1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "kfd_svm.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_dbgmgr.h" 45 #include "kfd_iommu.h" 46 #include "kfd_svm.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 static DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 72 73 static void evict_process_worker(struct work_struct *work); 74 static void restore_process_worker(struct work_struct *work); 75 76 struct kfd_procfs_tree { 77 struct kobject *kobj; 78 }; 79 80 static struct kfd_procfs_tree procfs; 81 82 /* 83 * Structure for SDMA activity tracking 84 */ 85 struct kfd_sdma_activity_handler_workarea { 86 struct work_struct sdma_activity_work; 87 struct kfd_process_device *pdd; 88 uint64_t sdma_activity_counter; 89 }; 90 91 struct temp_sdma_queue_list { 92 uint64_t __user *rptr; 93 uint64_t sdma_val; 94 unsigned int queue_id; 95 struct list_head list; 96 }; 97 98 static void kfd_sdma_activity_worker(struct work_struct *work) 99 { 100 struct kfd_sdma_activity_handler_workarea *workarea; 101 struct kfd_process_device *pdd; 102 uint64_t val; 103 struct mm_struct *mm; 104 struct queue *q; 105 struct qcm_process_device *qpd; 106 struct device_queue_manager *dqm; 107 int ret = 0; 108 struct temp_sdma_queue_list sdma_q_list; 109 struct temp_sdma_queue_list *sdma_q, *next; 110 111 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 112 sdma_activity_work); 113 114 pdd = workarea->pdd; 115 if (!pdd) 116 return; 117 dqm = pdd->dev->dqm; 118 qpd = &pdd->qpd; 119 if (!dqm || !qpd) 120 return; 121 /* 122 * Total SDMA activity is current SDMA activity + past SDMA activity 123 * Past SDMA count is stored in pdd. 124 * To get the current activity counters for all active SDMA queues, 125 * we loop over all SDMA queues and get their counts from user-space. 126 * 127 * We cannot call get_user() with dqm_lock held as it can cause 128 * a circular lock dependency situation. To read the SDMA stats, 129 * we need to do the following: 130 * 131 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 132 * with dqm_lock/dqm_unlock(). 133 * 2. Call get_user() for each node in temporary list without dqm_lock. 134 * Save the SDMA count for each node and also add the count to the total 135 * SDMA count counter. 136 * Its possible, during this step, a few SDMA queue nodes got deleted 137 * from the qpd->queues_list. 138 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 139 * If any node got deleted, its SDMA count would be captured in the sdma 140 * past activity counter. So subtract the SDMA counter stored in step 2 141 * for this node from the total SDMA count. 142 */ 143 INIT_LIST_HEAD(&sdma_q_list.list); 144 145 /* 146 * Create the temp list of all SDMA queues 147 */ 148 dqm_lock(dqm); 149 150 list_for_each_entry(q, &qpd->queues_list, list) { 151 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 152 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 153 continue; 154 155 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 156 if (!sdma_q) { 157 dqm_unlock(dqm); 158 goto cleanup; 159 } 160 161 INIT_LIST_HEAD(&sdma_q->list); 162 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 163 sdma_q->queue_id = q->properties.queue_id; 164 list_add_tail(&sdma_q->list, &sdma_q_list.list); 165 } 166 167 /* 168 * If the temp list is empty, then no SDMA queues nodes were found in 169 * qpd->queues_list. Return the past activity count as the total sdma 170 * count 171 */ 172 if (list_empty(&sdma_q_list.list)) { 173 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 174 dqm_unlock(dqm); 175 return; 176 } 177 178 dqm_unlock(dqm); 179 180 /* 181 * Get the usage count for each SDMA queue in temp_list. 182 */ 183 mm = get_task_mm(pdd->process->lead_thread); 184 if (!mm) 185 goto cleanup; 186 187 kthread_use_mm(mm); 188 189 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 190 val = 0; 191 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 192 if (ret) { 193 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 194 sdma_q->queue_id); 195 } else { 196 sdma_q->sdma_val = val; 197 workarea->sdma_activity_counter += val; 198 } 199 } 200 201 kthread_unuse_mm(mm); 202 mmput(mm); 203 204 /* 205 * Do a second iteration over qpd_queues_list to check if any SDMA 206 * nodes got deleted while fetching SDMA counter. 207 */ 208 dqm_lock(dqm); 209 210 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 211 212 list_for_each_entry(q, &qpd->queues_list, list) { 213 if (list_empty(&sdma_q_list.list)) 214 break; 215 216 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 217 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 218 continue; 219 220 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 221 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 222 (sdma_q->queue_id == q->properties.queue_id)) { 223 list_del(&sdma_q->list); 224 kfree(sdma_q); 225 break; 226 } 227 } 228 } 229 230 dqm_unlock(dqm); 231 232 /* 233 * If temp list is not empty, it implies some queues got deleted 234 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 235 * count for each node from the total SDMA count. 236 */ 237 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 238 workarea->sdma_activity_counter -= sdma_q->sdma_val; 239 list_del(&sdma_q->list); 240 kfree(sdma_q); 241 } 242 243 return; 244 245 cleanup: 246 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 247 list_del(&sdma_q->list); 248 kfree(sdma_q); 249 } 250 } 251 252 /** 253 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device 254 * by current process. Translates acquired wave count into number of compute units 255 * that are occupied. 