xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 	int i;
274 	struct kfd_cu_occupancy *cu_occupancy;
275 	u32 queue_format;
276 
277 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
278 	dev = pdd->dev;
279 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
280 		return -EINVAL;
281 
282 	cu_cnt = 0;
283 	proc = pdd->process;
284 	if (pdd->qpd.queue_count == 0) {
285 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
286 			 dev->id, proc->pasid);
287 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
288 	}
289 
290 	/* Collect wave count from device if it supports */
291 	wave_cnt = 0;
292 	max_waves_per_cu = 0;
293 
294 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
295 	if (!cu_occupancy)
296 		return -ENOMEM;
297 
298 	/*
299 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
300 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
301 	 * by number of XCCs in the partition to get the total wave counts across all
302 	 * XCCs in the partition.
303 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
304 	 */
305 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
306 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
307 
308 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
309 		if (cu_occupancy[i].wave_cnt != 0 &&
310 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
311 						cu_occupancy[i].doorbell_off,
312 						&queue_format)) {
313 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
314 				wave_cnt += cu_occupancy[i].wave_cnt;
315 			else
316 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
317 						cu_occupancy[i].wave_cnt);
318 		}
319 	}
320 
321 	/* Translate wave count to number of compute units */
322 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
323 	kfree(cu_occupancy);
324 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
325 }
326 
327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
328 			       char *buffer)
329 {
330 	if (strcmp(attr->name, "pasid") == 0) {
331 		struct kfd_process *p = container_of(attr, struct kfd_process,
332 						     attr_pasid);
333 
334 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
335 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
336 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
337 							      attr_vram);
338 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
339 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
340 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
341 							      attr_sdma);
342 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
343 
344 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
345 				  kfd_sdma_activity_worker);
346 
347 		sdma_activity_work_handler.pdd = pdd;
348 		sdma_activity_work_handler.sdma_activity_counter = 0;
349 
350 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
351 
352 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
353 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
354 
355 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
356 				(sdma_activity_work_handler.sdma_activity_counter)/
357 				 SDMA_ACTIVITY_DIVISOR);
358 	} else {
359 		pr_err("Invalid attribute");
360 		return -EINVAL;
361 	}
362 
363 	return 0;
364 }
365 
366 static void kfd_procfs_kobj_release(struct kobject *kobj)
367 {
368 	kfree(kobj);
369 }
370 
371 static const struct sysfs_ops kfd_procfs_ops = {
372 	.show = kfd_procfs_show,
373 };
374 
375 static const struct kobj_type procfs_type = {
376 	.release = kfd_procfs_kobj_release,
377 	.sysfs_ops = &kfd_procfs_ops,
378 };
379 
380 void kfd_procfs_init(void)
381 {
382 	int ret = 0;
383 
384 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
385 	if (!procfs.kobj)
386 		return;
387 
388 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
389 				   &kfd_device->kobj, "proc");
390 	if (ret) {
391 		pr_warn("Could not create procfs proc folder");
392 		/* If we fail to create the procfs, clean up */
393 		kfd_procfs_shutdown();
394 	}
395 }
396 
397 void kfd_procfs_shutdown(void)
398 {
399 	if (procfs.kobj) {
400 		kobject_del(procfs.kobj);
401 		kobject_put(procfs.kobj);
402 		procfs.kobj = NULL;
403 	}
404 }
405 
406 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
407 				     struct attribute *attr, char *buffer)
408 {
409 	struct queue *q = container_of(kobj, struct queue, kobj);
410 
411 	if (!strcmp(attr->name, "size"))
412 		return snprintf(buffer, PAGE_SIZE, "%llu",
413 				q->properties.queue_size);
414 	else if (!strcmp(attr->name, "type"))
415 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
416 	else if (!strcmp(attr->name, "gpuid"))
417 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
418 	else
419 		pr_err("Invalid attribute");
420 
421 	return 0;
422 }
423 
424 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
425 				     struct attribute *attr, char *buffer)
426 {
427 	if (strcmp(attr->name, "evicted_ms") == 0) {
428 		struct kfd_process_device *pdd = container_of(attr,
429 				struct kfd_process_device,
430 				attr_evict);
431 		uint64_t evict_jiffies;
432 
433 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
434 
435 		return snprintf(buffer,
436 				PAGE_SIZE,
437 				"%llu\n",
438 				jiffies64_to_msecs(evict_jiffies));
439 
440 	/* Sysfs handle that gets CU occupancy is per device */
441 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
442 		return kfd_get_cu_occupancy(attr, buffer);
443 	} else {
444 		pr_err("Invalid attribute");
445 	}
446 
447 	return 0;
448 }
449 
450 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
451 				       struct attribute *attr, char *buf)
452 {
453 	struct kfd_process_device *pdd;
454 
455 	if (!strcmp(attr->name, "faults")) {
456 		pdd = container_of(attr, struct kfd_process_device,
457 				   attr_faults);
458 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
459 	}
460 	if (!strcmp(attr->name, "page_in")) {
461 		pdd = container_of(attr, struct kfd_process_device,
462 				   attr_page_in);
463 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
464 	}
465 	if (!strcmp(attr->name, "page_out")) {
466 		pdd = container_of(attr, struct kfd_process_device,
467 				   attr_page_out);
468 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
469 	}
470 	return 0;
471 }
472 
473 static struct attribute attr_queue_size = {
474 	.name = "size",
475 	.mode = KFD_SYSFS_FILE_MODE
476 };
477 
478 static struct attribute attr_queue_type = {
479 	.name = "type",
480 	.mode = KFD_SYSFS_FILE_MODE
481 };
482 
483 static struct attribute attr_queue_gpuid = {
484 	.name = "gpuid",
485 	.mode = KFD_SYSFS_FILE_MODE
486 };
487 
488 static struct attribute *procfs_queue_attrs[] = {
489 	&attr_queue_size,
490 	&attr_queue_type,
491 	&attr_queue_gpuid,
492 	NULL
493 };
494 ATTRIBUTE_GROUPS(procfs_queue);
495 
496 static const struct sysfs_ops procfs_queue_ops = {
497 	.show = kfd_procfs_queue_show,
498 };
499 
500 static const struct kobj_type procfs_queue_type = {
501 	.sysfs_ops = &procfs_queue_ops,
502 	.default_groups = procfs_queue_groups,
503 };
504 
505 static const struct sysfs_ops procfs_stats_ops = {
506 	.show = kfd_procfs_stats_show,
507 };
508 
509 static const struct kobj_type procfs_stats_type = {
510 	.sysfs_ops = &procfs_stats_ops,
511 	.release = kfd_procfs_kobj_release,
512 };
513 
514 static const struct sysfs_ops sysfs_counters_ops = {
515 	.show = kfd_sysfs_counters_show,
516 };
517 
518 static const struct kobj_type sysfs_counters_type = {
519 	.sysfs_ops = &sysfs_counters_ops,
520 	.release = kfd_procfs_kobj_release,
