xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu, 0);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static const struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 				       struct attribute *attr, char *buf)
422 {
423 	struct kfd_process_device *pdd;
424 
425 	if (!strcmp(attr->name, "faults")) {
426 		pdd = container_of(attr, struct kfd_process_device,
427 				   attr_faults);
428 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 	}
430 	if (!strcmp(attr->name, "page_in")) {
431 		pdd = container_of(attr, struct kfd_process_device,
432 				   attr_page_in);
433 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 	}
435 	if (!strcmp(attr->name, "page_out")) {
436 		pdd = container_of(attr, struct kfd_process_device,
437 				   attr_page_out);
438 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 	}
440 	return 0;
441 }
442 
443 static struct attribute attr_queue_size = {
444 	.name = "size",
445 	.mode = KFD_SYSFS_FILE_MODE
446 };
447 
448 static struct attribute attr_queue_type = {
449 	.name = "type",
450 	.mode = KFD_SYSFS_FILE_MODE
451 };
452 
453 static struct attribute attr_queue_gpuid = {
454 	.name = "gpuid",
455 	.mode = KFD_SYSFS_FILE_MODE
456 };
457 
458 static struct attribute *procfs_queue_attrs[] = {
459 	&attr_queue_size,
460 	&attr_queue_type,
461 	&attr_queue_gpuid,
462 	NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static const struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_groups = procfs_queue_groups,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static const struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static const struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 							 WQ_FREEZABLE);
669 
670 	if (!kfd_process_wq || !kfd_restore_wq) {
671 		kfd_process_destroy_wq();
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 void kfd_process_destroy_wq(void)
679 {
680 	if (kfd_process_wq) {
681 		destroy_workqueue(kfd_process_wq);
682 		kfd_process_wq = NULL;
683 	}
684 	if (kfd_restore_wq) {
685 		destroy_workqueue(kfd_restore_wq);
686 		kfd_restore_wq = NULL;
687 	}
688 }
689 
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 			struct kfd_process_device *pdd, void **kptr)
692 {
693 	struct kfd_node *dev = pdd->dev;
694 
695 	if (kptr && *kptr) {
696 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 		*kptr = NULL;
698 	}
699 
700 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 					       NULL);
703 }
704 
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *	This function should be only called right after the process
707  *	is created and when kfd_processes_mutex is still being held
708  *	to avoid concurrency. Because of that exclusiveness, we do
709  *	not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 				   uint64_t gpu_va, uint32_t size,
713 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 	struct kfd_node *kdev = pdd->dev;
716 	int err;
717 
718 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 						 pdd->drm_priv, mem, NULL,
720 						 flags, false);
721 	if (err)
722 		goto err_alloc_mem;
723 
724 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 			pdd->drm_priv);
726 	if (err)
727 		goto err_map_mem;
728 
729 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 	if (err) {
731 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 		goto sync_memory_failed;
733 	}
734 
735 	if (kptr) {
736 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 				(struct kgd_mem *)*mem, kptr, NULL);
738 		if (err) {
739 			pr_debug("Map GTT BO to kernel failed\n");
740 			goto sync_memory_failed;
741 		}
742 	}
743 
744 	return err;
745 
746 sync_memory_failed:
747 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748 
749 err_map_mem:
750 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 					       NULL);
752 err_alloc_mem:
753 	*mem = NULL;
754 	*kptr = NULL;
755 	return err;
756 }
757 
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *	process for IB usage The memory reserved is for KFD to submit
760  *	IB to AMDGPU from kernel.  If the memory is reserved
761  *	successfully, ib_kaddr will have the CPU/kernel
762  *	address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 	struct qcm_process_device *qpd = &pdd->qpd;
767 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 	struct kgd_mem *mem;
772 	void *kaddr;
773 	int ret;
774 
775 	if (qpd->ib_kaddr || !qpd->ib_base)
776 		return 0;
777 
778 	/* ib_base is only set for dGPU */
779 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 				      &mem, &kaddr);
781 	if (ret)
782 		return ret;
783 
784 	qpd->ib_mem = mem;
785 	qpd->ib_kaddr = kaddr;
786 
787 	return 0;
788 }
789 
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 
794 	if (!qpd->ib_kaddr || !qpd->ib_base)
795 		return;
796 
797 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798 }
799 
800 struct kfd_process *kfd_create_process(struct task_struct *thread)
801 {
802 	struct kfd_process *process;
803 	int ret;
804 
805 	if (!(thread->mm && mmget_not_zero(thread->mm)))
806 		return ERR_PTR(-EINVAL);
807 
808 	/* Only the pthreads threading model is supported. */
809 	if (thread->group_leader->mm != thread->mm) {
810 		mmput(thread->mm);
811 		return ERR_PTR(-EINVAL);
812 	}
813 
814 	/*
815 	 * take kfd processes mutex before starting of process creation
816 	 * so there won't be a case where two threads of the same process
817 	 * create two kfd_process structures
818 	 */
819 	mutex_lock(&kfd_processes_mutex);
820 
821 	if (kfd_is_locked()) {
822 		mutex_unlock(&kfd_processes_mutex);
823 		pr_debug("KFD is locked! Cannot create process");
824 		return ERR_PTR(-EINVAL);
825 	}
826 
827 	/* A prior open of /dev/kfd could have already created the process. */
828 	process = find_process(thread, false);
829 	if (process) {
830 		pr_debug("Process already found\n");
831 	} else {
832 		process = create_process(thread);
833 		if (IS_ERR(process))
834 			goto out;
835 
836 		if (!procfs.kobj)
837 			goto out;
838 
839 		process->kobj = kfd_alloc_struct(process->kobj);
840 		if (!process->kobj) {
841 			pr_warn("Creating procfs kobject failed");
842 			goto out;
843 		}
844 		ret = kobject_init_and_add(process->kobj, &procfs_type,
845 					   procfs.kobj, "%d",
846 					   (int)process->lead_thread->pid);
847 		if (ret) {
848 			pr_warn("Creating procfs pid directory failed");
849 			kobject_put(process->kobj);
850 			goto out;
851 		}
852 
