1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "kfd_smi_events.h" 45 #include "kfd_debug.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 286 dev->id, proc->pasid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) { 331 struct kfd_process *p = container_of(attr, struct kfd_process, 332 attr_pasid); 333 334 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 335 } else if (strncmp(attr->name, "vram_", 5) == 0) { 336 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 337 attr_vram); 338 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 339 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 340 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 341 attr_sdma); 342 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 343 344 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 345 kfd_sdma_activity_worker); 346 347 sdma_activity_work_handler.pdd = pdd; 348 sdma_activity_work_handler.sdma_activity_counter = 0; 349 350 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 351 352 flush_work(&sdma_activity_work_handler.sdma_activity_work); 353 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 354 355 return snprintf(buffer, PAGE_SIZE, "%llu\n", 356 (sdma_activity_work_handler.sdma_activity_counter)/ 357 SDMA_ACTIVITY_DIVISOR); 358 } else { 359 pr_err("Invalid attribute"); 360 return -EINVAL; 361 } 362 363 return 0; 364 } 365 366 static void kfd_procfs_kobj_release(struct kobject *kobj) 367 { 368 kfree(kobj); 369 } 370 371 static const struct sysfs_ops kfd_procfs_ops = { 372 .show = kfd_procfs_show, 373 }; 374 375 static const struct kobj_type procfs_type = { 376 .release = kfd_procfs_kobj_release, 377 .sysfs_ops = &kfd_procfs_ops, 378 }; 379 380 void kfd_procfs_init(void) 381 { 382 int ret = 0; 383 384 procfs.kobj = kfd_alloc_struct(procfs.kobj); 385 if (!procfs.kobj) 386 return; 387 388 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 389 &kfd_device->kobj, "proc"); 390 if (ret) { 391 pr_warn("Could not create procfs proc folder"); 392 /* If we fail to create the procfs, clean up */ 393 kfd_procfs_shutdown(); 394 } 395 } 396 397 void kfd_procfs_shutdown(void) 398 { 399 if (procfs.kobj) { 400 kobject_del(procfs.kobj); 401 kobject_put(procfs.kobj); 402 procfs.kobj = NULL; 403 } 404 } 405 406 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 407 struct attribute *attr, char *buffer) 408 { 409 struct queue *q = container_of(kobj, struct queue, kobj); 410 411 if (!strcmp(attr->name, "size")) 412 return snprintf(buffer, PAGE_SIZE, "%llu", 413 q->properties.queue_size); 414 else if (!strcmp(attr->name, "type")) 415 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 416 else if (!strcmp(attr->name, "gpuid")) 417 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 418 else 419 pr_err("Invalid attribute"); 420 421 return 0; 422 } 423 424 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 425 struct attribute *attr, char *buffer) 426 { 427 if (strcmp(attr->name, "evicted_ms") == 0) { 428 struct kfd_process_device *pdd = container_of(attr, 429 struct kfd_process_device, 430 attr_evict); 431 uint64_t evict_jiffies; 432 433 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 434 435 return snprintf(buffer, 436 PAGE_SIZE, 437 "%llu\n", 438 jiffies64_to_msecs(evict_jiffies)); 439 440 /* Sysfs handle that gets CU occupancy is per device */ 441 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 442 return kfd_get_cu_occupancy(attr, buffer); 443 } else { 444 pr_err("Invalid attribute"); 445 } 446 447 return 0; 448 } 449 450 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 451 struct attribute *attr, char *buf) 452 { 453 struct kfd_process_device *pdd; 454 455 if (!strcmp(attr->name, "faults")) { 456 pdd = container_of(attr, struct kfd_process_device, 457 attr_faults); 458 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 459 } 460 if (!strcmp(attr->name, "page_in")) { 461 pdd = container_of(attr, struct kfd_process_device, 462 attr_page_in); 463 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 464 } 465 if (!strcmp(attr->name, "page_out")) { 466 pdd = container_of(attr, struct kfd_process_device, 467 attr_page_out); 468 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 469 } 470 return 0; 471 } 472 473 static struct attribute attr_queue_size = { 474 .name = "size", 475 .mode = KFD_SYSFS_FILE_MODE 476 }; 477 478 static struct attribute attr_queue_type = { 479 .name = "type", 480 .mode = KFD_SYSFS_FILE_MODE 481 }; 482 483 static struct attribute attr_queue_gpuid = { 484 .name = "gpuid", 485 .mode = KFD_SYSFS_FILE_MODE 486 }; 487 488 static struct attribute *procfs_queue_attrs[] = { 489 &attr_queue_size, 490 &attr_queue_type, 491 &attr_queue_gpuid, 492 NULL 493 }; 494 ATTRIBUTE_GROUPS(procfs_queue); 495 496 static const struct sysfs_ops procfs_queue_ops = { 497 .show = kfd_procfs_queue_show, 498 }; 499 500 static const struct kobj_type procfs_queue_type = { 501 .sysfs_ops = &procfs_queue_ops, 502 .default_groups = procfs_queue_groups, 503 }; 504 505 static const struct sysfs_ops procfs_stats_ops = { 506 .show = kfd_procfs_stats_show, 507 }; 508 509 static const struct kobj_type procfs_stats_type = { 510 .sysfs_ops = &procfs_stats_ops, 511 .release = kfd_procfs_kobj_release, 512 }; 513 514 static const struct sysfs_ops sysfs_counters_ops = { 515 .show = kfd_sysfs_counters_show, 516 }; 517 518 static const struct kobj_type sysfs_counters_type = { 519 .sysfs_ops = &sysfs_counters_ops, 520 .release = kfd_procfs_kobj_release, 521 }; 522 523 int kfd_procfs_add_queue(struct queue *q) 524 { 525 struct kfd_process *proc; 526 int ret; 527 528 if (!q || !q->process) 529 return -EINVAL; 530 proc = q->process; 531 532 /* Create proc/<pid>/queues/<queue id> folder */ 533 if (!proc->kobj_queues) 534 return -EFAULT; 535 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 536 proc->kobj_queues, "%u", q->properties.queue_id); 537 if (ret < 0) { 538 pr_warn("Creating proc/<pid>/queues/%u failed", 539 q->properties.queue_id); 540 kobject_put(&q->kobj); 541 return ret; 542 } 543 544 return 0; 545 } 546 547 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 548 char *name) 549 { 550 int ret; 551 552 if (!kobj || !attr || !name) 553 return; 554 555 attr->name = name; 556 attr->mode = KFD_SYSFS_FILE_MODE; 557 sysfs_attr_init(attr); 558 559 ret = sysfs_create_file(kobj, attr); 560 if (ret) 561 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 562 } 563 564 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 565 { 566 int ret; 567 int i; 568 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 569 570 if (!p || !p->kobj) 571 return; 572 573 /* 574 * Create sysfs files for each GPU: 575 * - proc/<pid>/stats_<gpuid>/ 576 * - proc/<pid>/stats_<gpuid>/evicted_ms 577 * - proc/<pid>/stats_<gpuid>/cu_occupancy 578 */ 