1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "amdgpu_reset.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_svm.h" 45 #include "kfd_smi_events.h" 46 #include "kfd_debug.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread, 69 bool ref); 70 static void kfd_process_ref_release(struct kref *ref); 71 static struct kfd_process *create_process(const struct task_struct *thread); 72 73 static void evict_process_worker(struct work_struct *work); 74 static void restore_process_worker(struct work_struct *work); 75 76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 77 78 struct kfd_procfs_tree { 79 struct kobject *kobj; 80 }; 81 82 static struct kfd_procfs_tree procfs; 83 84 /* 85 * Structure for SDMA activity tracking 86 */ 87 struct kfd_sdma_activity_handler_workarea { 88 struct work_struct sdma_activity_work; 89 struct kfd_process_device *pdd; 90 uint64_t sdma_activity_counter; 91 }; 92 93 struct temp_sdma_queue_list { 94 uint64_t __user *rptr; 95 uint64_t sdma_val; 96 unsigned int queue_id; 97 struct list_head list; 98 }; 99 100 static void kfd_sdma_activity_worker(struct work_struct *work) 101 { 102 struct kfd_sdma_activity_handler_workarea *workarea; 103 struct kfd_process_device *pdd; 104 uint64_t val; 105 struct mm_struct *mm; 106 struct queue *q; 107 struct qcm_process_device *qpd; 108 struct device_queue_manager *dqm; 109 int ret = 0; 110 struct temp_sdma_queue_list sdma_q_list; 111 struct temp_sdma_queue_list *sdma_q, *next; 112 113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 114 sdma_activity_work); 115 116 pdd = workarea->pdd; 117 if (!pdd) 118 return; 119 dqm = pdd->dev->dqm; 120 qpd = &pdd->qpd; 121 if (!dqm || !qpd) 122 return; 123 /* 124 * Total SDMA activity is current SDMA activity + past SDMA activity 125 * Past SDMA count is stored in pdd. 126 * To get the current activity counters for all active SDMA queues, 127 * we loop over all SDMA queues and get their counts from user-space. 128 * 129 * We cannot call get_user() with dqm_lock held as it can cause 130 * a circular lock dependency situation. To read the SDMA stats, 131 * we need to do the following: 132 * 133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 134 * with dqm_lock/dqm_unlock(). 135 * 2. Call get_user() for each node in temporary list without dqm_lock. 136 * Save the SDMA count for each node and also add the count to the total 137 * SDMA count counter. 138 * Its possible, during this step, a few SDMA queue nodes got deleted 139 * from the qpd->queues_list. 140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 141 * If any node got deleted, its SDMA count would be captured in the sdma 142 * past activity counter. So subtract the SDMA counter stored in step 2 143 * for this node from the total SDMA count. 144 */ 145 INIT_LIST_HEAD(&sdma_q_list.list); 146 147 /* 148 * Create the temp list of all SDMA queues 149 */ 150 dqm_lock(dqm); 151 152 list_for_each_entry(q, &qpd->queues_list, list) { 153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 155 continue; 156 157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 158 if (!sdma_q) { 159 dqm_unlock(dqm); 160 goto cleanup; 161 } 162 163 INIT_LIST_HEAD(&sdma_q->list); 164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 165 sdma_q->queue_id = q->properties.queue_id; 166 list_add_tail(&sdma_q->list, &sdma_q_list.list); 167 } 168 169 /* 170 * If the temp list is empty, then no SDMA queues nodes were found in 171 * qpd->queues_list. Return the past activity count as the total sdma 172 * count 173 */ 174 if (list_empty(&sdma_q_list.list)) { 175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 176 dqm_unlock(dqm); 177 return; 178 } 179 180 dqm_unlock(dqm); 181 182 /* 183 * Get the usage count for each SDMA queue in temp_list. 184 */ 185 mm = get_task_mm(pdd->process->lead_thread); 186 if (!mm) 187 goto cleanup; 188 189 kthread_use_mm(mm); 190 191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 192 val = 0; 193 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 194 if (ret) { 195 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 196 sdma_q->queue_id); 197 } else { 198 sdma_q->sdma_val = val; 199 workarea->sdma_activity_counter += val; 200 } 201 } 202 203 kthread_unuse_mm(mm); 204 mmput(mm); 205 206 /* 207 * Do a second iteration over qpd_queues_list to check if any SDMA 208 * nodes got deleted while fetching SDMA counter. 209 */ 210 dqm_lock(dqm); 211 212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 213 214 list_for_each_entry(q, &qpd->queues_list, list) { 215 if (list_empty(&sdma_q_list.list)) 216 break; 217 218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 220 continue; 221 222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 224 (sdma_q->queue_id == q->properties.queue_id)) { 225 list_del(&sdma_q->list); 226 kfree(sdma_q); 227 break; 228 } 229 } 230 } 231 232 dqm_unlock(dqm); 233 234 /* 235 * If temp list is not empty, it implies some queues got deleted 236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 237 * count for each node from the total SDMA count. 238 */ 239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 240 workarea->sdma_activity_counter -= sdma_q->sdma_val; 241 list_del(&sdma_q->list); 242 kfree(sdma_q); 243 } 244 245 return; 246 247 cleanup: 248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 249 list_del(&sdma_q->list); 250 kfree(sdma_q); 251 } 252 } 253 254 /** 255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 256 * by current process. Translates acquired wave count into number of compute units 257 * that are occupied. 258 * 259 * @attr: Handle of attribute that allows reporting of wave count. The attribute 260 * handle encapsulates GPU device it is associated with, thereby allowing collection 261 * of waves in flight, etc 262 * @buffer: Handle of user provided buffer updated with wave count 263 * 264 * Return: Number of bytes written to user buffer or an error value 265 */ 266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 267 { 268 int cu_cnt; 269 int wave_cnt; 270 int max_waves_per_cu; 271 struct kfd_node *dev = NULL; 272 struct kfd_process *proc = NULL; 273 struct kfd_process_device *pdd = NULL; 274 int i; 275 struct kfd_cu_occupancy *cu_occupancy; 276 u32 queue_format; 277 278 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 279 dev = pdd->dev; 280 if (dev->kfd2kgd->get_cu_occupancy == NULL) 281 return -EINVAL; 282 283 cu_cnt = 0; 284 proc = pdd->process; 285 if (pdd->qpd.queue_count == 0) { 286 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n", 287 dev->id, (int)proc->lead_thread->pid); 288 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 289 } 290 291 /* Collect wave count from device if it supports */ 292 wave_cnt = 0; 293 max_waves_per_cu = 0; 294 295 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 296 if (!cu_occupancy) 297 return -ENOMEM; 298 299 /* 300 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 301 * For AQL queues, because of cooperative dispatch we multiply the wave count 302 * by number of XCCs in the partition to get the total wave counts across all 303 * XCCs in the partition. 