xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision c0d6f52f9b62479d61f8cd4faf9fb2f8bce6e301)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 	int i;
274 	struct kfd_cu_occupancy *cu_occupancy;
275 	u32 queue_format;
276 
277 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
278 	dev = pdd->dev;
279 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
280 		return -EINVAL;
281 
282 	cu_cnt = 0;
283 	proc = pdd->process;
284 	if (pdd->qpd.queue_count == 0) {
285 		pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
286 			 dev->id, (int)proc->lead_thread->pid);
287 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
288 	}
289 
290 	/* Collect wave count from device if it supports */
291 	wave_cnt = 0;
292 	max_waves_per_cu = 0;
293 
294 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
295 	if (!cu_occupancy)
296 		return -ENOMEM;
297 
298 	/*
299 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
300 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
301 	 * by number of XCCs in the partition to get the total wave counts across all
302 	 * XCCs in the partition.
303 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
304 	 */
305 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
306 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
307 
308 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
309 		if (cu_occupancy[i].wave_cnt != 0 &&
310 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
311 						cu_occupancy[i].doorbell_off,
312 						&queue_format)) {
313 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
314 				wave_cnt += cu_occupancy[i].wave_cnt;
315 			else
316 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
317 						cu_occupancy[i].wave_cnt);
318 		}
319 	}
320 
321 	/* Translate wave count to number of compute units */
322 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
323 	kfree(cu_occupancy);
324 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
325 }
326 
327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
328 			       char *buffer)
329 {
330 	if (strcmp(attr->name, "pasid") == 0)
331 		return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
332 	else if (strncmp(attr->name, "vram_", 5) == 0) {
333 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
334 							      attr_vram);
335 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
336 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
337 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338 							      attr_sdma);
339 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
340 
341 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
342 				  kfd_sdma_activity_worker);
343 
344 		sdma_activity_work_handler.pdd = pdd;
345 		sdma_activity_work_handler.sdma_activity_counter = 0;
346 
347 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
348 
349 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
350 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
351 
352 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
353 				(sdma_activity_work_handler.sdma_activity_counter)/
354 				 SDMA_ACTIVITY_DIVISOR);
355 	} else {
356 		pr_err("Invalid attribute");
357 		return -EINVAL;
358 	}
359 
360 	return 0;
361 }
362 
363 static void kfd_procfs_kobj_release(struct kobject *kobj)
364 {
365 	kfree(kobj);
366 }
367 
368 static const struct sysfs_ops kfd_procfs_ops = {
369 	.show = kfd_procfs_show,
370 };
371 
372 static const struct kobj_type procfs_type = {
373 	.release = kfd_procfs_kobj_release,
374 	.sysfs_ops = &kfd_procfs_ops,
375 };
376 
377 void kfd_procfs_init(void)
378 {
379 	int ret = 0;
380 
381 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
382 	if (!procfs.kobj)
383 		return;
384 
385 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
386 				   &kfd_device->kobj, "proc");
387 	if (ret) {
388 		pr_warn("Could not create procfs proc folder");
389 		/* If we fail to create the procfs, clean up */
390 		kfd_procfs_shutdown();
391 	}
392 }
393 
394 void kfd_procfs_shutdown(void)
395 {
396 	if (procfs.kobj) {
397 		kobject_del(procfs.kobj);
398 		kobject_put(procfs.kobj);
399 		procfs.kobj = NULL;
400 	}
401 }
402 
403 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
404 				     struct attribute *attr, char *buffer)
405 {
406 	struct queue *q = container_of(kobj, struct queue, kobj);
407 
408 	if (!strcmp(attr->name, "size"))
409 		return snprintf(buffer, PAGE_SIZE, "%llu",
410 				q->properties.queue_size);
411 	else if (!strcmp(attr->name, "type"))
412 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
413 	else if (!strcmp(attr->name, "gpuid"))
414 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
415 	else
416 		pr_err("Invalid attribute");
417 
418 	return 0;
419 }
420 
421 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
422 				     struct attribute *attr, char *buffer)
423 {
424 	if (strcmp(attr->name, "evicted_ms") == 0) {
425 		struct kfd_process_device *pdd = container_of(attr,
426 				struct kfd_process_device,
427 				attr_evict);
428 		uint64_t evict_jiffies;
429 
430 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
431 
432 		return snprintf(buffer,
433 				PAGE_SIZE,
434 				"%llu\n",
435 				jiffies64_to_msecs(evict_jiffies));
436 
437 	/* Sysfs handle that gets CU occupancy is per device */
438 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
439 		return kfd_get_cu_occupancy(attr, buffer);
440 	} else {
441 		pr_err("Invalid attribute");
442 	}
443 
444 	return 0;
445 }
446 
447 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
448 				       struct attribute *attr, char *buf)
449 {
450 	struct kfd_process_device *pdd;
451 
452 	if (!strcmp(attr->name, "faults")) {
453 		pdd = container_of(attr, struct kfd_process_device,
454 				   attr_faults);
455 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
456 	}
457 	if (!strcmp(attr->name, "page_in")) {
458 		pdd = container_of(attr, struct kfd_process_device,
459 				   attr_page_in);
460 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
461 	}
462 	if (!strcmp(attr->name, "page_out")) {
463 		pdd = container_of(attr, struct kfd_process_device,
464 				   attr_page_out);
465 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
466 	}
467 	return 0;
468 }
469 
470 static struct attribute attr_queue_size = {
471 	.name = "size",
472 	.mode = KFD_SYSFS_FILE_MODE
473 };
474 
475 static struct attribute attr_queue_type = {
476 	.name = "type",
477 	.mode = KFD_SYSFS_FILE_MODE
478 };
479 
480 static struct attribute attr_queue_gpuid = {
481 	.name = "gpuid",
482 	.mode = KFD_SYSFS_FILE_MODE
483 };
484 
485 static struct attribute *procfs_queue_attrs[] = {
486 	&attr_queue_size,
487 	&attr_queue_type,
488 	&attr_queue_gpuid,
489 	NULL
490 };
491 ATTRIBUTE_GROUPS(procfs_queue);
492 
493 static const struct sysfs_ops procfs_queue_ops = {
494 	.show = kfd_procfs_queue_show,
495 };
496 
497 static const struct kobj_type procfs_queue_type = {
498 	.sysfs_ops = &procfs_queue_ops,
499 	.default_groups = procfs_queue_groups,
500 };
501 
502 static const struct sysfs_ops procfs_stats_ops = {
503 	.show = kfd_procfs_stats_show,
504 };
505 
506 static const struct kobj_type procfs_stats_type = {
507 	.sysfs_ops = &procfs_stats_ops,
508 	.release = kfd_procfs_kobj_release,
509 };
510 
511 static const struct sysfs_ops sysfs_counters_ops = {
512 	.show = kfd_sysfs_counters_show,
513 };
514 
515 static const struct kobj_type sysfs_counters_type = {
516 	.sysfs_ops = &sysfs_counters_ops,
517 	.release = kfd_procfs_kobj_release,