521 };
522 
523 int kfd_procfs_add_queue(struct queue *q)
524 {
525 	struct kfd_process *proc;
526 	int ret;
527 
528 	if (!q || !q->process)
529 		return -EINVAL;
530 	proc = q->process;
531 
532 	/* Create proc/<pid>/queues/<queue id> folder */
533 	if (!proc->kobj_queues)
534 		return -EFAULT;
535 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
536 			proc->kobj_queues, "%u", q->properties.queue_id);
537 	if (ret < 0) {
538 		pr_warn("Creating proc/<pid>/queues/%u failed",
539 			q->properties.queue_id);
540 		kobject_put(&q->kobj);
541 		return ret;
542 	}
543 
544 	return 0;
545 }
546 
547 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
548 				 char *name)
549 {
550 	int ret;
551 
552 	if (!kobj || !attr || !name)
553 		return;
554 
555 	attr->name = name;
556 	attr->mode = KFD_SYSFS_FILE_MODE;
557 	sysfs_attr_init(attr);
558 
559 	ret = sysfs_create_file(kobj, attr);
560 	if (ret)
561 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
562 }
563 
564 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
565 {
566 	int ret;
567 	int i;
568 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
569 
570 	if (!p || !p->kobj)
571 		return;
572 
573 	/*
574 	 * Create sysfs files for each GPU:
575 	 * - proc/<pid>/stats_<gpuid>/
576 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
577 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
578 	 */
579 	for (i = 0; i < p->n_pdds; i++) {
580 		struct kfd_process_device *pdd = p->pdds[i];
581 
582 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
583 				"stats_%u", pdd->dev->id);
584 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
585 		if (!pdd->kobj_stats)
586 			return;
587 
588 		ret = kobject_init_and_add(pdd->kobj_stats,
589 					   &procfs_stats_type,
590 					   p->kobj,
591 					   stats_dir_filename);
592 
593 		if (ret) {
594 			pr_warn("Creating KFD proc/stats_%s folder failed",
595 				stats_dir_filename);
596 			kobject_put(pdd->kobj_stats);
597 			pdd->kobj_stats = NULL;
598 			return;
599 		}
600 
601 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
602 				      "evicted_ms");
603 		/* Add sysfs file to report compute unit occupancy */
604 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
605 			kfd_sysfs_create_file(pdd->kobj_stats,
606 					      &pdd->attr_cu_occupancy,
607 					      "cu_occupancy");
608 	}
609 }
610 
611 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
612 {
613 	int ret = 0;
614 	int i;
615 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
616 
617 	if (!p || !p->kobj)
618 		return;
619 
620 	/*
621 	 * Create sysfs files for each GPU which supports SVM
622 	 * - proc/<pid>/counters_<gpuid>/
623 	 * - proc/<pid>/counters_<gpuid>/faults
624 	 * - proc/<pid>/counters_<gpuid>/page_in
625 	 * - proc/<pid>/counters_<gpuid>/page_out
626 	 */
627 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
628 		struct kfd_process_device *pdd = p->pdds[i];
629 		struct kobject *kobj_counters;
630 
631 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
632 			"counters_%u", pdd->dev->id);
633 		kobj_counters = kfd_alloc_struct(kobj_counters);
634 		if (!kobj_counters)
635 			return;
636 
637 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
638 					   p->kobj, counters_dir_filename);
639 		if (ret) {
640 			pr_warn("Creating KFD proc/%s folder failed",
641 				counters_dir_filename);
642 			kobject_put(kobj_counters);
643 			return;
644 		}
645 
646 		pdd->kobj_counters = kobj_counters;
647 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
648 				      "faults");
649 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
650 				      "page_in");
651 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
652 				      "page_out");
653 	}
654 }
655 
656 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
657 {
658 	int i;
659 
660 	if (!p || !p->kobj)
661 		return;
662 
663 	/*
664 	 * Create sysfs files for each GPU:
665 	 * - proc/<pid>/vram_<gpuid>
666 	 * - proc/<pid>/sdma_<gpuid>
667 	 */
668 	for (i = 0; i < p->n_pdds; i++) {
669 		struct kfd_process_device *pdd = p->pdds[i];
670 
671 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
672 			 pdd->dev->id);
673 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
674 				      pdd->vram_filename);
675 
676 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
677 			 pdd->dev->id);
678 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
679 					    pdd->sdma_filename);
680 	}
681 }
682 
683 void kfd_procfs_del_queue(struct queue *q)
684 {
685 	if (!q)
686 		return;
687 
688 	kobject_del(&q->kobj);
689 	kobject_put(&q->kobj);
690 }
691 
692 int kfd_process_create_wq(void)
693 {
694 	if (!kfd_process_wq)
695 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
696 	if (!kfd_restore_wq)
697 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
698 							 WQ_FREEZABLE);
699 
700 	if (!kfd_process_wq || !kfd_restore_wq) {
701 		kfd_process_destroy_wq();
702 		return -ENOMEM;
703 	}
704 
705 	return 0;
706 }
707 
708 void kfd_process_destroy_wq(void)
709 {
710 	if (kfd_process_wq) {
711 		destroy_workqueue(kfd_process_wq);
712 		kfd_process_wq = NULL;
713 	}
714 	if (kfd_restore_wq) {
715 		destroy_workqueue(kfd_restore_wq);
716 		kfd_restore_wq = NULL;
717 	}
718 }
719 
720 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
721 			struct kfd_process_device *pdd, void **kptr)
722 {
723 	struct kfd_node *dev = pdd->dev;
724 
725 	if (kptr && *kptr) {
726 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
727 		*kptr = NULL;
728 	}
729 
730 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
731 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
732 					       NULL);
733 }
734 
735 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
736  *	This function should be only called right after the process
737  *	is created and when kfd_processes_mutex is still being held
738  *	to avoid concurrency. Because of that exclusiveness, we do
739  *	not need to take p->mutex.
740  */
741 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
742 				   uint64_t gpu_va, uint32_t size,
743 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
744 {
745 	struct kfd_node *kdev = pdd->dev;
746 	int err;
747 
748 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
749 						 pdd->drm_priv, mem, NULL,
750 						 flags, false);
751 	if (err)
752 		goto err_alloc_mem;
753 
754 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
755 			pdd->drm_priv);
756 	if (err)
757 		goto err_map_mem;
758 
759 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
760 	if (err) {
761 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
762 		goto sync_memory_failed;
763 	}
764 
765 	if (kptr) {
766 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
767 				(struct kgd_mem *)*mem, kptr, NULL);
768 		if (err) {
769 			pr_debug("Map GTT BO to kernel failed\n");
770 			goto sync_memory_failed;
771 		}
772 	}
773 
774 	return err;
775 
776 sync_memory_failed:
777 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
778 
779 err_map_mem:
780 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
781 					       NULL);
782 err_alloc_mem:
783 	*mem = NULL;
784 	*kptr = NULL;
785 	return err;
786 }
787 
788 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
789  *	process for IB usage The memory reserved is for KFD to submit
790  *	IB to AMDGPU from kernel.  If the memory is reserved
791  *	successfully, ib_kaddr will have the CPU/kernel
792  *	address. Check ib_kaddr before accessing the memory.