304 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 305 */ 306 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 307 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 308 309 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 310 if (cu_occupancy[i].wave_cnt != 0 && 311 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 312 cu_occupancy[i].doorbell_off, 313 &queue_format)) { 314 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 315 wave_cnt += cu_occupancy[i].wave_cnt; 316 else 317 wave_cnt += (NUM_XCC(dev->xcc_mask) * 318 cu_occupancy[i].wave_cnt); 319 } 320 } 321 322 /* Translate wave count to number of compute units */ 323 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 324 kfree(cu_occupancy); 325 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 326 } 327 328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 329 char *buffer) 330 { 331 if (strcmp(attr->name, "pasid") == 0) 332 return snprintf(buffer, PAGE_SIZE, "%d\n", 0); 333 else if (strncmp(attr->name, "vram_", 5) == 0) { 334 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 335 attr_vram); 336 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 337 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 338 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 339 attr_sdma); 340 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 341 342 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 343 kfd_sdma_activity_worker); 344 345 sdma_activity_work_handler.pdd = pdd; 346 sdma_activity_work_handler.sdma_activity_counter = 0; 347 348 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 349 350 flush_work(&sdma_activity_work_handler.sdma_activity_work); 351 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 352 353 return snprintf(buffer, PAGE_SIZE, "%llu\n", 354 (sdma_activity_work_handler.sdma_activity_counter)/ 355 SDMA_ACTIVITY_DIVISOR); 356 } else { 357 pr_err("Invalid attribute"); 358 return -EINVAL; 359 } 360 361 return 0; 362 } 363 364 static void kfd_procfs_kobj_release(struct kobject *kobj) 365 { 366 kfree(kobj); 367 } 368 369 static const struct sysfs_ops kfd_procfs_ops = { 370 .show = kfd_procfs_show, 371 }; 372 373 static const struct kobj_type procfs_type = { 374 .release = kfd_procfs_kobj_release, 375 .sysfs_ops = &kfd_procfs_ops, 376 }; 377 378 void kfd_procfs_init(void) 379 { 380 int ret = 0; 381 382 procfs.kobj = kfd_alloc_struct(procfs.kobj); 383 if (!procfs.kobj) 384 return; 385 386 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 387 &kfd_device->kobj, "proc"); 388 if (ret) { 389 pr_warn("Could not create procfs proc folder"); 390 /* If we fail to create the procfs, clean up */ 391 kfd_procfs_shutdown(); 392 } 393 } 394 395 void kfd_procfs_shutdown(void) 396 { 397 if (procfs.kobj) { 398 kobject_del(procfs.kobj); 399 kobject_put(procfs.kobj); 400 procfs.kobj = NULL; 401 } 402 } 403 404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 405 struct attribute *attr, char *buffer) 406 { 407 struct queue *q = container_of(kobj, struct queue, kobj); 408 409 if (!strcmp(attr->name, "size")) 410 return snprintf(buffer, PAGE_SIZE, "%llu", 411 q->properties.queue_size); 412 else if (!strcmp(attr->name, "type")) 413 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 414 else if (!strcmp(attr->name, "gpuid")) 415 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 416 else 417 pr_err("Invalid attribute"); 418 419 return 0; 420 } 421 422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 423 struct attribute *attr, char *buffer) 424 { 425 if (strcmp(attr->name, "evicted_ms") == 0) { 426 struct kfd_process_device *pdd = container_of(attr, 427 struct kfd_process_device, 428 attr_evict); 429 uint64_t evict_jiffies; 430 431 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 432 433 return snprintf(buffer, 434 PAGE_SIZE, 435 "%llu\n", 436 jiffies64_to_msecs(evict_jiffies)); 437 438 /* Sysfs handle that gets CU occupancy is per device */ 439 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 440 return kfd_get_cu_occupancy(attr, buffer); 441 } else { 442 pr_err("Invalid attribute"); 443 } 444 445 return 0; 446 } 447 448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 449 struct attribute *attr, char *buf) 450 { 451 struct kfd_process_device *pdd; 452 453 if (!strcmp(attr->name, "faults")) { 454 pdd = container_of(attr, struct kfd_process_device, 455 attr_faults); 456 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 457 } 458 if (!strcmp(attr->name, "page_in")) { 459 pdd = container_of(attr, struct kfd_process_device, 460 attr_page_in); 461 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 462 } 463 if (!strcmp(attr->name, "page_out")) { 464 pdd = container_of(attr, struct kfd_process_device, 465 attr_page_out); 466 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 467 } 468 return 0; 469 } 470 471 static struct attribute attr_queue_size = { 472 .name = "size", 473 .mode = KFD_SYSFS_FILE_MODE 474 }; 475 476 static struct attribute attr_queue_type = { 477 .name = "type", 478 .mode = KFD_SYSFS_FILE_MODE 479 }; 480 481 static struct attribute attr_queue_gpuid = { 482 .name = "gpuid", 483 .mode = KFD_SYSFS_FILE_MODE 484 }; 485 486 static struct attribute *procfs_queue_attrs[] = { 487 &attr_queue_size, 488 &attr_queue_type, 489 &attr_queue_gpuid, 490 NULL 491 }; 492 ATTRIBUTE_GROUPS(procfs_queue); 493 494 static const struct sysfs_ops procfs_queue_ops = { 495 .show = kfd_procfs_queue_show, 496 }; 497 498 static const struct kobj_type procfs_queue_type = { 499 .sysfs_ops = &procfs_queue_ops, 500 .default_groups = procfs_queue_groups, 501 }; 502 503 static const struct sysfs_ops procfs_stats_ops = { 504 .show = kfd_procfs_stats_show, 505 }; 506 507 static const struct kobj_type procfs_stats_type = { 508 .sysfs_ops = &procfs_stats_ops, 509 .release = kfd_procfs_kobj_release, 510 }; 511 512 static const struct sysfs_ops sysfs_counters_ops = { 513 .show = kfd_sysfs_counters_show, 514 }; 515 516 static const struct kobj_type sysfs_counters_type = { 517 .sysfs_ops = &sysfs_counters_ops, 518 .release = kfd_procfs_kobj_release, 519 }; 520 521 int kfd_procfs_add_queue(struct queue *q) 522 { 523 struct kfd_process *proc; 524 int ret; 525 526 if (!q || !q->process) 527 return -EINVAL; 528 proc = q->process; 529 530 /* Create proc/<pid>/queues/<queue id> folder */ 531 if (!proc->kobj_queues) 532 return -EFAULT; 533 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 534 proc->kobj_queues, "%u", q->properties.queue_id); 535 if (ret < 0) { 536 pr_warn("Creating proc/<pid>/queues/%u failed", 537 q->properties.queue_id); 538 kobject_put(&q->kobj); 539 return ret; 540 } 541 542 return 0; 543 } 544 545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 546 char *name) 547 { 548 int ret; 549 550 if (!kobj || !attr || !name) 551 return; 552 553 attr->name = name; 554 attr->mode = KFD_SYSFS_FILE_MODE; 555 sysfs_attr_init(attr); 556 557 ret = sysfs_create_file(kobj, attr); 558 if (ret) 559 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 560 } 561 562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 563 { 564 int ret; 565 int i; 566 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 567 568 if (!p || !p->kobj) 569 return; 570 571 /* 572 * Create sysfs files for each GPU: 573 * - proc/<pid>/stats_<gpuid>/ 574 * - proc/<pid>/stats_<gpuid>/evicted_ms 575 * - proc/<pid>/stats_<gpuid>/cu_occupancy 576 */ 577 for (i = 0; i < p->n_pdds; i++) { 578 struct kfd_process_device *pdd = p->pdds[i]; 579 580 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 581 "stats_%u", pdd->dev->id); 582 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 583 if (!pdd->kobj_stats) 584 return; 585 586 ret = kobject_init_and_add(pdd->kobj_stats, 587 &procfs_stats_type, 588 p->kobj, 589 stats_dir_filename); 590 591 if (ret) { 592 pr_warn("Creating KFD proc/stats_%s folder failed", 593 stats_dir_filename); 594 kobject_put(pdd->kobj_stats); 595 pdd->kobj_stats = NULL; 596 return; 597 } 598 599 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 600 "evicted_ms"); 601 /* Add sysfs file to report compute unit occupancy */ 602 if (pdd->dev->kfd2kgd->get_cu_occupancy) 603 kfd_sysfs_create_file(pdd->kobj_stats, 604 &pdd->attr_cu_occupancy, 605 "cu_occupancy"); 606 } 607 } 608 609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 610 { 611 int ret = 0; 612 int i; 613 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 614 615 if (!p || !p->kobj) 616 return; 617 618 /* 619 * Create sysfs files for each GPU which supports SVM 620 * - proc/<pid>/counters_<gpuid>/ 621 * - proc/<pid>/counters_<gpuid>/faults 622 * - proc/<pid>/counters_<gpuid>/page_in 623 * - proc/<pid>/counters_<gpuid>/page_out 624 */ 625 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 