1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "amdgpu_reset.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_svm.h" 45 #include "kfd_smi_events.h" 46 #include "kfd_debug.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread, 69 bool ref); 70 static void kfd_process_ref_release(struct kref *ref); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n", 286 dev->id, (int)proc->lead_thread->pid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) 331 return snprintf(buffer, PAGE_SIZE, "%d\n", 0); 332 else if (strncmp(attr->name, "vram_", 5) == 0) { 333 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 334 attr_vram); 335 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 336 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 337 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 338 attr_sdma); 339 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 340 341 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 342 kfd_sdma_activity_worker); 343 344 sdma_activity_work_handler.pdd = pdd; 345 sdma_activity_work_handler.sdma_activity_counter = 0; 346 347 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 348 349 flush_work(&sdma_activity_work_handler.sdma_activity_work); 350 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 351 352 return snprintf(buffer, PAGE_SIZE, "%llu\n", 353 (sdma_activity_work_handler.sdma_activity_counter)/ 354 SDMA_ACTIVITY_DIVISOR); 355 } else { 356 pr_err("Invalid attribute"); 357 return -EINVAL; 358 } 359 360 return 0; 361 } 362 363 static void kfd_procfs_kobj_release(struct kobject *kobj) 364 { 365 kfree(kobj); 366 } 367 368 static const struct sysfs_ops kfd_procfs_ops = { 369 .show = kfd_procfs_show, 370 }; 371 372 static const struct kobj_type procfs_type = { 373 .release = kfd_procfs_kobj_release, 374 .sysfs_ops = &kfd_procfs_ops, 375 }; 376 377 void kfd_procfs_init(void) 378 { 379 int ret = 0; 380 381 procfs.kobj = kfd_alloc_struct(procfs.kobj); 382 if (!procfs.kobj) 383 return; 384 385 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 386 &kfd_device->kobj, "proc"); 387 if (ret) { 388 pr_warn("Could not create procfs proc folder"); 389 /* If we fail to create the procfs, clean up */ 390 kfd_procfs_shutdown(); 391 } 392 } 393 394 void kfd_procfs_shutdown(void) 395 { 396 if (procfs.kobj) { 397 kobject_del(procfs.kobj); 398 kobject_put(procfs.kobj); 399 procfs.kobj = NULL; 400 } 401 } 402 403 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 404 struct attribute *attr, char *buffer) 405 { 406 struct queue *q = container_of(kobj, struct queue, kobj); 407 408 if (!strcmp(attr->name, "size")) 409 return snprintf(buffer, PAGE_SIZE, "%llu", 410 q->properties.queue_size); 411 else if (!strcmp(attr->name, "type")) 412 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 413 else if (!strcmp(attr->name, "gpuid")) 414 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 415 else 416 pr_err("Invalid attribute"); 417 418 return 0; 419 } 420 421 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 422 struct attribute *attr, char *buffer) 423 { 424 if (strcmp(attr->name, "evicted_ms") == 0) { 425 struct kfd_process_device *pdd = container_of(attr, 426 struct kfd_process_device, 427 attr_evict); 428 uint64_t evict_jiffies; 429 430 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 431 432 return snprintf(buffer, 433 PAGE_SIZE, 434 "%llu\n", 435 jiffies64_to_msecs(evict_jiffies)); 436 437 /* Sysfs handle that gets CU occupancy is per device */ 438 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 439 return kfd_get_cu_occupancy(attr, buffer); 440 } else { 441 pr_err("Invalid attribute"); 442 } 443 444 return 0; 445 } 446 447 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 448 struct attribute *attr, char *buf) 449 { 450 struct kfd_process_device *pdd; 451 452 if (!strcmp(attr->name, "faults")) { 453 pdd = container_of(attr, struct kfd_process_device, 454 attr_faults); 455 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 456 } 457 if (!strcmp(attr->name, "page_in")) { 458 pdd = container_of(attr, struct kfd_process_device, 459 attr_page_in); 460 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 461 } 462 if (!strcmp(attr->name, "page_out")) { 463 pdd = container_of(attr, struct kfd_process_device, 464 attr_page_out); 465 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 466 } 467 return 0; 468 } 469 470 static struct attribute attr_queue_size = { 471 .name = "size", 472 .mode = KFD_SYSFS_FILE_MODE 473 }; 474 475 static struct attribute attr_queue_type = { 476 .name = "type", 477 .mode = KFD_SYSFS_FILE_MODE 478 }; 479 480 static struct attribute attr_queue_gpuid = { 481 .name = "gpuid", 482 .mode = KFD_SYSFS_FILE_MODE 483 }; 484 485 static struct attribute *procfs_queue_attrs[] = { 486 &attr_queue_size, 487 &attr_queue_type, 488 &attr_queue_gpuid, 489 NULL 490 }; 491 ATTRIBUTE_GROUPS(procfs_queue); 492 493 static const struct sysfs_ops procfs_queue_ops = { 494 .show = kfd_procfs_queue_show, 495 }; 496 497 static const struct kobj_type procfs_queue_type = { 498 .sysfs_ops = &procfs_queue_ops, 499 .default_groups = procfs_queue_groups, 500 }; 501 502 static const struct sysfs_ops procfs_stats_ops = { 503 .show = kfd_procfs_stats_show, 504 }; 505 506 static const struct kobj_type procfs_stats_type = { 507 .sysfs_ops = &procfs_stats_ops, 508 .release = kfd_procfs_kobj_release, 509 }; 510 511 static const struct sysfs_ops sysfs_counters_ops = { 512 .show = kfd_sysfs_counters_show, 513 }; 514 515 static const struct kobj_type sysfs_counters_type = { 516 .sysfs_ops = &sysfs_counters_ops, 517 .release = kfd_procfs_kobj_release, 518 }; 519 520 int kfd_procfs_add_queue(struct queue *q) 521 { 522 struct kfd_process *proc; 523 int ret; 524 525 if (!q || !q->process) 526 return -EINVAL; 527 proc = q->process; 528 529 /* Create proc/<pid>/queues/<queue id> folder */ 530 if (!proc->kobj_queues) 531 return -EFAULT; 532 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 533 proc->kobj_queues, "%u", q->properties.queue_id); 534 if (ret < 0) { 535 pr_warn("Creating proc/<pid>/queues/%u failed", 536 q->properties.queue_id); 537 kobject_put(&q->kobj); 538 return ret; 539 } 540 541 return 0; 542 } 543 544 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 545 char *name) 546 { 547 int ret; 548 549 if (!kobj || !attr || !name) 550 return; 551 552 attr->name = name; 553 attr->mode = KFD_SYSFS_FILE_MODE; 554 sysfs_attr_init(attr); 555 556 ret = sysfs_create_file(kobj, attr); 557 if (ret) 558 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 559 } 560 561 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 562 { 563 int ret; 564 int i; 565 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 566 567 if (!p || !p->kobj) 568 return; 569 570 /* 571 * Create sysfs files for each GPU: 572 * - proc/<pid>/stats_<gpuid>/ 573 * - proc/<pid>/stats_<gpuid>/evicted_ms 574 * - proc/<pid>/stats_<gpuid>/cu_occupancy 575 */ 576 for (i = 0; i < p->n_pdds; i++) { 577 struct kfd_process_device *pdd = p->pdds[i]; 578 579 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 580 "stats_%u", pdd->dev->id); 581 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 582 if (!pdd->kobj_stats) 583 return; 584 585 ret = kobject_init_and_add(pdd->kobj_stats, 586 &procfs_stats_type, 587 p->kobj, 588 stats_dir_filename); 589 590 if (ret) { 591 pr_warn("Creating KFD proc/stats_%s