579 for (i = 0; i < p->n_pdds; i++) { 580 struct kfd_process_device *pdd = p->pdds[i]; 581 582 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 583 "stats_%u", pdd->dev->id); 584 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 585 if (!pdd->kobj_stats) 586 return; 587 588 ret = kobject_init_and_add(pdd->kobj_stats, 589 &procfs_stats_type, 590 p->kobj, 591 stats_dir_filename); 592 593 if (ret) { 594 pr_warn("Creating KFD proc/stats_%s folder failed", 595 stats_dir_filename); 596 kobject_put(pdd->kobj_stats); 597 pdd->kobj_stats = NULL; 598 return; 599 } 600 601 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 602 "evicted_ms"); 603 /* Add sysfs file to report compute unit occupancy */ 604 if (pdd->dev->kfd2kgd->get_cu_occupancy) 605 kfd_sysfs_create_file(pdd->kobj_stats, 606 &pdd->attr_cu_occupancy, 607 "cu_occupancy"); 608 } 609 } 610 611 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 612 { 613 int ret = 0; 614 int i; 615 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 616 617 if (!p || !p->kobj) 618 return; 619 620 /* 621 * Create sysfs files for each GPU which supports SVM 622 * - proc/<pid>/counters_<gpuid>/ 623 * - proc/<pid>/counters_<gpuid>/faults 624 * - proc/<pid>/counters_<gpuid>/page_in 625 * - proc/<pid>/counters_<gpuid>/page_out 626 */ 627 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 628 struct kfd_process_device *pdd = p->pdds[i]; 629 struct kobject *kobj_counters; 630 631 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 632 "counters_%u", pdd->dev->id); 633 kobj_counters = kfd_alloc_struct(kobj_counters); 634 if (!kobj_counters) 635 return; 636 637 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 638 p->kobj, counters_dir_filename); 639 if (ret) { 640 pr_warn("Creating KFD proc/%s folder failed", 641 counters_dir_filename); 642 kobject_put(kobj_counters); 643 return; 644 } 645 646 pdd->kobj_counters = kobj_counters; 647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 648 "faults"); 649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 650 "page_in"); 651 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 652 "page_out"); 653 } 654 } 655 656 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 657 { 658 int i; 659 660 if (!p || !p->kobj) 661 return; 662 663 /* 664 * Create sysfs files for each GPU: 665 * - proc/<pid>/vram_<gpuid> 666 * - proc/<pid>/sdma_<gpuid> 667 */ 668 for (i = 0; i < p->n_pdds; i++) { 669 struct kfd_process_device *pdd = p->pdds[i]; 670 671 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 672 pdd->dev->id); 673 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 674 pdd->vram_filename); 675 676 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 677 pdd->dev->id); 678 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 679 pdd->sdma_filename); 680 } 681 } 682 683 void kfd_procfs_del_queue(struct queue *q) 684 { 685 if (!q) 686 return; 687 688 kobject_del(&q->kobj); 689 kobject_put(&q->kobj); 690 } 691 692 int kfd_process_create_wq(void) 693 { 694 if (!kfd_process_wq) 695 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 696 if (!kfd_restore_wq) 697 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 698 WQ_FREEZABLE); 699 700 if (!kfd_process_wq || !kfd_restore_wq) { 701 kfd_process_destroy_wq(); 702 return -ENOMEM; 703 } 704 705 return 0; 706 } 707 708 void kfd_process_destroy_wq(void) 709 { 710 if (kfd_process_wq) { 711 destroy_workqueue(kfd_process_wq); 712 kfd_process_wq = NULL; 713 } 714 if (kfd_restore_wq) { 715 destroy_workqueue(kfd_restore_wq); 716 kfd_restore_wq = NULL; 717 } 718 } 719 720 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 721 struct kfd_process_device *pdd, void **kptr) 722 { 723 struct kfd_node *dev = pdd->dev; 724 725 if (kptr && *kptr) { 726 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 727 *kptr = NULL; 728 } 729 730 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 731 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 732 NULL); 733 } 734 735 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 736 * This function should be only called right after the process 737 * is created and when kfd_processes_mutex is still being held 738 * to avoid concurrency. Because of that exclusiveness, we do 739 * not need to take p->mutex. 740 */ 741 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 742 uint64_t gpu_va, uint32_t size, 743 uint32_t flags, struct kgd_mem **mem, void **kptr) 744 { 745 struct kfd_node *kdev = pdd->dev; 746 int err; 747 748 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 749 pdd->drm_priv, mem, NULL, 750 flags, false); 751 if (err) 752 goto err_alloc_mem; 753 754 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 755 pdd->drm_priv); 756 if (err) 757 goto err_map_mem; 758 759 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 760 if (err) { 761 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 762 goto sync_memory_failed; 763 } 764 765 if (kptr) { 766 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 767 (struct kgd_mem *)*mem, kptr, NULL); 768 if (err) { 769 pr_debug("Map GTT BO to kernel failed\n"); 770 goto sync_memory_failed; 771 } 772 } 773 774 return err; 775 776 sync_memory_failed: 777 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 778 779 err_map_mem: 780 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 781 NULL); 782 err_alloc_mem: 783 *mem = NULL; 784 *kptr = NULL; 785 return err; 786 } 787 788 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 789 * process for IB usage The memory reserved is for KFD to submit 790 * IB to AMDGPU from kernel. If the memory is reserved 791 * successfully, ib_kaddr will have the CPU/kernel 792 * address. Check ib_kaddr before accessing the memory. 793 */ 794 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 795 { 796 struct qcm_process_device *qpd = &pdd->qpd; 797 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 798 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 799 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 800 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 801 struct kgd_mem *mem; 802 void *kaddr; 803 int ret; 804 805 if (qpd->ib_kaddr || !qpd->ib_base) 806 return 0; 807 808 /* ib_base is only set for dGPU */ 809 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 810 &mem, &kaddr); 811 if (ret) 812 return ret; 813 814 qpd->ib_mem = mem; 815 qpd->ib_kaddr = kaddr; 816 817 return 0; 818 } 819 820 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 821 { 822 struct qcm_process_device *qpd = &pdd->qpd; 823 824 if (!qpd->ib_kaddr || !qpd->ib_base) 825 return; 826 827 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 828 } 829 830 struct kfd_process *kfd_create_process(struct task_struct *thread) 831 { 832 struct kfd_process *process; 833 int ret; 834 835 if (!