626 struct kfd_process_device *pdd = p->pdds[i]; 627 struct kobject *kobj_counters; 628 629 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 630 "counters_%u", pdd->dev->id); 631 kobj_counters = kfd_alloc_struct(kobj_counters); 632 if (!kobj_counters) 633 return; 634 635 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 636 p->kobj, counters_dir_filename); 637 if (ret) { 638 pr_warn("Creating KFD proc/%s folder failed", 639 counters_dir_filename); 640 kobject_put(kobj_counters); 641 return; 642 } 643 644 pdd->kobj_counters = kobj_counters; 645 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 646 "faults"); 647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 648 "page_in"); 649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 650 "page_out"); 651 } 652 } 653 654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 655 { 656 int i; 657 658 if (!p || !p->kobj) 659 return; 660 661 /* 662 * Create sysfs files for each GPU: 663 * - proc/<pid>/vram_<gpuid> 664 * - proc/<pid>/sdma_<gpuid> 665 */ 666 for (i = 0; i < p->n_pdds; i++) { 667 struct kfd_process_device *pdd = p->pdds[i]; 668 669 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 670 pdd->dev->id); 671 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 672 pdd->vram_filename); 673 674 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 675 pdd->dev->id); 676 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 677 pdd->sdma_filename); 678 } 679 } 680 681 void kfd_procfs_del_queue(struct queue *q) 682 { 683 if (!q) 684 return; 685 686 kobject_del(&q->kobj); 687 kobject_put(&q->kobj); 688 } 689 690 int kfd_process_create_wq(void) 691 { 692 if (!kfd_process_wq) 693 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 694 if (!kfd_restore_wq) 695 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 696 WQ_FREEZABLE); 697 698 if (!kfd_process_wq || !kfd_restore_wq) { 699 kfd_process_destroy_wq(); 700 return -ENOMEM; 701 } 702 703 return 0; 704 } 705 706 void kfd_process_destroy_wq(void) 707 { 708 if (kfd_process_wq) { 709 destroy_workqueue(kfd_process_wq); 710 kfd_process_wq = NULL; 711 } 712 if (kfd_restore_wq) { 713 destroy_workqueue(kfd_restore_wq); 714 kfd_restore_wq = NULL; 715 } 716 } 717 718 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 719 struct kfd_process_device *pdd, void **kptr) 720 { 721 struct kfd_node *dev = pdd->dev; 722 723 if (kptr && *kptr) { 724 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 725 *kptr = NULL; 726 } 727 728 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 729 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 730 NULL); 731 } 732 733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 734 * This function should be only called right after the process 735 * is created and when kfd_processes_mutex is still being held 736 * to avoid concurrency. Because of that exclusiveness, we do 737 * not need to take p->mutex. 738 */ 739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 740 uint64_t gpu_va, uint32_t size, 741 uint32_t flags, struct kgd_mem **mem, void **kptr) 742 { 743 struct kfd_node *kdev = pdd->dev; 744 int err; 745 746 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 747 pdd->drm_priv, mem, NULL, 748 flags, false); 749 if (err) 750 goto err_alloc_mem; 751 752 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 753 pdd->drm_priv); 754 if (err) 755 goto err_map_mem; 756 757 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 758 if (err) { 759 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 760 goto sync_memory_failed; 761 } 762 763 if (kptr) { 764 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 765 (struct kgd_mem *)*mem, kptr, NULL); 766 if (err) { 767 pr_debug("Map GTT BO to kernel failed\n"); 768 goto sync_memory_failed; 769 } 770 } 771 772 return err; 773 774 sync_memory_failed: 775 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 776 777 err_map_mem: 778 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 779 NULL); 780 err_alloc_mem: 781 *mem = NULL; 782 *kptr = NULL; 783 return err; 784 } 785 786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 787 * process for IB usage The memory reserved is for KFD to submit 788 * IB to AMDGPU from kernel. If the memory is reserved 789 * successfully, ib_kaddr will have the CPU/kernel 790 * address. Check ib_kaddr before accessing the memory. 791 */ 792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 793 { 794 struct qcm_process_device *qpd = &pdd->qpd; 795 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 796 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 797 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 798 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 799 struct kgd_mem *mem; 800 void *kaddr; 801 int ret; 802 803 if (qpd->ib_kaddr || !qpd->ib_base) 804 return 0; 805 806 /* ib_base is only set for dGPU */ 807 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 808 &mem, &kaddr); 809 if (ret) 810 return ret; 811 812 qpd->ib_mem = mem; 813 qpd->ib_kaddr = kaddr; 814 815 return 0; 816 } 817 818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 819 { 820 struct qcm_process_device *qpd = &pdd->qpd; 821 822 if (!qpd->ib_kaddr || !qpd->ib_base) 823 return; 824 825 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 826 } 827 828 struct kfd_process *kfd_create_process(struct task_struct *thread) 829 { 830 struct kfd_process *process; 831 int ret; 832 833 if (!(thread->mm && mmget_not_zero(thread->mm))) 834 return ERR_PTR(-EINVAL); 835 836 /* Only the pthreads threading model is supported. */ 837 if (thread->group_leader->mm != thread->mm) { 838 mmput(thread->mm); 839 return ERR_PTR(-EINVAL); 840 } 841 842 /* If the process just called exec(3), it is possible that the 843 * cleanup of the kfd_process (following the release of the mm 844 * of the old process image) is still in the cleanup work queue. 845 * Make sure to drain any job before trying to recreate any 846 * resource for this process. 847 */ 848 flush_workqueue(kfd_process_wq); 849 850 /* 851 * take kfd processes mutex before starting of process creation 852 * so there won't be a case where two threads of the same process 853 * create two kfd_process structures 854 */ 855 mutex_lock(&kfd_processes_mutex); 856 857 if (kfd_is_locked(NULL)) { 858 pr_debug("KFD is locked! Cannot create process"); 859 process = ERR_PTR(-EINVAL); 860 goto out; 861 } 862 863 /* A prior open of /dev/kfd could have already created the process. 864 * find_process will increase process kref in this case 865 */ 866 process = find_process(thread, true); 867 if (process) { 868 pr_debug("Process already found\n"); 869 } else { 870 process = create_process(thread); 871 if (IS_ERR(process)) 872 goto out; 873 874 if (!procfs.kobj) 875 goto out; 876 877 process->kobj = kfd_alloc_struct(process->kobj); 878 if (!process->kobj) { 879 pr_warn("Creating procfs kobject failed"); 880 goto out; 881 } 882 ret = kobject_init_and_add(process->kobj, &procfs_type, 883 procfs.kobj, "%d", 884 (int)process->lead_thread->pid); 885 if (ret) { 886 pr_warn("Creating procfs pid directory failed"); 887 kobject_put(process->kobj); 888 goto out; 889 } 890 891 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 892 "pasid"); 893 894 process->kobj_queues = kobject_create_and_add("queues", 895 process->kobj); 896 if (!process->kobj_queues) 897 pr_warn("Creating KFD proc/queues folder failed"); 898 899 kfd_procfs_add_sysfs_stats(process); 900 kfd_procfs_add_sysfs_files(process); 901 kfd_procfs_add_sysfs_counters(process); 902 903 kfd_debugfs_add_process(process); 904 905 init_waitqueue_head(&process->wait_irq_drain); 906 } 907 out: 908 mutex_unlock(&kfd_processes_mutex); 909 mmput(thread->mm); 910 911 return process; 912 } 913 914 struct kfd_process *kfd_get_process(const struct task_struct *thread) 915 { 916 struct kfd_process *process; 917 918 if (!thread->mm) 919 return ERR_PTR(-EINVAL); 