folder failed", 592 stats_dir_filename); 593 kobject_put(pdd->kobj_stats); 594 pdd->kobj_stats = NULL; 595 return; 596 } 597 598 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 599 "evicted_ms"); 600 /* Add sysfs file to report compute unit occupancy */ 601 if (pdd->dev->kfd2kgd->get_cu_occupancy) 602 kfd_sysfs_create_file(pdd->kobj_stats, 603 &pdd->attr_cu_occupancy, 604 "cu_occupancy"); 605 } 606 } 607 608 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 609 { 610 int ret = 0; 611 int i; 612 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 613 614 if (!p || !p->kobj) 615 return; 616 617 /* 618 * Create sysfs files for each GPU which supports SVM 619 * - proc/<pid>/counters_<gpuid>/ 620 * - proc/<pid>/counters_<gpuid>/faults 621 * - proc/<pid>/counters_<gpuid>/page_in 622 * - proc/<pid>/counters_<gpuid>/page_out 623 */ 624 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 625 struct kfd_process_device *pdd = p->pdds[i]; 626 struct kobject *kobj_counters; 627 628 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 629 "counters_%u", pdd->dev->id); 630 kobj_counters = kfd_alloc_struct(kobj_counters); 631 if (!kobj_counters) 632 return; 633 634 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 635 p->kobj, counters_dir_filename); 636 if (ret) { 637 pr_warn("Creating KFD proc/%s folder failed", 638 counters_dir_filename); 639 kobject_put(kobj_counters); 640 return; 641 } 642 643 pdd->kobj_counters = kobj_counters; 644 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 645 "faults"); 646 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 647 "page_in"); 648 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 649 "page_out"); 650 } 651 } 652 653 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 654 { 655 int i; 656 657 if (!p || !p->kobj) 658 return; 659 660 /* 661 * Create sysfs files for each GPU: 662 * - proc/<pid>/vram_<gpuid> 663 * - proc/<pid>/sdma_<gpuid> 664 */ 665 for (i = 0; i < p->n_pdds; i++) { 666 struct kfd_process_device *pdd = p->pdds[i]; 667 668 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 669 pdd->dev->id); 670 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 671 pdd->vram_filename); 672 673 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 674 pdd->dev->id); 675 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 676 pdd->sdma_filename); 677 } 678 } 679 680 void kfd_procfs_del_queue(struct queue *q) 681 { 682 if (!q) 683 return; 684 685 kobject_del(&q->kobj); 686 kobject_put(&q->kobj); 687 } 688 689 int kfd_process_create_wq(void) 690 { 691 if (!kfd_process_wq) 692 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 693 if (!kfd_restore_wq) 694 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 695 WQ_FREEZABLE); 696 697 if (!kfd_process_wq || !kfd_restore_wq) { 698 kfd_process_destroy_wq(); 699 return -ENOMEM; 700 } 701 702 return 0; 703 } 704 705 void kfd_process_destroy_wq(void) 706 { 707 if (kfd_process_wq) { 708 destroy_workqueue(kfd_process_wq); 709 kfd_process_wq = NULL; 710 } 711 if (kfd_restore_wq) { 712 destroy_workqueue(kfd_restore_wq); 713 kfd_restore_wq = NULL; 714 } 715 } 716 717 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 718 struct kfd_process_device *pdd, void **kptr) 719 { 720 struct kfd_node *dev = pdd->dev; 721 722 if (kptr && *kptr) { 723 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 724 *kptr = NULL; 725 } 726 727 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 728 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 729 NULL); 730 } 731 732 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 733 * This function should be only called right after the process 734 * is created and when kfd_processes_mutex is still being held 735 * to avoid concurrency. Because of that exclusiveness, we do 736 * not need to take p->mutex. 737 */ 738 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 739 uint64_t gpu_va, uint32_t size, 740 uint32_t flags, struct kgd_mem **mem, void **kptr) 741 { 742 struct kfd_node *kdev = pdd->dev; 743 int err; 744 745 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 746 pdd->drm_priv, mem, NULL, 747 flags, false); 748 if (err) 749 goto err_alloc_mem; 750 751 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 752 pdd->drm_priv); 753 if (err) 754 goto err_map_mem; 755 756 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 757 if (err) { 758 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 759 goto sync_memory_failed; 760 } 761 762 if (kptr) { 763 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 764 (struct kgd_mem *)*mem, kptr, NULL); 765 if (err) { 766 pr_debug("Map GTT BO to kernel failed\n"); 767 goto sync_memory_failed; 768 } 769 } 770 771 return err; 772 773 sync_memory_failed: 774 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 775 776 err_map_mem: 777 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 778 NULL); 779 err_alloc_mem: 780 *mem = NULL; 781 *kptr = NULL; 782 return err; 783 } 784 785 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 786 * process for IB usage The memory reserved is for KFD to submit 787 * IB to AMDGPU from kernel. If the memory is reserved 788 * successfully, ib_kaddr will have the CPU/kernel 789 * address. Check ib_kaddr before accessing the memory. 790 */ 791 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 792 { 793 struct qcm_process_device *qpd = &pdd->qpd; 794 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 795 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 796 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 797 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 798 struct kgd_mem *mem; 799 void *kaddr; 800 int ret; 801 802 if (qpd->ib_kaddr || !qpd->ib_base) 803 return 0; 804 805 /* ib_base is only set for dGPU */ 806 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 807 &mem, &kaddr); 808 if (ret) 809 return ret; 810 811 qpd->ib_mem = mem; 812 qpd->ib_kaddr = kaddr; 813 814 return 0; 815 } 816 817 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 818 { 819 struct qcm_process_device *qpd = &pdd->qpd; 820 821 if (!qpd->ib_kaddr || !qpd->ib_base) 822 return; 823 824 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 825 } 826 827 int kfd_create_process_sysfs(struct kfd_process *process) 828 { 829 struct kfd_process *primary_process; 830 int ret; 831 832 if (process->kobj) { 833 pr_warn("kobject already exists for the kfd_process\n"); 834 return -EINVAL; 835 } 836 837 process->kobj = kfd_alloc_struct(process->kobj); 838 if (!process->kobj) { 839 pr_warn("Creating procfs kobject failed"); 840 return -ENOMEM; 841 } 842 843 if (process->context_id == KFD_CONTEXT_ID_PRIMARY) 844 ret = kobject_init_and_add(process->kobj, &procfs_type, 845 procfs.kobj, "%d", 846 (int)process->lead_thread->pid); 847 else { 848 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 849 if (!primary_process) 850 return -ESRCH; 851 852 ret = kobject_init_and_add(process->kobj, &procfs_type, 853 primary_process->kobj, "context_%u", 854 process->context_id); 855 kfd_unref_process(primary_process); 856 } 857 858 if (ret) { 859 pr_warn("Creating procfs pid directory failed"); 860 kobject_put(process->kobj); 861 return ret; 862 } 863 864 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 865 "pasid"); 866 867 process->kobj_queues = kobject_create_and_add("queues", 868 process->kobj); 869 if (!process->kobj_queues) 870 pr_warn("Creating KFD proc/queues folder failed"); 871 872 kfd_procfs_add_sysfs_stats(process); 873 kfd_procfs_add_sysfs_files(process); 874 kfd_procfs_add_sysfs_counters(process); 875 876 return 0; 877 } 878 879 static int kfd_process_alloc_id(struct kfd_process *process) 880 { 881 int ret; 882 struct kfd_process *primary_process; 883 884 /* already assign 0xFFFF when create */ 885 if (process->context_id == KFD_CONTEXT_ID_PRIMARY) 886 return 0; 887 888 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 889 if (!primary_process) 890 return -ESRCH; 891 892 /* id range: KFD_CONTEXT_ID_MIN to 0xFFFE */ 893 ret = ida_alloc_range(&primary_process->id_table, KFD_CONTEXT_ID_MIN, 894 KFD_CONTEXT_ID_PRIMARY - 1, GFP_KERNEL); 895 if (ret < 0) 896 goto out; 897 898 process->context_id = ret; 899 ret = 0; 900 901 out: 902 kfd_unref_process(primary_process); 903 904 return ret; 905 } 906 907 static void kfd_process_free_id(struct kfd_process *process) 908 { 909 struct kfd_process *primary_process; 910 911 if (process->context_id != KFD_CONTEXT_ID_PRIMARY) 912 return; 913 914 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 915 if (!primary_process) 916 return; 917 918 ida_free(&primary_process->id_table, process->context_id); 919 920 kfd_unref_process(primary_process); 921 } 922 923 struct kfd_process *kfd_create_process(struct task_struct *thread) 924 { 925 struct kfd_process *process; 926 int ret; 927 928 if (!(thread->mm && mmget_not_zero(thread->mm))) 929 return ERR_PTR(-EINVAL); 930 931 /* Only the pthreads threading model is supported. */ 932 if (thread->group_leader->mm != thread->mm) { 933 mmput(thread->mm); 934 return ERR_PTR(-EINVAL); 935 } 936 937 /* If the process just called exec(3), it is possible that the 938 * cleanup of the kfd_process (following the release of the mm 939 * of the old process image) is still in the cleanup work queue. 940 * Make sure to drain any job before trying to recreate any 941 * resource for this process. 942 */ 943 flush_workqueue(kfd_process_wq); 944 945 /* 946 * take kfd processes mutex before starting of process creation 947 * so there won't be a case where two threads of the same process 948 * create two kfd_process structures 949 */ 950 mutex_lock(&kfd_processes_mutex); 951 952 if (kfd_gpu_node_num() <= 0) { 953 pr_warn("no gpu node! Cannot create KFD process"); 954 process = ERR_PTR(-EINVAL); 955 goto out; 956 } 957 958 if (kfd_is_locked(NULL)) { 959 pr_debug("KFD is locked! Cannot create process"); 960 process = ERR_PTR(-EINVAL); 961 goto out; 962 } 963 964 /* A prior open of /dev/kfd could have already created the process. 965 * find_process will increase process kref in this case 966 */ 967 process = find_process(thread, true); 968 if (process) { 969 pr_debug("Process already found\n"); 970 } else { 971 process = create_process(thread, true); 972 if (IS_ERR(process)) 973 goto out; 974 975 if (!procfs.kobj) 976 goto out; 977 978 ret = kfd_create_process_sysfs(process); 979 if (ret) 980 pr_warn("Failed to create sysfs entry for the kfd_process"); 981 982 kfd_debugfs_add_process(process); 983 984 init_waitqueue_head(&process->wait_irq_drain); 985 } 986 out: 987 mutex_unlock(&kfd_processes_mutex); 988 mmput(thread->mm); 989 990 return process; 991 } 992 993 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 994 { 995 struct kfd_process *process; 996 997 hash_for_each_possible_rcu(kfd_processes_table, process, 998 kfd_processes, (uintptr_t)mm) 999 if (process->mm == mm && process->context_id == KFD_CONTEXT_ID_PRIMARY) 1000 return process; 1001 1002 return NULL; 1003 } 1004 1005 static struct kfd_process *find_process(const struct task_struct *thread, 1006 bool ref) 1007 { 1008 struct kfd_process *p; 1009 int idx; 1010 1011 idx = srcu_read_lock(&kfd_processes_srcu); 1012 p = find_process_by_mm(thread->mm); 1013 if (p && ref) 1014 kref_get(&p->ref); 1015 srcu_read_unlock(&kfd_processes_srcu, idx); 1016 1017 return p; 1018 } 1019 1020 void kfd_unref_process(struct kfd_process *p) 1021 { 1022 kref_put(&p->ref, kfd_process_ref_release); 1023 } 1024 1025 /* This increments the process->ref counter. */ 1026 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 1027 { 1028 struct task_struct *task = NULL; 1029 struct kfd_process *p = NULL; 1030 1031 if (!pid) { 1032 task = current; 1033 get_task_struct(task); 1034 } else { 1035 task = get_pid_task(pid, PIDTYPE_PID); 1036 } 1037 1038 if (task) { 1039 p = find_process(task, true); 1040 put_task_struct(task); 1041 } 1042 1043 return p; 1044 } 1045 1046 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 1047 { 1048 struct kfd_process *p = pdd->process; 1049 void *mem; 1050 int id; 1051 int i; 1052 1053 /* 1054 * Remove all handles from idr and release appropriate 1055 * local memory object 1056 */ 1057 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1058 1059 for (i = 0; i < p->n_pdds; i++) { 1060 struct kfd_process_device *peer_pdd = p->pdds[i]; 1061 1062 if (!peer_pdd->drm_priv) 1063 continue; 1064 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1065 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1066 } 1067 1068 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1069 pdd->drm_priv, NULL); 1070 kfd_process_device_remove_obj_handle(pdd, id); 1071 } 1072 } 1073 1074 /* 1075 * Just kunmap and unpin signal BO here. It will be freed in 1076 * kfd_process_free_outstanding_kfd_bos() 1077 */ 1078 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1079 { 1080 struct kfd_process_device *pdd; 1081 struct kfd_node *kdev; 1082 void *mem; 1083 1084 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1085 if (!kdev) 1086 return; 1087 1088 mutex_lock(&p->mutex); 1089 1090 pdd = kfd_get_process_device_data(kdev, p); 1091 if (!pdd) 1092 goto out; 1093 1094 mem = kfd_process_device_translate_handle( 1095 pdd, GET_IDR_HANDLE(p->signal_handle)); 1096 if (!mem) 1097 goto out; 1098 1099 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1100 1101 out: 1102 mutex_unlock(&p->mutex); 1103 } 1104 1105 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1106 { 1107 int i; 1108 1109 for (i = 0; i < p->n_pdds; i++) 1110 kfd_process_device_free_bos(p->pdds[i]); 1111 } 1112 1113 static void kfd_process_destroy_pdds(struct kfd_process *p) 1114 { 1115 int i; 1116 1117 for (i = 0; i < p->n_pdds; i++) { 1118 struct kfd_process_device *pdd = p->pdds[i]; 1119 1120 kfd_smi_event_process(pdd, false); 1121 1122 pr_debug("Releasing pdd (topology id %d, for pid %d)\n", 1123 pdd->dev->id, p->lead_thread->pid); 1124 kfd_process_device_destroy_cwsr_dgpu(pdd); 1125 kfd_process_device_destroy_ib_mem(pdd); 1126 1127 if (pdd->drm_file) 1128 fput(pdd->drm_file); 1129 1130 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1131 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1132 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1133 1134 idr_destroy(&pdd->alloc_idr); 1135 1136 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1137 1138 if (pdd->dev->kfd->shared_resources.enable_mes && 1139 pdd->proc_ctx_cpu_ptr) 1140 amdgpu_amdkfd_free_kernel_mem(pdd->dev->adev, 1141 &pdd->proc_ctx_bo); 1142 /* 1143 * before destroying pdd, make sure to report availability 1144 * for auto suspend 1145 */ 1146 if (pdd->runtime_inuse) { 1147 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1148 pdd->runtime_inuse = false; 1149 } 1150 1151 