518 };
519 
520 int kfd_procfs_add_queue(struct queue *q)
521 {
522 	struct kfd_process *proc;
523 	int ret;
524 
525 	if (!q || !q->process)
526 		return -EINVAL;
527 	proc = q->process;
528 
529 	/* Create proc/<pid>/queues/<queue id> folder */
530 	if (!proc->kobj_queues)
531 		return -EFAULT;
532 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
533 			proc->kobj_queues, "%u", q->properties.queue_id);
534 	if (ret < 0) {
535 		pr_warn("Creating proc/<pid>/queues/%u failed",
536 			q->properties.queue_id);
537 		kobject_put(&q->kobj);
538 		return ret;
539 	}
540 
541 	return 0;
542 }
543 
544 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
545 				 char *name)
546 {
547 	int ret;
548 
549 	if (!kobj || !attr || !name)
550 		return;
551 
552 	attr->name = name;
553 	attr->mode = KFD_SYSFS_FILE_MODE;
554 	sysfs_attr_init(attr);
555 
556 	ret = sysfs_create_file(kobj, attr);
557 	if (ret)
558 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
559 }
560 
561 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
562 {
563 	int ret;
564 	int i;
565 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
566 
567 	if (!p || !p->kobj)
568 		return;
569 
570 	/*
571 	 * Create sysfs files for each GPU:
572 	 * - proc/<pid>/stats_<gpuid>/
573 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
574 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
575 	 */
576 	for (i = 0; i < p->n_pdds; i++) {
577 		struct kfd_process_device *pdd = p->pdds[i];
578 
579 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
580 				"stats_%u", pdd->dev->id);
581 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
582 		if (!pdd->kobj_stats)
583 			return;
584 
585 		ret = kobject_init_and_add(pdd->kobj_stats,
586 					   &procfs_stats_type,
587 					   p->kobj,
588 					   stats_dir_filename);
589 
590 		if (ret) {
591 			pr_warn("Creating KFD proc/stats_%s folder failed",
592 				stats_dir_filename);
593 			kobject_put(pdd->kobj_stats);
594 			pdd->kobj_stats = NULL;
595 			return;
596 		}
597 
598 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
599 				      "evicted_ms");
600 		/* Add sysfs file to report compute unit occupancy */
601 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
602 			kfd_sysfs_create_file(pdd->kobj_stats,
603 					      &pdd->attr_cu_occupancy,
604 					      "cu_occupancy");
605 	}
606 }
607 
608 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
609 {
610 	int ret = 0;
611 	int i;
612 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
613 
614 	if (!p || !p->kobj)
615 		return;
616 
617 	/*
618 	 * Create sysfs files for each GPU which supports SVM
619 	 * - proc/<pid>/counters_<gpuid>/
620 	 * - proc/<pid>/counters_<gpuid>/faults
621 	 * - proc/<pid>/counters_<gpuid>/page_in
622 	 * - proc/<pid>/counters_<gpuid>/page_out
623 	 */
624 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
625 		struct kfd_process_device *pdd = p->pdds[i];
626 		struct kobject *kobj_counters;
627 
628 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
629 			"counters_%u", pdd->dev->id);
630 		kobj_counters = kfd_alloc_struct(kobj_counters);
631 		if (!kobj_counters)
632 			return;
633 
634 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
635 					   p->kobj, counters_dir_filename);
636 		if (ret) {
637 			pr_warn("Creating KFD proc/%s folder failed",
638 				counters_dir_filename);
639 			kobject_put(kobj_counters);
640 			return;
641 		}
642 
643 		pdd->kobj_counters = kobj_counters;
644 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
645 				      "faults");
646 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
647 				      "page_in");
648 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
649 				      "page_out");
650 	}
651 }
652 
653 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
654 {
655 	int i;
656 
657 	if (!p || !p->kobj)
658 		return;
659 
660 	/*
661 	 * Create sysfs files for each GPU:
662 	 * - proc/<pid>/vram_<gpuid>
663 	 * - proc/<pid>/sdma_<gpuid>
664 	 */
665 	for (i = 0; i < p->n_pdds; i++) {
666 		struct kfd_process_device *pdd = p->pdds[i];
667 
668 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
669 			 pdd->dev->id);
670 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
671 				      pdd->vram_filename);
672 
673 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
674 			 pdd->dev->id);
675 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
676 					    pdd->sdma_filename);
677 	}
678 }
679 
680 void kfd_procfs_del_queue(struct queue *q)
681 {
682 	if (!q)
683 		return;
684 
685 	kobject_del(&q->kobj);
686 	kobject_put(&q->kobj);
687 }
688 
689 int kfd_process_create_wq(void)
690 {
691 	if (!kfd_process_wq)
692 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
693 	if (!kfd_restore_wq)
694 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
695 							 WQ_FREEZABLE);
696 
697 	if (!kfd_process_wq || !kfd_restore_wq) {
698 		kfd_process_destroy_wq();
699 		return -ENOMEM;
700 	}
701 
702 	return 0;
703 }
704 
705 void kfd_process_destroy_wq(void)
706 {
707 	if (kfd_process_wq) {
708 		destroy_workqueue(kfd_process_wq);
709 		kfd_process_wq = NULL;
710 	}
711 	if (kfd_restore_wq) {
712 		destroy_workqueue(kfd_restore_wq);
713 		kfd_restore_wq = NULL;
714 	}
715 }
716 
717 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
718 			struct kfd_process_device *pdd, void **kptr)
719 {
720 	struct kfd_node *dev = pdd->dev;
721 
722 	if (kptr && *kptr) {
723 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
724 		*kptr = NULL;
725 	}
726 
727 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
728 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
729 					       NULL);
730 }
731 
732 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
733  *	This function should be only called right after the process
734  *	is created and when kfd_processes_mutex is still being held
735  *	to avoid concurrency. Because of that exclusiveness, we do
736  *	not need to take p->mutex.
737  */
738 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
739 				   uint64_t gpu_va, uint32_t size,
740 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
741 {
742 	struct kfd_node *kdev = pdd->dev;
743 	int err;
744 
745 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
746 						 pdd->drm_priv, mem, NULL,
747 						 flags, false);
748 	if (err)
749 		goto err_alloc_mem;
750 
751 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
752 			pdd->drm_priv);
753 	if (err)
754 		goto err_map_mem;
755 
756 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
757 	if (err) {
758 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
759 		goto sync_memory_failed;
760 	}
761 
762 	if (kptr) {
763 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
764 				(struct kgd_mem *)*mem, kptr, NULL);
765 		if (err) {
766 			pr_debug("Map GTT BO to kernel failed\n");
767 			goto sync_memory_failed;
768 		}
769 	}
770 
771 	return err;
772 
773 sync_memory_failed:
774 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
775 
776 err_map_mem:
777 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
778 					       NULL);
779 err_alloc_mem:
780 	*mem = NULL;
781 	*kptr = NULL;
782 	return err;
783 }
784 
785 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
786  *	process for IB usage The memory reserved is for KFD to submit
787  *	IB to AMDGPU from kernel.  If the memory is reserved
788  *	successfully, ib_kaddr will have the CPU/kernel
789  *	address. Check ib_kaddr before accessing the memory.