256 * 257 * @atr: Handle of attribute that allows reporting of wave count. The attribute 258 * handle encapsulates GPU device it is associated with, thereby allowing collection 259 * of waves in flight, etc 260 * 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_dev *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 291 &max_waves_per_cu); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 return snprintf(buffer, PAGE_SIZE, "%llu\n", 326 (sdma_activity_work_handler.sdma_activity_counter)/ 327 SDMA_ACTIVITY_DIVISOR); 328 } else { 329 pr_err("Invalid attribute"); 330 return -EINVAL; 331 } 332 333 return 0; 334 } 335 336 static void kfd_procfs_kobj_release(struct kobject *kobj) 337 { 338 kfree(kobj); 339 } 340 341 static const struct sysfs_ops kfd_procfs_ops = { 342 .show = kfd_procfs_show, 343 }; 344 345 static struct kobj_type procfs_type = { 346 .release = kfd_procfs_kobj_release, 347 .sysfs_ops = &kfd_procfs_ops, 348 }; 349 350 void kfd_procfs_init(void) 351 { 352 int ret = 0; 353 354 procfs.kobj = kfd_alloc_struct(procfs.kobj); 355 if (!procfs.kobj) 356 return; 357 358 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 359 &kfd_device->kobj, "proc"); 360 if (ret) { 361 pr_warn("Could not create procfs proc folder"); 362 /* If we fail to create the procfs, clean up */ 363 kfd_procfs_shutdown(); 364 } 365 } 366 367 void kfd_procfs_shutdown(void) 368 { 369 if (procfs.kobj) { 370 kobject_del(procfs.kobj); 371 kobject_put(procfs.kobj); 372 procfs.kobj = NULL; 373 } 374 } 375 376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 377 struct attribute *attr, char *buffer) 378 { 379 struct queue *q = container_of(kobj, struct queue, kobj); 380 381 if (!strcmp(attr->name, "size")) 382 return snprintf(buffer, PAGE_SIZE, "%llu", 383 q->properties.queue_size); 384 else if (!strcmp(attr->name, "type")) 385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 386 else if (!strcmp(attr->name, "gpuid")) 387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 388 else 389 pr_err("Invalid attribute"); 390 391 return 0; 392 } 393 394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 395 struct attribute *attr, char *buffer) 396 { 397 if (strcmp(attr->name, "evicted_ms") == 0) { 398 struct kfd_process_device *pdd = container_of(attr, 399 struct kfd_process_device, 400 attr_evict); 401 uint64_t evict_jiffies; 402 403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 404 405 return snprintf(buffer, 406 PAGE_SIZE, 407 "%llu\n", 408 jiffies64_to_msecs(evict_jiffies)); 409 410 /* Sysfs handle that gets CU occupancy is per device */ 411 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 412 return kfd_get_cu_occupancy(attr, buffer); 413 } else { 414 pr_err("Invalid attribute"); 415 } 416 417 return 0; 418 } 419 420 static struct attribute attr_queue_size = { 421 .name = "size", 422 .mode = KFD_SYSFS_FILE_MODE 423 }; 424 425 static struct attribute attr_queue_type = { 426 .name = "type", 427 .mode = KFD_SYSFS_FILE_MODE 428 }; 429 430 static struct attribute attr_queue_gpuid = { 431 .name = "gpuid", 432 .mode = KFD_SYSFS_FILE_MODE 433 }; 434 435 static struct attribute *procfs_queue_attrs[] = { 436 &attr_queue_size, 437 &attr_queue_type, 438 &attr_queue_gpuid, 439 NULL 440 }; 441 442 static const struct sysfs_ops procfs_queue_ops = { 443 .show = kfd_procfs_queue_show, 444 }; 445 446 static struct kobj_type procfs_queue_type = { 447 .sysfs_ops = &procfs_queue_ops, 448 .default_attrs = procfs_queue_attrs, 449 }; 450 451 static const struct sysfs_ops procfs_stats_ops = { 452 .show = kfd_procfs_stats_show, 453 }; 454 455 static struct attribute *procfs_stats_attrs[] = { 456 NULL 457 }; 458 459 static struct kobj_type procfs_stats_type = { 460 .sysfs_ops = &procfs_stats_ops, 461 .default_attrs = procfs_stats_attrs, 462 }; 463 464 int kfd_procfs_add_queue(struct queue *q) 465 { 466 struct kfd_process *proc; 467 int ret; 468 469 if (!q || !q->process) 470 return -EINVAL; 471 proc = q->process; 472 473 /* Create proc/<pid>/queues/<queue id> folder */ 474 if (!proc->kobj_queues) 475 return -EFAULT; 476 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 477 proc->kobj_queues, "%u", q->properties.queue_id); 478 if (ret < 0) { 479 pr_warn("Creating proc/<pid>/queues/%u failed", 480 q->properties.queue_id); 481 kobject_put(&q->kobj); 482 return ret; 483 } 484 485 return 0; 486 } 487 488 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 489 char *name) 490 { 491 int ret = 0; 492 493 if (!p || !attr || !name) 494 return -EINVAL; 495 496 attr->name = name; 497 attr->mode = KFD_SYSFS_FILE_MODE; 498 sysfs_attr_init(attr); 499 500 ret = sysfs_create_file(p->kobj, attr); 501 502 return ret; 503 } 504 505 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p) 506 { 507 int ret = 0; 508 int i; 509 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 510 511 if (!p) 512 return -EINVAL; 513 514 if (!p->kobj) 515 return -EFAULT; 516 517 /* 518 * Create sysfs files for each GPU: 519 * - proc/<pid>/stats_<gpuid>/ 520 * - proc/<pid>/stats_<gpuid>/evicted_ms 521 * - proc/<pid>/stats_<gpuid>/cu_occupancy 522 */ 523 for (i = 0; i < p->n_pdds; i++) { 524 struct kfd_process_device *pdd = p->pdds[i]; 525 struct kobject *kobj_stats; 526 527 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 528 "stats_%u", pdd->dev->id); 529 kobj_stats = kfd_alloc_struct(kobj_stats); 530 if (!kobj_stats) 531 return -ENOMEM; 532 533 ret = kobject_init_and_add(kobj_stats, 534 &procfs_stats_type, 535 p->kobj, 536 stats_dir_filename); 537 538 if (ret) { 539 pr_warn("Creating KFD proc/stats_%s folder failed", 540 stats_dir_filename); 541 kobject_put(kobj_stats); 542 goto err; 543 } 544 545 pdd->kobj_stats = kobj_stats; 546 pdd->attr_evict.name = "evicted_ms"; 547 pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE; 548 sysfs_attr_init(&pdd->attr_evict); 549 ret = sysfs_create_file(kobj_stats, &pdd->attr_evict); 550 if (ret) 551 pr_warn("Creating eviction stats for gpuid %d failed", 552 (int)pdd->dev->id); 553 554 /* Add sysfs file to report compute unit occupancy */ 555 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) { 556 pdd->attr_cu_occupancy.name = "cu_occupancy"; 557 pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE; 558 sysfs_attr_init(&pdd->attr_cu_occupancy); 559 ret = sysfs_create_file(kobj_stats, 560 &pdd->attr_cu_occupancy); 561 if (ret) 562 pr_warn("Creating %s failed for gpuid: %d", 563 pdd->attr_cu_occupancy.name, 564 (int)pdd->dev->id); 565 } 566 } 567 err: 568 return ret; 569 } 570 571 572 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 573 { 574 int ret = 0; 575 int i; 576 577 if (!p) 578 return -EINVAL; 579 580 if (!p->kobj) 581 return -EFAULT; 582 583 /* 584 * Create sysfs files for each