853 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854 				      "pasid");
855 
856 		process->kobj_queues = kobject_create_and_add("queues",
857 							process->kobj);
858 		if (!process->kobj_queues)
859 			pr_warn("Creating KFD proc/queues folder failed");
860 
861 		kfd_procfs_add_sysfs_stats(process);
862 		kfd_procfs_add_sysfs_files(process);
863 		kfd_procfs_add_sysfs_counters(process);
864 
865 		init_waitqueue_head(&process->wait_irq_drain);
866 	}
867 out:
868 	if (!IS_ERR(process))
869 		kref_get(&process->ref);
870 	mutex_unlock(&kfd_processes_mutex);
871 	mmput(thread->mm);
872 
873 	return process;
874 }
875 
876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878 	struct kfd_process *process;
879 
880 	if (!thread->mm)
881 		return ERR_PTR(-EINVAL);
882 
883 	/* Only the pthreads threading model is supported. */
884 	if (thread->group_leader->mm != thread->mm)
885 		return ERR_PTR(-EINVAL);
886 
887 	process = find_process(thread, false);
888 	if (!process)
889 		return ERR_PTR(-EINVAL);
890 
891 	return process;
892 }
893 
894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896 	struct kfd_process *process;
897 
898 	hash_for_each_possible_rcu(kfd_processes_table, process,
899 					kfd_processes, (uintptr_t)mm)
900 		if (process->mm == mm)
901 			return process;
902 
903 	return NULL;
904 }
905 
906 static struct kfd_process *find_process(const struct task_struct *thread,
907 					bool ref)
908 {
909 	struct kfd_process *p;
910 	int idx;
911 
912 	idx = srcu_read_lock(&kfd_processes_srcu);
913 	p = find_process_by_mm(thread->mm);
914 	if (p && ref)
915 		kref_get(&p->ref);
916 	srcu_read_unlock(&kfd_processes_srcu, idx);
917 
918 	return p;
919 }
920 
921 void kfd_unref_process(struct kfd_process *p)
922 {
923 	kref_put(&p->ref, kfd_process_ref_release);
924 }
925 
926 /* This increments the process->ref counter. */
927 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928 {
929 	struct task_struct *task = NULL;
930 	struct kfd_process *p    = NULL;
931 
932 	if (!pid) {
933 		task = current;
934 		get_task_struct(task);
935 	} else {
936 		task = get_pid_task(pid, PIDTYPE_PID);
937 	}
938 
939 	if (task) {
940 		p = find_process(task, true);
941 		put_task_struct(task);
942 	}
943 
944 	return p;
945 }
946 
947 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948 {
949 	struct kfd_process *p = pdd->process;
950 	void *mem;
951 	int id;
952 	int i;
953 
954 	/*
955 	 * Remove all handles from idr and release appropriate
956 	 * local memory object
957 	 */
958 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959 
960 		for (i = 0; i < p->n_pdds; i++) {
961 			struct kfd_process_device *peer_pdd = p->pdds[i];
962 
963 			if (!peer_pdd->drm_priv)
964 				continue;
965 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967 		}
968 
969 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970 						       pdd->drm_priv, NULL);
971 		kfd_process_device_remove_obj_handle(pdd, id);
972 	}
973 }
974 
975 /*
976  * Just kunmap and unpin signal BO here. It will be freed in
977  * kfd_process_free_outstanding_kfd_bos()
978  */
979 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980 {
981 	struct kfd_process_device *pdd;
982 	struct kfd_node *kdev;
983 	void *mem;
984 
985 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986 	if (!kdev)
987 		return;
988 
989 	mutex_lock(&p->mutex);
990 
991 	pdd = kfd_get_process_device_data(kdev, p);
992 	if (!pdd)
993 		goto out;
994 
995 	mem = kfd_process_device_translate_handle(
996 		pdd, GET_IDR_HANDLE(p->signal_handle));
997 	if (!mem)
998 		goto out;
999 
1000 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001 
1002 out:
1003 	mutex_unlock(&p->mutex);
1004 }
1005 
1006 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < p->n_pdds; i++)
1011 		kfd_process_device_free_bos(p->pdds[i]);
1012 }
1013 
1014 static void kfd_process_destroy_pdds(struct kfd_process *p)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < p->n_pdds; i++) {
1019 		struct kfd_process_device *pdd = p->pdds[i];
1020 
1021 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022 				pdd->dev->id, p->pasid);
1023 
1024 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1025 		kfd_process_device_destroy_ib_mem(pdd);
1026 
1027 		if (pdd->drm_file) {
1028 			amdgpu_amdkfd_gpuvm_release_process_vm(
1029 					pdd->dev->adev, pdd->drm_priv);
1030 			fput(pdd->drm_file);
1031 		}
1032 
1033 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1036 
1037 		idr_destroy(&pdd->alloc_idr);
1038 
1039 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040 
1041 		if (pdd->dev->kfd->shared_resources.enable_mes)
1042 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043 						   pdd->proc_ctx_bo);
1044 		/*
1045 		 * before destroying pdd, make sure to report availability
1046 		 * for auto suspend
1047 		 */
1048 		if (pdd->runtime_inuse) {
1049 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051 			pdd->runtime_inuse = false;
1052 		}
1053 
1054 		kfree(pdd);
1055 		p->pdds[i] = NULL;
1056 	}
1057 	p->n_pdds = 0;
1058 }
1059 
1060 static void kfd_process_remove_sysfs(struct kfd_process *p)
1061 {
1062 	struct kfd_process_device *pdd;
1063 	int i;
1064 
1065 	if (!p->kobj)
1066 		return;
1067 
1068 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1069 	kobject_del(p->kobj_queues);
1070 	kobject_put(p->kobj_queues);
1071 	p->kobj_queues = NULL;
1072 
1073 	for (i = 0; i < p->n_pdds; i++) {
1074 		pdd = p->pdds[i];
1075 
1076 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078 
1079 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081 			sysfs_remove_file(pdd->kobj_stats,
1082 					  &pdd->attr_cu_occupancy);
1083 		kobject_del(pdd->kobj_stats);
1084 		kobject_put(pdd->kobj_stats);
1085 		pdd->kobj_stats = NULL;
1086 	}
1087 
1088 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089 		pdd = p->pdds[i];
1090 
1091 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094 		kobject_del(pdd->kobj_counters);
1095 		kobject_put(pdd->kobj_counters);
1096 		pdd->kobj_counters = NULL;
1097 	}
1098 
1099 	kobject_del(p->kobj);
1100 	kobject_put(p->kobj);
1101 	p->kobj = NULL;
1102 }
1103 
1104 /* No process locking is needed in this function, because the process
1105  * is not findable any more. We must assume that no other thread is
1106  * using it any more, otherwise we couldn't safely free the process
1107  * structure in the end.
