interval_tree_iter_next(node, start, last);
2119 		next_start = min(node->last, last) + 1;
2120 
2121 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2122 		    prange->mapped_to_gpu) {
2123 			/* nothing to do */
2124 		} else if (node->start < start || node->last > last) {
2125 			/* node intersects the update range and its attributes
2126 			 * will change. Clone and split it, apply updates only
2127 			 * to the overlapping part
2128 			 */
2129 			struct svm_range *old = prange;
2130 
2131 			prange = svm_range_clone(old);
2132 			if (!prange) {
2133 				r = -ENOMEM;
2134 				goto out;
2135 			}
2136 
2137 			list_add(&old->update_list, remove_list);
2138 			list_add(&prange->list, insert_list);
2139 			list_add(&prange->update_list, update_list);
2140 
2141 			if (node->start < start) {
2142 				pr_debug("change old range start\n");
2143 				r = svm_range_split_head(prange, start,
2144 							 insert_list, remap_list);
2145 				if (r)
2146 					goto out;
2147 			}
2148 			if (node->last > last) {
2149 				pr_debug("change old range last\n");
2150 				r = svm_range_split_tail(prange, last,
2151 							 insert_list, remap_list);
2152 				if (r)
2153 					goto out;
2154 			}
2155 		} else {
2156 			/* The node is contained within start..last,
2157 			 * just update it
2158 			 */
2159 			list_add(&prange->update_list, update_list);
2160 		}
2161 
2162 		/* insert a new node if needed */
2163 		if (node->start > start) {
2164 			r = svm_range_split_new(svms, start, node->start - 1,
2165 						READ_ONCE(max_svm_range_pages),
2166 						&new_list, update_list);
2167 			if (r)
2168 				goto out;
2169 		}
2170 
2171 		node = next;
2172 		start = next_start;
2173 	}
2174 
2175 	/* add a final range at the end if needed */
2176 	if (start <= last)
2177 		r = svm_range_split_new(svms, start, last,
2178 					READ_ONCE(max_svm_range_pages),
2179 					&new_list, update_list);
2180 
2181 out:
2182 	if (r) {
2183 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2184 			svm_range_free(prange, false);
2185 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2186 			svm_range_free(prange, true);
2187 	} else {
2188 		list_splice(&new_list, insert_list);
2189 	}
2190 
2191 	return r;
2192 }
2193 
2194 static void
2195 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2196 					    struct svm_range *prange)
2197 {
2198 	unsigned long start;
2199 	unsigned long last;
2200 
2201 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2202 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2203 
2204 	if (prange->start == start && prange->last == last)
2205 		return;
2206 
2207 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2208 		  prange->svms, prange, start, last, prange->start,
2209 		  prange->last);
2210 
2211 	if (start != 0 && last != 0) {
2212 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2213 		svm_range_remove_notifier(prange);
2214 	}
2215 	prange->it_node.start = prange->start;
2216 	prange->it_node.last = prange->last;
2217 
2218 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2219 	svm_range_add_notifier_locked(mm, prange);
2220 }
2221 
2222 static void
2223 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2224 			 struct mm_struct *mm)
2225 {
2226 	switch (prange->work_item.op) {
2227 	case SVM_OP_NULL:
2228 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2229 			 svms, prange, prange->start, prange->last);
2230 		break;
2231 	case SVM_OP_UNMAP_RANGE:
2232 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2233 			 svms, prange, prange->start, prange->last);
2234 		svm_range_unlink(prange);
2235 		svm_range_remove_notifier(prange);
2236 		svm_range_free(prange, true);
2237 		break;
2238 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2239 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2240 			 svms, prange, prange->start, prange->last);
2241 		svm_range_update_notifier_and_interval_tree(mm, prange);
2242 		break;
2243 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2244 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2245 			 svms, prange, prange->start, prange->last);
2246 		svm_range_update_notifier_and_interval_tree(mm, prange);
2247 		/* TODO: implement deferred validation and mapping */
2248 		break;
2249 	case SVM_OP_ADD_RANGE:
2250 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2251 			 prange->start, prange->last);
2252 		svm_range_add_to_svms(prange);
2253 		svm_range_add_notifier_locked(mm, prange);
2254 		break;
2255 	case SVM_OP_ADD_RANGE_AND_MAP:
2256 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2257 			 prange, prange->start, prange->last);
2258 		svm_range_add_to_svms(prange);
2259 		svm_range_add_notifier_locked(mm, prange);
2260 		/* TODO: implement deferred validation and mapping */
2261 		break;
2262 	default:
2263 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2264 			 prange->work_item.op);
2265 	}
2266 }
2267 
2268 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2269 {
2270 	struct kfd_process_device *pdd;
2271 	struct kfd_process *p;
2272 	int drain;
2273 	uint32_t i;
2274 
2275 	p = container_of(svms, struct kfd_process, svms);
2276 
2277 restart:
2278 	drain = atomic_read(&svms->drain_pagefaults);
2279 	if (!drain)
2280 		return;
2281 
2282 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2283 		pdd = p->pdds[i];
2284 		if (!pdd)
2285 			continue;
2286 
2287 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2288 
2289 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2290 				pdd->dev->adev->irq.retry_cam_enabled ?
2291 				&pdd->dev->adev->irq.ih :
2292 				&pdd->dev->adev->irq.ih1);
2293 
2294 		if (pdd->dev->adev->irq.retry_cam_enabled)
2295 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2296 				&pdd->dev->adev->irq.ih_soft);
2297 
2298 
2299 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2300 	}
2301 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2302 		goto restart;
2303 }
2304 
2305 static void svm_range_deferred_list_work(struct work_struct *work)
2306 {
2307 	struct svm_range_list *svms;
2308 	struct svm_range *prange;
2309 	struct mm_struct *mm;
2310 
2311 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2312 	pr_debug("enter svms 0x%p\n", svms);
2313 
2314 	spin_lock(&svms->deferred_list_lock);
2315 	while (!list_empty(&svms->deferred_range_list)) {
2316 		prange = list_first_entry(&svms->deferred_range_list,
2317 					  struct svm_range, deferred_list);
2318 		spin_unlock(&svms->deferred_list_lock);
2319 
2320 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2321 			 prange->start, prange->last, prange->work_item.op);
2322 
2323 		mm = prange->work_item.mm;
2324 retry:
2325 		mmap_write_lock(mm);
2326 
2327 		/* Checking for the need to drain retry faults must be inside
2328 		 * mmap write lock to serialize with munmap notifiers.
2329 		 */
2330 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2331 			mmap_write_unlock(mm);
2332 			svm_range_drain_retry_fault(svms);
2333 			goto retry;
2334 		}
2335 
2336 		/* Remove from deferred_list must be inside mmap write lock, for
2337 		 * two race cases:
2338 		 * 1. unmap_from_cpu may change work_item.op and add the range
2339 		 *    to deferred_list again, cause use after free bug.
2340 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2341 		 *    lock and continue because deferred_list is empty, but
2342 		 *    deferred_list work is actually waiting for mmap lock.