793  */
794 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
795 {
796 	struct qcm_process_device *qpd = &pdd->qpd;
797 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
798 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
799 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
800 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
801 	struct kgd_mem *mem;
802 	void *kaddr;
803 	int ret;
804 
805 	if (qpd->ib_kaddr || !qpd->ib_base)
806 		return 0;
807 
808 	/* ib_base is only set for dGPU */
809 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
810 				      &mem, &kaddr);
811 	if (ret)
812 		return ret;
813 
814 	qpd->ib_mem = mem;
815 	qpd->ib_kaddr = kaddr;
816 
817 	return 0;
818 }
819 
820 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
821 {
822 	struct qcm_process_device *qpd = &pdd->qpd;
823 
824 	if (!qpd->ib_kaddr || !qpd->ib_base)
825 		return;
826 
827 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
828 }
829 
830 struct kfd_process *kfd_create_process(struct task_struct *thread)
831 {
832 	struct kfd_process *process;
833 	int ret;
834 
835 	if (!(thread->mm && mmget_not_zero(thread->mm)))
836 		return ERR_PTR(-EINVAL);
837 
838 	/* Only the pthreads threading model is supported. */
839 	if (thread->group_leader->mm != thread->mm) {
840 		mmput(thread->mm);
841 		return ERR_PTR(-EINVAL);
842 	}
843 
844 	/*
845 	 * take kfd processes mutex before starting of process creation
846 	 * so there won't be a case where two threads of the same process
847 	 * create two kfd_process structures
848 	 */
849 	mutex_lock(&kfd_processes_mutex);
850 
851 	if (kfd_is_locked()) {
852 		pr_debug("KFD is locked! Cannot create process");
853 		process = ERR_PTR(-EINVAL);
854 		goto out;
855 	}
856 
857 	/* A prior open of /dev/kfd could have already created the process. */
858 	process = find_process(thread, false);
859 	if (process) {
860 		pr_debug("Process already found\n");
861 	} else {
862 		/* If the process just called exec(3), it is possible that the
863 		 * cleanup of the kfd_process (following the release of the mm
864 		 * of the old process image) is still in the cleanup work queue.
865 		 * Make sure to drain any job before trying to recreate any
866 		 * resource for this process.
867 		 */
868 		flush_workqueue(kfd_process_wq);
869 
870 		process = create_process(thread);
871 		if (IS_ERR(process))
872 			goto out;
873 
874 		if (!procfs.kobj)
875 			goto out;
876 
877 		process->kobj = kfd_alloc_struct(process->kobj);
878 		if (!process->kobj) {
879 			pr_warn("Creating procfs kobject failed");
880 			goto out;
881 		}
882 		ret = kobject_init_and_add(process->kobj, &procfs_type,
883 					   procfs.kobj, "%d",
884 					   (int)process->lead_thread->pid);
885 		if (ret) {
886 			pr_warn("Creating procfs pid directory failed");
887 			kobject_put(process->kobj);
888 			goto out;
889 		}
890 
891 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
892 				      "pasid");
893 
894 		process->kobj_queues = kobject_create_and_add("queues",
895 							process->kobj);
896 		if (!process->kobj_queues)
897 			pr_warn("Creating KFD proc/queues folder failed");
898 
899 		kfd_procfs_add_sysfs_stats(process);
900 		kfd_procfs_add_sysfs_files(process);
901 		kfd_procfs_add_sysfs_counters(process);
902 
903 		init_waitqueue_head(&process->wait_irq_drain);
904 	}
905 out:
906 	if (!IS_ERR(process))
907 		kref_get(&process->ref);
908 	mutex_unlock(&kfd_processes_mutex);
909 	mmput(thread->mm);
910 
911 	return process;
912 }
913 
914 struct kfd_process *kfd_get_process(const struct task_struct *thread)
915 {
916 	struct kfd_process *process;
917 
918 	if (!thread->mm)
919 		return ERR_PTR(-EINVAL);
920 
921 	/* Only the pthreads threading model is supported. */
922 	if (thread->group_leader->mm != thread->mm)
923 		return ERR_PTR(-EINVAL);
924 
925 	process = find_process(thread, false);
926 	if (!process)
927 		return ERR_PTR(-EINVAL);
928 
929 	return process;
930 }
931 
932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
933 {
934 	struct kfd_process *process;
935 
936 	hash_for_each_possible_rcu(kfd_processes_table, process,
937 					kfd_processes, (uintptr_t)mm)
938 		if (process->mm == mm)
939 			return process;
940 
941 	return NULL;
942 }
943 
944 static struct kfd_process *find_process(const struct task_struct *thread,
945 					bool ref)
946 {
947 	struct kfd_process *p;
948 	int idx;
949 
950 	idx = srcu_read_lock(&kfd_processes_srcu);
951 	p = find_process_by_mm(thread->mm);
952 	if (p && ref)
953 		kref_get(&p->ref);
954 	srcu_read_unlock(&kfd_processes_srcu, idx);
955 
956 	return p;
957 }
958 
959 void kfd_unref_process(struct kfd_process *p)
960 {
961 	kref_put(&p->ref, kfd_process_ref_release);
962 }
963 
964 /* This increments the process->ref counter. */
965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
966 {
967 	struct task_struct *task = NULL;
968 	struct kfd_process *p    = NULL;
969 
970 	if (!pid) {
971 		task = current;
972 		get_task_struct(task);
973 	} else {
974 		task = get_pid_task(pid, PIDTYPE_PID);
975 	}
976 
977 	if (task) {
978 		p = find_process(task, true);
979 		put_task_struct(task);
980 	}
981 
982 	return p;
983 }
984 
985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
986 {
987 	struct kfd_process *p = pdd->process;
988 	void *mem;
989 	int id;
990 	int i;
991 
992 	/*
993 	 * Remove all handles from idr and release appropriate
994 	 * local memory object
995 	 */
996 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
997 
998 		for (i = 0; i < p->n_pdds; i++) {
999 			struct kfd_process_device *peer_pdd = p->pdds[i];
1000 
1001 			if (!peer_pdd->drm_priv)
1002 				continue;
1003 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005 		}
1006 
1007 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008 						       pdd->drm_priv, NULL);
1009 		kfd_process_device_remove_obj_handle(pdd, id);
1010 	}
1011 }
1012 
1013 /*
1014  * Just kunmap and unpin signal BO here. It will be freed in
1015  * kfd_process_free_outstanding_kfd_bos()
1016  */
1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018 {
1019 	struct kfd_process_device *pdd;
1020 	struct kfd_node *kdev;
1021 	void *mem;
1022 
1023 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024 	if (!kdev)
1025 		return;
1026 
1027 	mutex_lock(&p->mutex);
1028 
1029 	pdd = kfd_get_process_device_data(kdev, p);
1030 	if (!pdd)
1031 		goto out;
1032 
1033 	mem = kfd_process_device_translate_handle(
1034 		pdd, GET_IDR_HANDLE(p->signal_handle));
1035 	if (!mem)
1036 		goto out;
1037 
1038 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039 
1040 out:
1041 	mutex_unlock(&p->mutex);
1042 }
1043 
1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < p->n_pdds; i++)
1049 		kfd_process_device_free_bos(p->pdds[i]);
1050 }
1051 
1052 static void kfd_process_destroy_pdds(struct kfd_process *p)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < p->n_pdds; i++) {
1057 		struct kfd_process_device *pdd = p->pdds[i];
1058 
1059 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1060 				pdd->dev->id, p->pasid);
1061 
1062 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1063 		kfd_process_device_destroy_ib_mem(pdd);
1064 
1065 		if (pdd->drm_file) {
1066 			amdgpu_amdkfd_gpuvm_release_process_vm(
1067 					pdd->dev->adev, pdd->drm_priv);
1068 			fput(pdd->drm_file);
1069 		}
1070 
1071 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1072 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1073 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1074 
1075 		idr_destroy(&pdd->alloc_idr);
1076 
1077 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1078 
1079 		if (pdd->dev->kfd->shared_resources.enable_mes)
1080 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1081 						   &pdd->proc_ctx_bo);
1082 		/*
1083 		 * before destroying pdd, make sure to report availability
1084 		 * for auto suspend
1085 		 */
1086 		if (pdd->runtime_inuse) {
1087 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1088 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1089 			pdd->runtime_inuse = false;
1090 		}
1091 
1092 		kfree(pdd);
1093 		p->pdds[i] = NULL;
1094 	}
1095 	p->n_pdds = 0;
1096 }
1097 
1098 static void kfd_process_remove_sysfs(struct kfd_process *p)
1099 {
1100 	struct kfd_process_device *pdd;
1101 	int i;
1102 
1103 	if (!p->kobj)
1104 		return;
1105 
1106 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1107 	kobject_del(p->kobj_queues);
1108 	kobject_put(p->kobj_queues);
1109 	p->kobj_queues = NULL;
1110 
1111 	for (i = 0; i < p->n_pdds; i++) {
1112 		pdd = p->pdds[i];
1113 
1114 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1115 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1116 
1117 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1118 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1119 			sysfs_remove_file(pdd->kobj_stats,
1120 					  &pdd->attr_cu_occupancy);
1121 		kobject_del(pdd->kobj_stats);
1122 		kobject_put(pdd->kobj_stats);
1123 		pdd->kobj_stats = NULL;
1124 	}
1125 
1126 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1127 		pdd = p->pdds[i];
1128 
1129 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1130 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1131 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1132 		kobject_del(pdd->kobj_counters);
1133 		kobject_put(pdd->kobj_counters);
1134 		pdd->kobj_counters = NULL;
1135 	}
1136 
1137 	kobject_del(p->kobj);
1138 	kobject_put(p->kobj);
1139 	p->kobj = NULL;
1140 }
1141 
1142 /* No process locking is needed in this function, because the process
1143  * is not findable any more. We must assume that no other thread is
1144  * using it any more, otherwise we couldn't safely free the process
1145  * structure in the end.