GPU: 585 * - proc/<pid>/vram_<gpuid> 586 * - proc/<pid>/sdma_<gpuid> 587 */ 588 for (i = 0; i < p->n_pdds; i++) { 589 struct kfd_process_device *pdd = p->pdds[i]; 590 591 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 592 pdd->dev->id); 593 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 594 if (ret) 595 pr_warn("Creating vram usage for gpu id %d failed", 596 (int)pdd->dev->id); 597 598 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 599 pdd->dev->id); 600 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 601 if (ret) 602 pr_warn("Creating sdma usage for gpu id %d failed", 603 (int)pdd->dev->id); 604 } 605 606 return ret; 607 } 608 609 void kfd_procfs_del_queue(struct queue *q) 610 { 611 if (!q) 612 return; 613 614 kobject_del(&q->kobj); 615 kobject_put(&q->kobj); 616 } 617 618 int kfd_process_create_wq(void) 619 { 620 if (!kfd_process_wq) 621 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 622 if (!kfd_restore_wq) 623 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 624 625 if (!kfd_process_wq || !kfd_restore_wq) { 626 kfd_process_destroy_wq(); 627 return -ENOMEM; 628 } 629 630 return 0; 631 } 632 633 void kfd_process_destroy_wq(void) 634 { 635 if (kfd_process_wq) { 636 destroy_workqueue(kfd_process_wq); 637 kfd_process_wq = NULL; 638 } 639 if (kfd_restore_wq) { 640 destroy_workqueue(kfd_restore_wq); 641 kfd_restore_wq = NULL; 642 } 643 } 644 645 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 646 struct kfd_process_device *pdd) 647 { 648 struct kfd_dev *dev = pdd->dev; 649 650 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv); 651 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv, 652 NULL); 653 } 654 655 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 656 * This function should be only called right after the process 657 * is created and when kfd_processes_mutex is still being held 658 * to avoid concurrency. Because of that exclusiveness, we do 659 * not need to take p->mutex. 660 */ 661 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 662 uint64_t gpu_va, uint32_t size, 663 uint32_t flags, void **kptr) 664 { 665 struct kfd_dev *kdev = pdd->dev; 666 struct kgd_mem *mem = NULL; 667 int handle; 668 int err; 669 670 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 671 pdd->drm_priv, &mem, NULL, flags); 672 if (err) 673 goto err_alloc_mem; 674 675 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, 676 pdd->drm_priv, NULL); 677 if (err) 678 goto err_map_mem; 679 680 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 681 if (err) { 682 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 683 goto sync_memory_failed; 684 } 685 686 /* Create an obj handle so kfd_process_device_remove_obj_handle 687 * will take care of the bo removal when the process finishes. 688 * We do not need to take p->mutex, because the process is just 689 * created and the ioctls have not had the chance to run. 690 */ 691 handle = kfd_process_device_create_obj_handle(pdd, mem); 692 693 if (handle < 0) { 694 err = handle; 695 goto free_gpuvm; 696 } 697 698 if (kptr) { 699 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 700 (struct kgd_mem *)mem, kptr, NULL); 701 if (err) { 702 pr_debug("Map GTT BO to kernel failed\n"); 703 goto free_obj_handle; 704 } 705 } 706 707 return err; 708 709 free_obj_handle: 710 kfd_process_device_remove_obj_handle(pdd, handle); 711 free_gpuvm: 712 sync_memory_failed: 713 kfd_process_free_gpuvm(mem, pdd); 714 return err; 715 716 err_map_mem: 717 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv, 718 NULL); 719 err_alloc_mem: 720 *kptr = NULL; 721 return err; 722 } 723 724 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 725 * process for IB usage The memory reserved is for KFD to submit 726 * IB to AMDGPU from kernel. If the memory is reserved 727 * successfully, ib_kaddr will have the CPU/kernel 728 * address. Check ib_kaddr before accessing the memory. 729 */ 730 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 731 { 732 struct qcm_process_device *qpd = &pdd->qpd; 733 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 734 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 735 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 736 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 737 void *kaddr; 738 int ret; 739 740 if (qpd->ib_kaddr || !qpd->ib_base) 741 return 0; 742 743 /* ib_base is only set for dGPU */ 744 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 745 &kaddr); 746 if (ret) 747 return ret; 748 749 qpd->ib_kaddr = kaddr; 750 751 return 0; 752 } 753 754 struct kfd_process *kfd_create_process(struct file *filep) 755 { 756 struct kfd_process *process; 757 struct task_struct *thread = current; 758 int ret; 759 760 if (!thread->mm) 761 return ERR_PTR(-EINVAL); 762 763 /* Only the pthreads threading model is supported. */ 764 if (thread->group_leader->mm != thread->mm) 765 return ERR_PTR(-EINVAL); 766 767 /* 768 * take kfd processes mutex before starting of process creation 769 * so there won't be a case where two threads of the same process 770 * create two kfd_process structures 771 */ 772 mutex_lock(&kfd_processes_mutex); 773 774 /* A prior open of /dev/kfd could have already created the process. */ 775 process = find_process(thread); 776 if (process) { 777 pr_debug("Process already found\n"); 778 } else { 779 process = create_process(thread); 780 if (IS_ERR(process)) 781 goto out; 782 783 ret = kfd_process_init_cwsr_apu(process, filep); 784 if (ret) 785 goto out_destroy; 786 787 if (!procfs.kobj) 788 goto out; 789 790 process->kobj = kfd_alloc_struct(process->kobj); 791 if (!process->kobj) { 792 pr_warn("Creating procfs kobject failed"); 793 goto out; 794 } 795 ret = kobject_init_and_add(process->kobj, &procfs_type, 796 procfs.kobj, "%d", 797 (int)process->lead_thread->pid); 798 if (ret) { 799 pr_warn("Creating procfs pid directory failed"); 800 kobject_put(process->kobj); 801 goto out; 802 } 803 804 process->attr_pasid.name = "pasid"; 805 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 806 sysfs_attr_init(&process->attr_pasid); 807 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 808 if (ret) 809 pr_warn("Creating