(thread->mm && mmget_not_zero(thread->mm))) 836 return ERR_PTR(-EINVAL); 837 838 /* Only the pthreads threading model is supported. */ 839 if (thread->group_leader->mm != thread->mm) { 840 mmput(thread->mm); 841 return ERR_PTR(-EINVAL); 842 } 843 844 /* 845 * take kfd processes mutex before starting of process creation 846 * so there won't be a case where two threads of the same process 847 * create two kfd_process structures 848 */ 849 mutex_lock(&kfd_processes_mutex); 850 851 if (kfd_is_locked()) { 852 pr_debug("KFD is locked! Cannot create process"); 853 process = ERR_PTR(-EINVAL); 854 goto out; 855 } 856 857 /* A prior open of /dev/kfd could have already created the process. 858 * find_process will increase process kref in this case 859 */ 860 process = find_process(thread, true); 861 if (process) { 862 pr_debug("Process already found\n"); 863 } else { 864 /* If the process just called exec(3), it is possible that the 865 * cleanup of the kfd_process (following the release of the mm 866 * of the old process image) is still in the cleanup work queue. 867 * Make sure to drain any job before trying to recreate any 868 * resource for this process. 869 */ 870 flush_workqueue(kfd_process_wq); 871 872 process = create_process(thread); 873 if (IS_ERR(process)) 874 goto out; 875 876 if (!procfs.kobj) 877 goto out; 878 879 process->kobj = kfd_alloc_struct(process->kobj); 880 if (!process->kobj) { 881 pr_warn("Creating procfs kobject failed"); 882 goto out; 883 } 884 ret = kobject_init_and_add(process->kobj, &procfs_type, 885 procfs.kobj, "%d", 886 (int)process->lead_thread->pid); 887 if (ret) { 888 pr_warn("Creating procfs pid directory failed"); 889 kobject_put(process->kobj); 890 goto out; 891 } 892 893 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 894 "pasid"); 895 896 process->kobj_queues = kobject_create_and_add("queues", 897 process->kobj); 898 if (!process->kobj_queues) 899 pr_warn("Creating KFD proc/queues folder failed"); 900 901 kfd_procfs_add_sysfs_stats(process); 902 kfd_procfs_add_sysfs_files(process); 903 kfd_procfs_add_sysfs_counters(process); 904 905 init_waitqueue_head(&process->wait_irq_drain); 906 } 907 out: 908 mutex_unlock(&kfd_processes_mutex); 909 mmput(thread->mm); 910 911 return process; 912 } 913 914 struct kfd_process *kfd_get_process(const struct task_struct *thread) 915 { 916 struct kfd_process *process; 917 918 if (!thread->mm) 919 return ERR_PTR(-EINVAL); 920 921 /* Only the pthreads threading model is supported. */ 922 if (thread->group_leader->mm != thread->mm) 923 return ERR_PTR(-EINVAL); 924 925 process = find_process(thread, false); 926 if (!process) 927 return ERR_PTR(-EINVAL); 928 929 return process; 930 } 931 932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 933 { 934 struct kfd_process *process; 935 936 hash_for_each_possible_rcu(kfd_processes_table, process, 937 kfd_processes, (uintptr_t)mm) 938 if (process->mm == mm) 939 return process; 940 941 return NULL; 942 } 943 944 static struct kfd_process *find_process(const struct task_struct *thread, 945 bool ref) 946 { 947 struct kfd_process *p; 948 int idx; 949 950 idx = srcu_read_lock(&kfd_processes_srcu); 951 p = find_process_by_mm(thread->mm); 952 if (p && ref) 953 kref_get(&p->ref); 954 srcu_read_unlock(&kfd_processes_srcu, idx); 955 956 return p; 957 } 958 959 void kfd_unref_process(struct kfd_process *p) 960 { 961 kref_put(&p->ref, kfd_process_ref_release); 962 } 963 964 /* This increments the process->ref counter. */ 965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 966 { 967 struct task_struct *task = NULL; 968 struct kfd_process *p = NULL; 969 970 if (!pid) { 971 task = current; 972 get_task_struct(task); 973 } else { 974 task = get_pid_task(pid, PIDTYPE_PID); 975 } 976 977 if (task) { 978 p = find_process(task, true); 979 put_task_struct(task); 980 } 981 982 return p; 983 } 984 985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 986 { 987 struct kfd_process *p = pdd->process; 988 void *mem; 989 int id; 990 int i; 991 992 /* 993 * Remove all handles from idr and release appropriate 994 * local memory object 995 */ 996 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 997 998 for (i = 0; i < p->n_pdds; i++) { 999 struct kfd_process_device *peer_pdd = p->pdds[i]; 1000 1001 if (!peer_pdd->drm_priv) 1002 continue; 1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1005 } 1006 1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1008 pdd->drm_priv, NULL); 1009 kfd_process_device_remove_obj_handle(pdd, id); 1010 } 1011 } 1012 1013 /* 1014 * Just kunmap and unpin signal BO here. It will be freed in 1015 * kfd_process_free_outstanding_kfd_bos() 1016 */ 1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1018 { 1019 struct kfd_process_device *pdd; 1020 struct kfd_node *kdev; 1021 void *mem; 1022 1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1024 if (!kdev) 1025 return; 1026 1027 mutex_lock(&p->mutex); 1028 1029 pdd = kfd_get_process_device_data(kdev, p); 1030 if (!pdd) 1031 goto out; 1032 1033 mem = kfd_process_device_translate_handle( 1034 pdd, GET_IDR_HANDLE(p->signal_handle)); 1035 if (!mem) 1036 goto out; 1037 1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1039 1040 out: 1041 mutex_unlock(&p->mutex); 1042 } 1043 1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1045 { 1046 int i; 1047 1048 for (i = 0; i < p->n_pdds; i++) 1049 kfd_process_device_free_bos(p->pdds[i]); 1050 } 1051 1052 static void kfd_process_destroy_pdds(struct kfd_process *p) 1053 { 1054 int i; 1055 1056 for (i = 0; i < p->n_pdds; i++) { 1057 struct kfd_process_device *pdd = p->pdds[i]; 1058 1059 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1060 pdd->dev->id, p->pasid); 1061 1062 kfd_process_device_destroy_cwsr_dgpu(pdd); 1063 kfd_process_device_destroy_ib_mem(pdd); 1064 1065 if (pdd->drm_file) { 1066 amdgpu_amdkfd_gpuvm_release_process_vm( 1067 pdd->dev->adev, pdd->drm_priv); 1068 fput(pdd->drm_file); 1069 } 1070 1071 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1072 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1073 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1074 1075 idr_destroy(&pdd->alloc_idr); 1076 1077 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1078 1079 if (pdd->dev->kfd->shared_resources.enable_mes && 1080 pdd->proc_ctx_cpu_ptr) 1081 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1082 &pdd->proc_ctx_bo); 1083 /* 1084 * before destroying pdd, make sure to report availability 1085 * for auto suspend 1086 */ 1087 if (pdd->runtime_inuse) { 1088 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1089 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1090 pdd->runtime_inuse = false; 1091 } 1092 1093 kfree(pdd); 1094 p->pdds[i] = NULL; 1095 } 1096 p->n_pdds = 0; 1097 } 1098 1099 static