atomic_dec(&pdd->dev->kfd->kfd_processes_count); 1152 1153 kfree(pdd); 1154 p->pdds[i] = NULL; 1155 } 1156 p->n_pdds = 0; 1157 } 1158 1159 static void kfd_process_remove_sysfs(struct kfd_process *p) 1160 { 1161 struct kfd_process_device *pdd; 1162 int i; 1163 1164 if (!p->kobj) 1165 return; 1166 1167 sysfs_remove_file(p->kobj, &p->attr_pasid); 1168 kobject_del(p->kobj_queues); 1169 kobject_put(p->kobj_queues); 1170 p->kobj_queues = NULL; 1171 1172 for (i = 0; i < p->n_pdds; i++) { 1173 pdd = p->pdds[i]; 1174 1175 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1176 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1177 1178 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1179 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1180 sysfs_remove_file(pdd->kobj_stats, 1181 &pdd->attr_cu_occupancy); 1182 kobject_del(pdd->kobj_stats); 1183 kobject_put(pdd->kobj_stats); 1184 pdd->kobj_stats = NULL; 1185 } 1186 1187 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1188 pdd = p->pdds[i]; 1189 1190 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1191 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1192 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1193 kobject_del(pdd->kobj_counters); 1194 kobject_put(pdd->kobj_counters); 1195 pdd->kobj_counters = NULL; 1196 } 1197 1198 kobject_del(p->kobj); 1199 kobject_put(p->kobj); 1200 p->kobj = NULL; 1201 } 1202 1203 /* 1204 * If any GPU is ongoing reset, wait for reset complete. 1205 */ 1206 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p) 1207 { 1208 int i; 1209 1210 for (i = 0; i < p->n_pdds; i++) 1211 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq); 1212 } 1213 1214 /* No process locking is needed in this function, because the process 1215 * is not findable any more. We must assume that no other thread is 1216 * using it any more, otherwise we couldn't safely free the process 1217 * structure in the end. 1218 */ 1219 static void kfd_process_wq_release(struct work_struct *work) 1220 { 1221 struct kfd_process *p = container_of(work, struct kfd_process, 1222 release_work); 1223 struct dma_fence *ef; 1224 1225 /* 1226 * If GPU in reset, user queues may still running, wait for reset complete. 1227 */ 1228 kfd_process_wait_gpu_reset_complete(p); 1229 1230 /* Signal the eviction fence after user mode queues are 1231 * destroyed. This allows any BOs to be freed without 1232 * triggering pointless evictions or waiting for fences. 1233 */ 1234 synchronize_rcu(); 1235 ef = rcu_access_pointer(p->ef); 1236 if (ef) 1237 dma_fence_signal(ef); 1238 1239 if (p->context_id != KFD_CONTEXT_ID_PRIMARY) 1240 kfd_process_free_id(p); 1241 else 1242 ida_destroy(&p->id_table); 1243 1244 kfd_debugfs_remove_process(p); 1245 1246 kfd_process_kunmap_signal_bo(p); 1247 kfd_process_free_outstanding_kfd_bos(p); 1248 svm_range_list_fini(p); 1249 1250 kfd_process_destroy_pdds(p); 1251 dma_fence_put(ef); 1252 1253 kfd_event_free_process(p); 1254 1255 mutex_destroy(&p->mutex); 1256 1257 put_task_struct(p->lead_thread); 1258 1259 /* the last step is removing process entries under /sys 1260 * to indicate the process has been terminated. 1261 */ 1262 kfd_process_remove_sysfs(p); 1263 1264 kfree(p); 1265 } 1266 1267 static void kfd_process_ref_release(struct kref *ref) 1268 { 1269 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1270 1271 INIT_WORK(&p->release_work, kfd_process_wq_release); 1272 queue_work(kfd_process_wq, &p->release_work); 1273 } 1274 1275 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1276 { 1277 /* This increments p->ref counter if kfd process p exists */ 1278 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1279 1280 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1281 } 1282 1283 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1284 { 1285 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1286 } 1287 1288 static void kfd_process_table_remove(struct kfd_process *p) 1289 { 1290 mutex_lock(&kfd_processes_mutex); 1291 /* 1292 * Do early return if table is empty. 1293 * 1294 * This could potentially happen if this function is called concurrently 1295 * by mmu_notifier and by kfd_cleanup_pocesses. 1296 * 1297 */ 1298 if (hash_empty(kfd_processes_table)) { 1299 mutex_unlock(&kfd_processes_mutex); 1300 return; 1301 } 1302 hash_del_rcu(&p->kfd_processes); 1303 mutex_unlock(&kfd_processes_mutex); 1304 synchronize_srcu(&kfd_processes_srcu); 1305 } 1306 1307 void kfd_process_notifier_release_internal(struct kfd_process *p) 1308 { 1309 int i; 1310 1311 kfd_process_table_remove(p); 1312 cancel_delayed_work_sync(&p->eviction_work); 1313 cancel_delayed_work_sync(&p->restore_work); 1314 1315 /* 1316 * Dequeue and destroy user queues, it is not safe for GPU to access 1317 * system memory after mmu release notifier callback returns because 1318 * exit_mmap free process memory afterwards. 1319 */ 1320 kfd_process_dequeue_from_all_devices(p); 1321 pqm_uninit(&p->pqm); 1322 1323 for (i = 0; i < p->n_pdds; i++) { 1324 struct kfd_process_device *pdd = p->pdds[i]; 1325 1326 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1327 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1328 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1329 } 1330 1331 /* Indicate to other users that MM is no longer valid */ 1332 p->mm = NULL; 1333 kfd_dbg_trap_disable(p); 1334 1335 if (atomic_read(&p->debugged_process_count) > 0) { 1336 struct kfd_process *target; 1337 unsigned int temp; 1338 int idx = srcu_read_lock(&kfd_processes_srcu); 1339 1340 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1341 if (target->debugger_process && target->debugger_process == p) { 1342 mutex_lock_nested(&target->mutex, 1); 1343 kfd_dbg_trap_disable(target); 1344 mutex_unlock(&target->mutex); 1345 if (atomic_read(&p->debugged_process_count) == 0) 1346 break; 1347 } 1348 } 1349 1350 srcu_read_unlock(&kfd_processes_srcu, idx); 1351 } 1352 1353 if (p->context_id == KFD_CONTEXT_ID_PRIMARY) 1354 mmu_notifier_put(&p->mmu_notifier); 1355 } 1356 1357 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1358 struct mm_struct *mm) 1359 { 1360 struct kfd_process *p; 1361 1362 /* 1363 * The kfd_process structure can not be free because the 1364 * mmu_notifier srcu is read locked 1365 */ 1366 p = container_of(mn, struct kfd_process, mmu_notifier); 1367 if (WARN_ON(p->mm != mm)) 1368 return; 1369 1370 kfd_process_notifier_release_internal(p); 1371 } 1372 1373 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1374 .release = kfd_process_notifier_release, 1375 .alloc_notifier = kfd_process_alloc_notifier, 1376 .free_notifier = kfd_process_free_notifier, 1377 }; 1378 1379 /* 1380 * This code handles the case when driver is being unloaded before all 1381 * mm_struct are released. We need to safely free the kfd_process and 1382 * avoid race conditions with mmu_notifier that might try to free them. 1383 * 1384 */ 1385 void kfd_cleanup_processes(void) 1386 { 1387 struct kfd_process *p; 1388 struct hlist_node *p_temp; 1389 unsigned int temp; 1390 HLIST_HEAD(cleanup_list); 1391 1392 /* 1393 * Move all remaining kfd_process from the process table to a 1394 * temp list for processing. Once done, callback from mmu_notifier 1395 * release will not see the kfd_process in the table and do early return, 1396 * avoiding double free issues. 