1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "kfd_smi_events.h" 45 #include "kfd_debug.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n", 286 dev->id, (int)proc->lead_thread->pid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) 331 return snprintf(buffer, PAGE_SIZE, "%d\n", 0); 332 else if (strncmp(attr->name, "vram_", 5) == 0) { 333 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 334 attr_vram); 335 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 336 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 337 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 338 attr_sdma); 339 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 340 341 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 342 kfd_sdma_activity_worker); 343 344 sdma_activity_work_handler.pdd = pdd; 345 sdma_activity_work_handler.sdma_activity_counter = 0; 346 347 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 348 349 flush_work(&sdma_activity_work_handler.sdma_activity_work); 350 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 351 352 return snprintf(buffer, PAGE_SIZE, "%llu\n", 353 (sdma_activity_work_handler.sdma_activity_counter)/ 354 SDMA_ACTIVITY_DIVISOR); 355 } else { 356 pr_err("Invalid attribute"); 357 return -EINVAL; 358 } 359 360 return 0; 361 } 362 363 static void kfd_procfs_kobj_release(struct kobject *kobj) 364 { 365 kfree(kobj); 366 } 367 368 static const struct sysfs_ops kfd_procfs_ops = { 369 .show = kfd_procfs_show, 370 }; 371 372 static const struct kobj_type procfs_type = { 373 .release = kfd_procfs_kobj_release, 374 .sysfs_ops = &kfd_procfs_ops, 375 }; 376 377 void kfd_procfs_init(void) 378 { 379 int ret = 0; 380 381 procfs.kobj = kfd_alloc_struct(procfs.kobj); 382 if (!procfs.kobj) 383 return; 384 385 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 386 &kfd_device->kobj, "proc"); 387 if (ret) { 388 pr_warn("Could not create procfs proc folder"); 389 /* If we fail to create the procfs, clean up */ 390 kfd_procfs_shutdown(); 391 } 392 } 393 394 void kfd_procfs_shutdown(void) 395 { 396 if (procfs.kobj) { 397 kobject_del(procfs.kobj); 398 kobject_put(procfs.kobj); 399 procfs.kobj = NULL; 400 } 401 } 402 403 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 404 struct attribute *attr, char *buffer) 405 { 406 struct queue *q = container_of(kobj, struct queue, kobj); 407 408 if (!strcmp(attr->name, "size")) 409 return snprintf(buffer, PAGE_SIZE, "%llu", 410 q->properties.queue_size); 411 else if (!strcmp(attr->name, "type")) 412 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 413 else if (!strcmp(attr->name, "gpuid")) 414 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 415 else 416 pr_err("Invalid attribute"); 417 418 return 0; 419 } 420 421 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 422 struct attribute *attr, char *buffer) 423 { 424 if (strcmp(attr->name, "evicted_ms") == 0) { 425 struct kfd_process_device *pdd = container_of(attr, 426 struct kfd_process_device, 427 attr_evict); 428 uint64_t evict_jiffies; 429 430 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 431 432 return snprintf(buffer, 433 PAGE_SIZE, 434 "%llu\n", 435 jiffies64_to_msecs(evict_jiffies)); 436 437 /* Sysfs handle that gets CU occupancy is per device */ 438 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 439 return kfd_get_cu_occupancy(attr, buffer); 440 } else { 441 pr_err("Invalid attribute"); 442 } 443 444 return 0; 445 } 446 447 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 448 struct attribute *attr, char *buf) 449 { 450 struct kfd_process_device *pdd; 451 452 if (!strcmp(attr->name, "faults")) { 453 pdd = container_of(attr, struct kfd_process_device, 454 attr_faults); 455 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 456 } 457 if (!strcmp(attr->name, "page_in")) { 458 pdd = container_of(attr, struct kfd_process_device, 459 attr_page_in); 460 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 461 } 462 if (!strcmp(attr->name, "page_out")) { 463 pdd = container_of(attr, struct kfd_process_device, 464 attr_page_out); 465 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 466 } 467 return 0; 468 } 469 470 static struct attribute attr_queue_size = { 471 .name = "size", 472 .mode = KFD_SYSFS_FILE_MODE 473 }; 474 475 static struct attribute attr_queue_type = { 476 .name = "type", 477 .mode = KFD_SYSFS_FILE_MODE 478 }; 479 480 static struct attribute attr_queue_gpuid = { 481 .name = "gpuid", 482 .mode = KFD_SYSFS_FILE_MODE 483 }; 484 485 static struct attribute *procfs_queue_attrs[] = { 486 &attr_queue_size, 487 &attr_queue_type, 488 &attr_queue_gpuid, 489 NULL 490 }; 491 ATTRIBUTE_GROUPS(procfs_queue); 492 493 static const struct sysfs_ops procfs_queue_ops = { 494 .show = kfd_procfs_queue_show, 495 }; 496 497 static const struct kobj_type procfs_queue_type = { 498 .sysfs_ops = &procfs_queue_ops, 499 .default_groups = procfs_queue_groups, 500 }; 501 502 static const struct sysfs_ops procfs_stats_ops = { 503 .show = kfd_procfs_stats_show, 504 }; 505 506 static const struct kobj_type procfs_stats_type = { 507 .sysfs_ops = &procfs_stats_ops, 508 .release = kfd_procfs_kobj_release, 509 }; 510 511 static const struct sysfs_ops sysfs_counters_ops = { 512 .show = kfd_sysfs_counters_show, 513 }; 514 515 static const struct kobj_type sysfs_counters_type = { 516 .sysfs_ops = &sysfs_counters_ops, 517 .release = kfd_procfs_kobj_release, 518 }; 519 520 int kfd_procfs_add_queue(struct queue *q) 521 { 522 struct kfd_process *proc; 523 int ret; 524 525 if (!q || !q->process) 526 return -EINVAL; 527 proc = q->process; 528 529 /* Create proc/<pid>/queues/<queue id> folder */ 530 if (!proc->kobj_queues) 531 return -EFAULT; 532 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 533 proc->kobj_queues, "%u", q->properties.queue_id); 534 if (ret < 0) { 535 pr_warn("Creating proc/<pid>/queues/%u failed", 536 q->properties.queue_id); 537 kobject_put(&q->kobj); 538 return ret; 539 } 540 541 return 0; 542 } 543 544 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 545 char *name) 546 { 547 int ret; 548 549 if (!kobj || !attr || !name) 550 return; 551 552 attr->name = name; 553 attr->mode = KFD_SYSFS_FILE_MODE; 554 sysfs_attr_init(attr); 555 556 ret = sysfs_create_file(kobj, attr); 557 if (ret) 558 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 559 } 560 561 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 562 { 563 int ret; 564 int i; 565 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 566 567 if (!p || !p->kobj) 568 return; 569 570 /* 571 * Create sysfs files for each GPU: 572 * - proc/<pid>/stats_<gpuid>/ 573 * - proc/<pid>/stats_<gpuid>/evicted_ms 574 * - proc/<pid>/stats_<gpuid>/cu_occupancy 575 */ 576 for (i = 0; i < p->n_pdds; i++) { 577 struct kfd_process_device *pdd = p->pdds[i]; 578 579 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 