1108  */
1109 static void kfd_process_wq_release(struct work_struct *work)
1110 {
1111 	struct kfd_process *p = container_of(work, struct kfd_process,
1112 					     release_work);
1113 
1114 	kfd_process_dequeue_from_all_devices(p);
1115 	pqm_uninit(&p->pqm);
1116 
1117 	/* Signal the eviction fence after user mode queues are
1118 	 * destroyed. This allows any BOs to be freed without
1119 	 * triggering pointless evictions or waiting for fences.
1120 	 */
1121 	dma_fence_signal(p->ef);
1122 
1123 	kfd_process_remove_sysfs(p);
1124 
1125 	kfd_process_kunmap_signal_bo(p);
1126 	kfd_process_free_outstanding_kfd_bos(p);
1127 	svm_range_list_fini(p);
1128 
1129 	kfd_process_destroy_pdds(p);
1130 	dma_fence_put(p->ef);
1131 
1132 	kfd_event_free_process(p);
1133 
1134 	kfd_pasid_free(p->pasid);
1135 	mutex_destroy(&p->mutex);
1136 
1137 	put_task_struct(p->lead_thread);
1138 
1139 	kfree(p);
1140 }
1141 
1142 static void kfd_process_ref_release(struct kref *ref)
1143 {
1144 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1145 
1146 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1147 	queue_work(kfd_process_wq, &p->release_work);
1148 }
1149 
1150 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1151 {
1152 	int idx = srcu_read_lock(&kfd_processes_srcu);
1153 	struct kfd_process *p = find_process_by_mm(mm);
1154 
1155 	srcu_read_unlock(&kfd_processes_srcu, idx);
1156 
1157 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1158 }
1159 
1160 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1161 {
1162 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1163 }
1164 
1165 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1166 {
1167 	int i;
1168 
1169 	cancel_delayed_work_sync(&p->eviction_work);
1170 	cancel_delayed_work_sync(&p->restore_work);
1171 
1172 	for (i = 0; i < p->n_pdds; i++) {
1173 		struct kfd_process_device *pdd = p->pdds[i];
1174 
1175 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1176 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1177 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1178 	}
1179 
1180 	/* Indicate to other users that MM is no longer valid */
1181 	p->mm = NULL;
1182 	kfd_dbg_trap_disable(p);
1183 
1184 	if (atomic_read(&p->debugged_process_count) > 0) {
1185 		struct kfd_process *target;
1186 		unsigned int temp;
1187 		int idx = srcu_read_lock(&kfd_processes_srcu);
1188 
1189 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1190 			if (target->debugger_process && target->debugger_process == p) {
1191 				mutex_lock_nested(&target->mutex, 1);
1192 				kfd_dbg_trap_disable(target);
1193 				mutex_unlock(&target->mutex);
1194 				if (atomic_read(&p->debugged_process_count) == 0)
1195 					break;
1196 			}
1197 		}
1198 
1199 		srcu_read_unlock(&kfd_processes_srcu, idx);
1200 	}
1201 
1202 	mmu_notifier_put(&p->mmu_notifier);
1203 }
1204 
1205 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1206 					struct mm_struct *mm)
1207 {
1208 	struct kfd_process *p;
1209 
1210 	/*
1211 	 * The kfd_process structure can not be free because the
1212 	 * mmu_notifier srcu is read locked
1213 	 */
1214 	p = container_of(mn, struct kfd_process, mmu_notifier);
1215 	if (WARN_ON(p->mm != mm))
1216 		return;
1217 
1218 	mutex_lock(&kfd_processes_mutex);
1219 	/*
1220 	 * Do early return if table is empty.
1221 	 *
1222 	 * This could potentially happen if this function is called concurrently
1223 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1224 	 *
1225 	 */
1226 	if (hash_empty(kfd_processes_table)) {
1227 		mutex_unlock(&kfd_processes_mutex);
1228 		return;
1229 	}
1230 	hash_del_rcu(&p->kfd_processes);
1231 	mutex_unlock(&kfd_processes_mutex);
1232 	synchronize_srcu(&kfd_processes_srcu);
1233 
1234 	kfd_process_notifier_release_internal(p);
1235 }
1236 
1237 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1238 	.release = kfd_process_notifier_release,
1239 	.alloc_notifier = kfd_process_alloc_notifier,
1240 	.free_notifier = kfd_process_free_notifier,
1241 };
1242 
1243 /*
1244  * This code handles the case when driver is being unloaded before all
1245  * mm_struct are released.  We need to safely free the kfd_process and
1246  * avoid race conditions with mmu_notifier that might try to free them.