1397 */ 1398 mutex_lock(&kfd_processes_mutex); 1399 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1400 hash_del_rcu(&p->kfd_processes); 1401 synchronize_srcu(&kfd_processes_srcu); 1402 hlist_add_head(&p->kfd_processes, &cleanup_list); 1403 } 1404 mutex_unlock(&kfd_processes_mutex); 1405 1406 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1407 kfd_process_notifier_release_internal(p); 1408 1409 /* 1410 * Ensures that all outstanding free_notifier get called, triggering 1411 * the release of the kfd_process struct. 1412 */ 1413 mmu_notifier_synchronize(); 1414 } 1415 1416 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1417 { 1418 unsigned long offset; 1419 int i; 1420 1421 if (p->has_cwsr) 1422 return 0; 1423 1424 for (i = 0; i < p->n_pdds; i++) { 1425 struct kfd_node *dev = p->pdds[i]->dev; 1426 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1427 1428 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1429 continue; 1430 1431 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1432 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1433 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1434 MAP_SHARED, offset); 1435 1436 if (IS_ERR_VALUE(qpd->tba_addr)) { 1437 int err = qpd->tba_addr; 1438 1439 dev_err(dev->adev->dev, 1440 "Failure to set tba address. error %d.\n", err); 1441 qpd->tba_addr = 0; 1442 qpd->cwsr_kaddr = NULL; 1443 return err; 1444 } 1445 1446 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1447 1448 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1449 1450 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1451 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1452 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1453 } 1454 1455 p->has_cwsr = true; 1456 1457 return 0; 1458 } 1459 1460 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1461 { 1462 struct kfd_node *dev = pdd->dev; 1463 struct qcm_process_device *qpd = &pdd->qpd; 1464 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1465 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1466 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1467 struct kgd_mem *mem; 1468 void *kaddr; 1469 int ret; 1470 1471 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1472 return 0; 1473 1474 /* cwsr_base is only set for dGPU */ 1475 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1476 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1477 if (ret) 1478 return ret; 1479 1480 qpd->cwsr_mem = mem; 1481 qpd->cwsr_kaddr = kaddr; 1482 qpd->tba_addr = qpd->cwsr_base; 1483 1484 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1485 1486 kfd_process_set_trap_debug_flag(&pdd->qpd, 1487 pdd->process->debug_trap_enabled); 1488 1489 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1490 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1491 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1492 1493 return 0; 1494 } 1495 1496 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1497 { 1498 struct kfd_node *dev = pdd->dev; 1499 struct qcm_process_device *qpd = &pdd->qpd; 1500 1501 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1502 return; 1503 1504 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1505 } 1506 1507 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1508 uint64_t tba_addr, 1509 uint64_t tma_addr) 1510 { 1511 if (qpd->cwsr_kaddr) { 1512 /* KFD trap handler is bound, record as second-level TBA/TMA 1513 * in first-level TMA. First-level trap will jump to second. 1514 */ 1515 uint64_t *tma = 1516 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1517 tma[0] = tba_addr; 1518 tma[1] = tma_addr; 1519 } else { 1520 /* No trap handler bound, bind as first-level TBA/TMA. */ 1521 qpd->tba_addr = tba_addr; 1522 qpd->tma_addr = tma_addr; 1523 } 1524 } 1525 1526 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1527 { 1528 int i; 1529 1530 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1531 * boot time retry setting. Mixing processes with different 1532 * XNACK/retry settings can hang the GPU. 1533 * 1534 * Different GPUs can have different noretry settings depending 1535 * on HW bugs or limitations. We need to find at least one 1536 * XNACK mode for this process that's compatible with all GPUs. 1537 * Fortunately GPUs with retry enabled (noretry=0) can run code 1538 * built for XNACK-off. On GFXv9 it may perform slower. 1539 * 1540 * Therefore applications built for XNACK-off can always be 1541 * supported and will be our fallback if any GPU does not 1542 * support retry. 1543 */ 1544 for (i = 0; i < p->n_pdds; i++) { 1545 struct kfd_node *dev = p->pdds[i]->dev; 1546 1547 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1548 * support the SVM APIs and don't need to be considered 1549 * for the XNACK mode selection. 1550 */ 1551 if (!KFD_IS_SOC15(dev)) 1552 continue; 1553 /* Aldebaran can always support XNACK because it can support 1554 * per-process XNACK mode selection. But let the dev->noretry 1555 * setting still influence the default XNACK mode. 1556 */ 1557 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1558 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1559 pr_debug("SRIOV platform xnack not supported\n"); 1560 return false; 1561 } 1562 continue; 1563 } 1564 1565 /* GFXv10 and later GPUs do not support shader preemption 1566 * during page faults. This can lead to poor QoS for queue 1567 * management and memory-manager-related preemptions or 1568 * even deadlocks. 1569 */ 1570 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1) && 1571 KFD_GC_VERSION(dev) < IP_VERSION(12, 1, 0)) 1572 return false; 1573 1574 if (dev->kfd->noretry) 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1582 bool enabled) 1583 { 1584 if (qpd->cwsr_kaddr) { 1585 uint64_t *tma = 1586 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1587 tma[2] = enabled; 1588 } 1589 } 1590 1591 /* 1592 * On return the kfd_process is fully operational and will be freed when the 1593 * mm is released 1594 */ 1595 struct kfd_process *create_process(const struct task_struct *thread, bool primary) 1596 { 1597 struct kfd_process *process; 1598 struct mmu_notifier *mn; 1599 int err = -ENOMEM; 1600 1601 process = kzalloc(sizeof(*process), GFP_KERNEL); 1602 if (!process) 1603 goto err_alloc_process; 1604 1605 kref_init(&process->ref); 1606 mutex_init(&process->mutex); 1607 process->mm = thread->mm; 1608 process->lead_thread = thread->group_leader; 1609 process->n_pdds = 0; 1610 process->queues_paused = false; 1611 1612 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1613 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1614 process->last_restore_timestamp = get_jiffies_64(); 1615 err = kfd_event_init_process(process); 1616 if (err) 1617 goto err_event_init; 1618 process->is_32bit_user_mode = in_compat_syscall(); 1619 process->debug_trap_enabled = false; 1620 process->debugger_process = NULL; 1621 process->exception_enable_mask = 0; 1622 atomic_set(&process->debugged_process_count, 0); 1623 sema_init(&process->runtime_enable_sema, 0); 1624 1625 err = pqm_init(&process->pqm, process); 1626 if (err != 0) 1627 goto err_process_pqm_init; 1628 1629 /* init process apertures*/ 1630 err = kfd_init_apertures(process); 1631 if (err != 0) 1632 goto err_init_apertures; 1633 1634 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1635 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1636 1637 err = svm_range_list_init(process); 1638 if (err) 1639 goto err_init_svm_range_list; 1640 1641 /* alloc_notifier needs to find the process in the hash table */ 1642 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1643 (uintptr_t)process->mm); 1644 1645 /* Avoid free_notifier to start kfd_process_wq_release if 1646 * mmu_notifier_get failed because of pending signal. 