920 921 /* Only the pthreads threading model is supported. */ 922 if (thread->group_leader->mm != thread->mm) 923 return ERR_PTR(-EINVAL); 924 925 process = find_process(thread, false); 926 if (!process) 927 return ERR_PTR(-EINVAL); 928 929 return process; 930 } 931 932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 933 { 934 struct kfd_process *process; 935 936 hash_for_each_possible_rcu(kfd_processes_table, process, 937 kfd_processes, (uintptr_t)mm) 938 if (process->mm == mm) 939 return process; 940 941 return NULL; 942 } 943 944 static struct kfd_process *find_process(const struct task_struct *thread, 945 bool ref) 946 { 947 struct kfd_process *p; 948 int idx; 949 950 idx = srcu_read_lock(&kfd_processes_srcu); 951 p = find_process_by_mm(thread->mm); 952 if (p && ref) 953 kref_get(&p->ref); 954 srcu_read_unlock(&kfd_processes_srcu, idx); 955 956 return p; 957 } 958 959 void kfd_unref_process(struct kfd_process *p) 960 { 961 kref_put(&p->ref, kfd_process_ref_release); 962 } 963 964 /* This increments the process->ref counter. */ 965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 966 { 967 struct task_struct *task = NULL; 968 struct kfd_process *p = NULL; 969 970 if (!pid) { 971 task = current; 972 get_task_struct(task); 973 } else { 974 task = get_pid_task(pid, PIDTYPE_PID); 975 } 976 977 if (task) { 978 p = find_process(task, true); 979 put_task_struct(task); 980 } 981 982 return p; 983 } 984 985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 986 { 987 struct kfd_process *p = pdd->process; 988 void *mem; 989 int id; 990 int i; 991 992 /* 993 * Remove all handles from idr and release appropriate 994 * local memory object 995 */ 996 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 997 998 for (i = 0; i < p->n_pdds; i++) { 999 struct kfd_process_device *peer_pdd = p->pdds[i]; 1000 1001 if (!peer_pdd->drm_priv) 1002 continue; 1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1005 } 1006 1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1008 pdd->drm_priv, NULL); 1009 kfd_process_device_remove_obj_handle(pdd, id); 1010 } 1011 } 1012 1013 /* 1014 * Just kunmap and unpin signal BO here. It will be freed in 1015 * kfd_process_free_outstanding_kfd_bos() 1016 */ 1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1018 { 1019 struct kfd_process_device *pdd; 1020 struct kfd_node *kdev; 1021 void *mem; 1022 1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1024 if (!kdev) 1025 return; 1026 1027 mutex_lock(&p->mutex); 1028 1029 pdd = kfd_get_process_device_data(kdev, p); 1030 if (!pdd) 1031 goto out; 1032 1033 mem = kfd_process_device_translate_handle( 1034 pdd, GET_IDR_HANDLE(p->signal_handle)); 1035 if (!mem) 1036 goto out; 1037 1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1039 1040 out: 1041 mutex_unlock(&p->mutex); 1042 } 1043 1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1045 { 1046 int i; 1047 1048 for (i = 0; i < p->n_pdds; i++) 1049 kfd_process_device_free_bos(p->pdds[i]); 1050 } 1051 1052 static void kfd_process_destroy_pdds(struct kfd_process *p) 1053 { 1054 int i; 1055 1056 for (i = 0; i < p->n_pdds; i++) { 1057 struct kfd_process_device *pdd = p->pdds[i]; 1058 1059 kfd_smi_event_process(pdd, false); 1060 1061 pr_debug("Releasing pdd (topology id %d, for pid %d)\n", 1062 pdd->dev->id, p->lead_thread->pid); 1063 kfd_process_device_destroy_cwsr_dgpu(pdd); 1064 kfd_process_device_destroy_ib_mem(pdd); 1065 1066 if (pdd->drm_file) 1067 fput(pdd->drm_file); 1068 1069 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1070 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1071 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1072 1073 idr_destroy(&pdd->alloc_idr); 1074 1075 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1076 1077 if (pdd->dev->kfd->shared_resources.enable_mes && 1078 pdd->proc_ctx_cpu_ptr) 1079 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1080 &pdd->proc_ctx_bo); 1081 /* 1082 * before destroying pdd, make sure to report availability 1083 * for auto suspend 1084 */ 1085 if (pdd->runtime_inuse) { 1086 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1087 pdd->runtime_inuse = false; 1088 } 1089 1090 atomic_dec(&pdd->dev->kfd->kfd_processes_count); 1091 1092 kfree(pdd); 1093 p->pdds[i] = NULL; 1094 } 1095 p->n_pdds = 0; 1096 } 1097 1098 static void kfd_process_remove_sysfs(struct kfd_process *p) 1099 { 1100 struct kfd_process_device *pdd; 1101 int i; 1102 1103 if (!p->kobj) 1104 return; 1105 1106 sysfs_remove_file(p->kobj, &p->attr_pasid); 1107 kobject_del(p->kobj_queues); 1108 kobject_put(p->kobj_queues); 1109 p->kobj_queues = NULL; 1110 1111 for (i = 0; i < p->n_pdds; i++) { 1112 pdd = p->pdds[i]; 1113 1114 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1115 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1116 1117 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1118 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1119 sysfs_remove_file(pdd->kobj_stats, 1120 &pdd->attr_cu_occupancy); 1121 kobject_del(pdd->kobj_stats); 1122 kobject_put(pdd->kobj_stats); 1123 pdd->kobj_stats = NULL; 1124 } 1125 1126 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1127 pdd = p->pdds[i]; 1128 1129 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1131 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1132 kobject_del(pdd->kobj_counters); 1133 kobject_put(pdd->kobj_counters); 1134 pdd->kobj_counters = NULL; 1135 } 1136 1137 kobject_del(p->kobj); 1138 kobject_put(p->kobj); 1139 p->kobj = NULL; 1140 } 1141 1142 /* 1143 * If any GPU is ongoing reset, wait for reset complete. 1144 */ 1145 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p) 1146 { 1147 int i; 1148 1149 for (i = 0; i < p->n_pdds; i++) 1150 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq); 1151 } 1152 1153 /* No process locking is needed in this function, because the process 1154 * is not findable any more. We must assume that no other thread is 1155 * using it any more, otherwise we couldn't safely free the process 1156 * structure in the end. 1157 */ 1158 static void kfd_process_wq_release(struct work_struct *work) 1159 { 1160 struct kfd_process *p = container_of(work, struct kfd_process, 1161 release_work); 1162 struct dma_fence *ef; 1163 1164 /* 1165 * If GPU in reset, user queues may still running, wait for reset complete. 1166 */ 1167 kfd_process_wait_gpu_reset_complete(p); 1168 1169 /* Signal the eviction fence after user mode queues are 1170 * destroyed. This allows any BOs to be freed without 1171 * triggering pointless evictions or waiting for fences. 1172 */ 1173 synchronize_rcu(); 1174 ef = rcu_access_pointer(p->ef); 1175 if (ef) 1176 dma_fence_signal(ef); 1177 1178 kfd_process_remove_sysfs(p); 1179 kfd_debugfs_remove_process(p); 1180 1181 kfd_process_kunmap_signal_bo(p); 1182 kfd_process_free_outstanding_kfd_bos(p); 1183 svm_range_list_fini(p); 1184 1185 kfd_process_destroy_pdds(p); 1186 dma_fence_put(ef); 1187 1188 kfd_event_free_process(p); 1189 1190 mutex_destroy(&p->mutex); 1191 1192 put_task_struct(p->lead_thread); 1193 1194 kfree(p); 1195 } 1196 1197 static void kfd_process_ref_release(struct kref *ref) 1198 { 1199 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1200 1201 INIT_WORK(&p->release_work, kfd_process_wq_release); 1202 queue_work(kfd_process_wq, &p->release_work); 1203 } 1204 1205 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1206 { 1207 /* This increments p->ref counter if kfd process p exists */ 1208 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1209 1210 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1211 } 1212 1213 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1214 { 1215 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1216 } 1217 1218 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1219 { 1220 int i; 1221 1222 cancel_delayed_work_sync(&p->eviction_work); 1223 cancel_delayed_work_sync(&p->restore_work); 1224 1225 /* 1226 * Dequeue and destroy user queues, it is not safe for GPU to access 1227 * system memory after mmu release notifier callback returns because 1228 * exit_mmap free process memory afterwards. 