void kfd_process_remove_sysfs(struct kfd_process *p) 1100 { 1101 struct kfd_process_device *pdd; 1102 int i; 1103 1104 if (!p->kobj) 1105 return; 1106 1107 sysfs_remove_file(p->kobj, &p->attr_pasid); 1108 kobject_del(p->kobj_queues); 1109 kobject_put(p->kobj_queues); 1110 p->kobj_queues = NULL; 1111 1112 for (i = 0; i < p->n_pdds; i++) { 1113 pdd = p->pdds[i]; 1114 1115 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1116 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1117 1118 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1119 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1120 sysfs_remove_file(pdd->kobj_stats, 1121 &pdd->attr_cu_occupancy); 1122 kobject_del(pdd->kobj_stats); 1123 kobject_put(pdd->kobj_stats); 1124 pdd->kobj_stats = NULL; 1125 } 1126 1127 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1128 pdd = p->pdds[i]; 1129 1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1131 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1132 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1133 kobject_del(pdd->kobj_counters); 1134 kobject_put(pdd->kobj_counters); 1135 pdd->kobj_counters = NULL; 1136 } 1137 1138 kobject_del(p->kobj); 1139 kobject_put(p->kobj); 1140 p->kobj = NULL; 1141 } 1142 1143 /* No process locking is needed in this function, because the process 1144 * is not findable any more. We must assume that no other thread is 1145 * using it any more, otherwise we couldn't safely free the process 1146 * structure in the end. 1147 */ 1148 static void kfd_process_wq_release(struct work_struct *work) 1149 { 1150 struct kfd_process *p = container_of(work, struct kfd_process, 1151 release_work); 1152 struct dma_fence *ef; 1153 1154 kfd_process_dequeue_from_all_devices(p); 1155 pqm_uninit(&p->pqm); 1156 1157 /* Signal the eviction fence after user mode queues are 1158 * destroyed. This allows any BOs to be freed without 1159 * triggering pointless evictions or waiting for fences. 1160 */ 1161 synchronize_rcu(); 1162 ef = rcu_access_pointer(p->ef); 1163 dma_fence_signal(ef); 1164 1165 kfd_process_remove_sysfs(p); 1166 1167 kfd_process_kunmap_signal_bo(p); 1168 kfd_process_free_outstanding_kfd_bos(p); 1169 svm_range_list_fini(p); 1170 1171 kfd_process_destroy_pdds(p); 1172 dma_fence_put(ef); 1173 1174 kfd_event_free_process(p); 1175 1176 kfd_pasid_free(p->pasid); 1177 mutex_destroy(&p->mutex); 1178 1179 put_task_struct(p->lead_thread); 1180 1181 kfree(p); 1182 } 1183 1184 static void kfd_process_ref_release(struct kref *ref) 1185 { 1186 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1187 1188 INIT_WORK(&p->release_work, kfd_process_wq_release); 1189 queue_work(kfd_process_wq, &p->release_work); 1190 } 1191 1192 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1193 { 1194 /* This increments p->ref counter if kfd process p exists */ 1195 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1196 1197 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1198 } 1199 1200 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1201 { 1202 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1203 } 1204 1205 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1206 { 1207 int i; 1208 1209 cancel_delayed_work_sync(&p->eviction_work); 1210 cancel_delayed_work_sync(&p->restore_work); 1211 1212 for (i = 0; i < p->n_pdds; i++) { 1213 struct kfd_process_device *pdd = p->pdds[i]; 1214 1215 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1216 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1217 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1218 } 1219 1220 /* Indicate to other users that MM is no longer valid */ 1221 p->mm = NULL; 1222 kfd_dbg_trap_disable(p); 1223 1224 if (atomic_read(&p->debugged_process_count) > 0) { 1225 struct kfd_process *target; 1226 unsigned int temp; 1227 int idx = srcu_read_lock(&kfd_processes_srcu); 1228 1229 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1230 if (target->debugger_process && target->debugger_process == p) { 1231 mutex_lock_nested(&target->mutex, 1); 1232 kfd_dbg_trap_disable(target); 1233 mutex_unlock(&target->mutex); 1234 if (atomic_read(&p->debugged_process_count) == 0) 1235 break; 1236 } 1237 } 1238 1239 srcu_read_unlock(&kfd_processes_srcu, idx); 1240 } 1241 1242 mmu_notifier_put(&p->mmu_notifier); 1243 } 1244 1245 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1246 struct mm_struct *mm) 1247 { 1248 struct kfd_process *p; 1249 1250 /* 1251 * The kfd_process structure can not be free because the 1252 * mmu_notifier srcu is read locked 1253 */ 1254 p = container_of(mn, struct kfd_process, mmu_notifier); 1255 if (WARN_ON(p->mm != mm)) 1256 return; 1257 1258 mutex_lock(&kfd_processes_mutex); 1259 /* 1260 * Do early return if table is empty. 1261 * 1262 * This could potentially happen if this function is called concurrently 1263 * by mmu_notifier and by kfd_cleanup_pocesses. 1264 * 1265 */ 1266 if (hash_empty(kfd_processes_table)) { 1267 mutex_unlock(&kfd_processes_mutex); 1268 return; 1269 } 1270 hash_del_rcu(&p->kfd_processes); 1271 mutex_unlock(&kfd_processes_mutex); 1272 synchronize_srcu(&kfd_processes_srcu); 1273 1274 kfd_process_notifier_release_internal(p); 1275 } 1276 1277 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1278 .release = kfd_process_notifier_release, 1279 .alloc_notifier = kfd_process_alloc_notifier, 1280 .free_notifier = kfd_process_free_notifier, 1281 }; 1282 1283 /* 1284 * This code handles the case when driver is being unloaded before all 1285 * mm_struct are released. We need to safely free the kfd_process and 1286 * avoid race conditions with mmu_notifier that might try to free them. 1287 * 1288 */ 1289 void kfd_cleanup_processes(void) 1290 { 1291 struct kfd_process *p; 1292 struct hlist_node *p_temp; 1293 unsigned int temp; 1294 HLIST_HEAD(cleanup_list); 1295 1296 /* 1297 * Move all remaining kfd_process from the process table to a 1298 * temp list for processing. Once done, callback from mmu_notifier 1299 * release will not see the kfd_process in the table and do early return, 1300 * avoiding double free issues. 1301 */ 1302 mutex_lock(&kfd_processes_mutex); 1303 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1304 hash_del_rcu(&p->kfd_processes); 1305 synchronize_srcu(&kfd_processes_srcu); 1306 hlist_add_head(&p->kfd_processes, &cleanup_list); 1307 } 1308 mutex_unlock(&kfd_processes_mutex); 1309 1310 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1311 kfd_process_notifier_release_internal(p); 1312 1313 /* 1314 * Ensures that all outstanding free_notifier get called, triggering 1315 * the release of the kfd_process struct. 