1647 */ 1648 kref_get(&process->ref); 1649 1650 /* MMU notifier registration must be the last call that can fail 1651 * because after this point we cannot unwind the process creation. 1652 * After this point, mmu_notifier_put will trigger the cleanup by 1653 * dropping the last process reference in the free_notifier. 1654 */ 1655 if (primary) { 1656 process->context_id = KFD_CONTEXT_ID_PRIMARY; 1657 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1658 if (IS_ERR(mn)) { 1659 err = PTR_ERR(mn); 1660 goto err_register_notifier; 1661 } 1662 BUG_ON(mn != &process->mmu_notifier); 1663 ida_init(&process->id_table); 1664 } 1665 1666 err = kfd_process_alloc_id(process); 1667 if (err) { 1668 pr_err("Creating kfd process: failed to alloc an id\n"); 1669 goto err_alloc_id; 1670 } 1671 1672 kfd_unref_process(process); 1673 get_task_struct(process->lead_thread); 1674 1675 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1676 1677 return process; 1678 1679 err_alloc_id: 1680 kfd_process_free_id(process); 1681 err_register_notifier: 1682 hash_del_rcu(&process->kfd_processes); 1683 svm_range_list_fini(process); 1684 err_init_svm_range_list: 1685 kfd_process_free_outstanding_kfd_bos(process); 1686 kfd_process_destroy_pdds(process); 1687 err_init_apertures: 1688 pqm_uninit(&process->pqm); 1689 err_process_pqm_init: 1690 kfd_event_free_process(process); 1691 err_event_init: 1692 mutex_destroy(&process->mutex); 1693 kfree(process); 1694 err_alloc_process: 1695 return ERR_PTR(err); 1696 } 1697 1698 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1699 struct kfd_process *p) 1700 { 1701 int i; 1702 1703 for (i = 0; i < p->n_pdds; i++) 1704 if (p->pdds[i]->dev == dev) 1705 return p->pdds[i]; 1706 1707 return NULL; 1708 } 1709 1710 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1711 struct kfd_process *p) 1712 { 1713 struct kfd_process_device *pdd = NULL; 1714 1715 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1716 return NULL; 1717 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1718 if (!pdd) 1719 return NULL; 1720 1721 pdd->dev = dev; 1722 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1723 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1724 pdd->qpd.dqm = dev->dqm; 1725 pdd->qpd.pqm = &p->pqm; 1726 pdd->qpd.evicted = 0; 1727 pdd->qpd.mapped_gws_queue = false; 1728 pdd->process = p; 1729 pdd->bound = PDD_UNBOUND; 1730 pdd->already_dequeued = false; 1731 pdd->runtime_inuse = false; 1732 atomic64_set(&pdd->vram_usage, 0); 1733 pdd->sdma_past_activity_counter = 0; 1734 pdd->user_gpu_id = dev->id; 1735 atomic64_set(&pdd->evict_duration_counter, 0); 1736 1737 p->pdds[p->n_pdds++] = pdd; 1738 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1739 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1740 pdd->dev->adev, 1741 false, 1742 0); 1743 1744 /* Init idr used for memory handle translation */ 1745 idr_init(&pdd->alloc_idr); 1746 1747 atomic_inc(&dev->kfd->kfd_processes_count); 1748 1749 return pdd; 1750 } 1751 1752 /** 1753 * kfd_process_device_init_vm - Initialize a VM for a process-device 1754 * 1755 * @pdd: The process-device 1756 * @drm_file: Optional pointer to a DRM file descriptor 1757 * 1758 * If @drm_file is specified, it will be used to acquire the VM from 1759 * that file descriptor. If successful, the @pdd takes ownership of 1760 * the file descriptor. 1761 * 1762 * If @drm_file is NULL, a new VM is created. 1763 * 1764 * Returns 0 on success, -errno on failure. 1765 */ 1766 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1767 struct file *drm_file) 1768 { 1769 struct amdgpu_fpriv *drv_priv; 1770 struct amdgpu_vm *avm; 1771 struct kfd_process *p; 1772 struct dma_fence *ef; 1773 struct kfd_node *dev; 1774 int ret; 1775 1776 if (!drm_file) 1777 return -EINVAL; 1778 1779 if (pdd->drm_priv) 1780 return -EBUSY; 1781 1782 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1783 if (ret) 1784 return ret; 1785 avm = &drv_priv->vm; 1786 1787 p = pdd->process; 1788 dev = pdd->dev; 1789 1790 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1791 &p->kgd_process_info, 1792 p->ef ? NULL : &ef); 1793 if (ret) { 1794 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1795 return ret; 1796 } 1797 1798 if (!p->ef) 1799 RCU_INIT_POINTER(p->ef, ef); 1800 1801 pdd->drm_priv = drm_file->private_data; 1802 1803 ret = kfd_process_device_reserve_ib_mem(pdd); 1804 if (ret) 1805 goto err_reserve_ib_mem; 1806 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1807 if (ret) 1808 goto err_init_cwsr; 1809 1810 if (unlikely(!avm->pasid)) { 1811 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated", 1812 avm); 1813 ret = -EINVAL; 1814 goto err_get_pasid; 1815 } 1816 1817 pdd->pasid = avm->pasid; 1818 pdd->drm_file = drm_file; 1819 1820 kfd_smi_event_process(pdd, true); 1821 1822 return 0; 1823 1824 err_get_pasid: 1825 kfd_process_device_destroy_cwsr_dgpu(pdd); 1826 err_init_cwsr: 1827 kfd_process_device_destroy_ib_mem(pdd); 1828 err_reserve_ib_mem: 1829 pdd->drm_priv = NULL; 1830 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1831 1832 return ret; 1833 } 1834 1835 /* 1836 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1837 * to the device. 1838 * Unbinding occurs when the process dies or the device is removed. 1839 * 1840 * Assumes that the process lock is held. 1841 */ 1842 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1843 struct kfd_process *p) 1844 { 1845 struct kfd_process_device *pdd; 1846 int err; 1847 1848 pdd = kfd_get_process_device_data(dev, p); 1849 if (!pdd) { 1850 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1851 return ERR_PTR(-ENOMEM); 1852 } 1853 1854 if (!pdd->drm_priv) 1855 return ERR_PTR(-ENODEV); 1856 1857 /* 1858 * signal runtime-pm system to auto resume and prevent 1859 * further runtime suspend once device pdd is created until 1860 * pdd is destroyed. 1861 */ 1862 if (!pdd->runtime_inuse) { 1863 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1864 if (err < 0) { 1865 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1866 return ERR_PTR(err); 1867 } 1868 } 1869 1870 /* 1871 * make sure that runtime_usage counter is incremented just once 1872 * per pdd 1873 */ 1874 pdd->runtime_inuse = true; 1875 1876 return pdd; 1877 } 1878 1879 /* Create specific handle mapped to mem from process local memory idr 1880 * Assumes that the process lock is held. 1881 */ 1882 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1883 void *mem) 1884 { 1885 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1886 } 1887 1888 /* Translate specific handle from process local memory idr 1889 * Assumes that the process lock is held. 1890 */ 1891 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1892 int handle) 1893 { 1894 if (handle < 0) 1895 return NULL; 1896 1897 return idr_find(&pdd->alloc_idr, handle); 1898 } 1899 1900 /* Remove specific handle from process local memory idr 1901 * Assumes that the process lock is held. 1902 */ 1903 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1904 int handle) 1905 { 1906 if (handle >= 0) 1907 idr_remove(&pdd->alloc_idr, handle); 