1247  *
1248  */
1249 void kfd_cleanup_processes(void)
1250 {
1251 	struct kfd_process *p;
1252 	struct hlist_node *p_temp;
1253 	unsigned int temp;
1254 	HLIST_HEAD(cleanup_list);
1255 
1256 	/*
1257 	 * Move all remaining kfd_process from the process table to a
1258 	 * temp list for processing.   Once done, callback from mmu_notifier
1259 	 * release will not see the kfd_process in the table and do early return,
1260 	 * avoiding double free issues.
1261 	 */
1262 	mutex_lock(&kfd_processes_mutex);
1263 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1264 		hash_del_rcu(&p->kfd_processes);
1265 		synchronize_srcu(&kfd_processes_srcu);
1266 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1267 	}
1268 	mutex_unlock(&kfd_processes_mutex);
1269 
1270 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1271 		kfd_process_notifier_release_internal(p);
1272 
1273 	/*
1274 	 * Ensures that all outstanding free_notifier get called, triggering
1275 	 * the release of the kfd_process struct.
1276 	 */
1277 	mmu_notifier_synchronize();
1278 }
1279 
1280 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1281 {
1282 	unsigned long  offset;
1283 	int i;
1284 
1285 	if (p->has_cwsr)
1286 		return 0;
1287 
1288 	for (i = 0; i < p->n_pdds; i++) {
1289 		struct kfd_node *dev = p->pdds[i]->dev;
1290 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1291 
1292 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1293 			continue;
1294 
1295 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1296 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1297 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1298 			MAP_SHARED, offset);
1299 
1300 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1301 			int err = qpd->tba_addr;
1302 
1303 			pr_err("Failure to set tba address. error %d.\n", err);
1304 			qpd->tba_addr = 0;
1305 			qpd->cwsr_kaddr = NULL;
1306 			return err;
1307 		}
1308 
1309 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1310 
1311 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1312 
1313 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1314 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1315 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1316 	}
1317 
1318 	p->has_cwsr = true;
1319 
1320 	return 0;
1321 }
1322 
1323 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1324 {
1325 	struct kfd_node *dev = pdd->dev;
1326 	struct qcm_process_device *qpd = &pdd->qpd;
1327 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1328 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1329 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1330 	struct kgd_mem *mem;
1331 	void *kaddr;
1332 	int ret;
1333 
1334 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1335 		return 0;
1336 
1337 	/* cwsr_base is only set for dGPU */
1338 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1339 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1340 	if (ret)
1341 		return ret;
1342 
1343 	qpd->cwsr_mem = mem;
1344 	qpd->cwsr_kaddr = kaddr;
1345 	qpd->tba_addr = qpd->cwsr_base;
1346 
1347 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1348 
1349 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1350 					pdd->process->debug_trap_enabled);
1351 
1352 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1353 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1354 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1355 
1356 	return 0;
1357 }
1358 
1359 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1360 {
1361 	struct kfd_node *dev = pdd->dev;
1362 	struct qcm_process_device *qpd = &pdd->qpd;
1363 
1364 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1365 		return;
1366 
1367 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1368 }
1369 
1370 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1371 				  uint64_t tba_addr,
1372 				  uint64_t tma_addr)
1373 {
1374 	if (qpd->cwsr_kaddr) {
1375 		/* KFD trap handler is bound, record as second-level TBA/TMA
1376 		 * in first-level TMA. First-level trap will jump to second.
1377 		 */
1378 		uint64_t *tma =
1379 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1380 		tma[0] = tba_addr;
1381 		tma[1] = tma_addr;
1382 	} else {
1383 		/* No trap handler bound, bind as first-level TBA/TMA. */
1384 		qpd->tba_addr = tba_addr;
1385 		qpd->tma_addr = tma_addr;
1386 	}
1387 }
1388 
1389 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1390 {
1391 	int i;
1392 
1393 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1394 	 * boot time retry setting. Mixing processes with different
1395 	 * XNACK/retry settings can hang the GPU.
1396 	 *
1397 	 * Different GPUs can have different noretry settings depending
1398 	 * on HW bugs or limitations. We need to find at least one
1399 	 * XNACK mode for this process that's compatible with all GPUs.
1400 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1401 	 * built for XNACK-off. On GFXv9 it may perform slower.
1402 	 *
1403 	 * Therefore applications built for XNACK-off can always be
1404 	 * supported and will be our fallback if any GPU does not
1405 	 * support retry.
1406 	 */
1407 	for (i = 0; i < p->n_pdds; i++) {
1408 		struct kfd_node *dev = p->pdds[i]->dev;
1409 
1410 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1411 		 * support the SVM APIs and don't need to be considered
1412 		 * for the XNACK mode selection.
1413 		 */
1414 		if (!KFD_IS_SOC15(dev))
1415 			continue;
1416 		/* Aldebaran can always support XNACK because it can support
1417 		 * per-process XNACK mode selection. But let the dev->noretry
1418 		 * setting still influence the default XNACK mode.
1419 		 */
1420 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1421 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1422 				pr_debug("SRIOV platform xnack not supported\n");
1423 				return false;
1424 			}
1425 			continue;
1426 		}
1427 
1428 		/* GFXv10 and later GPUs do not support shader preemption
1429 		 * during page faults. This can lead to poor QoS for queue
1430 		 * management and memory-manager-related preemptions or
1431 		 * even deadlocks.