580 "stats_%u", pdd->dev->id); 581 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 582 if (!pdd->kobj_stats) 583 return; 584 585 ret = kobject_init_and_add(pdd->kobj_stats, 586 &procfs_stats_type, 587 p->kobj, 588 stats_dir_filename); 589 590 if (ret) { 591 pr_warn("Creating KFD proc/stats_%s folder failed", 592 stats_dir_filename); 593 kobject_put(pdd->kobj_stats); 594 pdd->kobj_stats = NULL; 595 return; 596 } 597 598 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 599 "evicted_ms"); 600 /* Add sysfs file to report compute unit occupancy */ 601 if (pdd->dev->kfd2kgd->get_cu_occupancy) 602 kfd_sysfs_create_file(pdd->kobj_stats, 603 &pdd->attr_cu_occupancy, 604 "cu_occupancy"); 605 } 606 } 607 608 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 609 { 610 int ret = 0; 611 int i; 612 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 613 614 if (!p || !p->kobj) 615 return; 616 617 /* 618 * Create sysfs files for each GPU which supports SVM 619 * - proc/<pid>/counters_<gpuid>/ 620 * - proc/<pid>/counters_<gpuid>/faults 621 * - proc/<pid>/counters_<gpuid>/page_in 622 * - proc/<pid>/counters_<gpuid>/page_out 623 */ 624 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 625 struct kfd_process_device *pdd = p->pdds[i]; 626 struct kobject *kobj_counters; 627 628 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 629 "counters_%u", pdd->dev->id); 630 kobj_counters = kfd_alloc_struct(kobj_counters); 631 if (!kobj_counters) 632 return; 633 634 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 635 p->kobj, counters_dir_filename); 636 if (ret) { 637 pr_warn("Creating KFD proc/%s folder failed", 638 counters_dir_filename); 639 kobject_put(kobj_counters); 640 return; 641 } 642 643 pdd->kobj_counters = kobj_counters; 644 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 645 "faults"); 646 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 647 "page_in"); 648 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 649 "page_out"); 650 } 651 } 652 653 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 654 { 655 int i; 656 657 if (!p || !p->kobj) 658 return; 659 660 /* 661 * Create sysfs files for each GPU: 662 * - proc/<pid>/vram_<gpuid> 663 * - proc/<pid>/sdma_<gpuid> 664 */ 665 for (i = 0; i < p->n_pdds; i++) { 666 struct kfd_process_device *pdd = p->pdds[i]; 667 668 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 669 pdd->dev->id); 670 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 671 pdd->vram_filename); 672 673 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 674 pdd->dev->id); 675 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 676 pdd->sdma_filename); 677 } 678 } 679 680 void kfd_procfs_del_queue(struct queue *q) 681 { 682 if (!q) 683 return; 684 685 kobject_del(&q->kobj); 686 kobject_put(&q->kobj); 687 } 688 689 int kfd_process_create_wq(void) 690 { 691 if (!kfd_process_wq) 692 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 693 if (!kfd_restore_wq) 694 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 695 WQ_FREEZABLE); 696 697 if (!kfd_process_wq || !kfd_restore_wq) { 698 kfd_process_destroy_wq(); 699 return -ENOMEM; 700 } 701 702 return 0; 703 } 704 705 void kfd_process_destroy_wq(void) 706 { 707 if (kfd_process_wq) { 708 destroy_workqueue(kfd_process_wq); 709 kfd_process_wq = NULL; 710 } 711 if (kfd_restore_wq) { 712 destroy_workqueue(kfd_restore_wq); 713 kfd_restore_wq = NULL; 714 } 715 } 716 717 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 718 struct kfd_process_device *pdd, void **kptr) 719 { 720 struct kfd_node *dev = pdd->dev; 721 722 if (kptr && *kptr) { 723 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 724 *kptr = NULL; 725 } 726 727 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 728 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 729 NULL); 730 } 731 732 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 733 * This function should be only called right after the process 734 * is created and when kfd_processes_mutex is still being held 735 * to avoid concurrency. Because of that exclusiveness, we do 736 * not need to take p->mutex. 737 */ 738 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 739 uint64_t gpu_va, uint32_t size, 740 uint32_t flags, struct kgd_mem **mem, void **kptr) 741 { 742 struct kfd_node *kdev = pdd->dev; 743 int err; 744 745 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 746 pdd->drm_priv, mem, NULL, 747 flags, false); 748 if (err) 749 goto err_alloc_mem; 750 751 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 752 pdd->drm_priv); 753 if (err) 754 goto err_map_mem; 755 756 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 757 if (err) { 758 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 759 goto sync_memory_failed; 760 } 761 762 if (kptr) { 763 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 764 (struct kgd_mem *)*mem, kptr, NULL); 765 if (err) { 766 pr_debug("Map GTT BO to kernel failed\n"); 767 goto sync_memory_failed; 768 } 769 } 770 771 return err; 772 773 sync_memory_failed: 774 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 775 776 err_map_mem: 777 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 778 NULL); 779 err_alloc_mem: 780 *mem = NULL; 781 *kptr = NULL; 782 return err; 783 } 784 785 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 786 * process for IB usage The memory reserved is for KFD to submit 787 * IB to AMDGPU from kernel. If the memory is reserved 788 * successfully, ib_kaddr will have the CPU/kernel 789 * address. Check ib_kaddr before accessing the memory. 790 */ 791 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 792 { 793 struct qcm_process_device *qpd = &pdd->qpd; 794 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 795 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 796 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 797 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 798 struct kgd_mem *mem; 799 void *kaddr; 800 int ret; 801 802 if (qpd->ib_kaddr || !qpd->ib_base) 803 return 0; 804 805 /* ib_base is only set for dGPU */ 806 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 807 &mem, &kaddr); 808 if (ret) 809 return ret; 810 811 qpd->ib_mem = mem; 812 qpd->ib_kaddr = kaddr; 813 814 return 0; 815 } 816 817 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 818 { 819 struct qcm_process_device *qpd = &pdd->qpd; 820 821 if (!qpd->ib_kaddr || !qpd->ib_base) 822 return; 823 824 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 825 } 826 827 struct kfd_process *kfd_create_process(struct task_struct *thread) 828 { 829 struct kfd_process *process; 830 int ret; 831 832 if (!