1146  */
1147 static void kfd_process_wq_release(struct work_struct *work)
1148 {
1149 	struct kfd_process *p = container_of(work, struct kfd_process,
1150 					     release_work);
1151 	struct dma_fence *ef;
1152 
1153 	kfd_process_dequeue_from_all_devices(p);
1154 	pqm_uninit(&p->pqm);
1155 
1156 	/* Signal the eviction fence after user mode queues are
1157 	 * destroyed. This allows any BOs to be freed without
1158 	 * triggering pointless evictions or waiting for fences.
1159 	 */
1160 	synchronize_rcu();
1161 	ef = rcu_access_pointer(p->ef);
1162 	dma_fence_signal(ef);
1163 
1164 	kfd_process_remove_sysfs(p);
1165 
1166 	kfd_process_kunmap_signal_bo(p);
1167 	kfd_process_free_outstanding_kfd_bos(p);
1168 	svm_range_list_fini(p);
1169 
1170 	kfd_process_destroy_pdds(p);
1171 	dma_fence_put(ef);
1172 
1173 	kfd_event_free_process(p);
1174 
1175 	kfd_pasid_free(p->pasid);
1176 	mutex_destroy(&p->mutex);
1177 
1178 	put_task_struct(p->lead_thread);
1179 
1180 	kfree(p);
1181 }
1182 
1183 static void kfd_process_ref_release(struct kref *ref)
1184 {
1185 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1186 
1187 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1188 	queue_work(kfd_process_wq, &p->release_work);
1189 }
1190 
1191 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1192 {
1193 	int idx = srcu_read_lock(&kfd_processes_srcu);
1194 	struct kfd_process *p = find_process_by_mm(mm);
1195 
1196 	srcu_read_unlock(&kfd_processes_srcu, idx);
1197 
1198 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1199 }
1200 
1201 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1202 {
1203 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1204 }
1205 
1206 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1207 {
1208 	int i;
1209 
1210 	cancel_delayed_work_sync(&p->eviction_work);
1211 	cancel_delayed_work_sync(&p->restore_work);
1212 
1213 	for (i = 0; i < p->n_pdds; i++) {
1214 		struct kfd_process_device *pdd = p->pdds[i];
1215 
1216 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1217 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1218 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1219 	}
1220 
1221 	/* Indicate to other users that MM is no longer valid */
1222 	p->mm = NULL;
1223 	kfd_dbg_trap_disable(p);
1224 
1225 	if (atomic_read(&p->debugged_process_count) > 0) {
1226 		struct kfd_process *target;
1227 		unsigned int temp;
1228 		int idx = srcu_read_lock(&kfd_processes_srcu);
1229 
1230 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1231 			if (target->debugger_process && target->debugger_process == p) {
1232 				mutex_lock_nested(&target->mutex, 1);
1233 				kfd_dbg_trap_disable(target);
1234 				mutex_unlock(&target->mutex);
1235 				if (atomic_read(&p->debugged_process_count) == 0)
1236 					break;
1237 			}
1238 		}
1239 
1240 		srcu_read_unlock(&kfd_processes_srcu, idx);
1241 	}
1242 
1243 	mmu_notifier_put(&p->mmu_notifier);
1244 }
1245 
1246 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1247 					struct mm_struct *mm)
1248 {
1249 	struct kfd_process *p;
1250 
1251 	/*
1252 	 * The kfd_process structure can not be free because the
1253 	 * mmu_notifier srcu is read locked
1254 	 */
1255 	p = container_of(mn, struct kfd_process, mmu_notifier);
1256 	if (WARN_ON(p->mm != mm))
1257 		return;
1258 
1259 	mutex_lock(&kfd_processes_mutex);
1260 	/*
1261 	 * Do early return if table is empty.
1262 	 *
1263 	 * This could potentially happen if this function is called concurrently
1264 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1265 	 *
1266 	 */
1267 	if (hash_empty(kfd_processes_table)) {
1268 		mutex_unlock(&kfd_processes_mutex);
1269 		return;
1270 	}
1271 	hash_del_rcu(&p->kfd_processes);
1272 	mutex_unlock(&kfd_processes_mutex);
1273 	synchronize_srcu(&kfd_processes_srcu);
1274 
1275 	kfd_process_notifier_release_internal(p);
1276 }
1277 
1278 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1279 	.release = kfd_process_notifier_release,
1280 	.alloc_notifier = kfd_process_alloc_notifier,
1281 	.free_notifier = kfd_process_free_notifier,
1282 };
1283 
1284 /*
1285  * This code handles the case when driver is being unloaded before all
1286  * mm_struct are released.  We need to safely free the kfd_process and
1287  * avoid race conditions with mmu_notifier that might try to free them.
1288  *
1289  */
1290 void kfd_cleanup_processes(void)
1291 {
1292 	struct kfd_process *p;
1293 	struct hlist_node *p_temp;
1294 	unsigned int temp;
1295 	HLIST_HEAD(cleanup_list);
1296 
1297 	/*
1298 	 * Move all remaining kfd_process from the process table to a
1299 	 * temp list for processing.   Once done, callback from mmu_notifier
1300 	 * release will not see the kfd_process in the table and do early return,
1301 	 * avoiding double free issues.