2343 		 */
2344 		spin_lock(&svms->deferred_list_lock);
2345 		list_del_init(&prange->deferred_list);
2346 		spin_unlock(&svms->deferred_list_lock);
2347 
2348 		mutex_lock(&svms->lock);
2349 		mutex_lock(&prange->migrate_mutex);
2350 		while (!list_empty(&prange->child_list)) {
2351 			struct svm_range *pchild;
2352 
2353 			pchild = list_first_entry(&prange->child_list,
2354 						struct svm_range, child_list);
2355 			pr_debug("child prange 0x%p op %d\n", pchild,
2356 				 pchild->work_item.op);
2357 			list_del_init(&pchild->child_list);
2358 			svm_range_handle_list_op(svms, pchild, mm);
2359 		}
2360 		mutex_unlock(&prange->migrate_mutex);
2361 
2362 		svm_range_handle_list_op(svms, prange, mm);
2363 		mutex_unlock(&svms->lock);
2364 		mmap_write_unlock(mm);
2365 
2366 		/* Pairs with mmget in svm_range_add_list_work */
2367 		mmput(mm);
2368 
2369 		spin_lock(&svms->deferred_list_lock);
2370 	}
2371 	spin_unlock(&svms->deferred_list_lock);
2372 	pr_debug("exit svms 0x%p\n", svms);
2373 }
2374 
2375 void
2376 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2377 			struct mm_struct *mm, enum svm_work_list_ops op)
2378 {
2379 	spin_lock(&svms->deferred_list_lock);
2380 	/* if prange is on the deferred list */
2381 	if (!list_empty(&prange->deferred_list)) {
2382 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2383 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2384 		if (op != SVM_OP_NULL &&
2385 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2386 			prange->work_item.op = op;
2387 	} else {
2388 		prange->work_item.op = op;
2389 
2390 		/* Pairs with mmput in deferred_list_work */
2391 		mmget(mm);
2392 		prange->work_item.mm = mm;
2393 		list_add_tail(&prange->deferred_list,
2394 			      &prange->svms->deferred_range_list);
2395 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2396 			 prange, prange->start, prange->last, op);
2397 	}
2398 	spin_unlock(&svms->deferred_list_lock);
2399 }
2400 
2401 void schedule_deferred_list_work(struct svm_range_list *svms)
2402 {
2403 	spin_lock(&svms->deferred_list_lock);
2404 	if (!list_empty(&svms->deferred_range_list))
2405 		schedule_work(&svms->deferred_list_work);
2406 	spin_unlock(&svms->deferred_list_lock);
2407 }
2408 
2409 static void
2410 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2411 		      struct svm_range *prange, unsigned long start,
2412 		      unsigned long last)
2413 {
2414 	struct svm_range *head;
2415 	struct svm_range *tail;
2416 
2417 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2418 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2419 			 prange->start, prange->last);
2420 		return;
2421 	}
2422 	if (start > prange->last || last < prange->start)
2423 		return;
2424 
2425 	head = tail = prange;
2426 	if (start > prange->start)
2427 		svm_range_split(prange, prange->start, start - 1, &tail);
2428 	if (last < tail->last)
2429 		svm_range_split(tail, last + 1, tail->last, &head);
2430 
2431 	if (head != prange && tail != prange) {
2432 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2433 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2434 	} else if (tail != prange) {
2435 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2436 	} else if (head != prange) {
2437 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2438 	} else if (parent != prange) {
2439 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2440 	}
2441 }
2442 
2443 static void
2444 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2445 			 unsigned long start, unsigned long last)
2446 {
2447 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2448 	struct svm_range_list *svms;
2449 	struct svm_range *pchild;
2450 	struct kfd_process *p;
2451 	unsigned long s, l;
2452 	bool unmap_parent;
2453 
2454 	p = kfd_lookup_process_by_mm(mm);
2455 	if (!p)
2456 		return;
2457 	svms = &p->svms;
2458 
2459 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2460 		 prange, prange->start, prange->last, start, last);
2461 
2462 	/* Make sure pending page faults are drained in the deferred worker
2463 	 * before the range is freed to avoid straggler interrupts on
2464 	 * unmapped memory causing "phantom faults".
2465 	 */
2466 	atomic_inc(&svms->drain_pagefaults);
2467 
2468 	unmap_parent = start <= prange->start && last >= prange->last;
2469 
2470 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2471 		mutex_lock_nested(&pchild->lock, 1);
2472 		s = max(start, pchild->start);
2473 		l = min(last, pchild->last);
2474 		if (l >= s)
2475 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2476 		svm_range_unmap_split(mm, prange, pchild, start, last);
2477 		mutex_unlock(&pchild->lock);
2478 	}
2479 	s = max(start, prange->start);
2480 	l = min(last, prange->last);
2481 	if (l >= s)
2482 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2483 	svm_range_unmap_split(mm, prange, prange, start, last);
2484 
2485 	if (unmap_parent)
2486 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2487 	else
2488 		svm_range_add_list_work(svms, prange, mm,
2489 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2490 	schedule_deferred_list_work(svms);
2491 
2492 	kfd_unref_process(p);
2493 }
2494 
2495 /**
2496  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2497  * @mni: mmu_interval_notifier struct
2498  * @range: mmu_notifier_range struct
2499  * @cur_seq: value to pass to mmu_interval_set_seq()
2500  *
2501  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2502  * is from migration, or CPU page invalidation callback.
2503  *
2504  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2505  * work thread, and split prange if only part of prange is unmapped.
2506  *
2507  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2508  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2509  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2510  * update GPU mapping to recover.
2511  *
2512  * Context: mmap lock, notifier_invalidate_start lock are held
2513  *          for invalidate event, prange lock is held if this is from migration
2514  */
2515 static bool
2516 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2517 				    const struct mmu_notifier_range *range,
2518 				    unsigned long cur_seq)
2519 {
2520 	struct svm_range *prange;
2521 	unsigned long start;
2522 	unsigned long last;
2523 
2524 	if (range->event == MMU_NOTIFY_RELEASE)
2525 		return true;
2526 	if (!mmget_not_zero(mni->mm))
2527 		return true;
2528 
2529 	start = mni->interval_tree.start;
2530 	last = mni->interval_tree.last;
2531 	start = max(start, range->start) >> PAGE_SHIFT;
2532 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2533 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2534 		 start, last, range->start >> PAGE_SHIFT,
2535 		 (range->end - 1) >> PAGE_SHIFT,
2536 		 mni->interval_tree.start >> PAGE_SHIFT,
2537 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2538 
2539 	prange = container_of(mni, struct svm_range, notifier);
2540 
2541 	svm_range_lock(prange);
2542 	mmu_interval_set_seq(mni, cur_seq);
2543 
2544 	switch (range->event) {
2545 	case MMU_NOTIFY_UNMAP:
2546 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2547 		break;
2548 	default:
2549 		svm_range_evict(prange, mni->mm, start, last, range->event);
2550 		break;
2551 	}
2552 
2553 	svm_range_unlock(prange);
2554 	mmput(mni->mm);
2555 
2556 	return true;
2557 }
2558 
2559 /**
2560  * svm_range_from_addr - find svm range from fault address
2561  * @svms: svm range list header
2562  * @addr: address to search range interval tree, in pages
2563  * @parent: parent range if range is on child list
2564  *
2565  * Context: The caller must hold svms->lock
2566  *
2567  * Return: the svm_range found or NULL
2568  */
2569 struct svm_range *
2570 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2571 		    struct svm_range **parent)
2572 {
2573 	struct interval_tree_node *node;
2574 	struct svm_range *prange;
2575 	struct svm_range *pchild;
2576 
2577 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2578 	if (!node)
2579 		return NULL;
2580 
2581 	prange = container_of(node, struct svm_range, it_node);
2582 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2583 		 addr, prange->start, prange->last, node->start, node->last);
2584 
2585 	if (addr >= prange->start && addr <= prange->last) {
2586 		if (parent)
2587 			*parent = prange;
2588 		return prange;
2589 	}
2590 	list_for_each_entry(pchild, &prange->child_list, child_list)
2591 		if (addr >= pchild->start && addr <= pchild->last) {
2592 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2593 				 addr, pchild->start, pchild->last);
2594 			if (parent)
2595 				*parent = prange;
2596 			return pchild;
2597 		}
2598 
2599 	return NULL;
2600 }
2601 
2602 /* svm_range_best_restore_location - decide the best fault restore location
2603  * @prange: svm range structure
2604  * @adev: the GPU on which vm fault happened
2605  *
2606  * This is only called when xnack is on, to decide the best location to restore
2607  * the range mapping after GPU vm fault. Caller uses the best location to do
2608  * migration if actual loc is not best location, then update GPU page table
2609  * mapping to the best location.