(thread->mm && mmget_not_zero(thread->mm))) 833 return ERR_PTR(-EINVAL); 834 835 /* Only the pthreads threading model is supported. */ 836 if (thread->group_leader->mm != thread->mm) { 837 mmput(thread->mm); 838 return ERR_PTR(-EINVAL); 839 } 840 841 /* 842 * take kfd processes mutex before starting of process creation 843 * so there won't be a case where two threads of the same process 844 * create two kfd_process structures 845 */ 846 mutex_lock(&kfd_processes_mutex); 847 848 if (kfd_is_locked()) { 849 pr_debug("KFD is locked! Cannot create process"); 850 process = ERR_PTR(-EINVAL); 851 goto out; 852 } 853 854 /* A prior open of /dev/kfd could have already created the process. 855 * find_process will increase process kref in this case 856 */ 857 process = find_process(thread, true); 858 if (process) { 859 pr_debug("Process already found\n"); 860 } else { 861 /* If the process just called exec(3), it is possible that the 862 * cleanup of the kfd_process (following the release of the mm 863 * of the old process image) is still in the cleanup work queue. 864 * Make sure to drain any job before trying to recreate any 865 * resource for this process. 866 */ 867 flush_workqueue(kfd_process_wq); 868 869 process = create_process(thread); 870 if (IS_ERR(process)) 871 goto out; 872 873 if (!procfs.kobj) 874 goto out; 875 876 process->kobj = kfd_alloc_struct(process->kobj); 877 if (!process->kobj) { 878 pr_warn("Creating procfs kobject failed"); 879 goto out; 880 } 881 ret = kobject_init_and_add(process->kobj, &procfs_type, 882 procfs.kobj, "%d", 883 (int)process->lead_thread->pid); 884 if (ret) { 885 pr_warn("Creating procfs pid directory failed"); 886 kobject_put(process->kobj); 887 goto out; 888 } 889 890 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 891 "pasid"); 892 893 process->kobj_queues = kobject_create_and_add("queues", 894 process->kobj); 895 if (!process->kobj_queues) 896 pr_warn("Creating KFD proc/queues folder failed"); 897 898 kfd_procfs_add_sysfs_stats(process); 899 kfd_procfs_add_sysfs_files(process); 900 kfd_procfs_add_sysfs_counters(process); 901 902 init_waitqueue_head(&process->wait_irq_drain); 903 } 904 out: 905 mutex_unlock(&kfd_processes_mutex); 906 mmput(thread->mm); 907 908 return process; 909 } 910 911 struct kfd_process *kfd_get_process(const struct task_struct *thread) 912 { 913 struct kfd_process *process; 914 915 if (!thread->mm) 916 return ERR_PTR(-EINVAL); 917 918 /* Only the pthreads threading model is supported. */ 919 if (thread->group_leader->mm != thread->mm) 920 return ERR_PTR(-EINVAL); 921 922 process = find_process(thread, false); 923 if (!process) 924 return ERR_PTR(-EINVAL); 925 926 return process; 927 } 928 929 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 930 { 931 struct kfd_process *process; 932 933 hash_for_each_possible_rcu(kfd_processes_table, process, 934 kfd_processes, (uintptr_t)mm) 935 if (process->mm == mm) 936 return process; 937 938 return NULL; 939 } 940 941 static struct kfd_process *find_process(const struct task_struct *thread, 942 bool ref) 943 { 944 struct kfd_process *p; 945 int idx; 946 947 idx = srcu_read_lock(&kfd_processes_srcu); 948 p = find_process_by_mm(thread->mm); 949 if (p && ref) 950 kref_get(&p->ref); 951 srcu_read_unlock(&kfd_processes_srcu, idx); 952 953 return p; 954 } 955 956 void kfd_unref_process(struct kfd_process *p) 957 { 958 kref_put(&p->ref, kfd_process_ref_release); 959 } 960 961 /* This increments the process->ref counter. */ 962 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 963 { 964 struct task_struct *task = NULL; 965 struct kfd_process *p = NULL; 966 967 if (!pid) { 968 task = current; 969 get_task_struct(task); 970 } else { 971 task = get_pid_task(pid, PIDTYPE_PID); 972 } 973 974 if (task) { 975 p = find_process(task, true); 976 put_task_struct(task); 977 } 978 979 return p; 980 } 981 982 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 983 { 984 struct kfd_process *p = pdd->process; 985 void *mem; 986 int id; 987 int i; 988 989 /* 990 * Remove all handles from idr and release appropriate 991 * local memory object 992 */ 993 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 994 995 for (i = 0; i < p->n_pdds; i++) { 996 struct kfd_process_device *peer_pdd = p->pdds[i]; 997 998 if (!peer_pdd->drm_priv) 999 continue; 1000 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1001 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1002 } 1003 1004 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1005 pdd->drm_priv, NULL); 1006 kfd_process_device_remove_obj_handle(pdd, id); 1007 } 1008 } 1009 1010 /* 1011 * Just kunmap and unpin signal BO here. It will be freed in 1012 * kfd_process_free_outstanding_kfd_bos() 1013 */ 1014 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1015 { 1016 struct kfd_process_device *pdd; 1017 struct kfd_node *kdev; 1018 void *mem; 1019 1020 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1021 if (!kdev) 1022 return; 1023 1024 mutex_lock(&p->mutex); 1025 1026 pdd = kfd_get_process_device_data(kdev, p); 1027 if (!pdd) 1028 goto out; 1029 1030 mem = kfd_process_device_translate_handle( 1031 pdd, GET_IDR_HANDLE(p->signal_handle)); 1032 if (!mem) 1033 goto out; 1034 1035 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1036 1037 out: 1038 mutex_unlock(&p->mutex); 1039 } 1040 1041 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1042 { 1043 int i; 1044 1045 for (i = 0; i < p->n_pdds; i++) 1046 kfd_process_device_free_bos(p->pdds[i]); 1047 } 1048 1049 static void kfd_process_destroy_pdds(struct kfd_process *p) 1050 { 1051 int i; 1052 1053 for (i = 0; i < p->n_pdds; i++) { 1054 struct kfd_process_device *pdd = p->pdds[i]; 1055 1056 pr_debug("Releasing pdd (topology id %d, for pid %d)\n", 1057 pdd->dev->id, p->lead_thread->pid); 1058 kfd_process_device_destroy_cwsr_dgpu(pdd); 1059 kfd_process_device_destroy_ib_mem(pdd); 1060 1061 if (pdd->drm_file) 1062 fput(pdd->drm_file); 1063 1064 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1065 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1066 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1067 1068 idr_destroy(&pdd->alloc_idr); 1069 1070 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1071 1072 if (pdd->dev->kfd->shared_resources.enable_mes && 1073 pdd->proc_ctx_cpu_ptr) 1074 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1075 &pdd->proc_ctx_bo); 1076 /* 1077 * before destroying pdd, make sure to report availability 1078 * for auto suspend 1079 */ 1080 if (pdd->runtime_inuse) { 1081 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1082 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1083 pdd->runtime_inuse = false; 1084 } 1085 1086 kfree(pdd); 1087 p->pdds[i] = NULL; 1088 } 1089 p->n_pdds = 0; 1090 } 1091 1092 static void kfd_process_remove_sysfs(struct kfd_process *p) 1093 { 1094 struct kfd_process_device *pdd; 1095 int i; 1096 1097 if (!p->kobj) 1098 return; 1099 1100 sysfs_remove_file(p->kobj, &p->attr_pasid); 1101 kobject_del(p->kobj_queues); 1102 kobject_put(p->kobj_queues); 1103 