1432 		 */
1433 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1434 			return false;
1435 
1436 		if (dev->kfd->noretry)
1437 			return false;
1438 	}
1439 
1440 	return true;
1441 }
1442 
1443 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1444 				     bool enabled)
1445 {
1446 	if (qpd->cwsr_kaddr) {
1447 		uint64_t *tma =
1448 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1449 		tma[2] = enabled;
1450 	}
1451 }
1452 
1453 /*
1454  * On return the kfd_process is fully operational and will be freed when the
1455  * mm is released
1456  */
1457 static struct kfd_process *create_process(const struct task_struct *thread)
1458 {
1459 	struct kfd_process *process;
1460 	struct mmu_notifier *mn;
1461 	int err = -ENOMEM;
1462 
1463 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1464 	if (!process)
1465 		goto err_alloc_process;
1466 
1467 	kref_init(&process->ref);
1468 	mutex_init(&process->mutex);
1469 	process->mm = thread->mm;
1470 	process->lead_thread = thread->group_leader;
1471 	process->n_pdds = 0;
1472 	process->queues_paused = false;
1473 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1474 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1475 	process->last_restore_timestamp = get_jiffies_64();
1476 	err = kfd_event_init_process(process);
1477 	if (err)
1478 		goto err_event_init;
1479 	process->is_32bit_user_mode = in_compat_syscall();
1480 	process->debug_trap_enabled = false;
1481 	process->debugger_process = NULL;
1482 	process->exception_enable_mask = 0;
1483 	atomic_set(&process->debugged_process_count, 0);
1484 	sema_init(&process->runtime_enable_sema, 0);
1485 
1486 	process->pasid = kfd_pasid_alloc();
1487 	if (process->pasid == 0) {
1488 		err = -ENOSPC;
1489 		goto err_alloc_pasid;
1490 	}
1491 
1492 	err = pqm_init(&process->pqm, process);
1493 	if (err != 0)
1494 		goto err_process_pqm_init;
1495 
1496 	/* init process apertures*/
1497 	err = kfd_init_apertures(process);
1498 	if (err != 0)
1499 		goto err_init_apertures;
1500 
1501 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1502 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1503 
1504 	err = svm_range_list_init(process);
1505 	if (err)
1506 		goto err_init_svm_range_list;
1507 
1508 	/* alloc_notifier needs to find the process in the hash table */
1509 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1510 			(uintptr_t)process->mm);
1511 
1512 	/* Avoid free_notifier to start kfd_process_wq_release if
1513 	 * mmu_notifier_get failed because of pending signal.
1514 	 */
1515 	kref_get(&process->ref);
1516 
1517 	/* MMU notifier registration must be the last call that can fail
1518 	 * because after this point we cannot unwind the process creation.
1519 	 * After this point, mmu_notifier_put will trigger the cleanup by
1520 	 * dropping the last process reference in the free_notifier.
1521 	 */
1522 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1523 	if (IS_ERR(mn)) {
1524 		err = PTR_ERR(mn);
1525 		goto err_register_notifier;
1526 	}
1527 	BUG_ON(mn != &process->mmu_notifier);
1528 
1529 	kfd_unref_process(process);
1530 	get_task_struct(process->lead_thread);
1531 
1532 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1533 
1534 	return process;
1535 
1536 err_register_notifier:
1537 	hash_del_rcu(&process->kfd_processes);
1538 	svm_range_list_fini(process);
1539 err_init_svm_range_list:
1540 	kfd_process_free_outstanding_kfd_bos(process);
1541 	kfd_process_destroy_pdds(process);
1542 err_init_apertures:
1543 	pqm_uninit(&process->pqm);
1544 err_process_pqm_init:
1545 	kfd_pasid_free(process->pasid);
1546 err_alloc_pasid:
1547 	kfd_event_free_process(process);
1548 err_event_init:
1549 	mutex_destroy(&process->mutex);
1550 	kfree(process);
1551 err_alloc_process:
1552 	return ERR_PTR(err);
1553 }
1554 
1555 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1556 							struct kfd_process *p)
1557 {
1558 	int i;
1559 
1560 	for (i = 0; i < p->n_pdds; i++)
1561 		if (p->pdds[i]->dev == dev)
1562 			return p->pdds[i];
1563 
1564 	return NULL;
1565 }
1566 
1567 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1568 							struct kfd_process *p)
1569 {
1570 	struct kfd_process_device *pdd = NULL;
1571 	int retval = 0;
1572 
1573 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1574 		return NULL;
1575 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1576 	if (!pdd)
1577 		return NULL;
1578 
1579 	pdd->dev = dev;
1580 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1581 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1582 	pdd->qpd.dqm = dev->dqm;
1583 	pdd->qpd.pqm = &p->pqm;
1584 	pdd->qpd.evicted = 0;
1585 	pdd->qpd.mapped_gws_queue = false;
1586 	pdd->process = p;
1587 	pdd->bound = PDD_UNBOUND;
1588 	pdd->already_dequeued = false;
1589 	pdd->runtime_inuse = false;
1590 	pdd->vram_usage = 0;
1591 	pdd->sdma_past_activity_counter = 0;
1592 	pdd->user_gpu_id = dev->id;
1593 	atomic64_set(&pdd->evict_duration_counter, 0);
1594 
1595 	if (dev->kfd->shared_resources.enable_mes) {
1596 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1597 						AMDGPU_MES_PROC_CTX_SIZE,
1598 						&pdd->proc_ctx_bo,
1599 						&pdd->proc_ctx_gpu_addr,
1600 						&pdd->proc_ctx_cpu_ptr,
1601 						false);
1602 		if (retval) {
1603 			pr_err("failed to allocate process context bo\n");
1604 			goto err_free_pdd;
1605 		}
1606 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1607 	}
1608 
1609 	p->pdds[p->n_pdds++] = pdd;
1610 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1611 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1612 							pdd->dev->adev,
1613 							false,
1614 							0);
1615 
1616 	/* Init idr used for memory handle translation */
1617 	idr_init(&pdd->alloc_idr);
1618 
1619 	return pdd;
1620 
1621 err_free_pdd:
1622 	kfree(pdd);
1623 	return NULL;
1624 }
1625 
1626 /**
1627  * kfd_process_device_init_vm - Initialize a VM for a process-device
1628  *
1629  * @pdd: The process-device
1630  * @drm_file: Optional pointer to a DRM file descriptor
1631  *
1632  * If @drm_file is specified, it will be used to acquire the VM from
1633  * that file descriptor. If successful, the @pdd takes ownership of
1634  * the file descriptor.
1635  *
1636  * If @drm_file is NULL, a new VM is created.