790  */
791 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
792 {
793 	struct qcm_process_device *qpd = &pdd->qpd;
794 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
795 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
796 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
797 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
798 	struct kgd_mem *mem;
799 	void *kaddr;
800 	int ret;
801 
802 	if (qpd->ib_kaddr || !qpd->ib_base)
803 		return 0;
804 
805 	/* ib_base is only set for dGPU */
806 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
807 				      &mem, &kaddr);
808 	if (ret)
809 		return ret;
810 
811 	qpd->ib_mem = mem;
812 	qpd->ib_kaddr = kaddr;
813 
814 	return 0;
815 }
816 
817 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
818 {
819 	struct qcm_process_device *qpd = &pdd->qpd;
820 
821 	if (!qpd->ib_kaddr || !qpd->ib_base)
822 		return;
823 
824 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
825 }
826 
827 int kfd_create_process_sysfs(struct kfd_process *process)
828 {
829 	struct kfd_process *primary_process;
830 	int ret;
831 
832 	if (process->kobj) {
833 		pr_warn("kobject already exists for the kfd_process\n");
834 		return -EINVAL;
835 	}
836 
837 	process->kobj = kfd_alloc_struct(process->kobj);
838 	if (!process->kobj) {
839 		pr_warn("Creating procfs kobject failed");
840 		return -ENOMEM;
841 	}
842 
843 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
844 		ret = kobject_init_and_add(process->kobj, &procfs_type,
845 					   procfs.kobj, "%d",
846 					   (int)process->lead_thread->pid);
847 	else {
848 		primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
849 		if (!primary_process)
850 			return -ESRCH;
851 
852 		ret = kobject_init_and_add(process->kobj, &procfs_type,
853 					   primary_process->kobj, "context_%u",
854 					   process->context_id);
855 		kfd_unref_process(primary_process);
856 	}
857 
858 	if (ret) {
859 		pr_warn("Creating procfs pid directory failed");
860 		kobject_put(process->kobj);
861 		return ret;
862 	}
863 
864 	kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
865 			      "pasid");
866 
867 	process->kobj_queues = kobject_create_and_add("queues",
868 						process->kobj);
869 	if (!process->kobj_queues)
870 		pr_warn("Creating KFD proc/queues folder failed");
871 
872 	kfd_procfs_add_sysfs_stats(process);
873 	kfd_procfs_add_sysfs_files(process);
874 	kfd_procfs_add_sysfs_counters(process);
875 
876 	return 0;
877 }
878 
879 static int kfd_process_alloc_id(struct kfd_process *process)
880 {
881 	int ret;
882 	struct kfd_process *primary_process;
883 
884 	/* already assign 0xFFFF when create */
885 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
886 		return 0;
887 
888 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
889 	if (!primary_process)
890 		return -ESRCH;
891 
892 	/* id range: KFD_CONTEXT_ID_MIN to 0xFFFE */
893 	ret = ida_alloc_range(&primary_process->id_table, KFD_CONTEXT_ID_MIN,
894 	      KFD_CONTEXT_ID_PRIMARY - 1, GFP_KERNEL);
895 	if (ret < 0)
896 		goto out;
897 
898 	process->context_id = ret;
899 	ret = 0;
900 
901 out:
902 	kfd_unref_process(primary_process);
903 
904 	return ret;
905 }
906 
907 static void kfd_process_free_id(struct kfd_process *process)
908 {
909 	struct kfd_process *primary_process;
910 
911 	if (process->context_id != KFD_CONTEXT_ID_PRIMARY)
912 		return;
913 
914 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
915 	if (!primary_process)
916 		return;
917 
918 	ida_free(&primary_process->id_table, process->context_id);
919 
920 	kfd_unref_process(primary_process);
921 }
922 
923 struct kfd_process *kfd_create_process(struct task_struct *thread)
924 {
925 	struct kfd_process *process;
926 	int ret;
927 
928 	if (!(thread->mm && mmget_not_zero(thread->mm)))
929 		return ERR_PTR(-EINVAL);
930 
931 	/* Only the pthreads threading model is supported. */
932 	if (thread->group_leader->mm != thread->mm) {
933 		mmput(thread->mm);
934 		return ERR_PTR(-EINVAL);
935 	}
936 
937 	/* If the process just called exec(3), it is possible that the
938 	 * cleanup of the kfd_process (following the release of the mm
939 	 * of the old process image) is still in the cleanup work queue.
940 	 * Make sure to drain any job before trying to recreate any
941 	 * resource for this process.
942 	 */
943 	flush_workqueue(kfd_process_wq);
944 
945 	/*
946 	 * take kfd processes mutex before starting of process creation
947 	 * so there won't be a case where two threads of the same process
948 	 * create two kfd_process structures
949 	 */
950 	mutex_lock(&kfd_processes_mutex);
951 
952 	if (kfd_gpu_node_num() <= 0) {
953 		pr_warn("no gpu node! Cannot create KFD process");
954 		process = ERR_PTR(-EINVAL);
955 		goto out;
956 	}
957 
958 	if (kfd_is_locked(NULL)) {
959 		pr_debug("KFD is locked! Cannot create process");
960 		process = ERR_PTR(-EINVAL);
961 		goto out;
962 	}
963 
964 	/* A prior open of /dev/kfd could have already created the process.
965 	 * find_process will increase process kref in this case
966 	 */
967 	process = find_process(thread, true);
968 	if (process) {
969 		pr_debug("Process already found\n");
970 	} else {
971 		process = create_process(thread, true);
972 		if (IS_ERR(process))
973 			goto out;
974 
975 		if (!procfs.kobj)
976 			goto out;
977 
978 		ret = kfd_create_process_sysfs(process);
979 		if (ret)
980 			pr_warn("Failed to create sysfs entry for the kfd_process");
981 
982 		kfd_debugfs_add_process(process);
983 
984 		init_waitqueue_head(&process->wait_irq_drain);
985 	}
986 out:
987 	mutex_unlock(&kfd_processes_mutex);
988 	mmput(thread->mm);
989 
990 	return process;
991 }
992 
993 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
994 {
995 	struct kfd_process *process;
996 
997 	hash_for_each_possible_rcu(kfd_processes_table, process,
998 					kfd_processes, (uintptr_t)mm)
999 		if (process->mm == mm && process->context_id == KFD_CONTEXT_ID_PRIMARY)
1000 			return process;
1001 
1002 	return NULL;
1003 }
1004 
1005 static struct kfd_process *find_process(const struct task_struct *thread,
1006 					bool ref)
1007 {
1008 	struct kfd_process *p;
1009 	int idx;
1010 
1011 	idx = srcu_read_lock(&kfd_processes_srcu);
1012 	p = find_process_by_mm(thread->mm);
1013 	if (p && ref)
1014 		kref_get(&p->ref);
1015 	srcu_read_unlock(&kfd_processes_srcu, idx);
1016 
1017 	return p;
1018 }
1019 
1020 void kfd_unref_process(struct kfd_process *p)
1021 {
1022 	kref_put(&p->ref, kfd_process_ref_release);
1023 }
1024 
1025 /* This increments the process->ref counter. */
1026 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
1027 {
1028 	struct task_struct *task = NULL;
1029 	struct kfd_process *p    = NULL;
1030 
1031 	if (!pid) {
1032 		task = current;
1033 		get_task_struct(task);
1034 	} else {
1035 		task = get_pid_task(pid, PIDTYPE_PID);
1036 	}
1037 
1038 	if (task) {
1039 		p = find_process(task, true);
1040 		put_task_struct(task);
1041 	}
1042 
1043 	return p;
1044 }
1045 
1046 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
1047 {
1048 	struct kfd_process *p = pdd->process;
1049 	void *mem;
1050 	int id;
1051 	int i;
1052 
1053 	/*
1054 	 * Remove all handles from idr and release appropriate
1055 	 * local memory object
1056 	 */
1057 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1058 
1059 		for (i = 0; i < p->n_pdds; i++) {
1060 			struct kfd_process_device *peer_pdd = p->pdds[i];
1061 
1062 			if (!peer_pdd->drm_priv)
1063 				continue;
1064 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1065 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1066 		}
1067 
1068 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1069 						       pdd->drm_priv, NULL);
1070 		kfd_process_device_remove_obj_handle(pdd, id);
1071 	}
1072 }
1073 
1074 /*
1075  * Just kunmap and unpin signal BO here. It will be freed in
1076  * kfd_process_free_outstanding_kfd_bos()
1077  */
1078 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1079 {
1080 	struct kfd_process_device *pdd;
1081 	struct kfd_node *kdev;
1082 	void *mem;
1083 
1084 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1085 	if (!kdev)
1086 		return;
1087 
1088 	mutex_lock(&p->mutex);
1089 
1090 	pdd = kfd_get_process_device_data(kdev, p);
1091 	if (!pdd)
1092 		goto out;
1093 
1094 	mem = kfd_process_device_translate_handle(
1095 		pdd, GET_IDR_HANDLE(p->signal_handle));
1096 	if (!mem)
1097 		goto out;
1098 
1099 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1100 
1101 out:
1102 	mutex_unlock(&p->mutex);
1103 }
1104 