1302 	 */
1303 	mutex_lock(&kfd_processes_mutex);
1304 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1305 		hash_del_rcu(&p->kfd_processes);
1306 		synchronize_srcu(&kfd_processes_srcu);
1307 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1308 	}
1309 	mutex_unlock(&kfd_processes_mutex);
1310 
1311 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1312 		kfd_process_notifier_release_internal(p);
1313 
1314 	/*
1315 	 * Ensures that all outstanding free_notifier get called, triggering
1316 	 * the release of the kfd_process struct.
1317 	 */
1318 	mmu_notifier_synchronize();
1319 }
1320 
1321 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1322 {
1323 	unsigned long  offset;
1324 	int i;
1325 
1326 	if (p->has_cwsr)
1327 		return 0;
1328 
1329 	for (i = 0; i < p->n_pdds; i++) {
1330 		struct kfd_node *dev = p->pdds[i]->dev;
1331 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1332 
1333 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1334 			continue;
1335 
1336 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1337 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1338 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1339 			MAP_SHARED, offset);
1340 
1341 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1342 			int err = qpd->tba_addr;
1343 
1344 			dev_err(dev->adev->dev,
1345 				"Failure to set tba address. error %d.\n", err);
1346 			qpd->tba_addr = 0;
1347 			qpd->cwsr_kaddr = NULL;
1348 			return err;
1349 		}
1350 
1351 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1352 
1353 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1354 
1355 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358 	}
1359 
1360 	p->has_cwsr = true;
1361 
1362 	return 0;
1363 }
1364 
1365 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1366 {
1367 	struct kfd_node *dev = pdd->dev;
1368 	struct qcm_process_device *qpd = &pdd->qpd;
1369 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1370 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1371 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1372 	struct kgd_mem *mem;
1373 	void *kaddr;
1374 	int ret;
1375 
1376 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1377 		return 0;
1378 
1379 	/* cwsr_base is only set for dGPU */
1380 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1381 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1382 	if (ret)
1383 		return ret;
1384 
1385 	qpd->cwsr_mem = mem;
1386 	qpd->cwsr_kaddr = kaddr;
1387 	qpd->tba_addr = qpd->cwsr_base;
1388 
1389 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1390 
1391 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1392 					pdd->process->debug_trap_enabled);
1393 
1394 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1395 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1396 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1397 
1398 	return 0;
1399 }
1400 
1401 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1402 {
1403 	struct kfd_node *dev = pdd->dev;
1404 	struct qcm_process_device *qpd = &pdd->qpd;
1405 
1406 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1407 		return;
1408 
1409 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1410 }
1411 
1412 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1413 				  uint64_t tba_addr,
1414 				  uint64_t tma_addr)
1415 {
1416 	if (qpd->cwsr_kaddr) {
1417 		/* KFD trap handler is bound, record as second-level TBA/TMA
1418 		 * in first-level TMA. First-level trap will jump to second.
1419 		 */
1420 		uint64_t *tma =
1421 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1422 		tma[0] = tba_addr;
1423 		tma[1] = tma_addr;
1424 	} else {
1425 		/* No trap handler bound, bind as first-level TBA/TMA. */
1426 		qpd->tba_addr = tba_addr;
1427 		qpd->tma_addr = tma_addr;
1428 	}
1429 }
1430 
1431 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1432 {
1433 	int i;
1434 
1435 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1436 	 * boot time retry setting. Mixing processes with different
1437 	 * XNACK/retry settings can hang the GPU.
1438 	 *
1439 	 * Different GPUs can have different noretry settings depending
1440 	 * on HW bugs or limitations. We need to find at least one
1441 	 * XNACK mode for this process that's compatible with all GPUs.
1442 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1443 	 * built for XNACK-off. On GFXv9 it may perform slower.
1444 	 *
1445 	 * Therefore applications built for XNACK-off can always be
1446 	 * supported and will be our fallback if any GPU does not
1447 	 * support retry.
1448 	 */
1449 	for (i = 0; i < p->n_pdds; i++) {
1450 		struct kfd_node *dev = p->pdds[i]->dev;
1451 
1452 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1453 		 * support the SVM APIs and don't need to be considered
1454 		 * for the XNACK mode selection.
1455 		 */
1456 		if (!KFD_IS_SOC15(dev))
1457 			continue;
1458 		/* Aldebaran can always support XNACK because it can support
1459 		 * per-process XNACK mode selection. But let the dev->noretry
1460 		 * setting still influence the default XNACK mode.
1461 		 */
1462 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1463 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1464 				pr_debug("SRIOV platform xnack not supported\n");
1465 				return false;
1466 			}
1467 			continue;
1468 		}
1469 
1470 		/* GFXv10 and later GPUs do not support shader preemption
1471 		 * during page faults. This can lead to poor QoS for queue
1472 		 * management and memory-manager-related preemptions or
1473 		 * even deadlocks.
1474 		 */
1475 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1476 			return false;
1477 
1478 		if (dev->kfd->noretry)
1479 			return false;
1480 	}
1481 
1482 	return true;
1483 }
1484 
1485 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1486 				     bool enabled)
1487 {
1488 	if (qpd->cwsr_kaddr) {
1489 		uint64_t *tma =
1490 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1491 		tma[2] = enabled;
1492 	}
1493 }
1494 
1495 /*
1496  * On return the kfd_process is fully operational and will be freed when the
1497  * mm is released
1498  */
1499 static struct kfd_process *create_process(const struct task_struct *thread)
1500 {
1501 	struct kfd_process *process;
1502 	struct mmu_notifier *mn;
1503 	int err = -ENOMEM;
1504 
1505 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1506 	if (!process)
1507 		goto err_alloc_process;
1508 
1509 	kref_init(&process->ref);
1510 	mutex_init(&process->mutex);
1511 	process->mm = thread->mm;
1512 	process->lead_thread = thread->group_leader;
1513 	process->n_pdds = 0;
1514 	process->queues_paused = false;
1515 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1516 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1517 	process->last_restore_timestamp = get_jiffies_64();
1518 	err = kfd_event_init_process(process);
1519 	if (err)
1520 		goto err_event_init;
1521 	process->is_32bit_user_mode = in_compat_syscall();
1522 	process->debug_trap_enabled = false;
1523 	process->debugger_process = NULL;
1524 	process->exception_enable_mask = 0;
1525 	atomic_set(&process->debugged_process_count, 0);
1526 	sema_init(&process->runtime_enable_sema, 0);
1527 
1528 	process->pasid = kfd_pasid_alloc();
1529 	if (process->pasid == 0) {
1530 		err = -ENOSPC;
1531 		goto err_alloc_pasid;
1532 	}
1533 
1534 	err = pqm_init(&process->pqm, process);
1535 	if (err != 0)
1536 		goto err_process_pqm_init;
1537 
1538 	/* init process apertures*/
1539 	err = kfd_init_apertures(process);
1540 	if (err != 0)
1541 		goto err_init_apertures;
1542 
1543 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1544 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1545 
1546 	err = svm_range_list_init(process);
1547 	if (err)
1548 		goto err_init_svm_range_list;
1549 
1550 	/* alloc_notifier needs to find the process in the hash table */
1551 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1552 			(uintptr_t)process->mm);
1553 
1554 	/* Avoid free_notifier to start kfd_process_wq_release if
1555 	 * mmu_notifier_get failed because of pending signal.