1637  *
1638  * Returns 0 on success, -errno on failure.
1639  */
1640 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1641 			       struct file *drm_file)
1642 {
1643 	struct amdgpu_fpriv *drv_priv;
1644 	struct amdgpu_vm *avm;
1645 	struct kfd_process *p;
1646 	struct dma_fence *ef;
1647 	struct kfd_node *dev;
1648 	int ret;
1649 
1650 	if (!drm_file)
1651 		return -EINVAL;
1652 
1653 	if (pdd->drm_priv)
1654 		return -EBUSY;
1655 
1656 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1657 	if (ret)
1658 		return ret;
1659 	avm = &drv_priv->vm;
1660 
1661 	p = pdd->process;
1662 	dev = pdd->dev;
1663 
1664 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1665 						     &p->kgd_process_info,
1666 						     &ef);
1667 	if (ret) {
1668 		pr_err("Failed to create process VM object\n");
1669 		return ret;
1670 	}
1671 	RCU_INIT_POINTER(p->ef, ef);
1672 	pdd->drm_priv = drm_file->private_data;
1673 
1674 	ret = kfd_process_device_reserve_ib_mem(pdd);
1675 	if (ret)
1676 		goto err_reserve_ib_mem;
1677 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1678 	if (ret)
1679 		goto err_init_cwsr;
1680 
1681 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1682 	if (ret)
1683 		goto err_set_pasid;
1684 
1685 	pdd->drm_file = drm_file;
1686 
1687 	return 0;
1688 
1689 err_set_pasid:
1690 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1691 err_init_cwsr:
1692 	kfd_process_device_destroy_ib_mem(pdd);
1693 err_reserve_ib_mem:
1694 	pdd->drm_priv = NULL;
1695 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1696 
1697 	return ret;
1698 }
1699 
1700 /*
1701  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1702  * to the device.
1703  * Unbinding occurs when the process dies or the device is removed.
1704  *
1705  * Assumes that the process lock is held.
1706  */
1707 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1708 							struct kfd_process *p)
1709 {
1710 	struct kfd_process_device *pdd;
1711 	int err;
1712 
1713 	pdd = kfd_get_process_device_data(dev, p);
1714 	if (!pdd) {
1715 		pr_err("Process device data doesn't exist\n");
1716 		return ERR_PTR(-ENOMEM);
1717 	}
1718 
1719 	if (!pdd->drm_priv)
1720 		return ERR_PTR(-ENODEV);
1721 
1722 	/*
1723 	 * signal runtime-pm system to auto resume and prevent
1724 	 * further runtime suspend once device pdd is created until
1725 	 * pdd is destroyed.
1726 	 */
1727 	if (!pdd->runtime_inuse) {
1728 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1729 		if (err < 0) {
1730 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1731 			return ERR_PTR(err);
1732 		}
1733 	}
1734 
1735 	/*
1736 	 * make sure that runtime_usage counter is incremented just once
1737 	 * per pdd
1738 	 */
1739 	pdd->runtime_inuse = true;
1740 
1741 	return pdd;
1742 }
1743 
1744 /* Create specific handle mapped to mem from process local memory idr
1745  * Assumes that the process lock is held.
1746  */
1747 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1748 					void *mem)
1749 {
1750 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1751 }
1752 
1753 /* Translate specific handle from process local memory idr
1754  * Assumes that the process lock is held.
1755  */
1756 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1757 					int handle)
1758 {
1759 	if (handle < 0)
1760 		return NULL;
1761 
1762 	return idr_find(&pdd->alloc_idr, handle);
1763 }
1764 
1765 /* Remove specific handle from process local memory idr
1766  * Assumes that the process lock is held.
1767  */
1768 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1769 					int handle)
1770 {
1771 	if (handle >= 0)
1772 		idr_remove(&pdd->alloc_idr, handle);
1773 }
1774 
1775 /* This increments the process->ref counter. */
1776 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1777 {
1778 	struct kfd_process *p, *ret_p = NULL;
1779 	unsigned int temp;
1780 
1781 	int idx = srcu_read_lock(&kfd_processes_srcu);
1782 
1783 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1784 		if (p->pasid == pasid) {
1785 			kref_get(&p->ref);
1786 			ret_p = p;
1787 			break;
1788 		}
1789 	}
1790 
1791 	srcu_read_unlock(&kfd_processes_srcu, idx);
1792 
1793 	return ret_p;
1794 }
1795 
1796 /* This increments the process->ref counter. */
1797 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1798 {
1799 	struct kfd_process *p;
1800 
1801 	int idx = srcu_read_lock(&kfd_processes_srcu);
1802 
1803 	p = find_process_by_mm(mm);
1804 	if (p)
1805 		kref_get(&p->ref);
1806 
1807 	srcu_read_unlock(&kfd_processes_srcu, idx);
1808 
1809 	return p;
1810 }
1811 
1812 /* kfd_process_evict_queues - Evict all user queues of a process
1813  *
1814  * Eviction is reference-counted per process-device. This means multiple
1815  * evictions from different sources can be nested safely.
1816  */
1817 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1818 {
1819 	int r = 0;
1820 	int i;
1821 	unsigned int n_evicted = 0;
1822 
1823 	for (i = 0; i < p->n_pdds; i++) {
1824 		struct kfd_process_device *pdd = p->pdds[i];
1825 
1826 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1827 					     trigger);
1828 
1829 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1830 							    &pdd->qpd);
1831 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1832 		 * we would like to set all the queues to be in evicted state to prevent
1833 		 * them been add back since they actually not be saved right now.