1229 */ 1230 kfd_process_dequeue_from_all_devices(p); 1231 pqm_uninit(&p->pqm); 1232 1233 for (i = 0; i < p->n_pdds; i++) { 1234 struct kfd_process_device *pdd = p->pdds[i]; 1235 1236 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1237 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1238 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1239 } 1240 1241 /* Indicate to other users that MM is no longer valid */ 1242 p->mm = NULL; 1243 kfd_dbg_trap_disable(p); 1244 1245 if (atomic_read(&p->debugged_process_count) > 0) { 1246 struct kfd_process *target; 1247 unsigned int temp; 1248 int idx = srcu_read_lock(&kfd_processes_srcu); 1249 1250 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1251 if (target->debugger_process && target->debugger_process == p) { 1252 mutex_lock_nested(&target->mutex, 1); 1253 kfd_dbg_trap_disable(target); 1254 mutex_unlock(&target->mutex); 1255 if (atomic_read(&p->debugged_process_count) == 0) 1256 break; 1257 } 1258 } 1259 1260 srcu_read_unlock(&kfd_processes_srcu, idx); 1261 } 1262 1263 mmu_notifier_put(&p->mmu_notifier); 1264 } 1265 1266 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1267 struct mm_struct *mm) 1268 { 1269 struct kfd_process *p; 1270 1271 /* 1272 * The kfd_process structure can not be free because the 1273 * mmu_notifier srcu is read locked 1274 */ 1275 p = container_of(mn, struct kfd_process, mmu_notifier); 1276 if (WARN_ON(p->mm != mm)) 1277 return; 1278 1279 mutex_lock(&kfd_processes_mutex); 1280 /* 1281 * Do early return if table is empty. 1282 * 1283 * This could potentially happen if this function is called concurrently 1284 * by mmu_notifier and by kfd_cleanup_pocesses. 1285 * 1286 */ 1287 if (hash_empty(kfd_processes_table)) { 1288 mutex_unlock(&kfd_processes_mutex); 1289 return; 1290 } 1291 hash_del_rcu(&p->kfd_processes); 1292 mutex_unlock(&kfd_processes_mutex); 1293 synchronize_srcu(&kfd_processes_srcu); 1294 1295 kfd_process_notifier_release_internal(p); 1296 } 1297 1298 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1299 .release = kfd_process_notifier_release, 1300 .alloc_notifier = kfd_process_alloc_notifier, 1301 .free_notifier = kfd_process_free_notifier, 1302 }; 1303 1304 /* 1305 * This code handles the case when driver is being unloaded before all 1306 * mm_struct are released. We need to safely free the kfd_process and 1307 * avoid race conditions with mmu_notifier that might try to free them. 1308 * 1309 */ 1310 void kfd_cleanup_processes(void) 1311 { 1312 struct kfd_process *p; 1313 struct hlist_node *p_temp; 1314 unsigned int temp; 1315 HLIST_HEAD(cleanup_list); 1316 1317 /* 1318 * Move all remaining kfd_process from the process table to a 1319 * temp list for processing. Once done, callback from mmu_notifier 1320 * release will not see the kfd_process in the table and do early return, 1321 * avoiding double free issues. 1322 */ 1323 mutex_lock(&kfd_processes_mutex); 1324 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1325 hash_del_rcu(&p->kfd_processes); 1326 synchronize_srcu(&kfd_processes_srcu); 1327 hlist_add_head(&p->kfd_processes, &cleanup_list); 1328 } 1329 mutex_unlock(&kfd_processes_mutex); 1330 1331 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1332 kfd_process_notifier_release_internal(p); 1333 1334 /* 1335 * Ensures that all outstanding free_notifier get called, triggering 1336 * the release of the kfd_process struct. 1337 */ 1338 mmu_notifier_synchronize(); 1339 } 1340 1341 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1342 { 1343 unsigned long offset; 1344 int i; 1345 1346 if (p->has_cwsr) 1347 return 0; 1348 1349 for (i = 0; i < p->n_pdds; i++) { 1350 struct kfd_node *dev = p->pdds[i]->dev; 1351 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1352 1353 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1354 continue; 1355 1356 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1357 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1358 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1359 MAP_SHARED, offset); 1360 1361 if (IS_ERR_VALUE(qpd->tba_addr)) { 1362 int err = qpd->tba_addr; 1363 1364 dev_err(dev->adev->dev, 1365 "Failure to set tba address. error %d.\n", err); 1366 qpd->tba_addr = 0; 1367 qpd->cwsr_kaddr = NULL; 1368 return err; 1369 } 1370 1371 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1372 1373 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1374 1375 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1376 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1377 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1378 } 1379 1380 p->has_cwsr = true; 1381 1382 return 0; 1383 } 1384 1385 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1386 { 1387 struct kfd_node *dev = pdd->dev; 1388 struct qcm_process_device *qpd = &pdd->qpd; 1389 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1390 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1391 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1392 struct kgd_mem *mem; 1393 void *kaddr; 1394 int ret; 1395 1396 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1397 return 0; 1398 1399 /* cwsr_base is only set for dGPU */ 1400 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1401 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1402 if (ret) 1403 return ret; 1404 1405 qpd->cwsr_mem = mem; 1406 qpd->cwsr_kaddr = kaddr; 1407 qpd->tba_addr = qpd->cwsr_base; 1408 1409 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1410 1411 kfd_process_set_trap_debug_flag(&pdd->qpd, 1412 pdd->process->debug_trap_enabled); 1413 1414 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1415 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1416 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1417 1418 return 0; 1419 } 1420 1421 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1422 { 1423 struct kfd_node *dev = pdd->dev; 1424 struct qcm_process_device *qpd = &pdd->qpd; 1425 1426 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1427 return; 1428 1429 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1430 } 1431 1432 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1433 uint64_t tba_addr, 1434 uint64_t tma_addr) 1435 { 1436 if (qpd->cwsr_kaddr) { 1437 /* KFD trap handler is bound, record as second-level TBA/TMA 1438 * in first-level TMA. First-level trap will jump to second. 1439 */ 1440 uint64_t *tma = 1441 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1442 tma[0] = tba_addr; 1443 tma[1] = tma_addr; 1444 } else { 1445 /* No trap handler bound, bind as first-level TBA/TMA. */ 1446 qpd->tba_addr = tba_addr; 1447 qpd->tma_addr = tma_addr; 1448 } 1449 } 1450 1451 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1452 { 1453 int i; 1454 1455 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1456 * boot time retry setting. Mixing processes with different 1457 * XNACK/retry settings can hang the GPU. 1458 * 1459 * Different GPUs can have different noretry settings depending 1460 * on HW bugs or limitations. We need to find at least one 1461 * XNACK mode for this process that's compatible with all GPUs. 1462 * Fortunately GPUs with retry enabled (noretry=0) can run code 1463 * built for XNACK-off. On GFXv9 it may perform slower. 1464 * 1465 * Therefore applications built for XNACK-off can always be 1466 * supported and will be our fallback if any GPU does not 1467 * support retry. 1468 */ 1469 for (i = 0; i < p->n_pdds; i++) { 1470 struct kfd_node *dev = p->pdds[i]->dev; 1471 1472 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1473 * support the SVM APIs and don't need to be considered 1474 * for the XNACK mode selection. 