pasid for pid %d failed", 810 (int)process->lead_thread->pid); 811 812 process->kobj_queues = kobject_create_and_add("queues", 813 process->kobj); 814 if (!process->kobj_queues) 815 pr_warn("Creating KFD proc/queues folder failed"); 816 817 ret = kfd_procfs_add_sysfs_stats(process); 818 if (ret) 819 pr_warn("Creating sysfs stats dir for pid %d failed", 820 (int)process->lead_thread->pid); 821 822 ret = kfd_procfs_add_sysfs_files(process); 823 if (ret) 824 pr_warn("Creating sysfs usage file for pid %d failed", 825 (int)process->lead_thread->pid); 826 } 827 out: 828 if (!IS_ERR(process)) 829 kref_get(&process->ref); 830 mutex_unlock(&kfd_processes_mutex); 831 832 return process; 833 834 out_destroy: 835 hash_del_rcu(&process->kfd_processes); 836 mutex_unlock(&kfd_processes_mutex); 837 synchronize_srcu(&kfd_processes_srcu); 838 /* kfd_process_free_notifier will trigger the cleanup */ 839 mmu_notifier_put(&process->mmu_notifier); 840 return ERR_PTR(ret); 841 } 842 843 struct kfd_process *kfd_get_process(const struct task_struct *thread) 844 { 845 struct kfd_process *process; 846 847 if (!thread->mm) 848 return ERR_PTR(-EINVAL); 849 850 /* Only the pthreads threading model is supported. */ 851 if (thread->group_leader->mm != thread->mm) 852 return ERR_PTR(-EINVAL); 853 854 process = find_process(thread); 855 if (!process) 856 return ERR_PTR(-EINVAL); 857 858 return process; 859 } 860 861 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 862 { 863 struct kfd_process *process; 864 865 hash_for_each_possible_rcu(kfd_processes_table, process, 866 kfd_processes, (uintptr_t)mm) 867 if (process->mm == mm) 868 return process; 869 870 return NULL; 871 } 872 873 static struct kfd_process *find_process(const struct task_struct *thread) 874 { 875 struct kfd_process *p; 876 int idx; 877 878 idx = srcu_read_lock(&kfd_processes_srcu); 879 p = find_process_by_mm(thread->mm); 880 srcu_read_unlock(&kfd_processes_srcu, idx); 881 882 return p; 883 } 884 885 void kfd_unref_process(struct kfd_process *p) 886 { 887 kref_put(&p->ref, kfd_process_ref_release); 888 } 889 890 891 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 892 { 893 struct kfd_process *p = pdd->process; 894 void *mem; 895 int id; 896 int i; 897 898 /* 899 * Remove all handles from idr and release appropriate 900 * local memory object 901 */ 902 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 903 904 for (i = 0; i < p->n_pdds; i++) { 905 struct kfd_process_device *peer_pdd = p->pdds[i]; 906 907 if (!peer_pdd->drm_priv) 908 continue; 909 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 910 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv); 911 } 912 913 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, 914 pdd->drm_priv, NULL); 915 kfd_process_device_remove_obj_handle(pdd, id); 916 } 917 } 918 919 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 920 { 921 int i; 922 923 for (i = 0; i < p->n_pdds; i++) 924 kfd_process_device_free_bos(p->pdds[i]); 925 } 926 927 static void kfd_process_destroy_pdds(struct kfd_process *p) 928 { 929 int i; 930 931 for (i = 0; i < p->n_pdds; i++) { 932 struct kfd_process_device *pdd = p->pdds[i]; 933 934 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 935 pdd->dev->id, p->pasid); 936 937 if (pdd->drm_file) { 938 amdgpu_amdkfd_gpuvm_release_process_vm( 939 pdd->dev->kgd, pdd->drm_priv); 940 fput(pdd->drm_file); 941 } 942 943 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 944 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 945 get_order(KFD_CWSR_TBA_TMA_SIZE)); 946 947 kfree(pdd->qpd.doorbell_bitmap); 948 idr_destroy(&pdd->alloc_idr); 949 950 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 951 952 /* 953 * before destroying pdd, make sure to report availability 954 * for auto suspend 955 */ 956 if (pdd->runtime_inuse) { 957 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 958 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 959 pdd->runtime_inuse = false; 960 } 961 962 kfree(pdd); 963 p->pdds[i] = NULL; 964 } 965 p->n_pdds = 0; 966 } 967 968 /* No process locking is needed in this function, because the process 969 * is not findable any more. We must assume that no other thread is 970 * using it any more, otherwise we couldn't safely free the process 971 * structure in the end. 972 */ 973 static void kfd_process_wq_release(struct work_struct *work) 974 { 975 struct kfd_process *p = container_of(work, struct kfd_process, 976 release_work); 977 int i; 978 979 /* Remove the procfs files */ 980 if (p->kobj) { 981 sysfs_remove_file(p->kobj, &p->attr_pasid); 982 kobject_del(p->kobj_queues); 983 kobject_put(p->kobj_queues); 984 p->kobj_queues = NULL; 985 986 for (i = 0; i < p->n_pdds; i++) { 987 struct kfd_process_device *pdd = p->pdds[i]; 988 989 sysfs_remove_file(p->kobj, &pdd->attr_vram); 990 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 991 sysfs_remove_file(p->kobj, &pdd->attr_evict); 992 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) 993 sysfs_remove_file(p->kobj, &pdd->attr_cu_occupancy); 994 kobject_del(pdd->kobj_stats); 995 kobject_put(pdd->kobj_stats); 996 pdd->kobj_stats = NULL; 997 } 998 999 kobject_del(p->kobj); 1000 kobject_put(p->kobj); 1001 p->kobj = NULL; 1002 } 1003 1004 kfd_iommu_unbind_process(p); 1005 1006 kfd_process_free_outstanding_kfd_bos(p); 1007 svm_range_list_fini(p); 1008 1009 kfd_process_destroy_pdds(p); 1010 dma_fence_put(p->ef); 1011 1012 kfd_event_free_process(p); 1013 1014 kfd_pasid_free(p->pasid); 1015 mutex_destroy(&p->mutex); 1016 1017 put_task_struct(p->lead_thread); 1018 1019 kfree(p); 1020 } 1021 1022 static void kfd_process_ref_release(struct kref *ref) 1023 { 1024 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1025 1026 INIT_WORK(&p->release_work, kfd_process_wq_release); 1027 queue_work(kfd_process_wq, &p->release_work); 1028 } 1029 1030 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1031 { 1032 int idx = srcu_read_lock(&kfd_processes_srcu); 1033 struct kfd_process *p = find_process_by_mm(mm); 1034 1035 srcu_read_unlock(&kfd_processes_srcu, idx); 1036 1037 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1038 } 1039 1040 