1316 */ 1317 mmu_notifier_synchronize(); 1318 } 1319 1320 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1321 { 1322 unsigned long offset; 1323 int i; 1324 1325 if (p->has_cwsr) 1326 return 0; 1327 1328 for (i = 0; i < p->n_pdds; i++) { 1329 struct kfd_node *dev = p->pdds[i]->dev; 1330 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1331 1332 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1333 continue; 1334 1335 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1336 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1337 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1338 MAP_SHARED, offset); 1339 1340 if (IS_ERR_VALUE(qpd->tba_addr)) { 1341 int err = qpd->tba_addr; 1342 1343 dev_err(dev->adev->dev, 1344 "Failure to set tba address. error %d.\n", err); 1345 qpd->tba_addr = 0; 1346 qpd->cwsr_kaddr = NULL; 1347 return err; 1348 } 1349 1350 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1351 1352 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1353 1354 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1355 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1356 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1357 } 1358 1359 p->has_cwsr = true; 1360 1361 return 0; 1362 } 1363 1364 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1365 { 1366 struct kfd_node *dev = pdd->dev; 1367 struct qcm_process_device *qpd = &pdd->qpd; 1368 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1369 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1370 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1371 struct kgd_mem *mem; 1372 void *kaddr; 1373 int ret; 1374 1375 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1376 return 0; 1377 1378 /* cwsr_base is only set for dGPU */ 1379 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1380 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1381 if (ret) 1382 return ret; 1383 1384 qpd->cwsr_mem = mem; 1385 qpd->cwsr_kaddr = kaddr; 1386 qpd->tba_addr = qpd->cwsr_base; 1387 1388 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1389 1390 kfd_process_set_trap_debug_flag(&pdd->qpd, 1391 pdd->process->debug_trap_enabled); 1392 1393 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1394 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1395 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1396 1397 return 0; 1398 } 1399 1400 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1401 { 1402 struct kfd_node *dev = pdd->dev; 1403 struct qcm_process_device *qpd = &pdd->qpd; 1404 1405 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1406 return; 1407 1408 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1409 } 1410 1411 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1412 uint64_t tba_addr, 1413 uint64_t tma_addr) 1414 { 1415 if (qpd->cwsr_kaddr) { 1416 /* KFD trap handler is bound, record as second-level TBA/TMA 1417 * in first-level TMA. First-level trap will jump to second. 1418 */ 1419 uint64_t *tma = 1420 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1421 tma[0] = tba_addr; 1422 tma[1] = tma_addr; 1423 } else { 1424 /* No trap handler bound, bind as first-level TBA/TMA. */ 1425 qpd->tba_addr = tba_addr; 1426 qpd->tma_addr = tma_addr; 1427 } 1428 } 1429 1430 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1431 { 1432 int i; 1433 1434 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1435 * boot time retry setting. Mixing processes with different 1436 * XNACK/retry settings can hang the GPU. 1437 * 1438 * Different GPUs can have different noretry settings depending 1439 * on HW bugs or limitations. We need to find at least one 1440 * XNACK mode for this process that's compatible with all GPUs. 1441 * Fortunately GPUs with retry enabled (noretry=0) can run code 1442 * built for XNACK-off. On GFXv9 it may perform slower. 1443 * 1444 * Therefore applications built for XNACK-off can always be 1445 * supported and will be our fallback if any GPU does not 1446 * support retry. 1447 */ 1448 for (i = 0; i < p->n_pdds; i++) { 1449 struct kfd_node *dev = p->pdds[i]->dev; 1450 1451 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1452 * support the SVM APIs and don't need to be considered 1453 * for the XNACK mode selection. 1454 */ 1455 if (!KFD_IS_SOC15(dev)) 1456 continue; 1457 /* Aldebaran can always support XNACK because it can support 1458 * per-process XNACK mode selection. But let the dev->noretry 1459 * setting still influence the default XNACK mode. 1460 */ 1461 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1462 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1463 pr_debug("SRIOV platform xnack not supported\n"); 1464 return false; 1465 } 1466 continue; 1467 } 1468 1469 /* GFXv10 and later GPUs do not support shader preemption 1470 * during page faults. This can lead to poor QoS for queue 1471 * management and memory-manager-related preemptions or 1472 * even deadlocks. 1473 */ 1474 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1475 return false; 1476 1477 if (dev->kfd->noretry) 1478 return false; 1479 } 1480 1481 return true; 1482 } 1483 1484 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1485 bool enabled) 1486 { 1487 if (qpd->cwsr_kaddr) { 1488 uint64_t *tma = 1489 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1490 tma[2] = enabled; 1491 } 1492 } 1493 1494 /* 1495 * On return the kfd_process is fully operational and will be freed when the 1496 * mm is released 1497 */ 1498 static struct kfd_process *create_process(const struct task_struct *thread) 1499 { 1500 struct kfd_process *process; 1501 struct mmu_notifier *mn; 1502 int err = -ENOMEM; 1503 1504 process = kzalloc(sizeof(*process), GFP_KERNEL); 1505 if (!process) 1506 goto err_alloc_process; 1507 1508 kref_init(&process->ref); 1509 mutex_init(&process->mutex); 1510 process->mm = thread->mm; 1511 process->lead_thread = thread->group_leader; 1512 process->n_pdds = 0; 1513 process->queues_paused = false; 1514 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1515 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1516 process->last_restore_timestamp = get_jiffies_64(); 1517 err = kfd_event_init_process(process); 1518 if (err) 1519 goto err_event_init; 1520 process->is_32bit_user_mode = in_compat_syscall(); 1521 process->debug_trap_enabled = false; 1522 process->debugger_process = NULL; 1523 process->exception_enable_mask = 0; 1524 atomic_set(&process->debugged_process_count, 0); 1525 sema_init(&process->runtime_enable_sema, 0); 1526 1527 process->pasid = kfd_pasid_alloc(); 1528 if (process->pasid == 0) { 1529 err = -ENOSPC; 1530 goto err_alloc_pasid; 1531 } 1532 1533 err = pqm_init(&process->pqm, process); 1534 if (err != 0) 1535 goto err_process_pqm_init; 1536 1537 /* init process apertures*/ 1538 err = kfd_init_apertures(process); 1539 if (err != 0) 1540 goto err_init_apertures; 1541 1542 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1543 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1544 1545 err = svm_range_list_init(process); 1546 if (err) 1547 goto err_init_svm_range_list; 1548 1549 /* alloc_notifier needs to find the process in the hash table */ 1550 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1551 (uintptr_t)process->mm); 1552 1553 /* Avoid free_notifier to start kfd_process_wq_release if 1554 * mmu_notifier_get failed because of pending signal. 