1105 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1106 {
1107 	int i;
1108 
1109 	for (i = 0; i < p->n_pdds; i++)
1110 		kfd_process_device_free_bos(p->pdds[i]);
1111 }
1112 
1113 static void kfd_process_destroy_pdds(struct kfd_process *p)
1114 {
1115 	int i;
1116 
1117 	for (i = 0; i < p->n_pdds; i++) {
1118 		struct kfd_process_device *pdd = p->pdds[i];
1119 
1120 		kfd_smi_event_process(pdd, false);
1121 
1122 		pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1123 			pdd->dev->id, p->lead_thread->pid);
1124 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1125 		kfd_process_device_destroy_ib_mem(pdd);
1126 
1127 		if (pdd->drm_file)
1128 			fput(pdd->drm_file);
1129 
1130 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1131 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1132 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1133 
1134 		idr_destroy(&pdd->alloc_idr);
1135 
1136 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1137 
1138 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1139 			pdd->proc_ctx_cpu_ptr)
1140 			amdgpu_amdkfd_free_kernel_mem(pdd->dev->adev,
1141 						   &pdd->proc_ctx_bo);
1142 		/*
1143 		 * before destroying pdd, make sure to report availability
1144 		 * for auto suspend
1145 		 */
1146 		if (pdd->runtime_inuse) {
1147 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1148 			pdd->runtime_inuse = false;
1149 		}
1150 
1151 		atomic_dec(&pdd->dev->kfd->kfd_processes_count);
1152 
1153 		kfree(pdd);
1154 		p->pdds[i] = NULL;
1155 	}
1156 	p->n_pdds = 0;
1157 }
1158 
1159 static void kfd_process_remove_sysfs(struct kfd_process *p)
1160 {
1161 	struct kfd_process_device *pdd;
1162 	int i;
1163 
1164 	if (!p->kobj)
1165 		return;
1166 
1167 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1168 	kobject_del(p->kobj_queues);
1169 	kobject_put(p->kobj_queues);
1170 	p->kobj_queues = NULL;
1171 
1172 	for (i = 0; i < p->n_pdds; i++) {
1173 		pdd = p->pdds[i];
1174 
1175 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1176 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1177 
1178 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1179 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1180 			sysfs_remove_file(pdd->kobj_stats,
1181 					  &pdd->attr_cu_occupancy);
1182 		kobject_del(pdd->kobj_stats);
1183 		kobject_put(pdd->kobj_stats);
1184 		pdd->kobj_stats = NULL;
1185 	}
1186 
1187 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1188 		pdd = p->pdds[i];
1189 
1190 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1191 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1192 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1193 		kobject_del(pdd->kobj_counters);
1194 		kobject_put(pdd->kobj_counters);
1195 		pdd->kobj_counters = NULL;
1196 	}
1197 
1198 	kobject_del(p->kobj);
1199 	kobject_put(p->kobj);
1200 	p->kobj = NULL;
1201 }
1202 
1203 /*
1204  * If any GPU is ongoing reset, wait for reset complete.
1205  */
1206 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1207 {
1208 	int i;
1209 
1210 	for (i = 0; i < p->n_pdds; i++)
1211 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1212 }
1213 
1214 /* No process locking is needed in this function, because the process
1215  * is not findable any more. We must assume that no other thread is
1216  * using it any more, otherwise we couldn't safely free the process
1217  * structure in the end.
1218  */
1219 static void kfd_process_wq_release(struct work_struct *work)
1220 {
1221 	struct kfd_process *p = container_of(work, struct kfd_process,
1222 					     release_work);
1223 	struct dma_fence *ef;
1224 
1225 	/*
1226 	 * If GPU in reset, user queues may still running, wait for reset complete.
1227 	 */
1228 	kfd_process_wait_gpu_reset_complete(p);
1229 
1230 	/* Signal the eviction fence after user mode queues are
1231 	 * destroyed. This allows any BOs to be freed without
1232 	 * triggering pointless evictions or waiting for fences.
1233 	 */
1234 	synchronize_rcu();
1235 	ef = rcu_access_pointer(p->ef);
1236 	if (ef)
1237 		dma_fence_signal(ef);
1238 
1239 	if (p->context_id != KFD_CONTEXT_ID_PRIMARY)
1240 		kfd_process_free_id(p);
1241 	else
1242 		ida_destroy(&p->id_table);
1243 
1244 	kfd_debugfs_remove_process(p);
1245 
1246 	kfd_process_kunmap_signal_bo(p);
1247 	kfd_process_free_outstanding_kfd_bos(p);
1248 	svm_range_list_fini(p);
1249 
1250 	kfd_process_destroy_pdds(p);
1251 	dma_fence_put(ef);
1252 
1253 	kfd_event_free_process(p);
1254 
1255 	mutex_destroy(&p->mutex);
1256 
1257 	put_task_struct(p->lead_thread);
1258 
1259 	/* the last step is removing process entries under /sys
1260 	 * to indicate the process has been terminated.
1261 	 */
1262 	kfd_process_remove_sysfs(p);
1263 
1264 	kfree(p);
1265 }
1266 
1267 static void kfd_process_ref_release(struct kref *ref)
1268 {
1269 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1270 
1271 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1272 	queue_work(kfd_process_wq, &p->release_work);
1273 }
1274 
1275 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1276 {
1277 	/* This increments p->ref counter if kfd process p exists */
1278 	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1279 
1280 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1281 }
1282 
1283 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1284 {
1285 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1286 }
1287 
1288 static void kfd_process_table_remove(struct kfd_process *p)
1289 {
1290 	mutex_lock(&kfd_processes_mutex);
1291 	/*
1292 	 * Do early return if table is empty.
1293 	 *
1294 	 * This could potentially happen if this function is called concurrently
1295 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1296 	 *
1297 	 */
1298 	if (hash_empty(kfd_processes_table)) {
1299 		mutex_unlock(&kfd_processes_mutex);
1300 		return;
1301 	}
1302 	hash_del_rcu(&p->kfd_processes);
1303 	mutex_unlock(&kfd_processes_mutex);
1304 	synchronize_srcu(&kfd_processes_srcu);
1305 }
1306 
1307 void kfd_process_notifier_release_internal(struct kfd_process *p)
1308 {
1309 	int i;
1310 
1311 	kfd_process_table_remove(p);
1312 	cancel_delayed_work_sync(&p->eviction_work);
1313 	cancel_delayed_work_sync(&p->restore_work);
1314 
1315 	/*
1316 	 * Dequeue and destroy user queues, it is not safe for GPU to access
1317 	 * system memory after mmu release notifier callback returns because
1318 	 * exit_mmap free process memory afterwards.
1319 	 */
1320 	kfd_process_dequeue_from_all_devices(p);
1321 	pqm_uninit(&p->pqm);
1322 
1323 	for (i = 0; i < p->n_pdds; i++) {
1324 		struct kfd_process_device *pdd = p->pdds[i];
1325 
1326 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1327 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1328 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1329 	}
1330 
1331 	/* Indicate to other users that MM is no longer valid */
1332 	p->mm = NULL;
1333 	kfd_dbg_trap_disable(p);
1334 
1335 	if (atomic_read(&p->debugged_process_count) > 0) {
1336 		struct kfd_process *target;
1337 		unsigned int temp;
1338 		int idx = srcu_read_lock(&kfd_processes_srcu);
1339 
1340 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1341 			if (target->debugger_process && target->debugger_process == p) {
1342 				mutex_lock_nested(&target->mutex, 1);
1343 				kfd_dbg_trap_disable(target);
1344 				mutex_unlock(&target->mutex);
1345 				if (atomic_read(&p->debugged_process_count) == 0)
1346 					break;
1347 			}
1348 		}
1349 
1350 		srcu_read_unlock(&kfd_processes_srcu, idx);
1351 	}
1352 
1353 	if (p->context_id == KFD_CONTEXT_ID_PRIMARY)
1354 		mmu_notifier_put(&p->mmu_notifier);
1355 }
1356 
1357 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1358 					struct mm_struct *mm)
1359 {
1360 	struct kfd_process *p;
1361 
1362 	/*
1363 	 * The kfd_process structure can not be free because the
1364 	 * mmu_notifier srcu is read locked
1365 	 */
1366 	p = container_of(mn, struct kfd_process, mmu_notifier);
1367 	if (WARN_ON(p->mm != mm))
1368 		return;
1369 
1370 	kfd_process_notifier_release_internal(p);
1371 }
1372 
1373 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1374 	.release = kfd_process_notifier_release,
1375 	.alloc_notifier = kfd_process_alloc_notifier,
1376 	.free_notifier = kfd_process_free_notifier,
1377 };
1378 
1379 /*
1380  * This code handles the case when driver is being unloaded before all
1381  * mm_struct are released.  We need to safely free the kfd_process and
1382  * avoid race conditions with mmu_notifier that might try to free them.