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1041 { 1042 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1043 } 1044 1045 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1046 struct mm_struct *mm) 1047 { 1048 struct kfd_process *p; 1049 int i; 1050 1051 /* 1052 * The kfd_process structure can not be free because the 1053 * mmu_notifier srcu is read locked 1054 */ 1055 p = container_of(mn, struct kfd_process, mmu_notifier); 1056 if (WARN_ON(p->mm != mm)) 1057 return; 1058 1059 mutex_lock(&kfd_processes_mutex); 1060 hash_del_rcu(&p->kfd_processes); 1061 mutex_unlock(&kfd_processes_mutex); 1062 synchronize_srcu(&kfd_processes_srcu); 1063 1064 cancel_delayed_work_sync(&p->eviction_work); 1065 cancel_delayed_work_sync(&p->restore_work); 1066 cancel_delayed_work_sync(&p->svms.restore_work); 1067 1068 mutex_lock(&p->mutex); 1069 1070 /* Iterate over all process device data structures and if the 1071 * pdd is in debug mode, we should first force unregistration, 1072 * then we will be able to destroy the queues 1073 */ 1074 for (i = 0; i < p->n_pdds; i++) { 1075 struct kfd_dev *dev = p->pdds[i]->dev; 1076 1077 mutex_lock(kfd_get_dbgmgr_mutex()); 1078 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1079 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1080 kfd_dbgmgr_destroy(dev->dbgmgr); 1081 dev->dbgmgr = NULL; 1082 } 1083 } 1084 mutex_unlock(kfd_get_dbgmgr_mutex()); 1085 } 1086 1087 kfd_process_dequeue_from_all_devices(p); 1088 pqm_uninit(&p->pqm); 1089 1090 /* Indicate to other users that MM is no longer valid */ 1091 p->mm = NULL; 1092 /* Signal the eviction fence after user mode queues are 1093 * destroyed. This allows any BOs to be freed without 1094 * triggering pointless evictions or waiting for fences. 1095 */ 1096 dma_fence_signal(p->ef); 1097 1098 mutex_unlock(&p->mutex); 1099 1100 mmu_notifier_put(&p->mmu_notifier); 1101 } 1102 1103 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1104 .release = kfd_process_notifier_release, 1105 .alloc_notifier = kfd_process_alloc_notifier, 1106 .free_notifier = kfd_process_free_notifier, 1107 }; 1108 1109 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1110 { 1111 unsigned long offset; 1112 int i; 1113 1114 for (i = 0; i < p->n_pdds; i++) { 1115 struct kfd_dev *dev = p->pdds[i]->dev; 1116 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1117 1118 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1119 continue; 1120 1121 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1122 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1123 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1124 MAP_SHARED, offset); 1125 1126 if (IS_ERR_VALUE(qpd->tba_addr)) { 1127 int err = qpd->tba_addr; 1128 1129 pr_err("Failure to set tba address. error %d.\n", err); 1130 qpd->tba_addr = 0; 1131 qpd->cwsr_kaddr = NULL; 1132 return err; 1133 } 1134 1135 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1136 1137 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1138 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1139 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1140 } 1141 1142 return 0; 1143 } 1144 1145 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1146 { 1147 struct kfd_dev *dev = pdd->dev; 1148 struct qcm_process_device *qpd = &pdd->qpd; 1149 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1150 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1151 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1152 void *kaddr; 1153 int ret; 1154 1155 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1156 return 0; 1157 1158 /* cwsr_base is only set for dGPU */ 1159 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1160 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1161 if (ret) 1162 return ret; 1163 1164 qpd->cwsr_kaddr = kaddr; 1165 qpd->tba_addr = qpd->cwsr_base; 1166 1167 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1168 1169 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1170 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1171 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1172 1173 return 0; 1174 } 1175 1176 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1177 uint64_t tba_addr, 1178 uint64_t tma_addr) 1179 { 1180 if (qpd->cwsr_kaddr) { 1181 /* KFD trap handler is bound, record as second-level TBA/TMA 1182 * in first-level TMA. First-level trap will jump to second. 1183 */ 1184 uint64_t *tma = 1185 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1186 tma[0] = tba_addr; 1187 tma[1] = tma_addr; 1188 } else { 1189 /* No trap handler bound, bind as first-level TBA/TMA. */ 1190 qpd->tba_addr = tba_addr; 1191 qpd->tma_addr = tma_addr; 1192 } 1193 } 1194 1195 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1196 { 1197 int i; 1198 1199 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1200 * boot time retry setting. Mixing processes with different 1201 * XNACK/retry settings can hang the GPU. 1202 * 1203 * Different GPUs can have different noretry settings depending 1204 * on HW bugs or limitations. We need to find at least one 1205 * XNACK mode for this process that's compatible with all GPUs. 1206 * Fortunately GPUs with retry enabled (noretry=0) can run code 1207 * built for XNACK-off. On GFXv9 it may perform slower. 1208 * 1209 * Therefore applications built for XNACK-off can always be 1210 * supported and will be our fallback if any GPU does not 1211 * support retry. 1212 */ 1213 for (i = 0; i < p->n_pdds; i++) { 1214 struct kfd_dev *dev = p->pdds[i]->dev; 1215 1216 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1217 * support the SVM APIs and don't need to be considered 1218 * for the XNACK mode selection. 1219 */ 1220 if (dev->device_info->asic_family < CHIP_VEGA10) 1221 continue; 1222 /* Aldebaran can always support XNACK because it can support 1223 * per-process XNACK mode selection. But let the dev->noretry 1224 * setting still influence the default XNACK mode. 1225 */ 1226 if (supported && 1227 dev->device_info->asic_family == CHIP_ALDEBARAN) 1228 continue; 1229 1230 /* GFXv10 and later GPUs do not support shader preemption 1231 * during page faults. This can lead to poor QoS for queue 1232 * management and memory-manager-related preemptions or 1233 * even deadlocks. 