1555 */ 1556 kref_get(&process->ref); 1557 1558 /* MMU notifier registration must be the last call that can fail 1559 * because after this point we cannot unwind the process creation. 1560 * After this point, mmu_notifier_put will trigger the cleanup by 1561 * dropping the last process reference in the free_notifier. 1562 */ 1563 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1564 if (IS_ERR(mn)) { 1565 err = PTR_ERR(mn); 1566 goto err_register_notifier; 1567 } 1568 BUG_ON(mn != &process->mmu_notifier); 1569 1570 kfd_unref_process(process); 1571 get_task_struct(process->lead_thread); 1572 1573 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1574 1575 return process; 1576 1577 err_register_notifier: 1578 hash_del_rcu(&process->kfd_processes); 1579 svm_range_list_fini(process); 1580 err_init_svm_range_list: 1581 kfd_process_free_outstanding_kfd_bos(process); 1582 kfd_process_destroy_pdds(process); 1583 err_init_apertures: 1584 pqm_uninit(&process->pqm); 1585 err_process_pqm_init: 1586 kfd_pasid_free(process->pasid); 1587 err_alloc_pasid: 1588 kfd_event_free_process(process); 1589 err_event_init: 1590 mutex_destroy(&process->mutex); 1591 kfree(process); 1592 err_alloc_process: 1593 return ERR_PTR(err); 1594 } 1595 1596 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1597 struct kfd_process *p) 1598 { 1599 int i; 1600 1601 for (i = 0; i < p->n_pdds; i++) 1602 if (p->pdds[i]->dev == dev) 1603 return p->pdds[i]; 1604 1605 return NULL; 1606 } 1607 1608 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1609 struct kfd_process *p) 1610 { 1611 struct kfd_process_device *pdd = NULL; 1612 1613 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1614 return NULL; 1615 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1616 if (!pdd) 1617 return NULL; 1618 1619 pdd->dev = dev; 1620 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1621 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1622 pdd->qpd.dqm = dev->dqm; 1623 pdd->qpd.pqm = &p->pqm; 1624 pdd->qpd.evicted = 0; 1625 pdd->qpd.mapped_gws_queue = false; 1626 pdd->process = p; 1627 pdd->bound = PDD_UNBOUND; 1628 pdd->already_dequeued = false; 1629 pdd->runtime_inuse = false; 1630 atomic64_set(&pdd->vram_usage, 0); 1631 pdd->sdma_past_activity_counter = 0; 1632 pdd->user_gpu_id = dev->id; 1633 atomic64_set(&pdd->evict_duration_counter, 0); 1634 1635 p->pdds[p->n_pdds++] = pdd; 1636 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1637 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1638 pdd->dev->adev, 1639 false, 1640 0); 1641 1642 /* Init idr used for memory handle translation */ 1643 idr_init(&pdd->alloc_idr); 1644 1645 return pdd; 1646 } 1647 1648 /** 1649 * kfd_process_device_init_vm - Initialize a VM for a process-device 1650 * 1651 * @pdd: The process-device 1652 * @drm_file: Optional pointer to a DRM file descriptor 1653 * 1654 * If @drm_file is specified, it will be used to acquire the VM from 1655 * that file descriptor. If successful, the @pdd takes ownership of 1656 * the file descriptor. 1657 * 1658 * If @drm_file is NULL, a new VM is created. 1659 * 1660 * Returns 0 on success, -errno on failure. 1661 */ 1662 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1663 struct file *drm_file) 1664 { 1665 struct amdgpu_fpriv *drv_priv; 1666 struct amdgpu_vm *avm; 1667 struct kfd_process *p; 1668 struct dma_fence *ef; 1669 struct kfd_node *dev; 1670 int ret; 1671 1672 if (!drm_file) 1673 return -EINVAL; 1674 1675 if (pdd->drm_priv) 1676 return -EBUSY; 1677 1678 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1679 if (ret) 1680 return ret; 1681 avm = &drv_priv->vm; 1682 1683 p = pdd->process; 1684 dev = pdd->dev; 1685 1686 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1687 &p->kgd_process_info, 1688 p->ef ? NULL : &ef); 1689 if (ret) { 1690 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1691 return ret; 1692 } 1693 1694 if (!p->ef) 1695 RCU_INIT_POINTER(p->ef, ef); 1696 1697 pdd->drm_priv = drm_file->private_data; 1698 1699 ret = kfd_process_device_reserve_ib_mem(pdd); 1700 if (ret) 1701 goto err_reserve_ib_mem; 1702 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1703 if (ret) 1704 goto err_init_cwsr; 1705 1706 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1707 if (ret) 1708 goto err_set_pasid; 1709 1710 pdd->drm_file = drm_file; 1711 1712 return 0; 1713 1714 err_set_pasid: 1715 kfd_process_device_destroy_cwsr_dgpu(pdd); 1716 err_init_cwsr: 1717 kfd_process_device_destroy_ib_mem(pdd); 1718 err_reserve_ib_mem: 1719 pdd->drm_priv = NULL; 1720 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1721 1722 return ret; 1723 } 1724 1725 /* 1726 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1727 * to the device. 1728 * Unbinding occurs when the process dies or the device is removed. 1729 * 1730 * Assumes that the process lock is held. 1731 */ 1732 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1733 struct kfd_process *p) 1734 { 1735 struct kfd_process_device *pdd; 1736 int err; 1737 1738 pdd = kfd_get_process_device_data(dev, p); 1739 if (!pdd) { 1740 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1741 return ERR_PTR(-ENOMEM); 1742 } 1743 1744 if (!pdd->drm_priv) 1745 return ERR_PTR(-ENODEV); 1746 1747 /* 1748 * signal runtime-pm system to auto resume and prevent 1749 * further runtime suspend once device pdd is created until 1750 * pdd is destroyed. 