xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu, 0);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static const struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 				       struct attribute *attr, char *buf)
422 {
423 	struct kfd_process_device *pdd;
424 
425 	if (!strcmp(attr->name, "faults")) {
426 		pdd = container_of(attr, struct kfd_process_device,
427 				   attr_faults);
428 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 	}
430 	if (!strcmp(attr->name, "page_in")) {
431 		pdd = container_of(attr, struct kfd_process_device,
432 				   attr_page_in);
433 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 	}
435 	if (!strcmp(attr->name, "page_out")) {
436 		pdd = container_of(attr, struct kfd_process_device,
437 				   attr_page_out);
438 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 	}
440 	return 0;
441 }
442 
443 static struct attribute attr_queue_size = {
444 	.name = "size",
445 	.mode = KFD_SYSFS_FILE_MODE
446 };
447 
448 static struct attribute attr_queue_type = {
449 	.name = "type",
450 	.mode = KFD_SYSFS_FILE_MODE
451 };
452 
453 static struct attribute attr_queue_gpuid = {
454 	.name = "gpuid",
455 	.mode = KFD_SYSFS_FILE_MODE
456 };
457 
458 static struct attribute *procfs_queue_attrs[] = {
459 	&attr_queue_size,
460 	&attr_queue_type,
461 	&attr_queue_gpuid,
462 	NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static const struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_groups = procfs_queue_groups,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static const struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static const struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 							 WQ_FREEZABLE);
669 
670 	if (!kfd_process_wq || !kfd_restore_wq) {
671 		kfd_process_destroy_wq();
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 void kfd_process_destroy_wq(void)
679 {
680 	if (kfd_process_wq) {
681 		destroy_workqueue(kfd_process_wq);
682 		kfd_process_wq = NULL;
683 	}
684 	if (kfd_restore_wq) {
685 		destroy_workqueue(kfd_restore_wq);
686 		kfd_restore_wq = NULL;
687 	}
688 }
689 
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 			struct kfd_process_device *pdd, void **kptr)
692 {
693 	struct kfd_node *dev = pdd->dev;
694 
695 	if (kptr && *kptr) {
696 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 		*kptr = NULL;
698 	}
699 
700 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 					       NULL);
703 }
704 
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *	This function should be only called right after the process
707  *	is created and when kfd_processes_mutex is still being held
708  *	to avoid concurrency. Because of that exclusiveness, we do
709  *	not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 				   uint64_t gpu_va, uint32_t size,
713 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 	struct kfd_node *kdev = pdd->dev;
716 	int err;
717 
718 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 						 pdd->drm_priv, mem, NULL,
720 						 flags, false);
721 	if (err)
722 		goto err_alloc_mem;
723 
724 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 			pdd->drm_priv);
726 	if (err)
727 		goto err_map_mem;
728 
729 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 	if (err) {
731 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 		goto sync_memory_failed;
733 	}
734 
735 	if (kptr) {
736 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 				(struct kgd_mem *)*mem, kptr, NULL);
738 		if (err) {
739 			pr_debug("Map GTT BO to kernel failed\n");
740 			goto sync_memory_failed;
741 		}
742 	}
743 
744 	return err;
745 
746 sync_memory_failed:
747 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748 
749 err_map_mem:
750 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 					       NULL);
752 err_alloc_mem:
753 	*mem = NULL;
754 	*kptr = NULL;
755 	return err;
756 }
757 
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *	process for IB usage The memory reserved is for KFD to submit
760  *	IB to AMDGPU from kernel.  If the memory is reserved
761  *	successfully, ib_kaddr will have the CPU/kernel
762  *	address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 	struct qcm_process_device *qpd = &pdd->qpd;
767 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 	struct kgd_mem *mem;
772 	void *kaddr;
773 	int ret;
774 
775 	if (qpd->ib_kaddr || !qpd->ib_base)
776 		return 0;
777 
778 	/* ib_base is only set for dGPU */
779 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 				      &mem, &kaddr);
781 	if (ret)
782 		return ret;
783 
784 	qpd->ib_mem = mem;
785 	qpd->ib_kaddr = kaddr;
786 
787 	return 0;
788 }
789 
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 
794 	if (!qpd->ib_kaddr || !qpd->ib_base)
795 		return;
796 
797 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798 }
799 
800 struct kfd_process *kfd_create_process(struct task_struct *thread)
801 {
802 	struct kfd_process *process;
803 	int ret;
804 
805 	if (!(thread->mm && mmget_not_zero(thread->mm)))
806 		return ERR_PTR(-EINVAL);
807 
808 	/* Only the pthreads threading model is supported. */
809 	if (thread->group_leader->mm != thread->mm) {
810 		mmput(thread->mm);
811 		return ERR_PTR(-EINVAL);
812 	}
813 
814 	/*
815 	 * take kfd processes mutex before starting of process creation
816 	 * so there won't be a case where two threads of the same process
817 	 * create two kfd_process structures
818 	 */
819 	mutex_lock(&kfd_processes_mutex);
820 
821 	if (kfd_is_locked()) {
822 		pr_debug("KFD is locked! Cannot create process");
823 		process = ERR_PTR(-EINVAL);
824 		goto out;
825 	}
826 
827 	/* A prior open of /dev/kfd could have already created the process. */
828 	process = find_process(thread, false);
829 	if (process) {
830 		pr_debug("Process already found\n");
831 	} else {
832 		/* If the process just called exec(3), it is possible that the
833 		 * cleanup of the kfd_process (following the release of the mm
834 		 * of the old process image) is still in the cleanup work queue.
835 		 * Make sure to drain any job before trying to recreate any
836 		 * resource for this process.