1908 } 1909 1910 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid) 1911 { 1912 struct kfd_process_device *ret_p = NULL; 1913 struct kfd_process *p; 1914 unsigned int temp; 1915 int i; 1916 1917 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1918 for (i = 0; i < p->n_pdds; i++) { 1919 if (p->pdds[i]->pasid == pasid) { 1920 ret_p = p->pdds[i]; 1921 break; 1922 } 1923 } 1924 if (ret_p) 1925 break; 1926 } 1927 return ret_p; 1928 } 1929 1930 /* This increments the process->ref counter. */ 1931 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1932 struct kfd_process_device **pdd) 1933 { 1934 struct kfd_process_device *ret_p; 1935 1936 int idx = srcu_read_lock(&kfd_processes_srcu); 1937 1938 ret_p = kfd_lookup_process_device_by_pasid(pasid); 1939 if (ret_p) { 1940 if (pdd) 1941 *pdd = ret_p; 1942 kref_get(&ret_p->process->ref); 1943 1944 srcu_read_unlock(&kfd_processes_srcu, idx); 1945 return ret_p->process; 1946 } 1947 1948 srcu_read_unlock(&kfd_processes_srcu, idx); 1949 1950 if (pdd) 1951 *pdd = NULL; 1952 1953 return NULL; 1954 } 1955 1956 /* This increments the process->ref counter. */ 1957 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1958 { 1959 struct kfd_process *p; 1960 1961 int idx = srcu_read_lock(&kfd_processes_srcu); 1962 1963 p = find_process_by_mm(mm); 1964 if (p) 1965 kref_get(&p->ref); 1966 1967 srcu_read_unlock(&kfd_processes_srcu, idx); 1968 1969 return p; 1970 } 1971 1972 /* This increments the process->ref counter. */ 1973 struct kfd_process *kfd_lookup_process_by_id(const struct mm_struct *mm, u16 id) 1974 { 1975 struct kfd_process *p, *ret_p = NULL; 1976 unsigned int temp; 1977 1978 int idx = srcu_read_lock(&kfd_processes_srcu); 1979 1980 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1981 if (p->mm == mm && p->context_id == id) { 1982 kref_get(&p->ref); 1983 ret_p = p; 1984 break; 1985 } 1986 } 1987 1988 srcu_read_unlock(&kfd_processes_srcu, idx); 1989 1990 return ret_p; 1991 } 1992 1993 /* kfd_process_evict_queues - Evict all user queues of a process 1994 * 1995 * Eviction is reference-counted per process-device. This means multiple 1996 * evictions from different sources can be nested safely. 1997 */ 1998 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1999 { 2000 int r = 0; 2001 int i; 2002 unsigned int n_evicted = 0; 2003 2004 for (i = 0; i < p->n_pdds; i++) { 2005 struct kfd_process_device *pdd = p->pdds[i]; 2006 struct device *dev = pdd->dev->adev->dev; 2007 2008 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 2009 trigger); 2010 2011 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 2012 &pdd->qpd); 2013 /* evict return -EIO if HWS is hang or asic is resetting, in this case 2014 * we would like to set all the queues to be in evicted state to prevent 2015 * them been add back since they actually not be saved right now. 2016 */ 2017 if (r && r != -EIO) { 2018 dev_err(dev, "Failed to evict process queues\n"); 2019 goto fail; 2020 } 2021 n_evicted++; 2022 2023 pdd->dev->dqm->is_hws_hang = false; 2024 } 2025 2026 return r; 2027 2028 fail: 2029 /* To keep state consistent, roll back partial eviction by 2030 * restoring queues 2031 */ 2032 for (i = 0; i < p->n_pdds; i++) { 2033 struct kfd_process_device *pdd = p->pdds[i]; 2034 2035 if (n_evicted == 0) 2036 break; 2037 2038 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 2039 2040 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 2041 &pdd->qpd)) 2042 dev_err(pdd->dev->adev->dev, 2043 "Failed to restore queues\n"); 2044 2045 n_evicted--; 2046 } 2047 2048 return r; 2049 } 2050 2051 /* kfd_process_restore_queues - Restore all user queues of a process */ 2052 int kfd_process_restore_queues(struct kfd_process *p) 2053 { 2054 int r, ret = 0; 2055 int i; 2056 2057 for (i = 0; i < p->n_pdds; i++) { 2058 struct kfd_process_device *pdd = p->pdds[i]; 2059 struct device *dev = pdd->dev->adev->dev; 2060 2061 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 2062 2063 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 2064 &pdd->qpd); 2065 if (r) { 2066 dev_err(dev, "Failed to restore process queues\n"); 2067 if (!ret) 2068 ret = r; 2069 } 2070 } 2071 2072 return ret; 2073 } 2074 2075 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 2076 { 2077 int i; 2078 2079 for (i = 0; i < p->n_pdds; i++) 2080 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 2081 return i; 2082 return -EINVAL; 2083 } 2084 2085 int 2086 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 2087 uint32_t *gpuid, uint32_t *gpuidx) 2088 { 2089 int i; 2090 2091 for (i = 0; i < p->n_pdds; i++) 2092 if (p->pdds[i] && p->pdds[i]->dev == node) { 2093 *gpuid = p->pdds[i]->user_gpu_id; 2094 *gpuidx = i; 2095 return 0; 2096 } 2097 return -EINVAL; 2098 } 2099 2100 static bool signal_eviction_fence(struct kfd_process *p) 2101 { 2102 struct dma_fence *ef; 2103 bool ret; 2104 2105 rcu_read_lock(); 2106 ef = dma_fence_get_rcu_safe(&p->ef); 2107 rcu_read_unlock(); 2108 if (!ef) 2109 return true; 2110 2111 ret = dma_fence_check_and_signal(ef); 2112 dma_fence_put(ef); 2113 2114 return ret; 2115 } 2116 2117 static void evict_process_worker(struct work_struct *work) 2118 { 2119 int ret; 2120 struct kfd_process *p; 2121 struct delayed_work *dwork; 2122 2123 dwork = to_delayed_work(work); 2124 2125 /* Process termination destroys this worker thread. So during the 2126 * lifetime of this thread, kfd_process p will be valid 2127 */ 2128 p = container_of(dwork, struct kfd_process, eviction_work); 2129 2130 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid); 2131 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 2132 if (!ret) { 2133 /* If another thread already signaled the eviction fence, 2134 * they are responsible stopping the queues and scheduling 2135 * the restore work. 2136 */ 2137 if (signal_eviction_fence(p) || 2138 mod_delayed_work(kfd_restore_wq, &p->restore_work, 2139 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2140 kfd_process_restore_queues(p); 2141 2142 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid); 2143 } else 2144 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid); 2145 } 2146 2147 static int restore_process_helper(struct kfd_process *p) 2148 { 2149 int ret = 0; 2150 2151 /* VMs may not have been acquired yet during debugging. */ 2152 if (p->kgd_process_info) { 2153 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2154 p->kgd_process_info, &p->ef); 2155 if (ret) 2156 return ret; 2157 } 2158 2159 ret = kfd_process_restore_queues(p); 2160 if (!ret) 2161 pr_debug("Finished restoring process pid %d\n", 2162 p->lead_thread->pid); 2163 else 2164 pr_err("Failed to restore queues of process pid %d\n", 2165 p->lead_thread->pid); 2166 2167 return ret; 2168 } 2169 2170 static void restore_process_worker(struct work_struct *work) 2171 { 2172 struct delayed_work *dwork; 2173 struct kfd_process *p; 2174 int ret = 0; 2175 2176 dwork = to_delayed_work(work); 2177 2178 /* Process termination destroys this worker thread. So during the 2179 * lifetime of this thread, kfd_process p will be valid 2180 */ 2181 p = container_of(dwork, struct kfd_process, restore_work); 2182 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid); 2183 2184 /* Setting last_restore_timestamp before successful restoration. 