1751 */ 1752 if (!pdd->runtime_inuse) { 1753 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1754 if (err < 0) { 1755 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1756 return ERR_PTR(err); 1757 } 1758 } 1759 1760 /* 1761 * make sure that runtime_usage counter is incremented just once 1762 * per pdd 1763 */ 1764 pdd->runtime_inuse = true; 1765 1766 return pdd; 1767 } 1768 1769 /* Create specific handle mapped to mem from process local memory idr 1770 * Assumes that the process lock is held. 1771 */ 1772 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1773 void *mem) 1774 { 1775 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1776 } 1777 1778 /* Translate specific handle from process local memory idr 1779 * Assumes that the process lock is held. 1780 */ 1781 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1782 int handle) 1783 { 1784 if (handle < 0) 1785 return NULL; 1786 1787 return idr_find(&pdd->alloc_idr, handle); 1788 } 1789 1790 /* Remove specific handle from process local memory idr 1791 * Assumes that the process lock is held. 1792 */ 1793 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1794 int handle) 1795 { 1796 if (handle >= 0) 1797 idr_remove(&pdd->alloc_idr, handle); 1798 } 1799 1800 /* This increments the process->ref counter. */ 1801 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1802 { 1803 struct kfd_process *p, *ret_p = NULL; 1804 unsigned int temp; 1805 1806 int idx = srcu_read_lock(&kfd_processes_srcu); 1807 1808 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1809 if (p->pasid == pasid) { 1810 kref_get(&p->ref); 1811 ret_p = p; 1812 break; 1813 } 1814 } 1815 1816 srcu_read_unlock(&kfd_processes_srcu, idx); 1817 1818 return ret_p; 1819 } 1820 1821 /* This increments the process->ref counter. */ 1822 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1823 { 1824 struct kfd_process *p; 1825 1826 int idx = srcu_read_lock(&kfd_processes_srcu); 1827 1828 p = find_process_by_mm(mm); 1829 if (p) 1830 kref_get(&p->ref); 1831 1832 srcu_read_unlock(&kfd_processes_srcu, idx); 1833 1834 return p; 1835 } 1836 1837 /* kfd_process_evict_queues - Evict all user queues of a process 1838 * 1839 * Eviction is reference-counted per process-device. This means multiple 1840 * evictions from different sources can be nested safely. 1841 */ 1842 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1843 { 1844 int r = 0; 1845 int i; 1846 unsigned int n_evicted = 0; 1847 1848 for (i = 0; i < p->n_pdds; i++) { 1849 struct kfd_process_device *pdd = p->pdds[i]; 1850 struct device *dev = pdd->dev->adev->dev; 1851 1852 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1853 trigger); 1854 1855 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1856 &pdd->qpd); 1857 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1858 * we would like to set all the queues to be in evicted state to prevent 1859 * them been add back since they actually not be saved right now. 1860 */ 1861 if (r && r != -EIO) { 1862 dev_err(dev, "Failed to evict process queues\n"); 1863 goto fail; 1864 } 1865 n_evicted++; 1866 1867 pdd->dev->dqm->is_hws_hang = false; 1868 } 1869 1870 return r; 1871 1872 fail: 1873 /* To keep state consistent, roll back partial eviction by 1874 * restoring queues 1875 */ 1876 for (i = 0; i < p->n_pdds; i++) { 1877 struct kfd_process_device *pdd = p->pdds[i]; 1878 1879 if (n_evicted == 0) 1880 break; 1881 1882 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1883 1884 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1885 &pdd->qpd)) 1886 dev_err(pdd->dev->adev->dev, 1887 "Failed to restore queues\n"); 1888 1889 n_evicted--; 1890 } 1891 1892 return r; 1893 } 1894 1895 /* kfd_process_restore_queues - Restore all user queues of a process */ 1896 int kfd_process_restore_queues(struct kfd_process *p) 1897 { 1898 int r, ret = 0; 1899 int i; 1900 1901 for (i = 0; i < p->n_pdds; i++) { 1902 struct kfd_process_device *pdd = p->pdds[i]; 1903 struct device *dev = pdd->dev->adev->dev; 1904 1905 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1906 1907 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1908 &pdd->qpd); 1909 if (r) { 1910 dev_err(dev, "Failed to restore process queues\n"); 1911 if (!ret) 1912 ret = r; 1913 } 1914 } 1915 1916 return ret; 1917 } 1918 1919 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1920 { 1921 int i; 1922 1923 for (i = 0; i < p->n_pdds; i++) 1924 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1925 return i; 1926 return -EINVAL; 1927 } 1928 1929 int 1930 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1931 uint32_t *gpuid, uint32_t *gpuidx) 1932 { 1933 int i; 1934 1935 for (i = 0; i < p->n_pdds; i++) 1936 if (p->pdds[i] && p->pdds[i]->dev == node) { 1937 *gpuid = p->pdds[i]->user_gpu_id; 1938 *gpuidx = i; 1939 return 0; 1940 } 1941 return -EINVAL; 1942 } 1943 1944 static int signal_eviction_fence(struct kfd_process *p) 1945 { 1946 struct dma_fence *ef; 1947 int ret; 1948 1949 rcu_read_lock(); 1950 ef = dma_fence_get_rcu_safe(&p->ef); 1951 rcu_read_unlock(); 1952 if (!ef) 1953 return -EINVAL; 1954 1955 ret = dma_fence_signal(ef); 1956 dma_fence_put(ef); 1957 1958 return ret; 1959 } 1960 1961 static void evict_process_worker(struct work_struct *work) 1962 { 1963 int ret; 1964 struct kfd_process *p; 1965 struct delayed_work *dwork; 1966 1967 dwork = to_delayed_work(work); 1968 1969 /* Process termination destroys this worker thread. So during the 1970 * lifetime of this thread, kfd_process p will be valid 1971 */ 1972 p = container_of(dwork, struct kfd_process, eviction_work); 1973 1974 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1975 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1976 if (!ret) { 1977 /* If another thread already signaled the eviction fence, 1978 * they are responsible stopping the queues and scheduling 1979 * the restore work. 1980 */ 1981 if (signal_eviction_fence(p) || 1982 mod_delayed_work(kfd_restore_wq, &p->restore_work, 1983 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 1984 kfd_process_restore_queues(p); 1985 1986 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1987 } else 1988 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1989 } 1990 1991 static int restore_process_helper(struct kfd_process *p) 1992 { 1993 int ret = 0; 1994 1995 /* VMs may not have been acquired yet during debugging. */ 1996 if (p->kgd_process_info) { 1997 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 1998 p->kgd_process_info, &p->ef); 1999 if (ret) 2000 return ret; 2001 } 2002 2003 ret = kfd_process_restore_queues(p); 2004 if (!ret) 2005 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 2006 else 2007 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 2008 2009 return ret; 2010 } 2011 2012 static void restore_process_worker(struct work_struct *work) 2013 { 2014 struct delayed_work *dwork; 2015 struct kfd_process *p; 2016 int ret = 0; 2017 2018 dwork = to_delayed_work(work); 2019 2020 /* Process termination destroys this worker thread. So during the 2021 * lifetime of this thread, kfd_process p will be valid 2022 */ 2023 p = container_of(dwork, struct kfd_process, restore_work); 2024 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 2025 2026 /* Setting last_restore_timestamp before successful restoration. 