p->kobj_queues = NULL; 1104 1105 for (i = 0; i < p->n_pdds; i++) { 1106 pdd = p->pdds[i]; 1107 1108 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1109 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1110 1111 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1112 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1113 sysfs_remove_file(pdd->kobj_stats, 1114 &pdd->attr_cu_occupancy); 1115 kobject_del(pdd->kobj_stats); 1116 kobject_put(pdd->kobj_stats); 1117 pdd->kobj_stats = NULL; 1118 } 1119 1120 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1121 pdd = p->pdds[i]; 1122 1123 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1124 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1125 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1126 kobject_del(pdd->kobj_counters); 1127 kobject_put(pdd->kobj_counters); 1128 pdd->kobj_counters = NULL; 1129 } 1130 1131 kobject_del(p->kobj); 1132 kobject_put(p->kobj); 1133 p->kobj = NULL; 1134 } 1135 1136 /* No process locking is needed in this function, because the process 1137 * is not findable any more. We must assume that no other thread is 1138 * using it any more, otherwise we couldn't safely free the process 1139 * structure in the end. 1140 */ 1141 static void kfd_process_wq_release(struct work_struct *work) 1142 { 1143 struct kfd_process *p = container_of(work, struct kfd_process, 1144 release_work); 1145 struct dma_fence *ef; 1146 1147 kfd_process_dequeue_from_all_devices(p); 1148 pqm_uninit(&p->pqm); 1149 1150 /* Signal the eviction fence after user mode queues are 1151 * destroyed. This allows any BOs to be freed without 1152 * triggering pointless evictions or waiting for fences. 1153 */ 1154 synchronize_rcu(); 1155 ef = rcu_access_pointer(p->ef); 1156 if (ef) 1157 dma_fence_signal(ef); 1158 1159 kfd_process_remove_sysfs(p); 1160 1161 kfd_process_kunmap_signal_bo(p); 1162 kfd_process_free_outstanding_kfd_bos(p); 1163 svm_range_list_fini(p); 1164 1165 kfd_process_destroy_pdds(p); 1166 dma_fence_put(ef); 1167 1168 kfd_event_free_process(p); 1169 1170 mutex_destroy(&p->mutex); 1171 1172 put_task_struct(p->lead_thread); 1173 1174 kfree(p); 1175 } 1176 1177 static void kfd_process_ref_release(struct kref *ref) 1178 { 1179 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1180 1181 INIT_WORK(&p->release_work, kfd_process_wq_release); 1182 queue_work(kfd_process_wq, &p->release_work); 1183 } 1184 1185 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1186 { 1187 /* This increments p->ref counter if kfd process p exists */ 1188 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1189 1190 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1191 } 1192 1193 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1194 { 1195 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1196 } 1197 1198 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1199 { 1200 int i; 1201 1202 cancel_delayed_work_sync(&p->eviction_work); 1203 cancel_delayed_work_sync(&p->restore_work); 1204 1205 for (i = 0; i < p->n_pdds; i++) { 1206 struct kfd_process_device *pdd = p->pdds[i]; 1207 1208 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1209 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1210 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1211 } 1212 1213 /* Indicate to other users that MM is no longer valid */ 1214 p->mm = NULL; 1215 kfd_dbg_trap_disable(p); 1216 1217 if (atomic_read(&p->debugged_process_count) > 0) { 1218 struct kfd_process *target; 1219 unsigned int temp; 1220 int idx = srcu_read_lock(&kfd_processes_srcu); 1221 1222 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1223 if (target->debugger_process && target->debugger_process == p) { 1224 mutex_lock_nested(&target->mutex, 1); 1225 kfd_dbg_trap_disable(target); 1226 mutex_unlock(&target->mutex); 1227 if (atomic_read(&p->debugged_process_count) == 0) 1228 break; 1229 } 1230 } 1231 1232 srcu_read_unlock(&kfd_processes_srcu, idx); 1233 } 1234 1235 mmu_notifier_put(&p->mmu_notifier); 1236 } 1237 1238 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1239 struct mm_struct *mm) 1240 { 1241 struct kfd_process *p; 1242 1243 /* 1244 * The kfd_process structure can not be free because the 1245 * mmu_notifier srcu is read locked 1246 */ 1247 p = container_of(mn, struct kfd_process, mmu_notifier); 1248 if (WARN_ON(p->mm != mm)) 1249 return; 1250 1251 mutex_lock(&kfd_processes_mutex); 1252 /* 1253 * Do early return if table is empty. 1254 * 1255 * This could potentially happen if this function is called concurrently 1256 * by mmu_notifier and by kfd_cleanup_pocesses. 1257 * 1258 */ 1259 if (hash_empty(kfd_processes_table)) { 1260 mutex_unlock(&kfd_processes_mutex); 1261 return; 1262 } 1263 hash_del_rcu(&p->kfd_processes); 1264 mutex_unlock(&kfd_processes_mutex); 1265 synchronize_srcu(&kfd_processes_srcu); 1266 1267 kfd_process_notifier_release_internal(p); 1268 } 1269 1270 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1271 .release = kfd_process_notifier_release, 1272 .alloc_notifier = kfd_process_alloc_notifier, 1273 .free_notifier = kfd_process_free_notifier, 1274 }; 1275 1276 /* 1277 * This code handles the case when driver is being unloaded before all 1278 * mm_struct are released. We need to safely free the kfd_process and 1279 * avoid race conditions with mmu_notifier that might try to free them. 1280 * 1281 */ 1282 void kfd_cleanup_processes(void) 1283 { 1284 struct kfd_process *p; 1285 struct hlist_node *p_temp; 1286 unsigned int temp; 1287 HLIST_HEAD(cleanup_list); 1288 1289 /* 1290 * Move all remaining kfd_process from the process table to a 1291 * temp list for processing. Once done, callback from mmu_notifier 1292 * release will not see the kfd_process in the table and do early return, 1293 * avoiding double free issues. 1294 */ 1295 mutex_lock(&kfd_processes_mutex); 1296 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1297 hash_del_rcu(&p->kfd_processes); 1298 synchronize_srcu(&kfd_processes_srcu); 1299 hlist_add_head(&p->kfd_processes, &cleanup_list); 1300 } 1301 mutex_unlock(&kfd_processes_mutex); 1302 1303 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1304 kfd_process_notifier_release_internal(p); 1305 1306 /* 1307 * Ensures that all outstanding free_notifier get called, triggering 1308 * the release of the kfd_process struct. 1309 */ 1310 mmu_notifier_synchronize(); 1311 } 1312 1313 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1314 { 1315 unsigned long offset; 1316 int i; 1317 1318 if (p->has_cwsr) 1319 return 0; 1320 1321 for (i = 0; i < p->n_pdds; i++) { 1322 struct kfd_node *dev = p->pdds[i]->dev; 1323 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1324 1325 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1326 continue; 1327 1328 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1329 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1330 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1331 MAP_SHARED, offset); 1332 1333 if (IS_ERR_VALUE(qpd->tba_addr)) { 1334 int err = qpd->tba_addr; 1335 1336 dev_err(dev->adev->dev, 1337 "Failure to set tba address. error %d.