1475 */ 1476 if (!KFD_IS_SOC15(dev)) 1477 continue; 1478 /* Aldebaran can always support XNACK because it can support 1479 * per-process XNACK mode selection. But let the dev->noretry 1480 * setting still influence the default XNACK mode. 1481 */ 1482 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1483 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1484 pr_debug("SRIOV platform xnack not supported\n"); 1485 return false; 1486 } 1487 continue; 1488 } 1489 1490 /* GFXv10 and later GPUs do not support shader preemption 1491 * during page faults. This can lead to poor QoS for queue 1492 * management and memory-manager-related preemptions or 1493 * even deadlocks. 1494 */ 1495 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1496 return false; 1497 1498 if (dev->kfd->noretry) 1499 return false; 1500 } 1501 1502 return true; 1503 } 1504 1505 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1506 bool enabled) 1507 { 1508 if (qpd->cwsr_kaddr) { 1509 uint64_t *tma = 1510 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1511 tma[2] = enabled; 1512 } 1513 } 1514 1515 /* 1516 * On return the kfd_process is fully operational and will be freed when the 1517 * mm is released 1518 */ 1519 static struct kfd_process *create_process(const struct task_struct *thread) 1520 { 1521 struct kfd_process *process; 1522 struct mmu_notifier *mn; 1523 int err = -ENOMEM; 1524 1525 process = kzalloc(sizeof(*process), GFP_KERNEL); 1526 if (!process) 1527 goto err_alloc_process; 1528 1529 kref_init(&process->ref); 1530 mutex_init(&process->mutex); 1531 process->mm = thread->mm; 1532 process->lead_thread = thread->group_leader; 1533 process->n_pdds = 0; 1534 process->queues_paused = false; 1535 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1536 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1537 process->last_restore_timestamp = get_jiffies_64(); 1538 err = kfd_event_init_process(process); 1539 if (err) 1540 goto err_event_init; 1541 process->is_32bit_user_mode = in_compat_syscall(); 1542 process->debug_trap_enabled = false; 1543 process->debugger_process = NULL; 1544 process->exception_enable_mask = 0; 1545 atomic_set(&process->debugged_process_count, 0); 1546 sema_init(&process->runtime_enable_sema, 0); 1547 1548 err = pqm_init(&process->pqm, process); 1549 if (err != 0) 1550 goto err_process_pqm_init; 1551 1552 /* init process apertures*/ 1553 err = kfd_init_apertures(process); 1554 if (err != 0) 1555 goto err_init_apertures; 1556 1557 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1558 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1559 1560 err = svm_range_list_init(process); 1561 if (err) 1562 goto err_init_svm_range_list; 1563 1564 /* alloc_notifier needs to find the process in the hash table */ 1565 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1566 (uintptr_t)process->mm); 1567 1568 /* Avoid free_notifier to start kfd_process_wq_release if 1569 * mmu_notifier_get failed because of pending signal. 1570 */ 1571 kref_get(&process->ref); 1572 1573 /* MMU notifier registration must be the last call that can fail 1574 * because after this point we cannot unwind the process creation. 1575 * After this point, mmu_notifier_put will trigger the cleanup by 1576 * dropping the last process reference in the free_notifier. 1577 */ 1578 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1579 if (IS_ERR(mn)) { 1580 err = PTR_ERR(mn); 1581 goto err_register_notifier; 1582 } 1583 BUG_ON(mn != &process->mmu_notifier); 1584 1585 kfd_unref_process(process); 1586 get_task_struct(process->lead_thread); 1587 1588 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1589 1590 return process; 1591 1592 err_register_notifier: 1593 hash_del_rcu(&process->kfd_processes); 1594 svm_range_list_fini(process); 1595 err_init_svm_range_list: 1596 kfd_process_free_outstanding_kfd_bos(process); 1597 kfd_process_destroy_pdds(process); 1598 err_init_apertures: 1599 pqm_uninit(&process->pqm); 1600 err_process_pqm_init: 1601 kfd_event_free_process(process); 1602 err_event_init: 1603 mutex_destroy(&process->mutex); 1604 kfree(process); 1605 err_alloc_process: 1606 return ERR_PTR(err); 1607 } 1608 1609 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1610 struct kfd_process *p) 1611 { 1612 int i; 1613 1614 for (i = 0; i < p->n_pdds; i++) 1615 if (p->pdds[i]->dev == dev) 1616 return p->pdds[i]; 1617 1618 return NULL; 1619 } 1620 1621 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1622 struct kfd_process *p) 1623 { 1624 struct kfd_process_device *pdd = NULL; 1625 1626 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1627 return NULL; 1628 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1629 if (!pdd) 1630 return NULL; 1631 1632 pdd->dev = dev; 1633 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1634 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1635 pdd->qpd.dqm = dev->dqm; 1636 pdd->qpd.pqm = &p->pqm; 1637 pdd->qpd.evicted = 0; 1638 pdd->qpd.mapped_gws_queue = false; 1639 pdd->process = p; 1640 pdd->bound = PDD_UNBOUND; 1641 pdd->already_dequeued = false; 1642 pdd->runtime_inuse = false; 1643 atomic64_set(&pdd->vram_usage, 0); 1644 pdd->sdma_past_activity_counter = 0; 1645 pdd->user_gpu_id = dev->id; 1646 atomic64_set(&pdd->evict_duration_counter, 0); 1647 1648 p->pdds[p->n_pdds++] = pdd; 1649 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1650 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1651 pdd->dev->adev, 1652 false, 1653 0); 1654 1655 /* Init idr used for memory handle translation */ 1656 idr_init(&pdd->alloc_idr); 1657 1658 atomic_inc(&dev->kfd->kfd_processes_count); 1659 1660 return pdd; 1661 } 1662 1663 /** 1664 * kfd_process_device_init_vm - Initialize a VM for a process-device 1665 * 1666 * @pdd: The process-device 1667 * @drm_file: Optional pointer to a DRM file descriptor 1668 * 1669 * If @drm_file is specified, it will be used to acquire the VM from 1670 * that file descriptor. If successful, the @pdd takes ownership of 1671 * the file descriptor. 1672 * 1673 * If @drm_file is NULL, a new VM is created. 1674 * 1675 * Returns 0 on success, -errno on failure. 1676 */ 1677 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1678 struct file *drm_file) 1679 { 1680 struct amdgpu_fpriv *drv_priv; 1681 struct amdgpu_vm *avm; 1682 struct kfd_process *p; 1683 struct dma_fence *ef; 1684 struct kfd_node *dev; 1685 int ret; 1686 1687 if (!drm_file) 1688 return -EINVAL; 1689 1690 if (pdd->drm_priv) 1691 return -EBUSY; 1692 1693 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1694 if (ret) 1695 return ret; 1696 avm = &drv_priv->vm; 1697 1698 p = pdd->process; 1699 dev = pdd->dev; 1700 1701 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1702 &p->kgd_process_info, 1703 p->ef ? NULL : &ef); 1704 if (ret) { 1705 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1706 return ret; 1707 } 1708 1709 if (!p->ef) 1710 RCU_INIT_POINTER(p->ef, ef); 1711 1712 pdd->drm_priv = drm_file->private_data; 1713 1714 ret = kfd_process_device_reserve_ib_mem(pdd); 1715 if (ret) 1716 goto err_reserve_ib_mem; 1717 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1718 if (ret) 1719 goto err_init_cwsr; 1720 1721 if (unlikely(!avm->pasid)) { 1722 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated", 1723 avm); 1724 ret = -EINVAL; 1725 goto err_get_pasid; 1726 } 1727 1728 pdd->pasid = avm->pasid; 1729 pdd->drm_file = drm_file; 1730 1731 kfd_smi_event_process(pdd, true); 1732 1733 return 0; 1734 1735 err_get_pasid: 1736 kfd_process_device_destroy_cwsr_dgpu(pdd); 1737 err_init_cwsr: 1738 kfd_process_device_destroy_ib_mem(pdd); 1739 err_reserve_ib_mem: 1740 pdd->drm_priv = NULL; 1741 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1742 1743 return ret; 1744 } 1745 1746 /* 1747 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1748 * to the device. 1749 * Unbinding occurs when the process dies or the device is removed. 