1383  *
1384  */
1385 void kfd_cleanup_processes(void)
1386 {
1387 	struct kfd_process *p;
1388 	struct hlist_node *p_temp;
1389 	unsigned int temp;
1390 	HLIST_HEAD(cleanup_list);
1391 
1392 	/*
1393 	 * Move all remaining kfd_process from the process table to a
1394 	 * temp list for processing.   Once done, callback from mmu_notifier
1395 	 * release will not see the kfd_process in the table and do early return,
1396 	 * avoiding double free issues.
1397 	 */
1398 	mutex_lock(&kfd_processes_mutex);
1399 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1400 		hash_del_rcu(&p->kfd_processes);
1401 		synchronize_srcu(&kfd_processes_srcu);
1402 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1403 	}
1404 	mutex_unlock(&kfd_processes_mutex);
1405 
1406 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1407 		kfd_process_notifier_release_internal(p);
1408 
1409 	/*
1410 	 * Ensures that all outstanding free_notifier get called, triggering
1411 	 * the release of the kfd_process struct.
1412 	 */
1413 	mmu_notifier_synchronize();
1414 }
1415 
1416 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1417 {
1418 	unsigned long  offset;
1419 	int i;
1420 
1421 	if (p->has_cwsr)
1422 		return 0;
1423 
1424 	for (i = 0; i < p->n_pdds; i++) {
1425 		struct kfd_node *dev = p->pdds[i]->dev;
1426 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1427 
1428 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1429 			continue;
1430 
1431 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1432 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1433 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1434 			MAP_SHARED, offset);
1435 
1436 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1437 			int err = qpd->tba_addr;
1438 
1439 			dev_err(dev->adev->dev,
1440 				"Failure to set tba address. error %d.\n", err);
1441 			qpd->tba_addr = 0;
1442 			qpd->cwsr_kaddr = NULL;
1443 			return err;
1444 		}
1445 
1446 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1447 
1448 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1449 
1450 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1451 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1452 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1453 	}
1454 
1455 	p->has_cwsr = true;
1456 
1457 	return 0;
1458 }
1459 
1460 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1461 {
1462 	struct kfd_node *dev = pdd->dev;
1463 	struct qcm_process_device *qpd = &pdd->qpd;
1464 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1465 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1466 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1467 	struct kgd_mem *mem;
1468 	void *kaddr;
1469 	int ret;
1470 
1471 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1472 		return 0;
1473 
1474 	/* cwsr_base is only set for dGPU */
1475 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1476 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1477 	if (ret)
1478 		return ret;
1479 
1480 	qpd->cwsr_mem = mem;
1481 	qpd->cwsr_kaddr = kaddr;
1482 	qpd->tba_addr = qpd->cwsr_base;
1483 
1484 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1485 
1486 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1487 					pdd->process->debug_trap_enabled);
1488 
1489 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1490 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1491 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1492 
1493 	return 0;
1494 }
1495 
1496 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1497 {
1498 	struct kfd_node *dev = pdd->dev;
1499 	struct qcm_process_device *qpd = &pdd->qpd;
1500 
1501 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1502 		return;
1503 
1504 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1505 }
1506 
1507 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1508 				  uint64_t tba_addr,
1509 				  uint64_t tma_addr)
1510 {
1511 	if (qpd->cwsr_kaddr) {
1512 		/* KFD trap handler is bound, record as second-level TBA/TMA
1513 		 * in first-level TMA. First-level trap will jump to second.
1514 		 */
1515 		uint64_t *tma =
1516 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1517 		tma[0] = tba_addr;
1518 		tma[1] = tma_addr;
1519 	} else {
1520 		/* No trap handler bound, bind as first-level TBA/TMA. */
1521 		qpd->tba_addr = tba_addr;
1522 		qpd->tma_addr = tma_addr;
1523 	}
1524 }
1525 
1526 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1527 {
1528 	int i;
1529 
1530 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1531 	 * boot time retry setting. Mixing processes with different
1532 	 * XNACK/retry settings can hang the GPU.
1533 	 *
1534 	 * Different GPUs can have different noretry settings depending
1535 	 * on HW bugs or limitations. We need to find at least one
1536 	 * XNACK mode for this process that's compatible with all GPUs.
1537 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1538 	 * built for XNACK-off. On GFXv9 it may perform slower.
1539 	 *
1540 	 * Therefore applications built for XNACK-off can always be
1541 	 * supported and will be our fallback if any GPU does not
1542 	 * support retry.
1543 	 */
1544 	for (i = 0; i < p->n_pdds; i++) {
1545 		struct kfd_node *dev = p->pdds[i]->dev;
1546 
1547 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1548 		 * support the SVM APIs and don't need to be considered
1549 		 * for the XNACK mode selection.
1550 		 */
1551 		if (!KFD_IS_SOC15(dev))
1552 			continue;
1553 		/* Aldebaran can always support XNACK because it can support
1554 		 * per-process XNACK mode selection. But let the dev->noretry
1555 		 * setting still influence the default XNACK mode.
1556 		 */
1557 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1558 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1559 				pr_debug("SRIOV platform xnack not supported\n");
1560 				return false;
1561 			}
1562 			continue;
1563 		}
1564 
1565 		/* GFXv10 and later GPUs do not support shader preemption
1566 		 * during page faults. This can lead to poor QoS for queue
1567 		 * management and memory-manager-related preemptions or
1568 		 * even deadlocks.
1569 		 */
1570 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1) &&
1571 		    KFD_GC_VERSION(dev) < IP_VERSION(12, 1, 0))
1572 			return false;
1573 
1574 		if (dev->kfd->noretry)
1575 			return false;
1576 	}
1577 
1578 	return true;
1579 }
1580 
1581 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1582 				     bool enabled)
1583 {
1584 	if (qpd->cwsr_kaddr) {
1585 		uint64_t *tma =
1586 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1587 		tma[2] = enabled;
1588 	}
1589 }
1590 
1591 /*
1592  * On return the kfd_process is fully operational and will be freed when the
1593  * mm is released
1594  */
1595 struct kfd_process *create_process(const struct task_struct *thread, bool primary)
1596 {
1597 	struct kfd_process *process;
1598 	struct mmu_notifier *mn;
1599 	int err = -ENOMEM;
1600 
1601 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1602 	if (!process)
1603 		goto err_alloc_process;
1604 
1605 	kref_init(&process->ref);
1606 	mutex_init(&process->mutex);
1607 	process->mm = thread->mm;
1608 	process->lead_thread = thread->group_leader;
1609 	process->n_pdds = 0;
1610 	process->queues_paused = false;
1611 
1612 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1613 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1614 	process->last_restore_timestamp = get_jiffies_64();
1615 	err = kfd_event_init_process(process);
1616 	if (err)
1617 		goto err_event_init;
1618 	process->is_32bit_user_mode = in_compat_syscall();
1619 	process->debug_trap_enabled = false;
1620 	process->debugger_process = NULL;
1621 	process->exception_enable_mask = 0;
1622 	atomic_set(&process->debugged_process_count, 0);
1623 	sema_init(&process->runtime_enable_sema, 0);
1624 
1625 	err = pqm_init(&process->pqm, process);
1626 	if (err != 0)
1627 		goto err_process_pqm_init;
1628 
1629 	/* init process apertures*/
1630 	err = kfd_init_apertures(process);
1631 	if (err != 0)
1632 		goto err_init_apertures;
1633 
1634 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1635 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1636 
1637 	err = svm_range_list_init(process);
1638 	if (err)
1639 		goto err_init_svm_range_list;
1640 
1641 	/* alloc_notifier needs to find the process in the hash table */
1642 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1643 			(uintptr_t)process->mm);
1644 
1645 	/* Avoid free_notifier to start kfd_process_wq_release if
1646 	 * mmu_notifier_get failed because of pending signal.