2610  *
2611  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2612  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2613  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2614  *    if range actual loc is cpu, best_loc is cpu
2615  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2616  *    range actual loc.
2617  * Otherwise, GPU no access, best_loc is -1.
2618  *
2619  * Return:
2620  * -1 means vm fault GPU no access
2621  * 0 for CPU or GPU id
2622  */
2623 static int32_t
2624 svm_range_best_restore_location(struct svm_range *prange,
2625 				struct kfd_node *node,
2626 				int32_t *gpuidx)
2627 {
2628 	struct kfd_node *bo_node, *preferred_node;
2629 	struct kfd_process *p;
2630 	uint32_t gpuid;
2631 	int r;
2632 
2633 	p = container_of(prange->svms, struct kfd_process, svms);
2634 
2635 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2636 	if (r < 0) {
2637 		pr_debug("failed to get gpuid from kgd\n");
2638 		return -1;
2639 	}
2640 
2641 	if (node->adev->gmc.is_app_apu)
2642 		return 0;
2643 
2644 	if (prange->preferred_loc == gpuid ||
2645 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2646 		return prange->preferred_loc;
2647 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2648 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2649 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2650 			return prange->preferred_loc;
2651 		/* fall through */
2652 	}
2653 
2654 	if (test_bit(*gpuidx, prange->bitmap_access))
2655 		return gpuid;
2656 
2657 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2658 		if (!prange->actual_loc)
2659 			return 0;
2660 
2661 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2662 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2663 			return prange->actual_loc;
2664 		else
2665 			return 0;
2666 	}
2667 
2668 	return -1;
2669 }
2670 
2671 static int
2672 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2673 			       unsigned long *start, unsigned long *last,
2674 			       bool *is_heap_stack)
2675 {
2676 	struct vm_area_struct *vma;
2677 	struct interval_tree_node *node;
2678 	unsigned long start_limit, end_limit;
2679 
2680 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2681 	if (!vma) {
2682 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2683 		return -EFAULT;
2684 	}
2685 
2686 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2687 
2688 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2689 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2690 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2691 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2692 	/* First range that starts after the fault address */
2693 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2694 	if (node) {
2695 		end_limit = min(end_limit, node->start);
2696 		/* Last range that ends before the fault address */
2697 		node = container_of(rb_prev(&node->rb),
2698 				    struct interval_tree_node, rb);
2699 	} else {
2700 		/* Last range must end before addr because
2701 		 * there was no range after addr
2702 		 */
2703 		node = container_of(rb_last(&p->svms.objects.rb_root),
2704 				    struct interval_tree_node, rb);
2705 	}
2706 	if (node) {
2707 		if (node->last >= addr) {
2708 			WARN(1, "Overlap with prev node and page fault addr\n");
2709 			return -EFAULT;
2710 		}
2711 		start_limit = max(start_limit, node->last + 1);
2712 	}
2713 
2714 	*start = start_limit;
2715 	*last = end_limit - 1;
2716 
2717 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2718 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2719 		 *start, *last, *is_heap_stack);
2720 
2721 	return 0;
2722 }
2723 
2724 static int
2725 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2726 			   uint64_t *bo_s, uint64_t *bo_l)
2727 {
2728 	struct amdgpu_bo_va_mapping *mapping;
2729 	struct interval_tree_node *node;
2730 	struct amdgpu_bo *bo = NULL;
2731 	unsigned long userptr;
2732 	uint32_t i;
2733 	int r;
2734 
2735 	for (i = 0; i < p->n_pdds; i++) {
2736 		struct amdgpu_vm *vm;
2737 
2738 		if (!p->pdds[i]->drm_priv)
2739 			continue;
2740 
2741 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2742 		r = amdgpu_bo_reserve(vm->root.bo, false);
2743 		if (r)
2744 			return r;
2745 
2746 		/* Check userptr by searching entire vm->va interval tree */
2747 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2748 		while (node) {
2749 			mapping = container_of((struct rb_node *)node,
2750 					       struct amdgpu_bo_va_mapping, rb);
2751 			bo = mapping->bo_va->base.bo;
2752 
2753 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2754 							 start << PAGE_SHIFT,
2755 							 last << PAGE_SHIFT,
2756 							 &userptr)) {
2757 				node = interval_tree_iter_next(node, 0, ~0ULL);
2758 				continue;
2759 			}
2760 
2761 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2762 				 start, last);
2763 			if (bo_s && bo_l) {
2764 				*bo_s = userptr >> PAGE_SHIFT;
2765 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2766 			}
2767 			amdgpu_bo_unreserve(vm->root.bo);
2768 			return -EADDRINUSE;
2769 		}
2770 		amdgpu_bo_unreserve(vm->root.bo);
2771 	}
2772 	return 0;
2773 }
2774 
2775 static struct
2776 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2777 						struct kfd_process *p,
2778 						struct mm_struct *mm,
2779 						int64_t addr)
2780 {
2781 	struct svm_range *prange = NULL;
2782 	unsigned long start, last;
2783 	uint32_t gpuid, gpuidx;
2784 	bool is_heap_stack;
2785 	uint64_t bo_s = 0;
2786 	uint64_t bo_l = 0;
2787 	int r;
2788 
2789 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2790 					   &is_heap_stack))
2791 		return NULL;
2792 
2793 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2794 	if (r != -EADDRINUSE)
2795 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2796 
2797 	if (r == -EADDRINUSE) {
2798 		if (addr >= bo_s && addr <= bo_l)
2799 			return NULL;
2800 
2801 		/* Create one page svm range if 2MB range overlapping */
2802 		start = addr;
2803 		last = addr;
2804 	}
2805 
2806 	prange = svm_range_new(&p->svms, start, last, true);
2807 	if (!prange) {
2808 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2809 		return NULL;
2810 	}
2811 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2812 		pr_debug("failed to get gpuid from kgd\n");
2813 		svm_range_free(prange, true);
2814 		return NULL;
2815 	}
2816 
2817 	if (is_heap_stack)
2818 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2819 
2820 	svm_range_add_to_svms(prange);
2821 	svm_range_add_notifier_locked(mm, prange);
2822 
2823 	return prange;
2824 }
2825 
2826 /* svm_range_skip_recover - decide if prange can be recovered
2827  * @prange: svm range structure
2828  *
2829  * GPU vm retry fault handle skip recover the range for cases:
2830  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2831  *    deferred list work will drain the stale fault before free the prange.
2832  * 2. prange is on deferred list to add interval notifier after split, or
2833  * 3. prange is child range, it is split from parent prange, recover later
2834  *    after interval notifier is added.