1234 */ 1235 if (dev->device_info->asic_family >= CHIP_NAVI10) 1236 return false; 1237 1238 if (dev->noretry) 1239 return false; 1240 } 1241 1242 return true; 1243 } 1244 1245 /* 1246 * On return the kfd_process is fully operational and will be freed when the 1247 * mm is released 1248 */ 1249 static struct kfd_process *create_process(const struct task_struct *thread) 1250 { 1251 struct kfd_process *process; 1252 struct mmu_notifier *mn; 1253 int err = -ENOMEM; 1254 1255 process = kzalloc(sizeof(*process), GFP_KERNEL); 1256 if (!process) 1257 goto err_alloc_process; 1258 1259 kref_init(&process->ref); 1260 mutex_init(&process->mutex); 1261 process->mm = thread->mm; 1262 process->lead_thread = thread->group_leader; 1263 process->n_pdds = 0; 1264 process->svm_disabled = false; 1265 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1266 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1267 process->last_restore_timestamp = get_jiffies_64(); 1268 kfd_event_init_process(process); 1269 process->is_32bit_user_mode = in_compat_syscall(); 1270 1271 process->pasid = kfd_pasid_alloc(); 1272 if (process->pasid == 0) 1273 goto err_alloc_pasid; 1274 1275 err = pqm_init(&process->pqm, process); 1276 if (err != 0) 1277 goto err_process_pqm_init; 1278 1279 /* init process apertures*/ 1280 err = kfd_init_apertures(process); 1281 if (err != 0) 1282 goto err_init_apertures; 1283 1284 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1285 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1286 1287 err = svm_range_list_init(process); 1288 if (err) 1289 goto err_init_svm_range_list; 1290 1291 /* alloc_notifier needs to find the process in the hash table */ 1292 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1293 (uintptr_t)process->mm); 1294 1295 /* MMU notifier registration must be the last call that can fail 1296 * because after this point we cannot unwind the process creation. 1297 * After this point, mmu_notifier_put will trigger the cleanup by 1298 * dropping the last process reference in the free_notifier. 1299 */ 1300 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1301 if (IS_ERR(mn)) { 1302 err = PTR_ERR(mn); 1303 goto err_register_notifier; 1304 } 1305 BUG_ON(mn != &process->mmu_notifier); 1306 1307 get_task_struct(process->lead_thread); 1308 1309 return process; 1310 1311 err_register_notifier: 1312 hash_del_rcu(&process->kfd_processes); 1313 svm_range_list_fini(process); 1314 err_init_svm_range_list: 1315 kfd_process_free_outstanding_kfd_bos(process); 1316 kfd_process_destroy_pdds(process); 1317 err_init_apertures: 1318 pqm_uninit(&process->pqm); 1319 err_process_pqm_init: 1320 kfd_pasid_free(process->pasid); 1321 err_alloc_pasid: 1322 mutex_destroy(&process->mutex); 1323 kfree(process); 1324 err_alloc_process: 1325 return ERR_PTR(err); 1326 } 1327 1328 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1329 struct kfd_dev *dev) 1330 { 1331 unsigned int i; 1332 int range_start = dev->shared_resources.non_cp_doorbells_start; 1333 int range_end = dev->shared_resources.non_cp_doorbells_end; 1334 1335 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1336 return 0; 1337 1338 qpd->doorbell_bitmap = 1339 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1340 BITS_PER_BYTE), GFP_KERNEL); 1341 if (!qpd->doorbell_bitmap) 1342 return -ENOMEM; 1343 1344 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1345 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1346 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1347 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1348 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1349 1350 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1351 if (i >= range_start && i <= range_end) { 1352 set_bit(i, qpd->doorbell_bitmap); 1353 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1354 qpd->doorbell_bitmap); 1355 } 1356 } 1357 1358 return 0; 1359 } 1360 1361 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1362 struct kfd_process *p) 1363 { 1364 int i; 1365 1366 for (i = 0; i < p->n_pdds; i++) 1367 if (p->pdds[i]->dev == dev) 1368 return p->pdds[i]; 1369 1370 return NULL; 1371 } 1372 1373 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1374 struct kfd_process *p) 1375 { 1376 struct kfd_process_device *pdd = NULL; 1377 1378 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1379 return NULL; 1380 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1381 if (!pdd) 1382 return NULL; 1383 1384 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1385 pr_err("Failed to alloc doorbell for pdd\n"); 1386 goto err_free_pdd; 1387 } 1388 1389 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1390 pr_err("Failed to init doorbell for process\n"); 1391 goto err_free_pdd; 1392 } 1393 1394 pdd->dev = dev; 1395 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1396 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1397 pdd->qpd.dqm = dev->dqm; 1398 pdd->qpd.pqm = &p->pqm; 1399 pdd->qpd.evicted = 0; 1400 pdd->qpd.mapped_gws_queue = false; 1401 pdd->process = p; 1402 pdd->bound = PDD_UNBOUND; 1403 pdd->already_dequeued = false; 1404 pdd->runtime_inuse = false; 1405 pdd->vram_usage = 0; 1406 pdd->sdma_past_activity_counter = 0; 1407 atomic64_set(&pdd->evict_duration_counter, 0); 1408 p->pdds[p->n_pdds++] = pdd; 1409 1410 /* Init idr used for memory handle translation */ 1411 idr_init(&pdd->alloc_idr); 1412 1413 return pdd; 1414 1415 err_free_pdd: 1416 kfree(pdd); 1417 return NULL; 1418 } 1419 1420 /** 1421 * kfd_process_device_init_vm - Initialize a VM for a process-device 1422 * 1423 * @pdd: The process-device 1424 * @drm_file: Optional pointer to a DRM file descriptor 1425 * 1426 * If @drm_file is specified, it will be used to acquire the VM from 1427 * that file descriptor. If successful, the @pdd takes ownership of 1428 * the file descriptor. 1429 * 1430 * If @drm_file is NULL, a new VM is created. 1431 * 1432 * Returns 0 on success, -errno on failure. 