1647 	 */
1648 	kref_get(&process->ref);
1649 
1650 	/* MMU notifier registration must be the last call that can fail
1651 	 * because after this point we cannot unwind the process creation.
1652 	 * After this point, mmu_notifier_put will trigger the cleanup by
1653 	 * dropping the last process reference in the free_notifier.
1654 	 */
1655 	if (primary) {
1656 		process->context_id = KFD_CONTEXT_ID_PRIMARY;
1657 		mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1658 		if (IS_ERR(mn)) {
1659 			err = PTR_ERR(mn);
1660 			goto err_register_notifier;
1661 		}
1662 		BUG_ON(mn != &process->mmu_notifier);
1663 		ida_init(&process->id_table);
1664 	}
1665 
1666 	err = kfd_process_alloc_id(process);
1667 	if (err) {
1668 		pr_err("Creating kfd process: failed to alloc an id\n");
1669 		goto err_alloc_id;
1670 	}
1671 
1672 	kfd_unref_process(process);
1673 	get_task_struct(process->lead_thread);
1674 
1675 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1676 
1677 	return process;
1678 
1679 err_alloc_id:
1680 	kfd_process_free_id(process);
1681 err_register_notifier:
1682 	hash_del_rcu(&process->kfd_processes);
1683 	svm_range_list_fini(process);
1684 err_init_svm_range_list:
1685 	kfd_process_free_outstanding_kfd_bos(process);
1686 	kfd_process_destroy_pdds(process);
1687 err_init_apertures:
1688 	pqm_uninit(&process->pqm);
1689 err_process_pqm_init:
1690 	kfd_event_free_process(process);
1691 err_event_init:
1692 	mutex_destroy(&process->mutex);
1693 	kfree(process);
1694 err_alloc_process:
1695 	return ERR_PTR(err);
1696 }
1697 
1698 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1699 							struct kfd_process *p)
1700 {
1701 	int i;
1702 
1703 	for (i = 0; i < p->n_pdds; i++)
1704 		if (p->pdds[i]->dev == dev)
1705 			return p->pdds[i];
1706 
1707 	return NULL;
1708 }
1709 
1710 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1711 							struct kfd_process *p)
1712 {
1713 	struct kfd_process_device *pdd = NULL;
1714 
1715 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1716 		return NULL;
1717 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1718 	if (!pdd)
1719 		return NULL;
1720 
1721 	pdd->dev = dev;
1722 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1723 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1724 	pdd->qpd.dqm = dev->dqm;
1725 	pdd->qpd.pqm = &p->pqm;
1726 	pdd->qpd.evicted = 0;
1727 	pdd->qpd.mapped_gws_queue = false;
1728 	pdd->process = p;
1729 	pdd->bound = PDD_UNBOUND;
1730 	pdd->already_dequeued = false;
1731 	pdd->runtime_inuse = false;
1732 	atomic64_set(&pdd->vram_usage, 0);
1733 	pdd->sdma_past_activity_counter = 0;
1734 	pdd->user_gpu_id = dev->id;
1735 	atomic64_set(&pdd->evict_duration_counter, 0);
1736 
1737 	p->pdds[p->n_pdds++] = pdd;
1738 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1739 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1740 							pdd->dev->adev,
1741 							false,
1742 							0);
1743 
1744 	/* Init idr used for memory handle translation */
1745 	idr_init(&pdd->alloc_idr);
1746 
1747 	atomic_inc(&dev->kfd->kfd_processes_count);
1748 
1749 	return pdd;
1750 }
1751 
1752 /**
1753  * kfd_process_device_init_vm - Initialize a VM for a process-device
1754  *
1755  * @pdd: The process-device
1756  * @drm_file: Optional pointer to a DRM file descriptor
1757  *
1758  * If @drm_file is specified, it will be used to acquire the VM from
1759  * that file descriptor. If successful, the @pdd takes ownership of
1760  * the file descriptor.
1761  *
1762  * If @drm_file is NULL, a new VM is created.
1763  *
1764  * Returns 0 on success, -errno on failure.
1765  */
1766 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1767 			       struct file *drm_file)
1768 {
1769 	struct amdgpu_fpriv *drv_priv;
1770 	struct amdgpu_vm *avm;
1771 	struct kfd_process *p;
1772 	struct dma_fence *ef;
1773 	struct kfd_node *dev;
1774 	int ret;
1775 
1776 	if (!drm_file)
1777 		return -EINVAL;
1778 
1779 	if (pdd->drm_priv)
1780 		return -EBUSY;
1781 
1782 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1783 	if (ret)
1784 		return ret;
1785 	avm = &drv_priv->vm;
1786 
1787 	p = pdd->process;
1788 	dev = pdd->dev;
1789 
1790 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1791 						     &p->kgd_process_info,
1792 						     p->ef ? NULL : &ef);
1793 	if (ret) {
1794 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1795 		return ret;
1796 	}
1797 
1798 	if (!p->ef)
1799 		RCU_INIT_POINTER(p->ef, ef);
1800 
1801 	pdd->drm_priv = drm_file->private_data;
1802 
1803 	ret = kfd_process_device_reserve_ib_mem(pdd);
1804 	if (ret)
1805 		goto err_reserve_ib_mem;
1806 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1807 	if (ret)
1808 		goto err_init_cwsr;
1809 
1810 	if (unlikely(!avm->pasid)) {
1811 		dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1812 				 avm);
1813 		ret = -EINVAL;
1814 		goto err_get_pasid;
1815 	}
1816 
1817 	pdd->pasid = avm->pasid;
1818 	pdd->drm_file = drm_file;
1819 
1820 	kfd_smi_event_process(pdd, true);
1821 
1822 	return 0;
1823 
1824 err_get_pasid:
1825 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1826 err_init_cwsr:
1827 	kfd_process_device_destroy_ib_mem(pdd);
1828 err_reserve_ib_mem:
1829 	pdd->drm_priv = NULL;
1830 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1831 
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1837  * to the device.
1838  * Unbinding occurs when the process dies or the device is removed.
1839  *
1840  * Assumes that the process lock is held.
1841  */
1842 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1843 							struct kfd_process *p)
1844 {
1845 	struct kfd_process_device *pdd;
1846 	int err;
1847 
1848 	pdd = kfd_get_process_device_data(dev, p);
1849 	if (!pdd) {
1850 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1851 		return ERR_PTR(-ENOMEM);
1852 	}
1853 
1854 	if (!pdd->drm_priv)
1855 		return ERR_PTR(-ENODEV);
1856 
1857 	/*
1858 	 * signal runtime-pm system to auto resume and prevent
1859 	 * further runtime suspend once device pdd is created until
1860 	 * pdd is destroyed.
1861 	 */
1862 	if (!pdd->runtime_inuse) {
1863 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1864 		if (err < 0) {
1865 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1866 			return ERR_PTR(err);
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * make sure that runtime_usage counter is incremented just once
1872 	 * per pdd
1873 	 */
1874 	pdd->runtime_inuse = true;
1875 
1876 	return pdd;
1877 }
1878 
1879 /* Create specific handle mapped to mem from process local memory idr
1880  * Assumes that the process lock is held.
1881  */
1882 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1883 					void *mem)
1884 {
1885 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1886 }
1887 
1888 /* Translate specific handle from process local memory idr
1889  * Assumes that the process lock is held.
1890  */
1891 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1892 					int handle)
1893 {
1894 	if (handle < 0)
1895 		return NULL;
1896 
1897 	return idr_find(&pdd->alloc_idr, handle);
1898 }
1899 
1900 /* Remove specific handle from process local memory idr
1901  * Assumes that the process lock is held.