2835  *
2836  * Return: true to skip recover, false to recover
2837  */
2838 static bool svm_range_skip_recover(struct svm_range *prange)
2839 {
2840 	struct svm_range_list *svms = prange->svms;
2841 
2842 	spin_lock(&svms->deferred_list_lock);
2843 	if (list_empty(&prange->deferred_list) &&
2844 	    list_empty(&prange->child_list)) {
2845 		spin_unlock(&svms->deferred_list_lock);
2846 		return false;
2847 	}
2848 	spin_unlock(&svms->deferred_list_lock);
2849 
2850 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2851 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2852 			 svms, prange, prange->start, prange->last);
2853 		return true;
2854 	}
2855 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2856 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2857 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2858 			 svms, prange, prange->start, prange->last);
2859 		return true;
2860 	}
2861 	return false;
2862 }
2863 
2864 static void
2865 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2866 		      int32_t gpuidx)
2867 {
2868 	struct kfd_process_device *pdd;
2869 
2870 	/* fault is on different page of same range
2871 	 * or fault is skipped to recover later
2872 	 * or fault is on invalid virtual address
2873 	 */
2874 	if (gpuidx == MAX_GPU_INSTANCE) {
2875 		uint32_t gpuid;
2876 		int r;
2877 
2878 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2879 		if (r < 0)
2880 			return;
2881 	}
2882 
2883 	/* fault is recovered
2884 	 * or fault cannot recover because GPU no access on the range
2885 	 */
2886 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2887 	if (pdd)
2888 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2889 }
2890 
2891 static bool
2892 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2893 {
2894 	unsigned long requested = VM_READ;
2895 
2896 	if (write_fault)
2897 		requested |= VM_WRITE;
2898 
2899 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2900 		vma->vm_flags);
2901 	return (vma->vm_flags & requested) == requested;
2902 }
2903 
2904 int
2905 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2906 			uint32_t vmid, uint32_t node_id,
2907 			uint64_t addr, bool write_fault)
2908 {
2909 	struct mm_struct *mm = NULL;
2910 	struct svm_range_list *svms;
2911 	struct svm_range *prange;
2912 	struct kfd_process *p;
2913 	ktime_t timestamp = ktime_get_boottime();
2914 	struct kfd_node *node;
2915 	int32_t best_loc;
2916 	int32_t gpuidx = MAX_GPU_INSTANCE;
2917 	bool write_locked = false;
2918 	struct vm_area_struct *vma;
2919 	bool migration = false;
2920 	int r = 0;
2921 
2922 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2923 		pr_debug("device does not support SVM\n");
2924 		return -EFAULT;
2925 	}
2926 
2927 	p = kfd_lookup_process_by_pasid(pasid);
2928 	if (!p) {
2929 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2930 		return 0;
2931 	}
2932 	svms = &p->svms;
2933 
2934 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2935 
2936 	if (atomic_read(&svms->drain_pagefaults)) {
2937 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2938 		r = 0;
2939 		goto out;
2940 	}
2941 
2942 	if (!p->xnack_enabled) {
2943 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2944 		r = -EFAULT;
2945 		goto out;
2946 	}
2947 
2948 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2949 	 * before releasing task ref.
2950 	 */
2951 	mm = get_task_mm(p->lead_thread);
2952 	if (!mm) {
2953 		pr_debug("svms 0x%p failed to get mm\n", svms);
2954 		r = 0;
2955 		goto out;
2956 	}
2957 
2958 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2959 	if (!node) {
2960 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2961 			 vmid);
2962 		r = -EFAULT;
2963 		goto out;
2964 	}
2965 	mmap_read_lock(mm);
2966 retry_write_locked:
2967 	mutex_lock(&svms->lock);
2968 	prange = svm_range_from_addr(svms, addr, NULL);
2969 	if (!prange) {
2970 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2971 			 svms, addr);
2972 		if (!write_locked) {
2973 			/* Need the write lock to create new range with MMU notifier.
2974 			 * Also flush pending deferred work to make sure the interval
2975 			 * tree is up to date before we add a new range
2976 			 */
2977 			mutex_unlock(&svms->lock);
2978 			mmap_read_unlock(mm);
2979 			mmap_write_lock(mm);
2980 			write_locked = true;
2981 			goto retry_write_locked;
2982 		}
2983 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2984 		if (!prange) {
2985 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2986 				 svms, addr);
2987 			mmap_write_downgrade(mm);
2988 			r = -EFAULT;
2989 			goto out_unlock_svms;
2990 		}
2991 	}
2992 	if (write_locked)
2993 		mmap_write_downgrade(mm);
2994 
2995 	mutex_lock(&prange->migrate_mutex);
2996 
2997 	if (svm_range_skip_recover(prange)) {
2998 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2999 		r = 0;
3000 		goto out_unlock_range;
3001 	}
3002 
3003 	/* skip duplicate vm fault on different pages of same range */
3004 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3005 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3006 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3007 			 svms, prange->start, prange->last);
3008 		r = 0;
3009 		goto out_unlock_range;
3010 	}
3011 
3012 	/* __do_munmap removed VMA, return success as we are handling stale
3013 	 * retry fault.
3014 	 */
3015 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3016 	if (!vma) {
3017 		pr_debug("address 0x%llx VMA is removed\n", addr);
3018 		r = 0;
3019 		goto out_unlock_range;
3020 	}
3021 
3022 	if (!svm_fault_allowed(vma, write_fault)) {
3023 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3024 			write_fault ? "write" : "read");
3025 		r = -EPERM;
3026 		goto out_unlock_range;
3027 	}
3028 
3029 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3030 	if (best_loc == -1) {
3031 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3032 			 svms, prange->start, prange->last);
3033 		r = -EACCES;
3034 		goto out_unlock_range;
3035 	}
3036 
3037 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3038 		 svms, prange->start, prange->last, best_loc,
3039 		 prange->actual_loc);
3040 
3041 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3042 				       write_fault, timestamp);
3043 
3044 	if (prange->actual_loc != best_loc) {
3045 		migration = true;
3046 		if (best_loc) {
3047 			r = svm_migrate_to_vram(prange, best_loc, mm,
3048 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3049 			if (r) {
3050 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3051 					 r, addr);
3052 				/* Fallback to system memory if migration to
3053 				 * VRAM failed
3054 				 */
3055 				if (prange->actual_loc)
3056 					r = svm_migrate_vram_to_ram(prange, mm,
3057 					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3058 					   NULL);
3059 				else
3060 					r = 0;
3061 			}
3062 		} else {
3063 			r = svm_migrate_vram_to_ram(prange, mm,
3064 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3065 					NULL);
3066 		}
3067 		if (r) {
3068 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3069 				 r, svms, prange->start, prange->last);
3070 			goto out_unlock_range;
3071 		}
3072 	}
3073 
3074 	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3075 	if (r)
3076 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3077 			 r, svms, prange->start, prange->last);
3078 
3079 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3080 				     migration);
3081 
3082 out_unlock_range:
3083 	mutex_unlock(&prange->migrate_mutex);
3084 out_unlock_svms:
3085 	mutex_unlock(&svms->lock);
3086 	mmap_read_unlock(mm);
3087 
3088 	svm_range_count_fault(node, p, gpuidx);
3089 
3090 	mmput(mm);
3091 out:
3092 	kfd_unref_process(p);
3093 
3094 	if (r == -EAGAIN) {
3095 		pr_debug("recover vm fault later\n");
3096 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3097 		r = 0;
3098 	}
3099 	return r;
3100 }
3101 
3102 int
3103 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3104 {
3105 	struct svm_range *prange, *pchild;
3106 	uint64_t reserved_size = 0;
3107 	uint64_t size;
3108 	int r = 0;
3109 
3110 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3111 
3112 	mutex_lock(&p->svms.lock);
3113 
3114 	list_for_each_entry(prange, &p->svms.list, list) {
3115 		svm_range_lock(prange);
3116 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3117 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3118 			if (xnack_enabled) {
3119 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3120 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3121 			} else {
3122 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3123 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3124 				if (r)
3125 					goto out_unlock;
3126 				reserved_size += size;
3127 			}
3128 		}
3129 
3130 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3131 		if (xnack_enabled) {
3132 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3133 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3134 		} else {
3135 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3136 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3137 			if (r)
3138 				goto out_unlock;
3139 			reserved_size += size;
3140 		}
3141 out_unlock:
3142 		svm_range_unlock(prange);
3143 		if (r)
3144 			break;
3145 	}
3146 
3147 	if (r)
3148 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3149 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3150 	else
3151 		/* Change xnack mode must be inside svms lock, to avoid race with
3152 		 * svm_range_deferred_list_work unreserve memory in parallel.