1834 		 */
1835 		if (r && r != -EIO) {
1836 			pr_err("Failed to evict process queues\n");
1837 			goto fail;
1838 		}
1839 		n_evicted++;
1840 	}
1841 
1842 	return r;
1843 
1844 fail:
1845 	/* To keep state consistent, roll back partial eviction by
1846 	 * restoring queues
1847 	 */
1848 	for (i = 0; i < p->n_pdds; i++) {
1849 		struct kfd_process_device *pdd = p->pdds[i];
1850 
1851 		if (n_evicted == 0)
1852 			break;
1853 
1854 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1855 
1856 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1857 							      &pdd->qpd))
1858 			pr_err("Failed to restore queues\n");
1859 
1860 		n_evicted--;
1861 	}
1862 
1863 	return r;
1864 }
1865 
1866 /* kfd_process_restore_queues - Restore all user queues of a process */
1867 int kfd_process_restore_queues(struct kfd_process *p)
1868 {
1869 	int r, ret = 0;
1870 	int i;
1871 
1872 	for (i = 0; i < p->n_pdds; i++) {
1873 		struct kfd_process_device *pdd = p->pdds[i];
1874 
1875 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1876 
1877 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1878 							      &pdd->qpd);
1879 		if (r) {
1880 			pr_err("Failed to restore process queues\n");
1881 			if (!ret)
1882 				ret = r;
1883 		}
1884 	}
1885 
1886 	return ret;
1887 }
1888 
1889 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1890 {
1891 	int i;
1892 
1893 	for (i = 0; i < p->n_pdds; i++)
1894 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1895 			return i;
1896 	return -EINVAL;
1897 }
1898 
1899 int
1900 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1901 			    uint32_t *gpuid, uint32_t *gpuidx)
1902 {
1903 	int i;
1904 
1905 	for (i = 0; i < p->n_pdds; i++)
1906 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1907 			*gpuid = p->pdds[i]->user_gpu_id;
1908 			*gpuidx = i;
1909 			return 0;
1910 		}
1911 	return -EINVAL;
1912 }
1913 
1914 static int signal_eviction_fence(struct kfd_process *p)
1915 {
1916 	struct dma_fence *ef;
1917 	int ret;
1918 
1919 	rcu_read_lock();
1920 	ef = dma_fence_get_rcu_safe(&p->ef);
1921 	rcu_read_unlock();
1922 
1923 	ret = dma_fence_signal(ef);
1924 	dma_fence_put(ef);
1925 
1926 	return ret;
1927 }
1928 
1929 static void evict_process_worker(struct work_struct *work)
1930 {
1931 	int ret;
1932 	struct kfd_process *p;
1933 	struct delayed_work *dwork;
1934 
1935 	dwork = to_delayed_work(work);
1936 
1937 	/* Process termination destroys this worker thread. So during the
1938 	 * lifetime of this thread, kfd_process p will be valid
1939 	 */
1940 	p = container_of(dwork, struct kfd_process, eviction_work);
1941 
1942 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1943 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1944 	if (!ret) {
1945 		/* If another thread already signaled the eviction fence,
1946 		 * they are responsible stopping the queues and scheduling
1947 		 * the restore work.
1948 		 */
1949 		if (!signal_eviction_fence(p))
1950 			queue_delayed_work(kfd_restore_wq, &p->restore_work,
1951 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1952 		else
1953 			kfd_process_restore_queues(p);
1954 
1955 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1956 	} else
1957 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1958 }
1959 
1960 static int restore_process_helper(struct kfd_process *p)
1961 {
1962 	int ret = 0;
1963 
1964 	/* VMs may not have been acquired yet during debugging. */
1965 	if (p->kgd_process_info) {
1966 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1967 			p->kgd_process_info, &p->ef);
1968 		if (ret)
1969 			return ret;
1970 	}
1971 
1972 	ret = kfd_process_restore_queues(p);
1973 	if (!ret)
1974 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1975 	else
1976 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1977 
1978 	return ret;
1979 }
1980 
1981 static void restore_process_worker(struct work_struct *work)
1982 {
1983 	struct delayed_work *dwork;
1984 	struct kfd_process *p;
1985 	int ret = 0;
1986 
1987 	dwork = to_delayed_work(work);
1988 
1989 	/* Process termination destroys this worker thread. So during the
1990 	 * lifetime of this thread, kfd_process p will be valid
1991 	 */
1992 	p = container_of(dwork, struct kfd_process, restore_work);
1993 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1994 
1995 	/* Setting last_restore_timestamp before successful restoration.
1996 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1997 	 * before KFD BOs are unreserved. If not, the process can be evicted
1998 	 * again before the timestamp is set.