1902  */
1903 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1904 					int handle)
1905 {
1906 	if (handle >= 0)
1907 		idr_remove(&pdd->alloc_idr, handle);
1908 }
1909 
1910 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1911 {
1912 	struct kfd_process_device *ret_p = NULL;
1913 	struct kfd_process *p;
1914 	unsigned int temp;
1915 	int i;
1916 
1917 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1918 		for (i = 0; i < p->n_pdds; i++) {
1919 			if (p->pdds[i]->pasid == pasid) {
1920 				ret_p = p->pdds[i];
1921 				break;
1922 			}
1923 		}
1924 		if (ret_p)
1925 			break;
1926 	}
1927 	return ret_p;
1928 }
1929 
1930 /* This increments the process->ref counter. */
1931 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1932 						struct kfd_process_device **pdd)
1933 {
1934 	struct kfd_process_device *ret_p;
1935 
1936 	int idx = srcu_read_lock(&kfd_processes_srcu);
1937 
1938 	ret_p = kfd_lookup_process_device_by_pasid(pasid);
1939 	if (ret_p) {
1940 		if (pdd)
1941 			*pdd = ret_p;
1942 		kref_get(&ret_p->process->ref);
1943 
1944 		srcu_read_unlock(&kfd_processes_srcu, idx);
1945 		return ret_p->process;
1946 	}
1947 
1948 	srcu_read_unlock(&kfd_processes_srcu, idx);
1949 
1950 	if (pdd)
1951 		*pdd = NULL;
1952 
1953 	return NULL;
1954 }
1955 
1956 /* This increments the process->ref counter. */
1957 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1958 {
1959 	struct kfd_process *p;
1960 
1961 	int idx = srcu_read_lock(&kfd_processes_srcu);
1962 
1963 	p = find_process_by_mm(mm);
1964 	if (p)
1965 		kref_get(&p->ref);
1966 
1967 	srcu_read_unlock(&kfd_processes_srcu, idx);
1968 
1969 	return p;
1970 }
1971 
1972 /* This increments the process->ref counter. */
1973 struct kfd_process *kfd_lookup_process_by_id(const struct mm_struct *mm, u16 id)
1974 {
1975 	struct kfd_process *p, *ret_p = NULL;
1976 	unsigned int temp;
1977 
1978 	int idx = srcu_read_lock(&kfd_processes_srcu);
1979 
1980 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1981 		if (p->mm == mm && p->context_id == id) {
1982 			kref_get(&p->ref);
1983 			ret_p = p;
1984 			break;
1985 		}
1986 	}
1987 
1988 	srcu_read_unlock(&kfd_processes_srcu, idx);
1989 
1990 	return ret_p;
1991 }
1992 
1993 /* kfd_process_evict_queues - Evict all user queues of a process
1994  *
1995  * Eviction is reference-counted per process-device. This means multiple
1996  * evictions from different sources can be nested safely.
1997  */
1998 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1999 {
2000 	int r = 0;
2001 	int i;
2002 	unsigned int n_evicted = 0;
2003 
2004 	for (i = 0; i < p->n_pdds; i++) {
2005 		struct kfd_process_device *pdd = p->pdds[i];
2006 		struct device *dev = pdd->dev->adev->dev;
2007 
2008 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
2009 					     trigger);
2010 
2011 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
2012 							    &pdd->qpd);
2013 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
2014 		 * we would like to set all the queues to be in evicted state to prevent
2015 		 * them been add back since they actually not be saved right now.
2016 		 */
2017 		if (r && r != -EIO) {
2018 			dev_err(dev, "Failed to evict process queues\n");
2019 			goto fail;
2020 		}
2021 		n_evicted++;
2022 
2023 		pdd->dev->dqm->is_hws_hang = false;
2024 	}
2025 
2026 	return r;
2027 
2028 fail:
2029 	/* To keep state consistent, roll back partial eviction by
2030 	 * restoring queues
2031 	 */
2032 	for (i = 0; i < p->n_pdds; i++) {
2033 		struct kfd_process_device *pdd = p->pdds[i];
2034 
2035 		if (n_evicted == 0)
2036 			break;
2037 
2038 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2039 
2040 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2041 							      &pdd->qpd))
2042 			dev_err(pdd->dev->adev->dev,
2043 				"Failed to restore queues\n");
2044 
2045 		n_evicted--;
2046 	}
2047 
2048 	return r;
2049 }
2050 
2051 /* kfd_process_restore_queues - Restore all user queues of a process */
2052 int kfd_process_restore_queues(struct kfd_process *p)
2053 {
2054 	int r, ret = 0;
2055 	int i;
2056 
2057 	for (i = 0; i < p->n_pdds; i++) {
2058 		struct kfd_process_device *pdd = p->pdds[i];
2059 		struct device *dev = pdd->dev->adev->dev;
2060 
2061 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2062 
2063 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2064 							      &pdd->qpd);
2065 		if (r) {
2066 			dev_err(dev, "Failed to restore process queues\n");
2067 			if (!ret)
2068 				ret = r;
2069 		}
2070 	}
2071 
2072 	return ret;
2073 }
2074 
2075 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
2076 {
2077 	int i;
2078 
2079 	for (i = 0; i < p->n_pdds; i++)
2080 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
2081 			return i;
2082 	return -EINVAL;
2083 }
2084 
2085 int
2086 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
2087 			    uint32_t *gpuid, uint32_t *gpuidx)
2088 {
2089 	int i;
2090 
2091 	for (i = 0; i < p->n_pdds; i++)
2092 		if (p->pdds[i] && p->pdds[i]->dev == node) {
2093 			*gpuid = p->pdds[i]->user_gpu_id;
2094 			*gpuidx = i;
2095 			return 0;
2096 		}
2097 	return -EINVAL;
2098 }
2099 
2100 static bool signal_eviction_fence(struct kfd_process *p)
2101 {
2102 	struct dma_fence *ef;
2103 	bool ret;
2104 
2105 	rcu_read_lock();
2106 	ef = dma_fence_get_rcu_safe(&p->ef);
2107 	rcu_read_unlock();
2108 	if (!ef)
2109 		return true;
2110 
2111 	ret = dma_fence_check_and_signal(ef);
2112 	dma_fence_put(ef);
2113 
2114 	return ret;
2115 }
2116 
2117 static void evict_process_worker(struct work_struct *work)
2118 {
2119 	int ret;
2120 	struct kfd_process *p;
2121 	struct delayed_work *dwork;
2122 
2123 	dwork = to_delayed_work(work);
2124 
2125 	/* Process termination destroys this worker thread. So during the
2126 	 * lifetime of this thread, kfd_process p will be valid
2127 	 */
2128 	p = container_of(dwork, struct kfd_process, eviction_work);
2129 
2130 	pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2131 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2132 	if (!ret) {
2133 		/* If another thread already signaled the eviction fence,
2134 		 * they are responsible stopping the queues and scheduling
2135 		 * the restore work.
2136 		 */
2137 		if (signal_eviction_fence(p) ||
2138 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2139 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2140 			kfd_process_restore_queues(p);
2141 
2142 		pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2143 	} else
2144 		pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2145 }
2146 
2147 static int restore_process_helper(struct kfd_process *p)
2148 {
2149 	int ret = 0;
2150 
2151 	/* VMs may not have been acquired yet during debugging. */
2152 	if (p->kgd_process_info) {
2153 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2154 			p->kgd_process_info, &p->ef);
2155 		if (ret)
2156 			return ret;
2157 	}
2158 
2159 	ret = kfd_process_restore_queues(p);
2160 	if (!ret)
2161 		pr_debug("Finished restoring process pid %d\n",
2162 			p->lead_thread->pid);
2163 	else
2164 		pr_err("Failed to restore queues of process pid %d\n",
2165 		      p->lead_thread->pid);
2166 
2167 	return ret;
2168 }
2169 
2170 static void restore_process_worker(struct work_struct *work)
2171 {
2172 	struct delayed_work *dwork;
2173 	struct kfd_process *p;
2174 	int ret = 0;
2175 
2176 	dwork = to_delayed_work(work);
2177 
2178 	/* Process termination destroys this worker thread. So during the
2179 	 * lifetime of this thread, kfd_process p will be valid
2180 	 */
2181 	p = container_of(dwork, struct kfd_process, restore_work);
2182 	pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2183 
2184 	/* Setting last_restore_timestamp before successful restoration.