2027 * Otherwise this would have to be set by KGD (restore_process_bos) 2028 * before KFD BOs are unreserved. If not, the process can be evicted 2029 * again before the timestamp is set. 2030 * If restore fails, the timestamp will be set again in the next 2031 * attempt. This would mean that the minimum GPU quanta would be 2032 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2033 * functions) 2034 */ 2035 2036 p->last_restore_timestamp = get_jiffies_64(); 2037 2038 ret = restore_process_helper(p); 2039 if (ret) { 2040 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 2041 p->pasid, PROCESS_BACK_OFF_TIME_MS); 2042 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2043 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2044 kfd_process_restore_queues(p); 2045 } 2046 } 2047 2048 void kfd_suspend_all_processes(void) 2049 { 2050 struct kfd_process *p; 2051 unsigned int temp; 2052 int idx = srcu_read_lock(&kfd_processes_srcu); 2053 2054 WARN(debug_evictions, "Evicting all processes"); 2055 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2056 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2057 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2058 signal_eviction_fence(p); 2059 } 2060 srcu_read_unlock(&kfd_processes_srcu, idx); 2061 } 2062 2063 int kfd_resume_all_processes(void) 2064 { 2065 struct kfd_process *p; 2066 unsigned int temp; 2067 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2068 2069 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2070 if (restore_process_helper(p)) { 2071 pr_err("Restore process %d failed during resume\n", 2072 p->pasid); 2073 ret = -EFAULT; 2074 } 2075 } 2076 srcu_read_unlock(&kfd_processes_srcu, idx); 2077 return ret; 2078 } 2079 2080 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2081 struct vm_area_struct *vma) 2082 { 2083 struct kfd_process_device *pdd; 2084 struct qcm_process_device *qpd; 2085 2086 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2087 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2088 return -EINVAL; 2089 } 2090 2091 pdd = kfd_get_process_device_data(dev, process); 2092 if (!pdd) 2093 return -EINVAL; 2094 qpd = &pdd->qpd; 2095 2096 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2097 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2098 if (!qpd->cwsr_kaddr) { 2099 dev_err(dev->adev->dev, 2100 "Error allocating per process CWSR buffer.\n"); 2101 return -ENOMEM; 2102 } 2103 2104 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2105 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2106 /* Mapping pages to user process */ 2107 return remap_pfn_range(vma, vma->vm_start, 2108 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2109 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2110 } 2111 2112 /* assumes caller holds process lock. */ 2113 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2114 { 2115 uint32_t irq_drain_fence[8]; 2116 uint8_t node_id = 0; 2117 int r = 0; 2118 2119 if (!KFD_IS_SOC15(pdd->dev)) 2120 return 0; 2121 2122 pdd->process->irq_drain_is_open = true; 2123 2124 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2125 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2126 KFD_IRQ_FENCE_CLIENTID; 2127 irq_drain_fence[3] = pdd->process->pasid; 2128 2129 /* 2130 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] 2131 */ 2132 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2133 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) { 2134 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2135 irq_drain_fence[3] |= node_id << 16; 2136 } 2137 2138 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2139 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2140 irq_drain_fence)) { 2141 pdd->process->irq_drain_is_open = false; 2142 return 0; 2143 } 2144 2145 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2146 !READ_ONCE(pdd->process->irq_drain_is_open)); 2147 if (r) 2148 pdd->process->irq_drain_is_open = false; 2149 2150 return r; 2151 } 2152 2153 void kfd_process_close_interrupt_drain(unsigned int pasid) 2154 { 2155 struct kfd_process *p; 2156 2157 p = kfd_lookup_process_by_pasid(pasid); 2158 2159 if (!p) 2160 return; 2161 2162 WRITE_ONCE(p->irq_drain_is_open, false); 2163 wake_up_all(&p->wait_irq_drain); 2164 kfd_unref_process(p); 2165 } 2166 2167 struct send_exception_work_handler_workarea { 2168 struct work_struct work; 2169 struct kfd_process *p; 2170 unsigned int queue_id; 2171 uint64_t error_reason; 2172 }; 2173 2174 static void send_exception_work_handler(struct work_struct *work) 2175 { 2176 struct send_exception_work_handler_workarea *workarea; 2177 struct kfd_process *p; 2178 struct queue *q; 2179 struct mm_struct *mm; 2180 struct kfd_context_save_area_header __user *csa_header; 2181 uint64_t __user *err_payload_ptr; 2182 uint64_t cur_err; 2183 uint32_t ev_id; 2184 2185 workarea = container_of(work, 2186 struct send_exception_work_handler_workarea, 2187 work); 2188 p = workarea->p; 2189 2190 mm = get_task_mm(p->lead_thread); 2191 2192 if (!mm) 2193 return; 2194 2195 kthread_use_mm(mm); 2196 2197 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2198 2199 if (!q) 2200 goto out; 2201 2202 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2203 2204 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2205 get_user(cur_err, err_payload_ptr); 2206 cur_err |= workarea->error_reason; 2207 put_user(cur_err, err_payload_ptr); 2208 get_user(ev_id, &csa_header->err_event_id); 2209 2210 kfd_set_event(p, ev_id); 2211 2212 out: 2213 kthread_unuse_mm(mm); 2214 mmput(mm); 2215 } 2216 2217 int kfd_send_exception_to_runtime(struct kfd_process *p, 2218 unsigned int queue_id, 2219 uint64_t error_reason) 2220 { 2221 struct send_exception_work_handler_workarea worker; 2222 2223 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2224 2225 worker.p = p; 2226 worker.queue_id = queue_id; 2227 worker.error_reason = error_reason; 2228 2229 schedule_work(&worker.work); 2230 flush_work(&worker.work); 2231 destroy_work_on_stack(&worker.work); 2232 2233 return 0; 2234 } 2235 2236 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2237 { 2238 int i; 2239 2240 if (gpu_id) { 2241 for (i = 0; i < p->n_pdds; i++) { 2242 struct kfd_process_device *pdd = p->pdds[i]; 2243 2244 if (pdd->user_gpu_id == gpu_id) 2245 return pdd; 2246 } 2247 } 2248 return NULL; 2249 } 2250 2251 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2252 { 2253 int i; 2254 2255 if (!actual_gpu_id) 2256 return 0; 2257 2258 for (i = 0; i < p->n_pdds; i++) { 2259 struct kfd_process_device *pdd = p->pdds[i]; 2260 2261 if (pdd->dev->id == actual_gpu_id) 2262 return pdd->user_gpu_id; 2263 } 2264 return -EINVAL; 2265 } 2266 2267 #if defined(CONFIG_DEBUG_FS) 2268 2269 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2270 { 2271 struct kfd_process *p; 2272 unsigned int temp; 2273 int r = 0; 2274 2275 int idx = srcu_read_lock(&kfd_processes_srcu); 2276 2277 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2278 seq_printf(m, "Process %d PASID 0x%x:\n", 2279 p->lead_thread->tgid, p->pasid); 2280 2281 mutex_lock(&p->mutex); 2282 r = pqm_debugfs_mqds(m, &p->pqm); 2283 mutex_unlock(&p->mutex); 2284 2285 if (r) 2286 break; 2287 } 2288 2289 srcu_read_unlock(&kfd_processes_srcu, idx); 2290 2291 return r; 2292 } 2293 2294 #endif 2295