1750 * 1751 * Assumes that the process lock is held. 1752 */ 1753 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1754 struct kfd_process *p) 1755 { 1756 struct kfd_process_device *pdd; 1757 int err; 1758 1759 pdd = kfd_get_process_device_data(dev, p); 1760 if (!pdd) { 1761 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1762 return ERR_PTR(-ENOMEM); 1763 } 1764 1765 if (!pdd->drm_priv) 1766 return ERR_PTR(-ENODEV); 1767 1768 /* 1769 * signal runtime-pm system to auto resume and prevent 1770 * further runtime suspend once device pdd is created until 1771 * pdd is destroyed. 1772 */ 1773 if (!pdd->runtime_inuse) { 1774 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1775 if (err < 0) { 1776 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1777 return ERR_PTR(err); 1778 } 1779 } 1780 1781 /* 1782 * make sure that runtime_usage counter is incremented just once 1783 * per pdd 1784 */ 1785 pdd->runtime_inuse = true; 1786 1787 return pdd; 1788 } 1789 1790 /* Create specific handle mapped to mem from process local memory idr 1791 * Assumes that the process lock is held. 1792 */ 1793 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1794 void *mem) 1795 { 1796 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1797 } 1798 1799 /* Translate specific handle from process local memory idr 1800 * Assumes that the process lock is held. 1801 */ 1802 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1803 int handle) 1804 { 1805 if (handle < 0) 1806 return NULL; 1807 1808 return idr_find(&pdd->alloc_idr, handle); 1809 } 1810 1811 /* Remove specific handle from process local memory idr 1812 * Assumes that the process lock is held. 1813 */ 1814 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1815 int handle) 1816 { 1817 if (handle >= 0) 1818 idr_remove(&pdd->alloc_idr, handle); 1819 } 1820 1821 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid) 1822 { 1823 struct kfd_process_device *ret_p = NULL; 1824 struct kfd_process *p; 1825 unsigned int temp; 1826 int i; 1827 1828 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1829 for (i = 0; i < p->n_pdds; i++) { 1830 if (p->pdds[i]->pasid == pasid) { 1831 ret_p = p->pdds[i]; 1832 break; 1833 } 1834 } 1835 if (ret_p) 1836 break; 1837 } 1838 return ret_p; 1839 } 1840 1841 /* This increments the process->ref counter. */ 1842 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1843 struct kfd_process_device **pdd) 1844 { 1845 struct kfd_process_device *ret_p; 1846 1847 int idx = srcu_read_lock(&kfd_processes_srcu); 1848 1849 ret_p = kfd_lookup_process_device_by_pasid(pasid); 1850 if (ret_p) { 1851 if (pdd) 1852 *pdd = ret_p; 1853 kref_get(&ret_p->process->ref); 1854 1855 srcu_read_unlock(&kfd_processes_srcu, idx); 1856 return ret_p->process; 1857 } 1858 1859 srcu_read_unlock(&kfd_processes_srcu, idx); 1860 1861 if (pdd) 1862 *pdd = NULL; 1863 1864 return NULL; 1865 } 1866 1867 /* This increments the process->ref counter. */ 1868 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1869 { 1870 struct kfd_process *p; 1871 1872 int idx = srcu_read_lock(&kfd_processes_srcu); 1873 1874 p = find_process_by_mm(mm); 1875 if (p) 1876 kref_get(&p->ref); 1877 1878 srcu_read_unlock(&kfd_processes_srcu, idx); 1879 1880 return p; 1881 } 1882 1883 /* kfd_process_evict_queues - Evict all user queues of a process 1884 * 1885 * Eviction is reference-counted per process-device. This means multiple 1886 * evictions from different sources can be nested safely. 1887 */ 1888 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1889 { 1890 int r = 0; 1891 int i; 1892 unsigned int n_evicted = 0; 1893 1894 for (i = 0; i < p->n_pdds; i++) { 1895 struct kfd_process_device *pdd = p->pdds[i]; 1896 struct device *dev = pdd->dev->adev->dev; 1897 1898 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1899 trigger); 1900 1901 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1902 &pdd->qpd); 1903 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1904 * we would like to set all the queues to be in evicted state to prevent 1905 * them been add back since they actually not be saved right now. 1906 */ 1907 if (r && r != -EIO) { 1908 dev_err(dev, "Failed to evict process queues\n"); 1909 goto fail; 1910 } 1911 n_evicted++; 1912 1913 pdd->dev->dqm->is_hws_hang = false; 1914 } 1915 1916 return r; 1917 1918 fail: 1919 /* To keep state consistent, roll back partial eviction by 1920 * restoring queues 1921 */ 1922 for (i = 0; i < p->n_pdds; i++) { 1923 struct kfd_process_device *pdd = p->pdds[i]; 1924 1925 if (n_evicted == 0) 1926 break; 1927 1928 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1929 1930 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1931 &pdd->qpd)) 1932 dev_err(pdd->dev->adev->dev, 1933 "Failed to restore queues\n"); 1934 1935 n_evicted--; 1936 } 1937 1938 return r; 1939 } 1940 1941 /* kfd_process_restore_queues - Restore all user queues of a process */ 1942 int kfd_process_restore_queues(struct kfd_process *p) 1943 { 1944 int r, ret = 0; 1945 int i; 1946 1947 for (i = 0; i < p->n_pdds; i++) { 1948 struct kfd_process_device *pdd = p->pdds[i]; 1949 struct device *dev = pdd->dev->adev->dev; 1950 1951 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1952 1953 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1954 &pdd->qpd); 1955 if (r) { 1956 dev_err(dev, "Failed to restore process queues\n"); 1957 if (!ret) 1958 ret = r; 1959 } 1960 } 1961 1962 return ret; 1963 } 1964 1965 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1966 { 1967 int i; 1968 1969 for (i = 0; i < p->n_pdds; i++) 1970 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1971 return i; 1972 return -EINVAL; 1973 } 1974 1975 int 1976 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1977 uint32_t *gpuid, uint32_t *gpuidx) 1978 { 1979 int i; 1980 1981 for (i = 0; i < p->n_pdds; i++) 1982 if (p->pdds[i] && p->pdds[i]->dev == node) { 1983 *gpuid = p->pdds[i]->user_gpu_id; 1984 *gpuidx = i; 1985 return 0; 1986 } 1987 return -EINVAL; 1988 } 1989 1990 static int signal_eviction_fence(struct kfd_process *p) 1991 { 1992 struct dma_fence *ef; 1993 int ret; 1994 1995 rcu_read_lock(); 1996 ef = dma_fence_get_rcu_safe(&p->ef); 1997 rcu_read_unlock(); 1998 if (!ef) 1999 return -EINVAL; 2000 2001 ret = dma_fence_signal(ef); 2002 dma_fence_put(ef); 2003 2004 return ret; 2005 } 2006 2007 static void evict_process_worker(struct work_struct *work) 2008 { 2009 int ret; 2010 struct kfd_process *p; 2011 struct delayed_work *dwork; 2012 2013 dwork = to_delayed_work(work); 2014 2015 /* Process termination destroys this worker thread. So during the 2016 * lifetime of this thread, kfd_process p will be valid 2017 */ 2018 p = container_of(dwork, struct kfd_process, eviction_work); 2019 2020 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid); 2021 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 2022 if (!ret) { 2023 /* If another thread already signaled the eviction fence, 2024 * they are responsible stopping the queues and scheduling 2025 * the restore work. 2026 */ 2027 if (signal_eviction_fence(p) || 2028 mod_delayed_work(kfd_restore_wq, &p->restore_work, 2029 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2030 kfd_process_restore_queues(p); 2031 2032 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid); 2033 } else 2034 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid); 2035 } 2036 2037 static int restore_process_helper(struct kfd_process *p) 2038 { 2039 int ret = 0; 2040 2041 /* VMs may not have been acquired yet during debugging. */ 2042 if (p->kgd_process_info) { 2043 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2044 p->kgd_process_info, &p->ef); 2045 if (ret) 2046 return ret; 2047 } 2048 2049 ret = kfd_process_restore_queues(p); 2050 if (!ret) 2051 pr_debug("Finished restoring process pid %d\n", 2052 p->lead_thread->pid); 2053 else 2054 pr_err("Failed to restore queues of process pid %d\n", 2055 p->lead_thread->pid); 2056 2057 return ret; 2058 } 2059 2060 static void restore_process_worker(struct work_struct *work) 2061 { 2062 struct delayed_work *dwork; 2063 struct kfd_process *p; 2064 int ret = 0; 2065 2066 dwork = to_delayed_work(work); 2067 2068 /* Process termination destroys this worker thread. So during the 2069 * lifetime of this thread, kfd_process p will be valid 2070 */ 2071 p = container_of(dwork, struct kfd_process, restore_work); 2072 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid); 2073 2074 /* Setting last_restore_timestamp before successful restoration. 