2185 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2186 	 * before KFD BOs are unreserved. If not, the process can be evicted
2187 	 * again before the timestamp is set.
2188 	 * If restore fails, the timestamp will be set again in the next
2189 	 * attempt. This would mean that the minimum GPU quanta would be
2190 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2191 	 * functions)
2192 	 */
2193 
2194 	p->last_restore_timestamp = get_jiffies_64();
2195 
2196 	ret = restore_process_helper(p);
2197 	if (ret) {
2198 		pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2199 			 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2200 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2201 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2202 			kfd_process_restore_queues(p);
2203 	}
2204 }
2205 
2206 void kfd_suspend_all_processes(void)
2207 {
2208 	struct kfd_process *p;
2209 	unsigned int temp;
2210 	int idx = srcu_read_lock(&kfd_processes_srcu);
2211 
2212 	WARN(debug_evictions, "Evicting all processes");
2213 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2214 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2215 			pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2216 		signal_eviction_fence(p);
2217 	}
2218 	srcu_read_unlock(&kfd_processes_srcu, idx);
2219 }
2220 
2221 int kfd_resume_all_processes(void)
2222 {
2223 	struct kfd_process *p;
2224 	unsigned int temp;
2225 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2226 
2227 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2228 		if (restore_process_helper(p)) {
2229 			pr_err("Restore process pid %d failed during resume\n",
2230 			      p->lead_thread->pid);
2231 			ret = -EFAULT;
2232 		}
2233 	}
2234 	srcu_read_unlock(&kfd_processes_srcu, idx);
2235 	return ret;
2236 }
2237 
2238 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2239 			  struct vm_area_struct *vma)
2240 {
2241 	struct kfd_process_device *pdd;
2242 	struct qcm_process_device *qpd;
2243 
2244 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2245 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2246 		return -EINVAL;
2247 	}
2248 
2249 	pdd = kfd_get_process_device_data(dev, process);
2250 	if (!pdd)
2251 		return -EINVAL;
2252 	qpd = &pdd->qpd;
2253 
2254 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2255 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2256 	if (!qpd->cwsr_kaddr) {
2257 		dev_err(dev->adev->dev,
2258 			"Error allocating per process CWSR buffer.\n");
2259 		return -ENOMEM;
2260 	}
2261 
2262 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2263 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2264 	/* Mapping pages to user process */
2265 	return remap_pfn_range(vma, vma->vm_start,
2266 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2267 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2268 }
2269 
2270 /* assumes caller holds process lock. */
2271 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2272 {
2273 	uint32_t irq_drain_fence[8];
2274 	uint8_t node_id = 0;
2275 	int r = 0;
2276 
2277 	if (!KFD_IS_SOC15(pdd->dev))
2278 		return 0;
2279 
2280 	pdd->process->irq_drain_is_open = true;
2281 
2282 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2283 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2284 							KFD_IRQ_FENCE_CLIENTID;
2285 	irq_drain_fence[3] = pdd->pasid;
2286 
2287 	/*
2288 	 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2289 	 */
2290 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2291 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2292 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0) ||
2293 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(12, 1, 0)) {
2294 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2295 		irq_drain_fence[3] |= node_id << 16;
2296 	}
2297 
2298 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2299 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2300 						     irq_drain_fence)) {
2301 		pdd->process->irq_drain_is_open = false;
2302 		return 0;
2303 	}
2304 
2305 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2306 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2307 	if (r)
2308 		pdd->process->irq_drain_is_open = false;
2309 
2310 	return r;
2311 }
2312 
2313 void kfd_process_close_interrupt_drain(unsigned int pasid)
2314 {
2315 	struct kfd_process *p;
2316 
2317 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2318 
2319 	if (!p)
2320 		return;
2321 
2322 	WRITE_ONCE(p->irq_drain_is_open, false);
2323 	wake_up_all(&p->wait_irq_drain);
2324 	kfd_unref_process(p);
2325 }
2326 
2327 struct send_exception_work_handler_workarea {
2328 	struct work_struct work;
2329 	struct kfd_process *p;
2330 	unsigned int queue_id;
2331 	uint64_t error_reason;
2332 };
2333 
2334 static void send_exception_work_handler(struct work_struct *work)
2335 {
2336 	struct send_exception_work_handler_workarea *workarea;
2337 	struct kfd_process *p;
2338 	struct queue *q;
2339 	struct mm_struct *mm;
2340 	struct kfd_context_save_area_header __user *csa_header;
2341 	uint64_t __user *err_payload_ptr;
2342 	uint64_t cur_err;
2343 	uint32_t ev_id;
2344 
2345 	workarea = container_of(work,
2346 				struct send_exception_work_handler_workarea,
2347 				work);
2348 	p = workarea->p;
2349 
2350 	mm = get_task_mm(p->lead_thread);
2351 
2352 	if (!mm)
2353 		return;
2354 
2355 	kthread_use_mm(mm);
2356 
2357 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2358 
2359 	if (!q)
2360 		goto out;
2361 
2362 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2363 
2364 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2365 	get_user(cur_err, err_payload_ptr);
2366 	cur_err |= workarea->error_reason;
2367 	put_user(cur_err, err_payload_ptr);
2368 	get_user(ev_id, &csa_header->err_event_id);
2369 
2370 	kfd_set_event(p, ev_id);
2371 
2372 out:
2373 	kthread_unuse_mm(mm);
2374 	mmput(mm);
2375 }
2376 
2377 int kfd_send_exception_to_runtime(struct kfd_process *p,
2378 			unsigned int queue_id,
2379 			uint64_t error_reason)
2380 {
2381 	struct send_exception_work_handler_workarea worker;
2382 
2383 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2384 
2385 	worker.p = p;
2386 	worker.queue_id = queue_id;
2387 	worker.error_reason = error_reason;
2388 
2389 	schedule_work(&worker.work);
2390 	flush_work(&worker.work);
2391 	destroy_work_on_stack(&worker.work);
2392 
2393 	return 0;
2394 }
2395 
2396 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2397 {
2398 	int i;
2399 
2400 	if (gpu_id) {
2401 		for (i = 0; i < p->n_pdds; i++) {
2402 			struct kfd_process_device *pdd = p->pdds[i];
2403 
2404 			if (pdd->user_gpu_id == gpu_id)
2405 				return pdd;
2406 		}
2407 	}
2408 	return NULL;
2409 }
2410 
2411 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2412 {
2413 	int i;
2414 
2415 	if (!actual_gpu_id)
2416 		return 0;
2417 
2418 	for (i = 0; i < p->n_pdds; i++) {
2419 		struct kfd_process_device *pdd = p->pdds[i];
2420 
2421 		if (pdd->dev->id == actual_gpu_id)
2422 			return pdd->user_gpu_id;
2423 	}
2424 	return -EINVAL;
2425 }
2426 
2427 #if defined(CONFIG_DEBUG_FS)
2428 
2429 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2430 {
2431 	struct kfd_process *p;
2432 	unsigned int temp;
2433 	int r = 0;
2434 
2435 	int idx = srcu_read_lock(&kfd_processes_srcu);
2436 
2437 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2438 		seq_printf(m, "Process %d PASID %d:\n",
2439 			   p->lead_thread->tgid, p->lead_thread->pid);
2440 
2441 		mutex_lock(&p->mutex);
2442 		r = pqm_debugfs_mqds(m, &p->pqm);
2443 		mutex_unlock(&p->mutex);
2444 
2445 		if (r)
2446 			break;
2447 	}
2448 
2449 	srcu_read_unlock(&kfd_processes_srcu, idx);
2450 
2451 	return r;
2452 }
2453 
2454 #endif
2455