1433 */ 1434 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1435 struct file *drm_file) 1436 { 1437 struct kfd_process *p; 1438 struct kfd_dev *dev; 1439 int ret; 1440 1441 if (!drm_file) 1442 return -EINVAL; 1443 1444 if (pdd->drm_priv) 1445 return -EBUSY; 1446 1447 p = pdd->process; 1448 dev = pdd->dev; 1449 1450 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1451 dev->kgd, drm_file, p->pasid, 1452 &p->kgd_process_info, &p->ef); 1453 if (ret) { 1454 pr_err("Failed to create process VM object\n"); 1455 return ret; 1456 } 1457 pdd->drm_priv = drm_file->private_data; 1458 1459 ret = kfd_process_device_reserve_ib_mem(pdd); 1460 if (ret) 1461 goto err_reserve_ib_mem; 1462 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1463 if (ret) 1464 goto err_init_cwsr; 1465 1466 pdd->drm_file = drm_file; 1467 1468 return 0; 1469 1470 err_init_cwsr: 1471 err_reserve_ib_mem: 1472 kfd_process_device_free_bos(pdd); 1473 pdd->drm_priv = NULL; 1474 1475 return ret; 1476 } 1477 1478 /* 1479 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1480 * to the device. 1481 * Unbinding occurs when the process dies or the device is removed. 1482 * 1483 * Assumes that the process lock is held. 1484 */ 1485 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1486 struct kfd_process *p) 1487 { 1488 struct kfd_process_device *pdd; 1489 int err; 1490 1491 pdd = kfd_get_process_device_data(dev, p); 1492 if (!pdd) { 1493 pr_err("Process device data doesn't exist\n"); 1494 return ERR_PTR(-ENOMEM); 1495 } 1496 1497 if (!pdd->drm_priv) 1498 return ERR_PTR(-ENODEV); 1499 1500 /* 1501 * signal runtime-pm system to auto resume and prevent 1502 * further runtime suspend once device pdd is created until 1503 * pdd is destroyed. 1504 */ 1505 if (!pdd->runtime_inuse) { 1506 err = pm_runtime_get_sync(dev->ddev->dev); 1507 if (err < 0) { 1508 pm_runtime_put_autosuspend(dev->ddev->dev); 1509 return ERR_PTR(err); 1510 } 1511 } 1512 1513 err = kfd_iommu_bind_process_to_device(pdd); 1514 if (err) 1515 goto out; 1516 1517 /* 1518 * make sure that runtime_usage counter is incremented just once 1519 * per pdd 1520 */ 1521 pdd->runtime_inuse = true; 1522 1523 return pdd; 1524 1525 out: 1526 /* balance runpm reference count and exit with error */ 1527 if (!pdd->runtime_inuse) { 1528 pm_runtime_mark_last_busy(dev->ddev->dev); 1529 pm_runtime_put_autosuspend(dev->ddev->dev); 1530 } 1531 1532 return ERR_PTR(err); 1533 } 1534 1535 /* Create specific handle mapped to mem from process local memory idr 1536 * Assumes that the process lock is held. 1537 */ 1538 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1539 void *mem) 1540 { 1541 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1542 } 1543 1544 /* Translate specific handle from process local memory idr 1545 * Assumes that the process lock is held. 1546 */ 1547 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1548 int handle) 1549 { 1550 if (handle < 0) 1551 return NULL; 1552 1553 return idr_find(&pdd->alloc_idr, handle); 1554 } 1555 1556 /* Remove specific handle from process local memory idr 1557 * Assumes that the process lock is held. 1558 */ 1559 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1560 int handle) 1561 { 1562 if (handle >= 0) 1563 idr_remove(&pdd->alloc_idr, handle); 1564 } 1565 1566 /* This increments the process->ref counter. */ 1567 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1568 { 1569 struct kfd_process *p, *ret_p = NULL; 1570 unsigned int temp; 1571 1572 int idx = srcu_read_lock(&kfd_processes_srcu); 1573 1574 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1575 if (p->pasid == pasid) { 1576 kref_get(&p->ref); 1577 ret_p = p; 1578 break; 1579 } 1580 } 1581 1582 srcu_read_unlock(&kfd_processes_srcu, idx); 1583 1584 return ret_p; 1585 } 1586 1587 /* This increments the process->ref counter. */ 1588 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1589 { 1590 struct kfd_process *p; 1591 1592 int idx = srcu_read_lock(&kfd_processes_srcu); 1593 1594 p = find_process_by_mm(mm); 1595 if (p) 1596 kref_get(&p->ref); 1597 1598 srcu_read_unlock(&kfd_processes_srcu, idx); 1599 1600 return p; 1601 } 1602 1603 /* kfd_process_evict_queues - Evict all user queues of a process 1604 * 1605 * Eviction is reference-counted per process-device. This means multiple 1606 * evictions from different sources can be nested safely. 1607 */ 1608 int kfd_process_evict_queues(struct kfd_process *p) 1609 { 1610 int r = 0; 1611 int i; 1612 unsigned int n_evicted = 0; 1613 1614 for (i = 0; i < p->n_pdds; i++) { 1615 struct kfd_process_device *pdd = p->pdds[i]; 1616 1617 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1618 &pdd->qpd); 1619 if (r) { 1620 pr_err("Failed to evict process queues\n"); 1621 goto fail; 1622 } 1623 n_evicted++; 1624 } 1625 1626 return r; 1627 1628 fail: 1629 /* To keep state consistent, roll back partial eviction by 1630 * restoring queues 1631 */ 1632 for (i = 0; i < p->n_pdds; i++) { 1633 struct kfd_process_device *pdd = p->pdds[i]; 1634 1635 if (n_evicted == 0) 1636 break; 1637 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1638 &pdd->qpd)) 1639 pr_err("Failed to restore queues\n"); 1640 1641 n_evicted--; 1642 } 1643 1644 return r; 1645 } 1646 1647 /* kfd_process_restore_queues - Restore all user queues of a process */ 1648 int kfd_process_restore_queues(struct kfd_process *p) 1649 { 1650 int r, ret = 0; 1651 int i; 1652 1653 for (i = 0; i < p->n_pdds; i++) { 1654 struct kfd_process_device *pdd = p->pdds[i]; 1655 1656 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1657 &pdd->qpd); 1658 if (r) { 1659 pr_err("Failed to restore process queues\n"); 1660 if (!ret) 1661 ret = r; 1662 } 1663 } 1664 1665 return ret; 1666 } 1667 1668 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1669 { 1670 int i; 1671 1672 for (i = 0; i < p->n_pdds; i++) 1673 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id) 1674 return i; 1675 return -EINVAL; 1676 } 1677 1678 int 1679 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev, 1680 uint32_t *gpuid, uint32_t *gpuidx) 1681 { 1682 struct kgd_dev *kgd = (struct kgd_dev *)adev; 1683 int i; 1684 1685 for (i = 0; i < p->n_pdds; i++) 1686 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) { 1687 *gpuid = p->pdds[i]->dev->id; 1688 *gpuidx = i; 1689 