3153 		 */
3154 		p->xnack_enabled = xnack_enabled;
3155 
3156 	mutex_unlock(&p->svms.lock);
3157 	return r;
3158 }
3159 
3160 void svm_range_list_fini(struct kfd_process *p)
3161 {
3162 	struct svm_range *prange;
3163 	struct svm_range *next;
3164 
3165 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3166 
3167 	cancel_delayed_work_sync(&p->svms.restore_work);
3168 
3169 	/* Ensure list work is finished before process is destroyed */
3170 	flush_work(&p->svms.deferred_list_work);
3171 
3172 	/*
3173 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3174 	 * not find kfd process and take mm lock to recover fault.
3175 	 */
3176 	atomic_inc(&p->svms.drain_pagefaults);
3177 	svm_range_drain_retry_fault(&p->svms);
3178 
3179 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3180 		svm_range_unlink(prange);
3181 		svm_range_remove_notifier(prange);
3182 		svm_range_free(prange, true);
3183 	}
3184 
3185 	mutex_destroy(&p->svms.lock);
3186 
3187 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3188 }
3189 
3190 int svm_range_list_init(struct kfd_process *p)
3191 {
3192 	struct svm_range_list *svms = &p->svms;
3193 	int i;
3194 
3195 	svms->objects = RB_ROOT_CACHED;
3196 	mutex_init(&svms->lock);
3197 	INIT_LIST_HEAD(&svms->list);
3198 	atomic_set(&svms->evicted_ranges, 0);
3199 	atomic_set(&svms->drain_pagefaults, 0);
3200 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3201 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3202 	INIT_LIST_HEAD(&svms->deferred_range_list);
3203 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3204 	spin_lock_init(&svms->deferred_list_lock);
3205 
3206 	for (i = 0; i < p->n_pdds; i++)
3207 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3208 			bitmap_set(svms->bitmap_supported, i, 1);
3209 
3210 	return 0;
3211 }
3212 
3213 /**
3214  * svm_range_check_vm - check if virtual address range mapped already
3215  * @p: current kfd_process
3216  * @start: range start address, in pages
3217  * @last: range last address, in pages
3218  * @bo_s: mapping start address in pages if address range already mapped
3219  * @bo_l: mapping last address in pages if address range already mapped
3220  *
3221  * The purpose is to avoid virtual address ranges already allocated by
3222  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3223  * It looks for each pdd in the kfd_process.
3224  *
3225  * Context: Process context
3226  *
3227  * Return 0 - OK, if the range is not mapped.
3228  * Otherwise error code:
3229  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3230  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3231  * a signal. Release all buffer reservations and return to user-space.
3232  */
3233 static int
3234 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3235 		   uint64_t *bo_s, uint64_t *bo_l)
3236 {
3237 	struct amdgpu_bo_va_mapping *mapping;
3238 	struct interval_tree_node *node;
3239 	uint32_t i;
3240 	int r;
3241 
3242 	for (i = 0; i < p->n_pdds; i++) {
3243 		struct amdgpu_vm *vm;
3244 
3245 		if (!p->pdds[i]->drm_priv)
3246 			continue;
3247 
3248 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3249 		r = amdgpu_bo_reserve(vm->root.bo, false);
3250 		if (r)
3251 			return r;
3252 
3253 		node = interval_tree_iter_first(&vm->va, start, last);
3254 		if (node) {
3255 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3256 				 start, last);
3257 			mapping = container_of((struct rb_node *)node,
3258 					       struct amdgpu_bo_va_mapping, rb);
3259 			if (bo_s && bo_l) {
3260 				*bo_s = mapping->start;
3261 				*bo_l = mapping->last;
3262 			}
3263 			amdgpu_bo_unreserve(vm->root.bo);
3264 			return -EADDRINUSE;
3265 		}
3266 		amdgpu_bo_unreserve(vm->root.bo);
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 /**
3273  * svm_range_is_valid - check if virtual address range is valid
3274  * @p: current kfd_process
3275  * @start: range start address, in pages
3276  * @size: range size, in pages
3277  *
3278  * Valid virtual address range means it belongs to one or more VMAs
3279  *
3280  * Context: Process context
3281  *
3282  * Return:
3283  *  0 - OK, otherwise error code
3284  */
3285 static int
3286 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3287 {
3288 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3289 	struct vm_area_struct *vma;
3290 	unsigned long end;
3291 	unsigned long start_unchg = start;
3292 
3293 	start <<= PAGE_SHIFT;
3294 	end = start + (size << PAGE_SHIFT);
3295 	do {
3296 		vma = vma_lookup(p->mm, start);
3297 		if (!vma || (vma->vm_flags & device_vma))
3298 			return -EFAULT;
3299 		start = min(end, vma->vm_end);
3300 	} while (start < end);
3301 
3302 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3303 				  NULL);
3304 }
3305 
3306 /**
3307  * svm_range_best_prefetch_location - decide the best prefetch location
3308  * @prange: svm range structure
3309  *
3310  * For xnack off:
3311  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3312  * can be CPU or GPU.
3313  *
3314  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3315  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3316  * the best prefetch location is always CPU, because GPU can not have coherent
3317  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3318  *
3319  * For xnack on:
3320  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3321  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3322  *
3323  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3324  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3325  * prefetch location is always CPU.
3326  *
3327  * Context: Process context
3328  *
3329  * Return:
3330  * 0 for CPU or GPU id
3331  */
3332 static uint32_t
3333 svm_range_best_prefetch_location(struct svm_range *prange)
3334 {
3335 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3336 	uint32_t best_loc = prange->prefetch_loc;
3337 	struct kfd_process_device *pdd;
3338 	struct kfd_node *bo_node;
3339 	struct kfd_process *p;
3340 	uint32_t gpuidx;
3341 
3342 	p = container_of(prange->svms, struct kfd_process, svms);
3343 
3344 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3345 		goto out;
3346 
3347 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3348 	if (!bo_node) {
3349 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3350 		best_loc = 0;
3351 		goto out;
3352 	}
3353 
3354 	if (bo_node->adev->gmc.is_app_apu) {
3355 		best_loc = 0;
3356 		goto out;
3357 	}
3358 
3359 	if (p->xnack_enabled)
3360 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3361 	else
3362 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3363 			  MAX_GPU_INSTANCE);
3364 
3365 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3366 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3367 		if (!pdd) {
3368 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3369 			continue;
3370 		}
3371 
3372 		if (pdd->dev->adev == bo_node->adev)
3373 			continue;
3374 
3375 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3376 			best_loc = 0;
3377 			break;
3378 		}
3379 	}
3380 
3381 out:
3382 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3383 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3384 		 best_loc);
3385 
3386 	return best_loc;
3387 }
3388 
3389 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3390  * @mm: current process mm_struct
3391  * @prange: svm range structure
3392  * @migrated: output, true if migration is triggered
3393  *
3394  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3395  * from ram to vram.