1999 	 * If restore fails, the timestamp will be set again in the next
2000 	 * attempt. This would mean that the minimum GPU quanta would be
2001 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2002 	 * functions)
2003 	 */
2004 
2005 	p->last_restore_timestamp = get_jiffies_64();
2006 
2007 	ret = restore_process_helper(p);
2008 	if (ret) {
2009 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2010 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2011 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2012 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2013 		WARN(!ret, "reschedule restore work failed\n");
2014 	}
2015 }
2016 
2017 void kfd_suspend_all_processes(void)
2018 {
2019 	struct kfd_process *p;
2020 	unsigned int temp;
2021 	int idx = srcu_read_lock(&kfd_processes_srcu);
2022 
2023 	WARN(debug_evictions, "Evicting all processes");
2024 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2025 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2026 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2027 		signal_eviction_fence(p);
2028 	}
2029 	srcu_read_unlock(&kfd_processes_srcu, idx);
2030 }
2031 
2032 int kfd_resume_all_processes(void)
2033 {
2034 	struct kfd_process *p;
2035 	unsigned int temp;
2036 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2037 
2038 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2039 		if (restore_process_helper(p)) {
2040 			pr_err("Restore process %d failed during resume\n",
2041 			       p->pasid);
2042 			ret = -EFAULT;
2043 		}
2044 	}
2045 	srcu_read_unlock(&kfd_processes_srcu, idx);
2046 	return ret;
2047 }
2048 
2049 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2050 			  struct vm_area_struct *vma)
2051 {
2052 	struct kfd_process_device *pdd;
2053 	struct qcm_process_device *qpd;
2054 
2055 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2056 		pr_err("Incorrect CWSR mapping size.\n");
2057 		return -EINVAL;
2058 	}
2059 
2060 	pdd = kfd_get_process_device_data(dev, process);
2061 	if (!pdd)
2062 		return -EINVAL;
2063 	qpd = &pdd->qpd;
2064 
2065 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2066 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2067 	if (!qpd->cwsr_kaddr) {
2068 		pr_err("Error allocating per process CWSR buffer.\n");
2069 		return -ENOMEM;
2070 	}
2071 
2072 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2073 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2074 	/* Mapping pages to user process */
2075 	return remap_pfn_range(vma, vma->vm_start,
2076 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2077 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2078 }
2079 
2080 /* assumes caller holds process lock. */
2081 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2082 {
2083 	uint32_t irq_drain_fence[8];
2084 	uint8_t node_id = 0;
2085 	int r = 0;
2086 
2087 	if (!KFD_IS_SOC15(pdd->dev))
2088 		return 0;
2089 
2090 	pdd->process->irq_drain_is_open = true;
2091 
2092 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2093 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2094 							KFD_IRQ_FENCE_CLIENTID;
2095 	irq_drain_fence[3] = pdd->process->pasid;
2096 
2097 	/*
2098 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2099 	 */
2100 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2101 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2102 		irq_drain_fence[3] |= node_id << 16;
2103 	}
2104 
2105 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2106 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2107 						     irq_drain_fence)) {
2108 		pdd->process->irq_drain_is_open = false;
2109 		return 0;
2110 	}
2111 
2112 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2113 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2114 	if (r)
2115 		pdd->process->irq_drain_is_open = false;
2116 
2117 	return r;
2118 }
2119 
2120 void kfd_process_close_interrupt_drain(unsigned int pasid)
2121 {
2122 	struct kfd_process *p;
2123 
2124 	p = kfd_lookup_process_by_pasid(pasid);
2125 
2126 	if (!p)
2127 		return;
2128 
2129 	WRITE_ONCE(p->irq_drain_is_open, false);
2130 	wake_up_all(&p->wait_irq_drain);
2131 	kfd_unref_process(p);
2132 }
2133 
2134 struct send_exception_work_handler_workarea {
2135 	struct work_struct work;
2136 	struct kfd_process *p;
2137 	unsigned int queue_id;
2138 	uint64_t error_reason;
2139 };
2140 
2141 static void send_exception_work_handler(struct work_struct *work)
2142 {
2143 	struct send_exception_work_handler_workarea *workarea;
2144 	struct kfd_process *p;
2145 	struct queue *q;
2146 	struct mm_struct *mm;
2147 	struct kfd_context_save_area_header __user *csa_header;
2148 	uint64_t __user *err_payload_ptr;
2149 	uint64_t cur_err;
2150 	uint32_t ev_id;
2151 
2152 	workarea = container_of(work,
2153 				struct send_exception_work_handler_workarea,
2154 				work);
2155 	p = workarea->p;
2156 
2157 	mm = get_task_mm(p->lead_thread);
2158 
2159 	if (!mm)
2160 		return;
2161 
2162 	kthread_use_mm(mm);
2163 
2164 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2165 
2166 	if (!q)
2167 		goto out;
2168 
2169 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2170 
2171 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2172 	get_user(cur_err, err_payload_ptr);
2173 	cur_err |= workarea->error_reason;
2174 	put_user(cur_err, err_payload_ptr);
2175 	get_user(ev_id, &csa_header->err_event_id);
2176 
2177 	kfd_set_event(p, ev_id);
2178 
2179 out:
2180 	kthread_unuse_mm(mm);
2181 	mmput(mm);
2182 }
2183 
2184 int kfd_send_exception_to_runtime(struct kfd_process *p,
2185 			unsigned int queue_id,
2186 			uint64_t error_reason)
2187 {
2188 	struct send_exception_work_handler_workarea worker;
2189 
2190 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2191 
2192 	worker.p = p;
2193 	worker.queue_id = queue_id;
2194 	worker.error_reason = error_reason;
2195 
2196 	schedule_work(&worker.work);
2197 	flush_work(&worker.work);
2198 	destroy_work_on_stack(&worker.work);
2199 
2200 	return 0;
2201 }
2202 
2203 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2204 {
2205 	int i;
2206 
2207 	if (gpu_id) {
2208 		for (i = 0; i < p->n_pdds; i++) {
2209 			struct kfd_process_device *pdd = p->pdds[i];
2210 
2211 			if (pdd->user_gpu_id == gpu_id)
2212 				return pdd;
2213 		}
2214 	}
2215 	return NULL;
2216 }
2217 
2218 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2219 {
2220 	int i;
2221 
2222 	if (!actual_gpu_id)
2223 		return 0;
2224 
2225 	for (i = 0; i < p->n_pdds; i++) {
2226 		struct kfd_process_device *pdd = p->pdds[i];
2227 
2228 		if (pdd->dev->id == actual_gpu_id)
2229 			return pdd->user_gpu_id;
2230 	}
2231 	return -EINVAL;
2232 }
2233 
2234 #if defined(CONFIG_DEBUG_FS)
2235 
2236 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2237 {
2238 	struct kfd_process *p;
2239 	unsigned int temp;
2240 	int r = 0;
2241 
2242 	int idx = srcu_read_lock(&kfd_processes_srcu);
2243 
2244 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2245 		seq_printf(m, "Process %d PASID 0x%x:\n",
2246 			   p->lead_thread->tgid, p->pasid);
2247 
2248 		mutex_lock(&p->mutex);
2249 		r = pqm_debugfs_mqds(m, &p->pqm);
2250 		mutex_unlock(&p->mutex);
2251 
2252 		if (r)
2253 			break;
2254 	}
2255 
2256 	srcu_read_unlock(&kfd_processes_srcu, idx);
2257 
2258 	return r;
2259 }
2260 
2261 #endif
2262