2075 * Otherwise this would have to be set by KGD (restore_process_bos) 2076 * before KFD BOs are unreserved. If not, the process can be evicted 2077 * again before the timestamp is set. 2078 * If restore fails, the timestamp will be set again in the next 2079 * attempt. This would mean that the minimum GPU quanta would be 2080 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2081 * functions) 2082 */ 2083 2084 p->last_restore_timestamp = get_jiffies_64(); 2085 2086 ret = restore_process_helper(p); 2087 if (ret) { 2088 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n", 2089 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS); 2090 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2091 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2092 kfd_process_restore_queues(p); 2093 } 2094 } 2095 2096 void kfd_suspend_all_processes(void) 2097 { 2098 struct kfd_process *p; 2099 unsigned int temp; 2100 int idx = srcu_read_lock(&kfd_processes_srcu); 2101 2102 WARN(debug_evictions, "Evicting all processes"); 2103 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2104 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2105 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid); 2106 signal_eviction_fence(p); 2107 } 2108 srcu_read_unlock(&kfd_processes_srcu, idx); 2109 } 2110 2111 int kfd_resume_all_processes(void) 2112 { 2113 struct kfd_process *p; 2114 unsigned int temp; 2115 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2116 2117 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2118 if (restore_process_helper(p)) { 2119 pr_err("Restore process pid %d failed during resume\n", 2120 p->lead_thread->pid); 2121 ret = -EFAULT; 2122 } 2123 } 2124 srcu_read_unlock(&kfd_processes_srcu, idx); 2125 return ret; 2126 } 2127 2128 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2129 struct vm_area_struct *vma) 2130 { 2131 struct kfd_process_device *pdd; 2132 struct qcm_process_device *qpd; 2133 2134 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2135 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2136 return -EINVAL; 2137 } 2138 2139 pdd = kfd_get_process_device_data(dev, process); 2140 if (!pdd) 2141 return -EINVAL; 2142 qpd = &pdd->qpd; 2143 2144 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2145 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2146 if (!qpd->cwsr_kaddr) { 2147 dev_err(dev->adev->dev, 2148 "Error allocating per process CWSR buffer.\n"); 2149 return -ENOMEM; 2150 } 2151 2152 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2153 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2154 /* Mapping pages to user process */ 2155 return remap_pfn_range(vma, vma->vm_start, 2156 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2157 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2158 } 2159 2160 /* assumes caller holds process lock. */ 2161 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2162 { 2163 uint32_t irq_drain_fence[8]; 2164 uint8_t node_id = 0; 2165 int r = 0; 2166 2167 if (!KFD_IS_SOC15(pdd->dev)) 2168 return 0; 2169 2170 pdd->process->irq_drain_is_open = true; 2171 2172 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2173 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2174 KFD_IRQ_FENCE_CLIENTID; 2175 irq_drain_fence[3] = pdd->pasid; 2176 2177 /* 2178 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3] 2179 */ 2180 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2181 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) || 2182 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) { 2183 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2184 irq_drain_fence[3] |= node_id << 16; 2185 } 2186 2187 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2188 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2189 irq_drain_fence)) { 2190 pdd->process->irq_drain_is_open = false; 2191 return 0; 2192 } 2193 2194 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2195 !READ_ONCE(pdd->process->irq_drain_is_open)); 2196 if (r) 2197 pdd->process->irq_drain_is_open = false; 2198 2199 return r; 2200 } 2201 2202 void kfd_process_close_interrupt_drain(unsigned int pasid) 2203 { 2204 struct kfd_process *p; 2205 2206 p = kfd_lookup_process_by_pasid(pasid, NULL); 2207 2208 if (!p) 2209 return; 2210 2211 WRITE_ONCE(p->irq_drain_is_open, false); 2212 wake_up_all(&p->wait_irq_drain); 2213 kfd_unref_process(p); 2214 } 2215 2216 struct send_exception_work_handler_workarea { 2217 struct work_struct work; 2218 struct kfd_process *p; 2219 unsigned int queue_id; 2220 uint64_t error_reason; 2221 }; 2222 2223 static void send_exception_work_handler(struct work_struct *work) 2224 { 2225 struct send_exception_work_handler_workarea *workarea; 2226 struct kfd_process *p; 2227 struct queue *q; 2228 struct mm_struct *mm; 2229 struct kfd_context_save_area_header __user *csa_header; 2230 uint64_t __user *err_payload_ptr; 2231 uint64_t cur_err; 2232 uint32_t ev_id; 2233 2234 workarea = container_of(work, 2235 struct send_exception_work_handler_workarea, 2236 work); 2237 p = workarea->p; 2238 2239 mm = get_task_mm(p->lead_thread); 2240 2241 if (!mm) 2242 return; 2243 2244 kthread_use_mm(mm); 2245 2246 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2247 2248 if (!q) 2249 goto out; 2250 2251 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2252 2253 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2254 get_user(cur_err, err_payload_ptr); 2255 cur_err |= workarea->error_reason; 2256 put_user(cur_err, err_payload_ptr); 2257 get_user(ev_id, &csa_header->err_event_id); 2258 2259 kfd_set_event(p, ev_id); 2260 2261 out: 2262 kthread_unuse_mm(mm); 2263 mmput(mm); 2264 } 2265 2266 int kfd_send_exception_to_runtime(struct kfd_process *p, 2267 unsigned int queue_id, 2268 uint64_t error_reason) 2269 { 2270 struct send_exception_work_handler_workarea worker; 2271 2272 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2273 2274 worker.p = p; 2275 worker.queue_id = queue_id; 2276 worker.error_reason = error_reason; 2277 2278 schedule_work(&worker.work); 2279 flush_work(&worker.work); 2280 destroy_work_on_stack(&worker.work); 2281 2282 return 0; 2283 } 2284 2285 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2286 { 2287 int i; 2288 2289 if (gpu_id) { 2290 for (i = 0; i < p->n_pdds; i++) { 2291 struct kfd_process_device *pdd = p->pdds[i]; 2292 2293 if (pdd->user_gpu_id == gpu_id) 2294 return pdd; 2295 } 2296 } 2297 return NULL; 2298 } 2299 2300 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2301 { 2302 int i; 2303 2304 if (!actual_gpu_id) 2305 return 0; 2306 2307 for (i = 0; i < p->n_pdds; i++) { 2308 struct kfd_process_device *pdd = p->pdds[i]; 2309 2310 if (pdd->dev->id == actual_gpu_id) 2311 return pdd->user_gpu_id; 2312 } 2313 return -EINVAL; 2314 } 2315 2316 #if defined(CONFIG_DEBUG_FS) 2317 2318 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2319 { 2320 struct kfd_process *p; 2321 unsigned int temp; 2322 int r = 0; 2323 2324 int idx = srcu_read_lock(&kfd_processes_srcu); 2325 2326 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2327 seq_printf(m, "Process %d PASID %d:\n", 2328 p->lead_thread->tgid, p->lead_thread->pid); 2329 2330 mutex_lock(&p->mutex); 2331 r = pqm_debugfs_mqds(m, &p->pqm); 2332 mutex_unlock(&p->mutex); 2333 2334 if (r) 2335 break; 2336 } 2337 2338 srcu_read_unlock(&kfd_processes_srcu, idx); 2339 2340 return r; 2341 } 2342 2343 #endif 2344