3396  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3397  * from vram to ram.
3398  *
3399  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3400  * and restore work:
3401  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3402  *    stops all queues, schedule restore work
3403  * 2. svm_range_restore_work wait for migration is done by
3404  *    a. svm_range_validate_vram takes prange->migrate_mutex
3405  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3406  * 3. restore work update mappings of GPU, resume all queues.
3407  *
3408  * Context: Process context
3409  *
3410  * Return:
3411  * 0 - OK, otherwise - error code of migration
3412  */
3413 static int
3414 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3415 			    bool *migrated)
3416 {
3417 	uint32_t best_loc;
3418 	int r = 0;
3419 
3420 	*migrated = false;
3421 	best_loc = svm_range_best_prefetch_location(prange);
3422 
3423 	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3424 	    best_loc == prange->actual_loc)
3425 		return 0;
3426 
3427 	if (!best_loc) {
3428 		r = svm_migrate_vram_to_ram(prange, mm,
3429 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3430 		*migrated = !r;
3431 		return r;
3432 	}
3433 
3434 	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3435 	*migrated = !r;
3436 
3437 	return r;
3438 }
3439 
3440 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3441 {
3442 	if (!fence)
3443 		return -EINVAL;
3444 
3445 	if (dma_fence_is_signaled(&fence->base))
3446 		return 0;
3447 
3448 	if (fence->svm_bo) {
3449 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3450 		schedule_work(&fence->svm_bo->eviction_work);
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3457 {
3458 	struct svm_range_bo *svm_bo;
3459 	struct mm_struct *mm;
3460 	int r = 0;
3461 
3462 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3463 	if (!svm_bo_ref_unless_zero(svm_bo))
3464 		return; /* svm_bo was freed while eviction was pending */
3465 
3466 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3467 		mm = svm_bo->eviction_fence->mm;
3468 	} else {
3469 		svm_range_bo_unref(svm_bo);
3470 		return;
3471 	}
3472 
3473 	mmap_read_lock(mm);
3474 	spin_lock(&svm_bo->list_lock);
3475 	while (!list_empty(&svm_bo->range_list) && !r) {
3476 		struct svm_range *prange =
3477 				list_first_entry(&svm_bo->range_list,
3478 						struct svm_range, svm_bo_list);
3479 		int retries = 3;
3480 
3481 		list_del_init(&prange->svm_bo_list);
3482 		spin_unlock(&svm_bo->list_lock);
3483 
3484 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3485 			 prange->start, prange->last);
3486 
3487 		mutex_lock(&prange->migrate_mutex);
3488 		do {
3489 			r = svm_migrate_vram_to_ram(prange, mm,
3490 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3491 		} while (!r && prange->actual_loc && --retries);
3492 
3493 		if (!r && prange->actual_loc)
3494 			pr_info_once("Migration failed during eviction");
3495 
3496 		if (!prange->actual_loc) {
3497 			mutex_lock(&prange->lock);
3498 			prange->svm_bo = NULL;
3499 			mutex_unlock(&prange->lock);
3500 		}
3501 		mutex_unlock(&prange->migrate_mutex);
3502 
3503 		spin_lock(&svm_bo->list_lock);
3504 	}
3505 	spin_unlock(&svm_bo->list_lock);
3506 	mmap_read_unlock(mm);
3507 	mmput(mm);
3508 
3509 	dma_fence_signal(&svm_bo->eviction_fence->base);
3510 
3511 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3512 	 * has been called in svm_migrate_vram_to_ram
3513 	 */
3514 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3515 	svm_range_bo_unref(svm_bo);
3516 }
3517 
3518 static int
3519 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3520 		   uint64_t start, uint64_t size, uint32_t nattr,
3521 		   struct kfd_ioctl_svm_attribute *attrs)
3522 {
3523 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3524 	struct list_head update_list;
3525 	struct list_head insert_list;
3526 	struct list_head remove_list;
3527 	struct list_head remap_list;
3528 	struct svm_range_list *svms;
3529 	struct svm_range *prange;
3530 	struct svm_range *next;
3531 	bool update_mapping = false;
3532 	bool flush_tlb;
3533 	int r, ret = 0;
3534 
3535 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3536 		 p->pasid, &p->svms, start, start + size - 1, size);
3537 
3538 	r = svm_range_check_attr(p, nattr, attrs);
3539 	if (r)
3540 		return r;
3541 
3542 	svms = &p->svms;
3543 
3544 	mutex_lock(&process_info->lock);
3545 
3546 	svm_range_list_lock_and_flush_work(svms, mm);
3547 
3548 	r = svm_range_is_valid(p, start, size);
3549 	if (r) {
3550 		pr_debug("invalid range r=%d\n", r);
3551 		mmap_write_unlock(mm);
3552 		goto out;
3553 	}
3554 
3555 	mutex_lock(&svms->lock);
3556 
3557 	/* Add new range and split existing ranges as needed */
3558 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3559 			  &insert_list, &remove_list, &remap_list);
3560 	if (r) {
3561 		mutex_unlock(&svms->lock);
3562 		mmap_write_unlock(mm);
3563 		goto out;
3564 	}
3565 	/* Apply changes as a transaction */
3566 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3567 		svm_range_add_to_svms(prange);
3568 		svm_range_add_notifier_locked(mm, prange);
3569 	}
3570 	list_for_each_entry(prange, &update_list, update_list) {
3571 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3572 		/* TODO: unmap ranges from GPU that lost access */
3573 	}
3574 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3575 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3576 			 prange->svms, prange, prange->start,
3577 			 prange->last);
3578 		svm_range_unlink(prange);
3579 		svm_range_remove_notifier(prange);
3580 		svm_range_free(prange, false);
3581 	}
3582 
3583 	mmap_write_downgrade(mm);
3584 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3585 	 * this fails we may be left with partially completed actions. There
3586 	 * is no clean way of rolling back to the previous state in such a
3587 	 * case because the rollback wouldn't be guaranteed to work either.
3588 	 */
3589 	list_for_each_entry(prange, &update_list, update_list) {
3590 		bool migrated;
3591 
3592 		mutex_lock(&prange->migrate_mutex);
3593 
3594 		r = svm_range_trigger_migration(mm, prange, &migrated);
3595 		if (r)
3596 			goto out_unlock_range;
3597 
3598 		if (migrated && (!p->xnack_enabled ||
3599 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3600 		    prange->mapped_to_gpu) {
3601 			pr_debug("restore_work will update mappings of GPUs\n");
3602 			mutex_unlock(&prange->migrate_mutex);
3603 			continue;
3604 		}
3605 
3606 		if (!migrated && !update_mapping) {
3607 			mutex_unlock(&prange->migrate_mutex);
3608 			continue;
3609 		}
3610 
3611 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3612 
3613 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3614 					       true, true, flush_tlb);
3615 		if (r)
3616 			pr_debug("failed %d to map svm range\n", r);
3617 
3618 out_unlock_range:
3619 		mutex_unlock(&prange->migrate_mutex);
3620 		if (r)
3621 			ret = r;
3622 	}
3623 
3624 	list_for_each_entry(prange, &remap_list, update_list) {
3625 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3626 			 prange, prange->start, prange->last);
3627 		mutex_lock(&prange->migrate_mutex);
3628 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3629 					       true, true, prange->mapped_to_gpu);
3630 		if (r)
3631 			pr_debug("failed %d on remap svm range\n", r);
3632 		mutex_unlock(&prange->migrate_mutex);
3633 		if (r)
3634 			ret = r;
3635 	}
3636 
3637 	dynamic_svm_range_dump(svms);
3638 
3639 	mutex_unlock(&svms->lock);
3640 	mmap_read_unlock(mm);
3641 out:
3642 	mutex_unlock(&process_info->lock);
3643 
3644 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3645 		 &p->svms, start, start + size - 1, r);
3646 
3647 	return ret ? ret : r;
3648 }
3649 
3650 static int
3651 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3652 		   uint64_t start, uint64_t size, uint32_t nattr,
3653 		   struct kfd_ioctl_svm_attribute *attrs)
3654 {
3655 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3656 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3657 	bool get_preferred_loc = false;
3658 	bool get_prefetch_loc = false;
3659 	bool get_granularity = false;
3660 	bool get_accessible = false;
3661 	bool get_flags = false;
3662 	uint64_t last = start + size - 1UL;
3663 	uint8_t granularity = 0xff;
3664 	struct interval_tree_node *node;
3665 	struct svm_range_list *svms;
3666 	struct svm_range *prange;
3667 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3668 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3669 	uint32_t flags_and = 0xffffffff;
3670 	uint32_t flags_or = 0;
3671 	int gpuidx;
3672 	uint32_t i;
3673 	int r = 0;
3674 
3675 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3676 		 start + size - 1, nattr);
3677 
3678 	/* Flush pending deferred work to avoid racing with deferred actions from
3679 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3680 	 * can still race with get_attr because we don't hold the mmap lock. But that
3681 	 * would be a race condition in the application anyway, and undefined
3682 	 * behaviour is acceptable in that case.