\n", err); 1338 qpd->tba_addr = 0; 1339 qpd->cwsr_kaddr = NULL; 1340 return err; 1341 } 1342 1343 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1344 1345 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1346 1347 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1348 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1349 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1350 } 1351 1352 p->has_cwsr = true; 1353 1354 return 0; 1355 } 1356 1357 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1358 { 1359 struct kfd_node *dev = pdd->dev; 1360 struct qcm_process_device *qpd = &pdd->qpd; 1361 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1362 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1363 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1364 struct kgd_mem *mem; 1365 void *kaddr; 1366 int ret; 1367 1368 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1369 return 0; 1370 1371 /* cwsr_base is only set for dGPU */ 1372 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1373 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1374 if (ret) 1375 return ret; 1376 1377 qpd->cwsr_mem = mem; 1378 qpd->cwsr_kaddr = kaddr; 1379 qpd->tba_addr = qpd->cwsr_base; 1380 1381 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1382 1383 kfd_process_set_trap_debug_flag(&pdd->qpd, 1384 pdd->process->debug_trap_enabled); 1385 1386 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1387 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1388 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1389 1390 return 0; 1391 } 1392 1393 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1394 { 1395 struct kfd_node *dev = pdd->dev; 1396 struct qcm_process_device *qpd = &pdd->qpd; 1397 1398 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1399 return; 1400 1401 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1402 } 1403 1404 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1405 uint64_t tba_addr, 1406 uint64_t tma_addr) 1407 { 1408 if (qpd->cwsr_kaddr) { 1409 /* KFD trap handler is bound, record as second-level TBA/TMA 1410 * in first-level TMA. First-level trap will jump to second. 1411 */ 1412 uint64_t *tma = 1413 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1414 tma[0] = tba_addr; 1415 tma[1] = tma_addr; 1416 } else { 1417 /* No trap handler bound, bind as first-level TBA/TMA. */ 1418 qpd->tba_addr = tba_addr; 1419 qpd->tma_addr = tma_addr; 1420 } 1421 } 1422 1423 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1424 { 1425 int i; 1426 1427 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1428 * boot time retry setting. Mixing processes with different 1429 * XNACK/retry settings can hang the GPU. 1430 * 1431 * Different GPUs can have different noretry settings depending 1432 * on HW bugs or limitations. We need to find at least one 1433 * XNACK mode for this process that's compatible with all GPUs. 1434 * Fortunately GPUs with retry enabled (noretry=0) can run code 1435 * built for XNACK-off. On GFXv9 it may perform slower. 1436 * 1437 * Therefore applications built for XNACK-off can always be 1438 * supported and will be our fallback if any GPU does not 1439 * support retry. 1440 */ 1441 for (i = 0; i < p->n_pdds; i++) { 1442 struct kfd_node *dev = p->pdds[i]->dev; 1443 1444 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1445 * support the SVM APIs and don't need to be considered 1446 * for the XNACK mode selection. 1447 */ 1448 if (!KFD_IS_SOC15(dev)) 1449 continue; 1450 /* Aldebaran can always support XNACK because it can support 1451 * per-process XNACK mode selection. But let the dev->noretry 1452 * setting still influence the default XNACK mode. 1453 */ 1454 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1455 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1456 pr_debug("SRIOV platform xnack not supported\n"); 1457 return false; 1458 } 1459 continue; 1460 } 1461 1462 /* GFXv10 and later GPUs do not support shader preemption 1463 * during page faults. This can lead to poor QoS for queue 1464 * management and memory-manager-related preemptions or 1465 * even deadlocks. 1466 */ 1467 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1468 return false; 1469 1470 if (dev->kfd->noretry) 1471 return false; 1472 } 1473 1474 return true; 1475 } 1476 1477 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1478 bool enabled) 1479 { 1480 if (qpd->cwsr_kaddr) { 1481 uint64_t *tma = 1482 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1483 tma[2] = enabled; 1484 } 1485 } 1486 1487 /* 1488 * On return the kfd_process is fully operational and will be freed when the 1489 * mm is released 1490 */ 1491 static struct kfd_process *create_process(const struct task_struct *thread) 1492 { 1493 struct kfd_process *process; 1494 struct mmu_notifier *mn; 1495 int err = -ENOMEM; 1496 1497 process = kzalloc(sizeof(*process), GFP_KERNEL); 1498 if (!process) 1499 goto err_alloc_process; 1500 1501 kref_init(&process->ref); 1502 mutex_init(&process->mutex); 1503 process->mm = thread->mm; 1504 process->lead_thread = thread->group_leader; 1505 process->n_pdds = 0; 1506 process->queues_paused = false; 1507 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1508 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1509 process->last_restore_timestamp = get_jiffies_64(); 1510 err = kfd_event_init_process(process); 1511 if (err) 1512 goto err_event_init; 1513 process->is_32bit_user_mode = in_compat_syscall(); 1514 process->debug_trap_enabled = false; 1515 process->debugger_process = NULL; 1516 process->exception_enable_mask = 0; 1517 atomic_set(&process->debugged_process_count, 0); 1518 sema_init(&process->runtime_enable_sema, 0); 1519 1520 err = pqm_init(&process->pqm, process); 1521 if (err != 0) 1522 goto err_process_pqm_init; 1523 1524 /* init process apertures*/ 1525 err = kfd_init_apertures(process); 1526 if (err != 0) 1527 goto err_init_apertures; 1528 1529 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1530 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1531 1532 err = svm_range_list_init(process); 1533 if (err) 1534 goto err_init_svm_range_list; 1535 1536 /* alloc_notifier needs to find the process in the hash table */ 1537 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1538 (uintptr_t)process->mm); 1539 1540 /* Avoid free_notifier to start kfd_process_wq_release if 1541 * mmu_notifier_get failed because of pending signal. 1542 */ 1543 kref_get(&process->ref); 1544 1545 /* MMU notifier registration must be the last call that can fail 1546 * because after this point we cannot unwind the process creation. 