1556 	 */
1557 	kref_get(&process->ref);
1558 
1559 	/* MMU notifier registration must be the last call that can fail
1560 	 * because after this point we cannot unwind the process creation.
1561 	 * After this point, mmu_notifier_put will trigger the cleanup by
1562 	 * dropping the last process reference in the free_notifier.
1563 	 */
1564 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1565 	if (IS_ERR(mn)) {
1566 		err = PTR_ERR(mn);
1567 		goto err_register_notifier;
1568 	}
1569 	BUG_ON(mn != &process->mmu_notifier);
1570 
1571 	kfd_unref_process(process);
1572 	get_task_struct(process->lead_thread);
1573 
1574 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1575 
1576 	return process;
1577 
1578 err_register_notifier:
1579 	hash_del_rcu(&process->kfd_processes);
1580 	svm_range_list_fini(process);
1581 err_init_svm_range_list:
1582 	kfd_process_free_outstanding_kfd_bos(process);
1583 	kfd_process_destroy_pdds(process);
1584 err_init_apertures:
1585 	pqm_uninit(&process->pqm);
1586 err_process_pqm_init:
1587 	kfd_pasid_free(process->pasid);
1588 err_alloc_pasid:
1589 	kfd_event_free_process(process);
1590 err_event_init:
1591 	mutex_destroy(&process->mutex);
1592 	kfree(process);
1593 err_alloc_process:
1594 	return ERR_PTR(err);
1595 }
1596 
1597 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1598 							struct kfd_process *p)
1599 {
1600 	int i;
1601 
1602 	for (i = 0; i < p->n_pdds; i++)
1603 		if (p->pdds[i]->dev == dev)
1604 			return p->pdds[i];
1605 
1606 	return NULL;
1607 }
1608 
1609 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1610 							struct kfd_process *p)
1611 {
1612 	struct kfd_process_device *pdd = NULL;
1613 	int retval = 0;
1614 
1615 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1616 		return NULL;
1617 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1618 	if (!pdd)
1619 		return NULL;
1620 
1621 	pdd->dev = dev;
1622 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1623 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1624 	pdd->qpd.dqm = dev->dqm;
1625 	pdd->qpd.pqm = &p->pqm;
1626 	pdd->qpd.evicted = 0;
1627 	pdd->qpd.mapped_gws_queue = false;
1628 	pdd->process = p;
1629 	pdd->bound = PDD_UNBOUND;
1630 	pdd->already_dequeued = false;
1631 	pdd->runtime_inuse = false;
1632 	atomic64_set(&pdd->vram_usage, 0);
1633 	pdd->sdma_past_activity_counter = 0;
1634 	pdd->user_gpu_id = dev->id;
1635 	atomic64_set(&pdd->evict_duration_counter, 0);
1636 
1637 	if (dev->kfd->shared_resources.enable_mes) {
1638 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1639 						AMDGPU_MES_PROC_CTX_SIZE,
1640 						&pdd->proc_ctx_bo,
1641 						&pdd->proc_ctx_gpu_addr,
1642 						&pdd->proc_ctx_cpu_ptr,
1643 						false);
1644 		if (retval) {
1645 			dev_err(dev->adev->dev,
1646 				"failed to allocate process context bo\n");
1647 			goto err_free_pdd;
1648 		}
1649 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1650 	}
1651 
1652 	p->pdds[p->n_pdds++] = pdd;
1653 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1654 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1655 							pdd->dev->adev,
1656 							false,
1657 							0);
1658 
1659 	/* Init idr used for memory handle translation */
1660 	idr_init(&pdd->alloc_idr);
1661 
1662 	return pdd;
1663 
1664 err_free_pdd:
1665 	kfree(pdd);
1666 	return NULL;
1667 }
1668 
1669 /**
1670  * kfd_process_device_init_vm - Initialize a VM for a process-device
1671  *
1672  * @pdd: The process-device
1673  * @drm_file: Optional pointer to a DRM file descriptor
1674  *
1675  * If @drm_file is specified, it will be used to acquire the VM from
1676  * that file descriptor. If successful, the @pdd takes ownership of
1677  * the file descriptor.
1678  *
1679  * If @drm_file is NULL, a new VM is created.
1680  *
1681  * Returns 0 on success, -errno on failure.
1682  */
1683 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1684 			       struct file *drm_file)
1685 {
1686 	struct amdgpu_fpriv *drv_priv;
1687 	struct amdgpu_vm *avm;
1688 	struct kfd_process *p;
1689 	struct dma_fence *ef;
1690 	struct kfd_node *dev;
1691 	int ret;
1692 
1693 	if (!drm_file)
1694 		return -EINVAL;
1695 
1696 	if (pdd->drm_priv)
1697 		return -EBUSY;
1698 
1699 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1700 	if (ret)
1701 		return ret;
1702 	avm = &drv_priv->vm;
1703 
1704 	p = pdd->process;
1705 	dev = pdd->dev;
1706 
1707 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1708 						     &p->kgd_process_info,
1709 						     p->ef ? NULL : &ef);
1710 	if (ret) {
1711 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1712 		return ret;
1713 	}
1714 
1715 	if (!p->ef)
1716 		RCU_INIT_POINTER(p->ef, ef);
1717 
1718 	pdd->drm_priv = drm_file->private_data;
1719 
1720 	ret = kfd_process_device_reserve_ib_mem(pdd);
1721 	if (ret)
1722 		goto err_reserve_ib_mem;
1723 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1724 	if (ret)
1725 		goto err_init_cwsr;
1726 
1727 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1728 	if (ret)
1729 		goto err_set_pasid;
1730 
1731 	pdd->drm_file = drm_file;
1732 
1733 	return 0;
1734 
1735 err_set_pasid:
1736 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1737 err_init_cwsr:
1738 	kfd_process_device_destroy_ib_mem(pdd);
1739 err_reserve_ib_mem:
1740 	pdd->drm_priv = NULL;
1741 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1742 
1743 	return ret;
1744 }
1745 
1746 /*
1747  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1748  * to the device.
1749  * Unbinding occurs when the process dies or the device is removed.
1750  *
1751  * Assumes that the process lock is held.
1752  */
1753 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1754 							struct kfd_process *p)
1755 {
1756 	struct kfd_process_device *pdd;
1757 	int err;
1758 
1759 	pdd = kfd_get_process_device_data(dev, p);
1760 	if (!pdd) {
1761 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1762 		return ERR_PTR(-ENOMEM);
1763 	}
1764 
1765 	if (!pdd->drm_priv)
1766 		return ERR_PTR(-ENODEV);
1767 
1768 	/*
1769 	 * signal runtime-pm system to auto resume and prevent
1770 	 * further runtime suspend once device pdd is created until
1771 	 * pdd is destroyed.
1772 	 */
1773 	if (!pdd->runtime_inuse) {
1774 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1775 		if (err < 0) {
1776 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1777 			return ERR_PTR(err);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * make sure that runtime_usage counter is incremented just once
1783 	 * per pdd
1784 	 */
1785 	pdd->runtime_inuse = true;
1786 
1787 	return pdd;
1788 }
1789 
1790 /* Create specific handle mapped to mem from process local memory idr
1791  * Assumes that the process lock is held.