3683 	 */
3684 	flush_work(&p->svms.deferred_list_work);
3685 
3686 	mmap_read_lock(mm);
3687 	r = svm_range_is_valid(p, start, size);
3688 	mmap_read_unlock(mm);
3689 	if (r) {
3690 		pr_debug("invalid range r=%d\n", r);
3691 		return r;
3692 	}
3693 
3694 	for (i = 0; i < nattr; i++) {
3695 		switch (attrs[i].type) {
3696 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3697 			get_preferred_loc = true;
3698 			break;
3699 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3700 			get_prefetch_loc = true;
3701 			break;
3702 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3703 			get_accessible = true;
3704 			break;
3705 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3706 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3707 			get_flags = true;
3708 			break;
3709 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3710 			get_granularity = true;
3711 			break;
3712 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3713 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3714 			fallthrough;
3715 		default:
3716 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3717 			return -EINVAL;
3718 		}
3719 	}
3720 
3721 	svms = &p->svms;
3722 
3723 	mutex_lock(&svms->lock);
3724 
3725 	node = interval_tree_iter_first(&svms->objects, start, last);
3726 	if (!node) {
3727 		pr_debug("range attrs not found return default values\n");
3728 		svm_range_set_default_attributes(&location, &prefetch_loc,
3729 						 &granularity, &flags_and);
3730 		flags_or = flags_and;
3731 		if (p->xnack_enabled)
3732 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3733 				    MAX_GPU_INSTANCE);
3734 		else
3735 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3736 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3737 		goto fill_values;
3738 	}
3739 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3740 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3741 
3742 	while (node) {
3743 		struct interval_tree_node *next;
3744 
3745 		prange = container_of(node, struct svm_range, it_node);
3746 		next = interval_tree_iter_next(node, start, last);
3747 
3748 		if (get_preferred_loc) {
3749 			if (prange->preferred_loc ==
3750 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3751 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3752 			     location != prange->preferred_loc)) {
3753 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3754 				get_preferred_loc = false;
3755 			} else {
3756 				location = prange->preferred_loc;
3757 			}
3758 		}
3759 		if (get_prefetch_loc) {
3760 			if (prange->prefetch_loc ==
3761 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3762 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3763 			     prefetch_loc != prange->prefetch_loc)) {
3764 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3765 				get_prefetch_loc = false;
3766 			} else {
3767 				prefetch_loc = prange->prefetch_loc;
3768 			}
3769 		}
3770 		if (get_accessible) {
3771 			bitmap_and(bitmap_access, bitmap_access,
3772 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3773 			bitmap_and(bitmap_aip, bitmap_aip,
3774 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3775 		}
3776 		if (get_flags) {
3777 			flags_and &= prange->flags;
3778 			flags_or |= prange->flags;
3779 		}
3780 
3781 		if (get_granularity && prange->granularity < granularity)
3782 			granularity = prange->granularity;
3783 
3784 		node = next;
3785 	}
3786 fill_values:
3787 	mutex_unlock(&svms->lock);
3788 
3789 	for (i = 0; i < nattr; i++) {
3790 		switch (attrs[i].type) {
3791 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3792 			attrs[i].value = location;
3793 			break;
3794 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3795 			attrs[i].value = prefetch_loc;
3796 			break;
3797 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3798 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3799 							       attrs[i].value);
3800 			if (gpuidx < 0) {
3801 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3802 				return -EINVAL;
3803 			}
3804 			if (test_bit(gpuidx, bitmap_access))
3805 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3806 			else if (test_bit(gpuidx, bitmap_aip))
3807 				attrs[i].type =
3808 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3809 			else
3810 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3811 			break;
3812 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3813 			attrs[i].value = flags_and;
3814 			break;
3815 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3816 			attrs[i].value = ~flags_or;
3817 			break;
3818 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3819 			attrs[i].value = (uint32_t)granularity;
3820 			break;
3821 		}
3822 	}
3823 
3824 	return 0;
3825 }
3826 
3827 int kfd_criu_resume_svm(struct kfd_process *p)
3828 {
3829 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3830 	int nattr_common = 4, nattr_accessibility = 1;
3831 	struct criu_svm_metadata *criu_svm_md = NULL;
3832 	struct svm_range_list *svms = &p->svms;
3833 	struct criu_svm_metadata *next = NULL;
3834 	uint32_t set_flags = 0xffffffff;
3835 	int i, j, num_attrs, ret = 0;
3836 	uint64_t set_attr_size;
3837 	struct mm_struct *mm;
3838 
3839 	if (list_empty(&svms->criu_svm_metadata_list)) {
3840 		pr_debug("No SVM data from CRIU restore stage 2\n");
3841 		return ret;
3842 	}
3843 
3844 	mm = get_task_mm(p->lead_thread);
3845 	if (!mm) {
3846 		pr_err("failed to get mm for the target process\n");
3847 		return -ESRCH;
3848 	}
3849 
3850 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3851 
3852 	i = j = 0;
3853 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3854 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3855 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3856 
3857 		for (j = 0; j < num_attrs; j++) {
3858 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3859 				 i, j, criu_svm_md->data.attrs[j].type,
3860 				 i, j, criu_svm_md->data.attrs[j].value);
3861 			switch (criu_svm_md->data.attrs[j].type) {
3862 			/* During Checkpoint operation, the query for
3863 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3864 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3865 			 * not used by the range which was checkpointed. Care
3866 			 * must be taken to not restore with an invalid value
3867 			 * otherwise the gpuidx value will be invalid and
3868 			 * set_attr would eventually fail so just replace those
3869 			 * with another dummy attribute such as
3870 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3871 			 */
3872 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3873 				if (criu_svm_md->data.attrs[j].value ==
3874 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3875 					criu_svm_md->data.attrs[j].type =
3876 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3877 					criu_svm_md->data.attrs[j].value = 0;
3878 				}
3879 				break;
3880 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3881 				set_flags = criu_svm_md->data.attrs[j].value;
3882 				break;
3883 			default:
3884 				break;
3885 			}
3886 		}
3887 
3888 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3889 		 * it needs to be inserted before restoring the ranges so
3890 		 * allocate extra space for it before calling set_attr
3891 		 */
3892 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3893 						(num_attrs + 1);
3894 		set_attr_new = krealloc(set_attr, set_attr_size,
3895 					    GFP_KERNEL);
3896 		if (!set_attr_new) {
3897 			ret = -ENOMEM;
3898 			goto exit;
3899 		}
3900 		set_attr = set_attr_new;
3901 
3902 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3903 					sizeof(struct kfd_ioctl_svm_attribute));
3904 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3905 		set_attr[num_attrs].value = ~set_flags;
3906 