1547 * After this point, mmu_notifier_put will trigger the cleanup by 1548 * dropping the last process reference in the free_notifier. 1549 */ 1550 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1551 if (IS_ERR(mn)) { 1552 err = PTR_ERR(mn); 1553 goto err_register_notifier; 1554 } 1555 BUG_ON(mn != &process->mmu_notifier); 1556 1557 kfd_unref_process(process); 1558 get_task_struct(process->lead_thread); 1559 1560 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1561 1562 return process; 1563 1564 err_register_notifier: 1565 hash_del_rcu(&process->kfd_processes); 1566 svm_range_list_fini(process); 1567 err_init_svm_range_list: 1568 kfd_process_free_outstanding_kfd_bos(process); 1569 kfd_process_destroy_pdds(process); 1570 err_init_apertures: 1571 pqm_uninit(&process->pqm); 1572 err_process_pqm_init: 1573 kfd_event_free_process(process); 1574 err_event_init: 1575 mutex_destroy(&process->mutex); 1576 kfree(process); 1577 err_alloc_process: 1578 return ERR_PTR(err); 1579 } 1580 1581 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1582 struct kfd_process *p) 1583 { 1584 int i; 1585 1586 for (i = 0; i < p->n_pdds; i++) 1587 if (p->pdds[i]->dev == dev) 1588 return p->pdds[i]; 1589 1590 return NULL; 1591 } 1592 1593 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1594 struct kfd_process *p) 1595 { 1596 struct kfd_process_device *pdd = NULL; 1597 1598 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1599 return NULL; 1600 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1601 if (!pdd) 1602 return NULL; 1603 1604 pdd->dev = dev; 1605 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1606 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1607 pdd->qpd.dqm = dev->dqm; 1608 pdd->qpd.pqm = &p->pqm; 1609 pdd->qpd.evicted = 0; 1610 pdd->qpd.mapped_gws_queue = false; 1611 pdd->process = p; 1612 pdd->bound = PDD_UNBOUND; 1613 pdd->already_dequeued = false; 1614 pdd->runtime_inuse = false; 1615 atomic64_set(&pdd->vram_usage, 0); 1616 pdd->sdma_past_activity_counter = 0; 1617 pdd->user_gpu_id = dev->id; 1618 atomic64_set(&pdd->evict_duration_counter, 0); 1619 1620 p->pdds[p->n_pdds++] = pdd; 1621 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1622 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1623 pdd->dev->adev, 1624 false, 1625 0); 1626 1627 /* Init idr used for memory handle translation */ 1628 idr_init(&pdd->alloc_idr); 1629 1630 return pdd; 1631 } 1632 1633 /** 1634 * kfd_process_device_init_vm - Initialize a VM for a process-device 1635 * 1636 * @pdd: The process-device 1637 * @drm_file: Optional pointer to a DRM file descriptor 1638 * 1639 * If @drm_file is specified, it will be used to acquire the VM from 1640 * that file descriptor. If successful, the @pdd takes ownership of 1641 * the file descriptor. 1642 * 1643 * If @drm_file is NULL, a new VM is created. 1644 * 1645 * Returns 0 on success, -errno on failure. 1646 */ 1647 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1648 struct file *drm_file) 1649 { 1650 struct amdgpu_fpriv *drv_priv; 1651 struct amdgpu_vm *avm; 1652 struct kfd_process *p; 1653 struct dma_fence *ef; 1654 struct kfd_node *dev; 1655 int ret; 1656 1657 if (!drm_file) 1658 return -EINVAL; 1659 1660 if (pdd->drm_priv) 1661 return -EBUSY; 1662 1663 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1664 if (ret) 1665 return ret; 1666 avm = &drv_priv->vm; 1667 1668 p = pdd->process; 1669 dev = pdd->dev; 1670 1671 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1672 &p->kgd_process_info, 1673 p->ef ? NULL : &ef); 1674 if (ret) { 1675 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1676 return ret; 1677 } 1678 1679 if (!p->ef) 1680 RCU_INIT_POINTER(p->ef, ef); 1681 1682 pdd->drm_priv = drm_file->private_data; 1683 1684 ret = kfd_process_device_reserve_ib_mem(pdd); 1685 if (ret) 1686 goto err_reserve_ib_mem; 1687 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1688 if (ret) 1689 goto err_init_cwsr; 1690 1691 if (unlikely(!avm->pasid)) { 1692 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated", 1693 avm); 1694 goto err_get_pasid; 1695 } 1696 1697 pdd->pasid = avm->pasid; 1698 pdd->drm_file = drm_file; 1699 1700 return 0; 1701 1702 err_get_pasid: 1703 kfd_process_device_destroy_cwsr_dgpu(pdd); 1704 err_init_cwsr: 1705 kfd_process_device_destroy_ib_mem(pdd); 1706 err_reserve_ib_mem: 1707 pdd->drm_priv = NULL; 1708 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1709 1710 return ret; 1711 } 1712 1713 /* 1714 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1715 * to the device. 1716 * Unbinding occurs when the process dies or the device is removed. 1717 * 1718 * Assumes that the process lock is held. 1719 */ 1720 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1721 struct kfd_process *p) 1722 { 1723 struct kfd_process_device *pdd; 1724 int err; 1725 1726 pdd = kfd_get_process_device_data(dev, p); 1727 if (!pdd) { 1728 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1729 return ERR_PTR(-ENOMEM); 1730 } 1731 1732 if (!pdd->drm_priv) 1733 return ERR_PTR(-ENODEV); 1734 1735 /* 1736 * signal runtime-pm system to auto resume and prevent 1737 * further runtime suspend once device pdd is created until 1738 * pdd is destroyed. 1739 */ 1740 if (!pdd->runtime_inuse) { 1741 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1742 if (err < 0) { 1743 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1744 return ERR_PTR(err); 1745 } 1746 } 1747 1748 /* 1749 * make sure that runtime_usage counter is incremented just once 1750 * per pdd 1751 */ 1752 pdd->runtime_inuse = true; 1753 1754 return pdd; 1755 } 1756 1757 /* Create specific handle mapped to mem from process local memory idr 1758 * Assumes that the process lock is held. 1759 */ 1760 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1761 void *mem) 1762 { 1763 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1764 } 1765 1766 /* Translate specific handle from process local memory idr 1767 * Assumes that the process lock is held. 1768 */ 1769 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1770 int handle) 1771 { 1772 if (handle < 0) 1773 return NULL; 1774 1775 return idr_find(&pdd->alloc_idr, handle); 1776 } 1777 1778 /* Remove specific handle from process local memory idr 1779 * Assumes that the process lock is held. 1780 */ 1781 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1782 int handle) 1783 { 1784 if (handle >= 0) 1785 idr_remove(&pdd->alloc_idr, handle); 1786 } 1787 1788 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid) 1789 { 1790 struct kfd_process_device *ret_p = NULL; 1791 struct kfd_process *p; 1792 unsigned int temp; 1793 int i; 1794 1795 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1796 for (i = 0; i < p->n_pdds; i++) { 1797 if (p->pdds[i]->pasid == pasid) { 1798 ret_p = p->pdds[i]; 1799 break; 1800 } 1801 } 1802 if (ret_p) 1803 break; 1804 } 1805 return ret_p; 1806 } 1807 1808 /* This increments the process->ref counter. */ 1809 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1810 struct kfd_process_device **pdd) 1811 { 1812 struct kfd_process_device *ret_p; 1813 1814 int idx = srcu_read_lock(&kfd_processes_srcu); 1815 1816 ret_p = kfd_lookup_process_device_by_pasid(pasid); 1817 if (ret_p) { 1818 if (pdd) 1819 *pdd = ret_p; 1820 kref_get(&ret_p->process->ref); 1821 1822 srcu_read_unlock(&kfd_processes_srcu, idx); 1823 return ret_p->process; 1824 } 1825 1826 srcu_read_unlock(&kfd_processes_srcu, idx); 1827 1828 if (pdd) 1829 *pdd = NULL; 1830 1831 return NULL; 1832 } 1833 1834 /* This increments the process->ref counter. */ 1835 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1836 { 1837 struct kfd_process *p; 1838 1839 int idx = srcu_read_lock(&kfd_processes_srcu); 1840 1841 p = find_process_by_mm(mm); 1842 if (p) 1843 kref_get(&p->ref); 1844 1845 srcu_read_unlock(&kfd_processes_srcu, idx); 1846 1847 return p; 1848 } 1849 1850 /* kfd_process_evict_queues - Evict all user queues of a process 1851 * 1852 * Eviction is reference-counted per process-device. This means multiple 1853 * evictions from different sources can be nested safely. 1854 */ 1855 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1856 { 1857 int r = 0; 1858 int i; 1859 unsigned int n_evicted = 0; 1860 1861 for (i = 0; i < p->n_pdds; i++) { 1862 struct kfd_process_device *pdd = p->pdds[i]; 1863 struct device *dev = pdd->dev->adev->dev; 1864 1865 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1866 trigger); 1867 1868 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1869 &pdd->qpd); 1870 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1871 * we would like to set all the queues to be in evicted state to prevent 1872 * them been add back since they actually not be saved right now. 1873 */ 1874 if (r && r != -EIO) { 1875 dev_err(dev, "Failed to evict process queues\n"); 1876 goto fail; 1877 } 1878 n_evicted++; 1879 1880 pdd->dev->dqm->is_hws_hang = false; 1881 } 1882 1883 return r; 1884 1885 fail: 1886 /* To keep state consistent, roll back partial eviction by 1887 * restoring queues 1888 */ 1889 for (i = 0; i < p->n_pdds; i++) { 1890 struct kfd_process_device *pdd = p->pdds[i]; 1891 1892 if (n_evicted == 0) 1893 break; 1894 1895 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1896 1897 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1898 &pdd->qpd)) 1899 dev_err(pdd->dev->adev->dev, 1900 "Failed to restore queues\n"); 1901 1902 n_evicted--; 1903 } 1904 1905 return r; 1906 } 1907 1908 /* kfd_process_restore_queues - Restore all user queues of a process */ 1909 int kfd_process_restore_queues(struct kfd_process *p) 1910 { 1911 int r, ret = 0; 1912 int i; 1913 1914 for (i = 0; i < p->n_pdds; i++) { 1915 struct kfd_process_device *pdd = p->pdds[i]; 1916 struct device *dev = pdd->dev->adev->dev; 1917 1918 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1919 1920 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1921 &pdd->qpd); 1922 if (r) { 1923 dev_err(dev, "Failed to restore process queues\n"); 1924 if (!ret) 1925 ret = r; 1926 } 1927 } 1928 1929 return ret; 1930 } 1931 1932 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1933 { 1934 int i; 1935 1936 for (i = 0; i < p->n_pdds; i++) 1937 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1938 return i; 1939 return -EINVAL; 1940 } 1941 1942 int 1943 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1944 uint32_t *gpuid, uint32_t *gpuidx) 1945 { 1946 int i; 1947 1948 for (i = 0; i < p->n_pdds; i++) 1949 if (p->pdds[i] && p->pdds[i]->dev == node) { 1950 *gpuid = p->pdds[i]->user_gpu_id; 1951 *gpuidx = i; 1952 return 0; 1953 } 1954 return -EINVAL; 1955 } 1956 1957 static int signal_eviction_fence(struct kfd_process *p) 1958 { 1959 struct dma_fence *ef; 1960 int ret; 1961 1962 rcu_read_lock(); 1963 ef = dma_fence_get_rcu_safe(&p->ef); 1964 rcu_read_unlock(); 1965 if (!ef) 1966 return -EINVAL; 1967 1968 ret = dma_fence_signal(ef); 1969 dma_fence_put(ef); 1970 1971 return ret; 1972 } 1973 1974 static void evict_process_worker(struct work_struct *work) 1975 { 1976 int ret; 1977 struct kfd_process *p; 1978 struct delayed_work *dwork; 1979 1980 dwork = to_delayed_work(work); 1981 1982 /* Process termination destroys this worker thread. So during the 1983 * lifetime of this thread, kfd_process p will be valid 1984 */ 1985 p = container_of(dwork, struct kfd_process, eviction_work); 1986 1987 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid); 1988 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1989 if (!ret) { 1990 /* If another thread already signaled the eviction fence, 1991 * they are responsible stopping the queues and scheduling 1992 * the restore work. 1993 */ 1994 if (signal_eviction_fence(p) || 1995 mod_delayed_work(kfd_restore_wq, &p->restore_work, 1996 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 1997 kfd_process_restore_queues(p); 1998 1999 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid); 2000 } else 2001 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid); 2002 } 2003 2004 static int restore_process_helper(struct kfd_process *p) 2005 { 2006 int ret = 0; 2007 2008 /* VMs may not have been acquired yet during debugging. */ 2009 if (p->kgd_process_info) { 2010 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2011 p->kgd_process_info, &p->ef); 2012 if (ret) 2013 return ret; 2014 } 2015 2016 ret = kfd_process_restore_queues(p); 2017 if (!ret) 2018 pr_debug("Finished restoring process pid %d\n", 2019 p->lead_thread->pid); 2020 else 2021 pr_err("Failed to restore queues of process pid %d\n", 2022 p->lead_thread->pid); 2023 2024 return ret; 2025 } 2026 2027 static void restore_process_worker(struct work_struct *work) 2028 { 2029 struct delayed_work *dwork; 2030 struct kfd_process *p; 2031 int ret = 0; 2032 2033 dwork = to_delayed_work(work); 2034 2035 /* Process termination destroys this worker thread. So during the 2036 * lifetime of this thread, kfd_process p will be valid 2037 */ 2038 p = container_of(dwork, struct kfd_process, restore_work); 2039 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid); 2040 2041 /* Setting last_restore_timestamp before successful restoration. 