1792  */
1793 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1794 					void *mem)
1795 {
1796 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1797 }
1798 
1799 /* Translate specific handle from process local memory idr
1800  * Assumes that the process lock is held.
1801  */
1802 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1803 					int handle)
1804 {
1805 	if (handle < 0)
1806 		return NULL;
1807 
1808 	return idr_find(&pdd->alloc_idr, handle);
1809 }
1810 
1811 /* Remove specific handle from process local memory idr
1812  * Assumes that the process lock is held.
1813  */
1814 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1815 					int handle)
1816 {
1817 	if (handle >= 0)
1818 		idr_remove(&pdd->alloc_idr, handle);
1819 }
1820 
1821 /* This increments the process->ref counter. */
1822 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1823 {
1824 	struct kfd_process *p, *ret_p = NULL;
1825 	unsigned int temp;
1826 
1827 	int idx = srcu_read_lock(&kfd_processes_srcu);
1828 
1829 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1830 		if (p->pasid == pasid) {
1831 			kref_get(&p->ref);
1832 			ret_p = p;
1833 			break;
1834 		}
1835 	}
1836 
1837 	srcu_read_unlock(&kfd_processes_srcu, idx);
1838 
1839 	return ret_p;
1840 }
1841 
1842 /* This increments the process->ref counter. */
1843 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1844 {
1845 	struct kfd_process *p;
1846 
1847 	int idx = srcu_read_lock(&kfd_processes_srcu);
1848 
1849 	p = find_process_by_mm(mm);
1850 	if (p)
1851 		kref_get(&p->ref);
1852 
1853 	srcu_read_unlock(&kfd_processes_srcu, idx);
1854 
1855 	return p;
1856 }
1857 
1858 /* kfd_process_evict_queues - Evict all user queues of a process
1859  *
1860  * Eviction is reference-counted per process-device. This means multiple
1861  * evictions from different sources can be nested safely.
1862  */
1863 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1864 {
1865 	int r = 0;
1866 	int i;
1867 	unsigned int n_evicted = 0;
1868 
1869 	for (i = 0; i < p->n_pdds; i++) {
1870 		struct kfd_process_device *pdd = p->pdds[i];
1871 		struct device *dev = pdd->dev->adev->dev;
1872 
1873 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1874 					     trigger);
1875 
1876 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1877 							    &pdd->qpd);
1878 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1879 		 * we would like to set all the queues to be in evicted state to prevent
1880 		 * them been add back since they actually not be saved right now.
1881 		 */
1882 		if (r && r != -EIO) {
1883 			dev_err(dev, "Failed to evict process queues\n");
1884 			goto fail;
1885 		}
1886 		n_evicted++;
1887 
1888 		pdd->dev->dqm->is_hws_hang = false;
1889 	}
1890 
1891 	return r;
1892 
1893 fail:
1894 	/* To keep state consistent, roll back partial eviction by
1895 	 * restoring queues
1896 	 */
1897 	for (i = 0; i < p->n_pdds; i++) {
1898 		struct kfd_process_device *pdd = p->pdds[i];
1899 
1900 		if (n_evicted == 0)
1901 			break;
1902 
1903 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1904 
1905 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1906 							      &pdd->qpd))
1907 			dev_err(pdd->dev->adev->dev,
1908 				"Failed to restore queues\n");
1909 
1910 		n_evicted--;
1911 	}
1912 
1913 	return r;
1914 }
1915 
1916 /* kfd_process_restore_queues - Restore all user queues of a process */
1917 int kfd_process_restore_queues(struct kfd_process *p)
1918 {
1919 	int r, ret = 0;
1920 	int i;
1921 
1922 	for (i = 0; i < p->n_pdds; i++) {
1923 		struct kfd_process_device *pdd = p->pdds[i];
1924 		struct device *dev = pdd->dev->adev->dev;
1925 
1926 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1927 
1928 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1929 							      &pdd->qpd);
1930 		if (r) {
1931 			dev_err(dev, "Failed to restore process queues\n");
1932 			if (!ret)
1933 				ret = r;
1934 		}
1935 	}
1936 
1937 	return ret;
1938 }
1939 
1940 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1941 {
1942 	int i;
1943 
1944 	for (i = 0; i < p->n_pdds; i++)
1945 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1946 			return i;
1947 	return -EINVAL;
1948 }
1949 
1950 int
1951 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1952 			    uint32_t *gpuid, uint32_t *gpuidx)
1953 {
1954 	int i;
1955 
1956 	for (i = 0; i < p->n_pdds; i++)
1957 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1958 			*gpuid = p->pdds[i]->user_gpu_id;
1959 			*gpuidx = i;
1960 			return 0;
1961 		}
1962 	return -EINVAL;
1963 }
1964 
1965 static int signal_eviction_fence(struct kfd_process *p)
1966 {
1967 	struct dma_fence *ef;
1968 	int ret;
1969 
1970 	rcu_read_lock();
1971 	ef = dma_fence_get_rcu_safe(&p->ef);
1972 	rcu_read_unlock();
1973 	if (!ef)
1974 		return -EINVAL;
1975 
1976 	ret = dma_fence_signal(ef);
1977 	dma_fence_put(ef);
1978 
1979 	return ret;
1980 }
1981 
1982 static void evict_process_worker(struct work_struct *work)
1983 {
1984 	int ret;
1985 	struct kfd_process *p;
1986 	struct delayed_work *dwork;
1987 
1988 	dwork = to_delayed_work(work);
1989 
1990 	/* Process termination destroys this worker thread. So during the
1991 	 * lifetime of this thread, kfd_process p will be valid
1992 	 */
1993 	p = container_of(dwork, struct kfd_process, eviction_work);
1994 
1995 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1996 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1997 	if (!ret) {
1998 		/* If another thread already signaled the eviction fence,
1999 		 * they are responsible stopping the queues and scheduling
2000 		 * the restore work.
2001 		 */
2002 		if (signal_eviction_fence(p) ||
2003 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2004 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2005 			kfd_process_restore_queues(p);
2006 
2007 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
2008 	} else
2009 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
2010 }
2011 
2012 static int restore_process_helper(struct kfd_process *p)
2013 {
2014 	int ret = 0;
2015 
2016 	/* VMs may not have been acquired yet during debugging. */
2017 	if (p->kgd_process_info) {
2018 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2019 			p->kgd_process_info, &p->ef);
2020 		if (ret)
2021 			return ret;
2022 	}
2023 
2024 	ret = kfd_process_restore_queues(p);
2025 	if (!ret)
2026 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2027 	else
2028 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2029 
2030 	return ret;
2031 }
2032 
2033 static void restore_process_worker(struct work_struct *work)
2034 {
2035 	struct delayed_work *dwork;
2036 	struct kfd_process *p;
2037 	int ret = 0;
2038 
2039 	dwork = to_delayed_work(work);
2040 
2041 	/* Process termination destroys this worker thread. So during the
2042 	 * lifetime of this thread, kfd_process p will be valid
2043 	 */
2044 	p = container_of(dwork, struct kfd_process, restore_work);
2045 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2046 
2047 	/* Setting last_restore_timestamp before successful restoration.
2048 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2049 	 * before KFD BOs are unreserved. If not, the process can be evicted
2050 	 * again before the timestamp is set.