return 0; 1690 } 1691 return -EINVAL; 1692 } 1693 1694 static void evict_process_worker(struct work_struct *work) 1695 { 1696 int ret; 1697 struct kfd_process *p; 1698 struct delayed_work *dwork; 1699 1700 dwork = to_delayed_work(work); 1701 1702 /* Process termination destroys this worker thread. So during the 1703 * lifetime of this thread, kfd_process p will be valid 1704 */ 1705 p = container_of(dwork, struct kfd_process, eviction_work); 1706 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1707 "Eviction fence mismatch\n"); 1708 1709 /* Narrow window of overlap between restore and evict work 1710 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1711 * unreserves KFD BOs, it is possible to evicted again. But 1712 * restore has few more steps of finish. So lets wait for any 1713 * previous restore work to complete 1714 */ 1715 flush_delayed_work(&p->restore_work); 1716 1717 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1718 ret = kfd_process_evict_queues(p); 1719 if (!ret) { 1720 dma_fence_signal(p->ef); 1721 dma_fence_put(p->ef); 1722 p->ef = NULL; 1723 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1724 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1725 1726 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1727 } else 1728 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1729 } 1730 1731 static void restore_process_worker(struct work_struct *work) 1732 { 1733 struct delayed_work *dwork; 1734 struct kfd_process *p; 1735 int ret = 0; 1736 1737 dwork = to_delayed_work(work); 1738 1739 /* Process termination destroys this worker thread. So during the 1740 * lifetime of this thread, kfd_process p will be valid 1741 */ 1742 p = container_of(dwork, struct kfd_process, restore_work); 1743 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1744 1745 /* Setting last_restore_timestamp before successful restoration. 1746 * Otherwise this would have to be set by KGD (restore_process_bos) 1747 * before KFD BOs are unreserved. If not, the process can be evicted 1748 * again before the timestamp is set. 1749 * If restore fails, the timestamp will be set again in the next 1750 * attempt. This would mean that the minimum GPU quanta would be 1751 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1752 * functions) 1753 */ 1754 1755 p->last_restore_timestamp = get_jiffies_64(); 1756 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1757 &p->ef); 1758 if (ret) { 1759 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1760 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1761 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1762 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1763 WARN(!ret, "reschedule restore work failed\n"); 1764 return; 1765 } 1766 1767 ret = kfd_process_restore_queues(p); 1768 if (!ret) 1769 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1770 else 1771 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1772 } 1773 1774 void kfd_suspend_all_processes(void) 1775 { 1776 struct kfd_process *p; 1777 unsigned int temp; 1778 int idx = srcu_read_lock(&kfd_processes_srcu); 1779 1780 WARN(debug_evictions, "Evicting all processes"); 1781 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1782 cancel_delayed_work_sync(&p->eviction_work); 1783 cancel_delayed_work_sync(&p->restore_work); 1784 1785 if (kfd_process_evict_queues(p)) 1786 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1787 dma_fence_signal(p->ef); 1788 dma_fence_put(p->ef); 1789 p->ef = NULL; 1790 } 1791 srcu_read_unlock(&kfd_processes_srcu, idx); 1792 } 1793 1794 int kfd_resume_all_processes(void) 1795 { 1796 struct kfd_process *p; 1797 unsigned int temp; 1798 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1799 1800 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1801 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1802 pr_err("Restore process %d failed during resume\n", 1803 p->pasid); 1804 ret = -EFAULT; 1805 } 1806 } 1807 srcu_read_unlock(&kfd_processes_srcu, idx); 1808 return ret; 1809 } 1810 1811 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1812 struct vm_area_struct *vma) 1813 { 1814 struct kfd_process_device *pdd; 1815 struct qcm_process_device *qpd; 1816 1817 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1818 pr_err("Incorrect CWSR mapping size.\n"); 1819 return -EINVAL; 1820 } 1821 1822 pdd = kfd_get_process_device_data(dev, process); 1823 if (!pdd) 1824 return -EINVAL; 1825 qpd = &pdd->qpd; 1826 1827 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1828 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1829 if (!qpd->cwsr_kaddr) { 1830 pr_err("Error allocating per process CWSR buffer.\n"); 1831 return -ENOMEM; 1832 } 1833 1834 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1835 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1836 /* Mapping pages to user process */ 1837 return remap_pfn_range(vma, vma->vm_start, 1838 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1839 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1840 } 1841 1842 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) 1843 { 1844 struct kfd_dev *dev = pdd->dev; 1845 1846 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1847 /* Nothing to flush until a VMID is assigned, which 1848 * only happens when the first queue is created. 1849 */ 1850 if (pdd->qpd.vmid) 1851 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1852 pdd->qpd.vmid); 1853 } else { 1854 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1855 pdd->process->pasid, type); 1856 } 1857 } 1858 1859 #if defined(CONFIG_DEBUG_FS) 1860 1861 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1862 { 1863 struct kfd_process *p; 1864 unsigned int temp; 1865 int r = 0; 1866 1867 int idx = srcu_read_lock(&kfd_processes_srcu); 1868 1869 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1870 seq_printf(m, "Process %d PASID 0x%x:\n", 1871 p->lead_thread->tgid, p->pasid); 1872 1873 mutex_lock(&p->mutex); 1874 r = pqm_debugfs_mqds(m, &p->pqm); 1875 mutex_unlock(&p->mutex); 1876 1877 if (r) 1878 break; 1879 } 1880 1881 srcu_read_unlock(&kfd_processes_srcu, idx); 1882 1883 return r; 1884 } 1885 1886 #endif 1887 1888