3907 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3908 					 criu_svm_md->data.size, num_attrs + 1,
3909 					 set_attr);
3910 		if (ret) {
3911 			pr_err("CRIU: failed to set range attributes\n");
3912 			goto exit;
3913 		}
3914 
3915 		i++;
3916 	}
3917 exit:
3918 	kfree(set_attr);
3919 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3920 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3921 						criu_svm_md->data.start_addr);
3922 		kfree(criu_svm_md);
3923 	}
3924 
3925 	mmput(mm);
3926 	return ret;
3927 
3928 }
3929 
3930 int kfd_criu_restore_svm(struct kfd_process *p,
3931 			 uint8_t __user *user_priv_ptr,
3932 			 uint64_t *priv_data_offset,
3933 			 uint64_t max_priv_data_size)
3934 {
3935 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3936 	int nattr_common = 4, nattr_accessibility = 1;
3937 	struct criu_svm_metadata *criu_svm_md = NULL;
3938 	struct svm_range_list *svms = &p->svms;
3939 	uint32_t num_devices;
3940 	int ret = 0;
3941 
3942 	num_devices = p->n_pdds;
3943 	/* Handle one SVM range object at a time, also the number of gpus are
3944 	 * assumed to be same on the restore node, checking must be done while
3945 	 * evaluating the topology earlier
3946 	 */
3947 
3948 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3949 		(nattr_common + nattr_accessibility * num_devices);
3950 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3951 
3952 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3953 								svm_attrs_size;
3954 
3955 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3956 	if (!criu_svm_md) {
3957 		pr_err("failed to allocate memory to store svm metadata\n");
3958 		return -ENOMEM;
3959 	}
3960 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3961 		ret = -EINVAL;
3962 		goto exit;
3963 	}
3964 
3965 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3966 			     svm_priv_data_size);
3967 	if (ret) {
3968 		ret = -EFAULT;
3969 		goto exit;
3970 	}
3971 	*priv_data_offset += svm_priv_data_size;
3972 
3973 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3974 
3975 	return 0;
3976 
3977 
3978 exit:
3979 	kfree(criu_svm_md);
3980 	return ret;
3981 }
3982 
3983 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3984 		       uint64_t *svm_priv_data_size)
3985 {
3986 	uint64_t total_size, accessibility_size, common_attr_size;
3987 	int nattr_common = 4, nattr_accessibility = 1;
3988 	int num_devices = p->n_pdds;
3989 	struct svm_range_list *svms;
3990 	struct svm_range *prange;
3991 	uint32_t count = 0;
3992 
3993 	*svm_priv_data_size = 0;
3994 
3995 	svms = &p->svms;
3996 	if (!svms)
3997 		return -EINVAL;
3998 
3999 	mutex_lock(&svms->lock);
4000 	list_for_each_entry(prange, &svms->list, list) {
4001 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4002 			 prange, prange->start, prange->npages,
4003 			 prange->start + prange->npages - 1);
4004 		count++;
4005 	}
4006 	mutex_unlock(&svms->lock);
4007 
4008 	*num_svm_ranges = count;
4009 	/* Only the accessbility attributes need to be queried for all the gpus
4010 	 * individually, remaining ones are spanned across the entire process
4011 	 * regardless of the various gpu nodes. Of the remaining attributes,
4012 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4013 	 *
4014 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4015 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4016 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4017 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4018 	 *
4019 	 * ** ACCESSBILITY ATTRIBUTES **
4020 	 * (Considered as one, type is altered during query, value is gpuid)
4021 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4022 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4023 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4024 	 */
4025 	if (*num_svm_ranges > 0) {
4026 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4027 			nattr_common;
4028 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4029 			nattr_accessibility * num_devices;
4030 
4031 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4032 			common_attr_size + accessibility_size;
4033 
4034 		*svm_priv_data_size = *num_svm_ranges * total_size;
4035 	}
4036 
4037 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4038 		 *svm_priv_data_size);
4039 	return 0;
4040 }
4041 
4042 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4043 			    uint8_t __user *user_priv_data,
4044 			    uint64_t *priv_data_offset)
4045 {
4046 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4047 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4048 	uint64_t svm_priv_data_size, query_attr_size = 0;
4049 	int index, nattr_common = 4, ret = 0;
4050 	struct svm_range_list *svms;
4051 	int num_devices = p->n_pdds;
4052 	struct svm_range *prange;
4053 	struct mm_struct *mm;
4054 
4055 	svms = &p->svms;
4056 	if (!svms)
4057 		return -EINVAL;
4058 
4059 	mm = get_task_mm(p->lead_thread);
4060 	if (!mm) {
4061 		pr_err("failed to get mm for the target process\n");
4062 		return -ESRCH;
4063 	}
4064 
4065 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4066 				(nattr_common + num_devices);
4067 
4068 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4069 	if (!query_attr) {
4070 		ret = -ENOMEM;
4071 		goto exit;
4072 	}
4073 
4074 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4075 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4076 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4077 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4078 
4079 	for (index = 0; index < num_devices; index++) {
4080 		struct kfd_process_device *pdd = p->pdds[index];
4081 
4082 		query_attr[index + nattr_common].type =
4083 			KFD_IOCTL_SVM_ATTR_ACCESS;
4084 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4085 	}
4086 
4087 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4088 
4089 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4090 	if (!svm_priv) {
4091 		ret = -ENOMEM;
4092 		goto exit_query;
4093 	}
4094 
4095 	index = 0;
4096 	list_for_each_entry(prange, &svms->list, list) {
4097 
4098 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4099 		svm_priv->start_addr = prange->start;
4100 		svm_priv->size = prange->npages;
4101 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4102 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4103 			 prange, prange->start, prange->npages,
4104 			 prange->start + prange->npages - 1,
4105 			 prange->npages * PAGE_SIZE);
4106 
4107 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4108 					 svm_priv->size,
4109 					 (nattr_common + num_devices),
4110 					 svm_priv->attrs);
4111 		if (ret) {
4112 			pr_err("CRIU: failed to obtain range attributes\n");
4113 			goto exit_priv;
4114 		}
4115 
4116 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4117 				 svm_priv_data_size)) {
4118 			pr_err("Failed to copy svm priv to user\n");
4119 			ret = -EFAULT;
4120 			goto exit_priv;
4121 		}
4122 
4123 		*priv_data_offset += svm_priv_data_size;
4124 
4125 	}
4126 
4127 
4128 exit_priv:
4129 	kfree(svm_priv);
4130 exit_query:
4131 	kfree(query_attr);
4132 exit:
4133 	mmput(mm);
4134 	return ret;
4135 }
4136 
4137 int
4138 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4139 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4140 {
4141 	struct mm_struct *mm = current->mm;
4142 	int r;
4143 
4144 	start >>= PAGE_SHIFT;
4145 	size >>= PAGE_SHIFT;
4146 
4147 	switch (op) {
4148 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4149 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4150 		break;
4151 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4152 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4153 		break;
4154 	default:
4155 		r = EINVAL;
4156 		break;
4157 	}
4158 
4159 	return r;
4160 }
4161