2051 	 * If restore fails, the timestamp will be set again in the next
2052 	 * attempt. This would mean that the minimum GPU quanta would be
2053 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2054 	 * functions)
2055 	 */
2056 
2057 	p->last_restore_timestamp = get_jiffies_64();
2058 
2059 	ret = restore_process_helper(p);
2060 	if (ret) {
2061 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2062 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2063 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2064 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2065 			kfd_process_restore_queues(p);
2066 	}
2067 }
2068 
2069 void kfd_suspend_all_processes(void)
2070 {
2071 	struct kfd_process *p;
2072 	unsigned int temp;
2073 	int idx = srcu_read_lock(&kfd_processes_srcu);
2074 
2075 	WARN(debug_evictions, "Evicting all processes");
2076 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2077 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2078 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2079 		signal_eviction_fence(p);
2080 	}
2081 	srcu_read_unlock(&kfd_processes_srcu, idx);
2082 }
2083 
2084 int kfd_resume_all_processes(void)
2085 {
2086 	struct kfd_process *p;
2087 	unsigned int temp;
2088 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2089 
2090 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2091 		if (restore_process_helper(p)) {
2092 			pr_err("Restore process %d failed during resume\n",
2093 			       p->pasid);
2094 			ret = -EFAULT;
2095 		}
2096 	}
2097 	srcu_read_unlock(&kfd_processes_srcu, idx);
2098 	return ret;
2099 }
2100 
2101 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2102 			  struct vm_area_struct *vma)
2103 {
2104 	struct kfd_process_device *pdd;
2105 	struct qcm_process_device *qpd;
2106 
2107 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2108 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2109 		return -EINVAL;
2110 	}
2111 
2112 	pdd = kfd_get_process_device_data(dev, process);
2113 	if (!pdd)
2114 		return -EINVAL;
2115 	qpd = &pdd->qpd;
2116 
2117 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2118 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2119 	if (!qpd->cwsr_kaddr) {
2120 		dev_err(dev->adev->dev,
2121 			"Error allocating per process CWSR buffer.\n");
2122 		return -ENOMEM;
2123 	}
2124 
2125 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2126 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2127 	/* Mapping pages to user process */
2128 	return remap_pfn_range(vma, vma->vm_start,
2129 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2130 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2131 }
2132 
2133 /* assumes caller holds process lock. */
2134 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2135 {
2136 	uint32_t irq_drain_fence[8];
2137 	uint8_t node_id = 0;
2138 	int r = 0;
2139 
2140 	if (!KFD_IS_SOC15(pdd->dev))
2141 		return 0;
2142 
2143 	pdd->process->irq_drain_is_open = true;
2144 
2145 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2146 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2147 							KFD_IRQ_FENCE_CLIENTID;
2148 	irq_drain_fence[3] = pdd->process->pasid;
2149 
2150 	/*
2151 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2152 	 */
2153 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2154 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2155 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2156 		irq_drain_fence[3] |= node_id << 16;
2157 	}
2158 
2159 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2160 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2161 						     irq_drain_fence)) {
2162 		pdd->process->irq_drain_is_open = false;
2163 		return 0;
2164 	}
2165 
2166 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2167 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2168 	if (r)
2169 		pdd->process->irq_drain_is_open = false;
2170 
2171 	return r;
2172 }
2173 
2174 void kfd_process_close_interrupt_drain(unsigned int pasid)
2175 {
2176 	struct kfd_process *p;
2177 
2178 	p = kfd_lookup_process_by_pasid(pasid);
2179 
2180 	if (!p)
2181 		return;
2182 
2183 	WRITE_ONCE(p->irq_drain_is_open, false);
2184 	wake_up_all(&p->wait_irq_drain);
2185 	kfd_unref_process(p);
2186 }
2187 
2188 struct send_exception_work_handler_workarea {
2189 	struct work_struct work;
2190 	struct kfd_process *p;
2191 	unsigned int queue_id;
2192 	uint64_t error_reason;
2193 };
2194 
2195 static void send_exception_work_handler(struct work_struct *work)
2196 {
2197 	struct send_exception_work_handler_workarea *workarea;
2198 	struct kfd_process *p;
2199 	struct queue *q;
2200 	struct mm_struct *mm;
2201 	struct kfd_context_save_area_header __user *csa_header;
2202 	uint64_t __user *err_payload_ptr;
2203 	uint64_t cur_err;
2204 	uint32_t ev_id;
2205 
2206 	workarea = container_of(work,
2207 				struct send_exception_work_handler_workarea,
2208 				work);
2209 	p = workarea->p;
2210 
2211 	mm = get_task_mm(p->lead_thread);
2212 
2213 	if (!mm)
2214 		return;
2215 
2216 	kthread_use_mm(mm);
2217 
2218 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2219 
2220 	if (!q)
2221 		goto out;
2222 
2223 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2224 
2225 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2226 	get_user(cur_err, err_payload_ptr);
2227 	cur_err |= workarea->error_reason;
2228 	put_user(cur_err, err_payload_ptr);
2229 	get_user(ev_id, &csa_header->err_event_id);
2230 
2231 	kfd_set_event(p, ev_id);
2232 
2233 out:
2234 	kthread_unuse_mm(mm);
2235 	mmput(mm);
2236 }
2237 
2238 int kfd_send_exception_to_runtime(struct kfd_process *p,
2239 			unsigned int queue_id,
2240 			uint64_t error_reason)
2241 {
2242 	struct send_exception_work_handler_workarea worker;
2243 
2244 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2245 
2246 	worker.p = p;
2247 	worker.queue_id = queue_id;
2248 	worker.error_reason = error_reason;
2249 
2250 	schedule_work(&worker.work);
2251 	flush_work(&worker.work);
2252 	destroy_work_on_stack(&worker.work);
2253 
2254 	return 0;
2255 }
2256 
2257 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2258 {
2259 	int i;
2260 
2261 	if (gpu_id) {
2262 		for (i = 0; i < p->n_pdds; i++) {
2263 			struct kfd_process_device *pdd = p->pdds[i];
2264 
2265 			if (pdd->user_gpu_id == gpu_id)
2266 				return pdd;
2267 		}
2268 	}
2269 	return NULL;
2270 }
2271 
2272 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2273 {
2274 	int i;
2275 
2276 	if (!actual_gpu_id)
2277 		return 0;
2278 
2279 	for (i = 0; i < p->n_pdds; i++) {
2280 		struct kfd_process_device *pdd = p->pdds[i];
2281 
2282 		if (pdd->dev->id == actual_gpu_id)
2283 			return pdd->user_gpu_id;
2284 	}
2285 	return -EINVAL;
2286 }
2287 
2288 #if defined(CONFIG_DEBUG_FS)
2289 
2290 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2291 {
2292 	struct kfd_process *p;
2293 	unsigned int temp;
2294 	int r = 0;
2295 
2296 	int idx = srcu_read_lock(&kfd_processes_srcu);
2297 
2298 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2299 		seq_printf(m, "Process %d PASID 0x%x:\n",
2300 			   p->lead_thread->tgid, p->pasid);
2301 
2302 		mutex_lock(&p->mutex);
2303 		r = pqm_debugfs_mqds(m, &p->pqm);
2304 		mutex_unlock(&p->mutex);
2305 
2306 		if (r)
2307 			break;
2308 	}
2309 
2310 	srcu_read_unlock(&kfd_processes_srcu, idx);
2311 
2312 	return r;
2313 }
2314 
2315 #endif
2316