2185 * Otherwise this would have to be set by KGD (restore_process_bos) 2186 * before KFD BOs are unreserved. If not, the process can be evicted 2187 * again before the timestamp is set. 2188 * If restore fails, the timestamp will be set again in the next 2189 * attempt. This would mean that the minimum GPU quanta would be 2190 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2191 * functions) 2192 */ 2193 2194 p->last_restore_timestamp = get_jiffies_64(); 2195 2196 ret = restore_process_helper(p); 2197 if (ret) { 2198 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n", 2199 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS); 2200 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2201 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2202 kfd_process_restore_queues(p); 2203 } 2204 } 2205 2206 void kfd_suspend_all_processes(void) 2207 { 2208 struct kfd_process *p; 2209 unsigned int temp; 2210 int idx = srcu_read_lock(&kfd_processes_srcu); 2211 2212 WARN(debug_evictions, "Evicting all processes"); 2213 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2214 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2215 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid); 2216 signal_eviction_fence(p); 2217 } 2218 srcu_read_unlock(&kfd_processes_srcu, idx); 2219 } 2220 2221 int kfd_resume_all_processes(void) 2222 { 2223 struct kfd_process *p; 2224 unsigned int temp; 2225 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2226 2227 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2228 if (restore_process_helper(p)) { 2229 pr_err("Restore process pid %d failed during resume\n", 2230 p->lead_thread->pid); 2231 ret = -EFAULT; 2232 } 2233 } 2234 srcu_read_unlock(&kfd_processes_srcu, idx); 2235 return ret; 2236 } 2237 2238 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2239 struct vm_area_struct *vma) 2240 { 2241 struct kfd_process_device *pdd; 2242 struct qcm_process_device *qpd; 2243 2244 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2245 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2246 return -EINVAL; 2247 } 2248 2249 pdd = kfd_get_process_device_data(dev, process); 2250 if (!pdd) 2251 return -EINVAL; 2252 qpd = &pdd->qpd; 2253 2254 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2255 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2256 if (!qpd->cwsr_kaddr) { 2257 dev_err(dev->adev->dev, 2258 "Error allocating per process CWSR buffer.\n"); 2259 return -ENOMEM; 2260 } 2261 2262 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2263 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2264 /* Mapping pages to user process */ 2265 return remap_pfn_range(vma, vma->vm_start, 2266 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2267 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2268 } 2269 2270 /* assumes caller holds process lock. */ 2271 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2272 { 2273 uint32_t irq_drain_fence[8]; 2274 uint8_t node_id = 0; 2275 int r = 0; 2276 2277 if (!KFD_IS_SOC15(pdd->dev)) 2278 return 0; 2279 2280 pdd->process->irq_drain_is_open = true; 2281 2282 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2283 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2284 KFD_IRQ_FENCE_CLIENTID; 2285 irq_drain_fence[3] = pdd->pasid; 2286 2287 /* 2288 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3] 2289 */ 2290 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2291 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) || 2292 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0) || 2293 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(12, 1, 0)) { 2294 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2295 irq_drain_fence[3] |= node_id << 16; 2296 } 2297 2298 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2299 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2300 irq_drain_fence)) { 2301 pdd->process->irq_drain_is_open = false; 2302 return 0; 2303 } 2304 2305 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2306 !READ_ONCE(pdd->process->irq_drain_is_open)); 2307 if (r) 2308 pdd->process->irq_drain_is_open = false; 2309 2310 return r; 2311 } 2312 2313 void kfd_process_close_interrupt_drain(unsigned int pasid) 2314 { 2315 struct kfd_process *p; 2316 2317 p = kfd_lookup_process_by_pasid(pasid, NULL); 2318 2319 if (!p) 2320 return; 2321 2322 WRITE_ONCE(p->irq_drain_is_open, false); 2323 wake_up_all(&p->wait_irq_drain); 2324 kfd_unref_process(p); 2325 } 2326 2327 struct send_exception_work_handler_workarea { 2328 struct work_struct work; 2329 struct kfd_process *p; 2330 unsigned int queue_id; 2331 uint64_t error_reason; 2332 }; 2333 2334 static void send_exception_work_handler(struct work_struct *work) 2335 { 2336 struct send_exception_work_handler_workarea *workarea; 2337 struct kfd_process *p; 2338 struct queue *q; 2339 struct mm_struct *mm; 2340 struct kfd_context_save_area_header __user *csa_header; 2341 uint64_t __user *err_payload_ptr; 2342 uint64_t cur_err; 2343 uint32_t ev_id; 2344 2345 workarea = container_of(work, 2346 struct send_exception_work_handler_workarea, 2347 work); 2348 p = workarea->p; 2349 2350 mm = get_task_mm(p->lead_thread); 2351 2352 if (!mm) 2353 return; 2354 2355 kthread_use_mm(mm); 2356 2357 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2358 2359 if (!q) 2360 goto out; 2361 2362 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2363 2364 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2365 get_user(cur_err, err_payload_ptr); 2366 cur_err |= workarea->error_reason; 2367 put_user(cur_err, err_payload_ptr); 2368 get_user(ev_id, &csa_header->err_event_id); 2369 2370 kfd_set_event(p, ev_id); 2371 2372 out: 2373 kthread_unuse_mm(mm); 2374 mmput(mm); 2375 } 2376 2377 int kfd_send_exception_to_runtime(struct kfd_process *p, 2378 unsigned int queue_id, 2379 uint64_t error_reason) 2380 { 2381 struct send_exception_work_handler_workarea worker; 2382 2383 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2384 2385 worker.p = p; 2386 worker.queue_id = queue_id; 2387 worker.error_reason = error_reason; 2388 2389 schedule_work(&worker.work); 2390 flush_work(&worker.work); 2391 destroy_work_on_stack(&worker.work); 2392 2393 return 0; 2394 } 2395 2396 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2397 { 2398 int i; 2399 2400 if (gpu_id) { 2401 for (i = 0; i < p->n_pdds; i++) { 2402 struct kfd_process_device *pdd = p->pdds[i]; 2403 2404 if (pdd->user_gpu_id == gpu_id) 2405 return pdd; 2406 } 2407 } 2408 return NULL; 2409 } 2410 2411 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2412 { 2413 int i; 2414 2415 if (!actual_gpu_id) 2416 return 0; 2417 2418 for (i = 0; i < p->n_pdds; i++) { 2419 struct kfd_process_device *pdd = p->pdds[i]; 2420 2421 if (pdd->dev->id == actual_gpu_id) 2422 return pdd->user_gpu_id; 2423 } 2424 return -EINVAL; 2425 } 2426 2427 #if defined(CONFIG_DEBUG_FS) 2428 2429 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2430 { 2431 struct kfd_process *p; 2432 unsigned int temp; 2433 int r = 0; 2434 2435 int idx = srcu_read_lock(&kfd_processes_srcu); 2436 2437 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2438 seq_printf(m, "Process %d PASID %d:\n", 2439 p->lead_thread->tgid, p->lead_thread->pid); 2440 2441 mutex_lock(&p->mutex); 2442 r = pqm_debugfs_mqds(m, &p->pqm); 2443 mutex_unlock(&p->mutex); 2444 2445 if (r) 2446 break; 2447 } 2448 2449 srcu_read_unlock(&kfd_processes_srcu, idx); 2450 2451 return r; 2452 } 2453 2454 #endif 2455