2042 * Otherwise this would have to be set by KGD (restore_process_bos) 2043 * before KFD BOs are unreserved. If not, the process can be evicted 2044 * again before the timestamp is set. 2045 * If restore fails, the timestamp will be set again in the next 2046 * attempt. This would mean that the minimum GPU quanta would be 2047 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2048 * functions) 2049 */ 2050 2051 p->last_restore_timestamp = get_jiffies_64(); 2052 2053 ret = restore_process_helper(p); 2054 if (ret) { 2055 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n", 2056 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS); 2057 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2058 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2059 kfd_process_restore_queues(p); 2060 } 2061 } 2062 2063 void kfd_suspend_all_processes(void) 2064 { 2065 struct kfd_process *p; 2066 unsigned int temp; 2067 int idx = srcu_read_lock(&kfd_processes_srcu); 2068 2069 WARN(debug_evictions, "Evicting all processes"); 2070 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2071 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2072 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid); 2073 signal_eviction_fence(p); 2074 } 2075 srcu_read_unlock(&kfd_processes_srcu, idx); 2076 } 2077 2078 int kfd_resume_all_processes(void) 2079 { 2080 struct kfd_process *p; 2081 unsigned int temp; 2082 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2083 2084 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2085 if (restore_process_helper(p)) { 2086 pr_err("Restore process pid %d failed during resume\n", 2087 p->lead_thread->pid); 2088 ret = -EFAULT; 2089 } 2090 } 2091 srcu_read_unlock(&kfd_processes_srcu, idx); 2092 return ret; 2093 } 2094 2095 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2096 struct vm_area_struct *vma) 2097 { 2098 struct kfd_process_device *pdd; 2099 struct qcm_process_device *qpd; 2100 2101 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2102 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2103 return -EINVAL; 2104 } 2105 2106 pdd = kfd_get_process_device_data(dev, process); 2107 if (!pdd) 2108 return -EINVAL; 2109 qpd = &pdd->qpd; 2110 2111 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2112 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2113 if (!qpd->cwsr_kaddr) { 2114 dev_err(dev->adev->dev, 2115 "Error allocating per process CWSR buffer.\n"); 2116 return -ENOMEM; 2117 } 2118 2119 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2120 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2121 /* Mapping pages to user process */ 2122 return remap_pfn_range(vma, vma->vm_start, 2123 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2124 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2125 } 2126 2127 /* assumes caller holds process lock. */ 2128 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2129 { 2130 uint32_t irq_drain_fence[8]; 2131 uint8_t node_id = 0; 2132 int r = 0; 2133 2134 if (!KFD_IS_SOC15(pdd->dev)) 2135 return 0; 2136 2137 pdd->process->irq_drain_is_open = true; 2138 2139 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2140 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2141 KFD_IRQ_FENCE_CLIENTID; 2142 irq_drain_fence[3] = pdd->pasid; 2143 2144 /* 2145 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3] 2146 */ 2147 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2148 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) || 2149 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) { 2150 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2151 irq_drain_fence[3] |= node_id << 16; 2152 } 2153 2154 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2155 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2156 irq_drain_fence)) { 2157 pdd->process->irq_drain_is_open = false; 2158 return 0; 2159 } 2160 2161 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2162 !READ_ONCE(pdd->process->irq_drain_is_open)); 2163 if (r) 2164 pdd->process->irq_drain_is_open = false; 2165 2166 return r; 2167 } 2168 2169 void kfd_process_close_interrupt_drain(unsigned int pasid) 2170 { 2171 struct kfd_process *p; 2172 2173 p = kfd_lookup_process_by_pasid(pasid, NULL); 2174 2175 if (!p) 2176 return; 2177 2178 WRITE_ONCE(p->irq_drain_is_open, false); 2179 wake_up_all(&p->wait_irq_drain); 2180 kfd_unref_process(p); 2181 } 2182 2183 struct send_exception_work_handler_workarea { 2184 struct work_struct work; 2185 struct kfd_process *p; 2186 unsigned int queue_id; 2187 uint64_t error_reason; 2188 }; 2189 2190 static void send_exception_work_handler(struct work_struct *work) 2191 { 2192 struct send_exception_work_handler_workarea *workarea; 2193 struct kfd_process *p; 2194 struct queue *q; 2195 struct mm_struct *mm; 2196 struct kfd_context_save_area_header __user *csa_header; 2197 uint64_t __user *err_payload_ptr; 2198 uint64_t cur_err; 2199 uint32_t ev_id; 2200 2201 workarea = container_of(work, 2202 struct send_exception_work_handler_workarea, 2203 work); 2204 p = workarea->p; 2205 2206 mm = get_task_mm(p->lead_thread); 2207 2208 if (!mm) 2209 return; 2210 2211 kthread_use_mm(mm); 2212 2213 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2214 2215 if (!q) 2216 goto out; 2217 2218 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2219 2220 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2221 get_user(cur_err, err_payload_ptr); 2222 cur_err |= workarea->error_reason; 2223 put_user(cur_err, err_payload_ptr); 2224 get_user(ev_id, &csa_header->err_event_id); 2225 2226 kfd_set_event(p, ev_id); 2227 2228 out: 2229 kthread_unuse_mm(mm); 2230 mmput(mm); 2231 } 2232 2233 int kfd_send_exception_to_runtime(struct kfd_process *p, 2234 unsigned int queue_id, 2235 uint64_t error_reason) 2236 { 2237 struct send_exception_work_handler_workarea worker; 2238 2239 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2240 2241 worker.p = p; 2242 worker.queue_id = queue_id; 2243 worker.error_reason = error_reason; 2244 2245 schedule_work(&worker.work); 2246 flush_work(&worker.work); 2247 destroy_work_on_stack(&worker.work); 2248 2249 return 0; 2250 } 2251 2252 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2253 { 2254 int i; 2255 2256 if (gpu_id) { 2257 for (i = 0; i < p->n_pdds; i++) { 2258 struct kfd_process_device *pdd = p->pdds[i]; 2259 2260 if (pdd->user_gpu_id == gpu_id) 2261 return pdd; 2262 } 2263 } 2264 return NULL; 2265 } 2266 2267 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2268 { 2269 int i; 2270 2271 if (!actual_gpu_id) 2272 return 0; 2273 2274 for (i = 0; i < p->n_pdds; i++) { 2275 struct kfd_process_device *pdd = p->pdds[i]; 2276 2277 if (pdd->dev->id == actual_gpu_id) 2278 return pdd->user_gpu_id; 2279 } 2280 return -EINVAL; 2281 } 2282 2283 #if defined(CONFIG_DEBUG_FS) 2284 2285 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2286 { 2287 struct kfd_process *p; 2288 unsigned int temp; 2289 int r = 0; 2290 2291 int idx = srcu_read_lock(&kfd_processes_srcu); 2292 2293 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2294 seq_printf(m, "Process %d PASID %d:\n", 2295 p->lead_thread->tgid, p->lead_thread->pid); 2296 2297 mutex_lock(&p->mutex); 2298 r = pqm_debugfs_mqds(m, &p->pqm); 2299 mutex_unlock(&p->mutex); 2300 2301 if (r) 2302 break; 2303 } 2304 2305 srcu_read_unlock(&kfd_processes_srcu, idx); 2306 2307 return r; 2308 } 2309 2310 #endif 2311