837 		 */
838 		flush_workqueue(kfd_process_wq);
839 
840 		process = create_process(thread);
841 		if (IS_ERR(process))
842 			goto out;
843 
844 		if (!procfs.kobj)
845 			goto out;
846 
847 		process->kobj = kfd_alloc_struct(process->kobj);
848 		if (!process->kobj) {
849 			pr_warn("Creating procfs kobject failed");
850 			goto out;
851 		}
852 		ret = kobject_init_and_add(process->kobj, &procfs_type,
853 					   procfs.kobj, "%d",
854 					   (int)process->lead_thread->pid);
855 		if (ret) {
856 			pr_warn("Creating procfs pid directory failed");
857 			kobject_put(process->kobj);
858 			goto out;
859 		}
860 
861 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
862 				      "pasid");
863 
864 		process->kobj_queues = kobject_create_and_add("queues",
865 							process->kobj);
866 		if (!process->kobj_queues)
867 			pr_warn("Creating KFD proc/queues folder failed");
868 
869 		kfd_procfs_add_sysfs_stats(process);
870 		kfd_procfs_add_sysfs_files(process);
871 		kfd_procfs_add_sysfs_counters(process);
872 
873 		init_waitqueue_head(&process->wait_irq_drain);
874 	}
875 out:
876 	if (!IS_ERR(process))
877 		kref_get(&process->ref);
878 	mutex_unlock(&kfd_processes_mutex);
879 	mmput(thread->mm);
880 
881 	return process;
882 }
883 
884 struct kfd_process *kfd_get_process(const struct task_struct *thread)
885 {
886 	struct kfd_process *process;
887 
888 	if (!thread->mm)
889 		return ERR_PTR(-EINVAL);
890 
891 	/* Only the pthreads threading model is supported. */
892 	if (thread->group_leader->mm != thread->mm)
893 		return ERR_PTR(-EINVAL);
894 
895 	process = find_process(thread, false);
896 	if (!process)
897 		return ERR_PTR(-EINVAL);
898 
899 	return process;
900 }
901 
902 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
903 {
904 	struct kfd_process *process;
905 
906 	hash_for_each_possible_rcu(kfd_processes_table, process,
907 					kfd_processes, (uintptr_t)mm)
908 		if (process->mm == mm)
909 			return process;
910 
911 	return NULL;
912 }
913 
914 static struct kfd_process *find_process(const struct task_struct *thread,
915 					bool ref)
916 {
917 	struct kfd_process *p;
918 	int idx;
919 
920 	idx = srcu_read_lock(&kfd_processes_srcu);
921 	p = find_process_by_mm(thread->mm);
922 	if (p && ref)
923 		kref_get(&p->ref);
924 	srcu_read_unlock(&kfd_processes_srcu, idx);
925 
926 	return p;
927 }
928 
929 void kfd_unref_process(struct kfd_process *p)
930 {
931 	kref_put(&p->ref, kfd_process_ref_release);
932 }
933 
934 /* This increments the process->ref counter. */
935 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
936 {
937 	struct task_struct *task = NULL;
938 	struct kfd_process *p    = NULL;
939 
940 	if (!pid) {
941 		task = current;
942 		get_task_struct(task);
943 	} else {
944 		task = get_pid_task(pid, PIDTYPE_PID);
945 	}
946 
947 	if (task) {
948 		p = find_process(task, true);
949 		put_task_struct(task);
950 	}
951 
952 	return p;
953 }
954 
955 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
956 {
957 	struct kfd_process *p = pdd->process;
958 	void *mem;
959 	int id;
960 	int i;
961 
962 	/*
963 	 * Remove all handles from idr and release appropriate
964 	 * local memory object
965 	 */
966 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
967 
968 		for (i = 0; i < p->n_pdds; i++) {
969 			struct kfd_process_device *peer_pdd = p->pdds[i];
970 
971 			if (!peer_pdd->drm_priv)
972 				continue;
973 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
974 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
975 		}
976 
977 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
978 						       pdd->drm_priv, NULL);
979 		kfd_process_device_remove_obj_handle(pdd, id);
980 	}
981 }
982 
983 /*
984  * Just kunmap and unpin signal BO here. It will be freed in
985  * kfd_process_free_outstanding_kfd_bos()
986  */
987 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
988 {
989 	struct kfd_process_device *pdd;
990 	struct kfd_node *kdev;
991 	void *mem;
992 
993 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
994 	if (!kdev)
995 		return;
996 
997 	mutex_lock(&p->mutex);
998 
999 	pdd = kfd_get_process_device_data(kdev, p);
1000 	if (!pdd)
1001 		goto out;
1002 
1003 	mem = kfd_process_device_translate_handle(
1004 		pdd, GET_IDR_HANDLE(p->signal_handle));
1005 	if (!mem)
1006 		goto out;
1007 
1008 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009 
1010 out:
1011 	mutex_unlock(&p->mutex);
1012 }
1013 
1014 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < p->n_pdds; i++)
1019 		kfd_process_device_free_bos(p->pdds[i]);
1020 }
1021 
1022 static void kfd_process_destroy_pdds(struct kfd_process *p)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < p->n_pdds; i++) {
1027 		struct kfd_process_device *pdd = p->pdds[i];
1028 
1029 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030 				pdd->dev->id, p->pasid);
1031 
1032 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1033 		kfd_process_device_destroy_ib_mem(pdd);
1034 
1035 		if (pdd->drm_file) {
1036 			amdgpu_amdkfd_gpuvm_release_process_vm(
1037 					pdd->dev->adev, pdd->drm_priv);
1038 			fput(pdd->drm_file);
1039 		}
1040 
1041 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1044 
1045 		idr_destroy(&pdd->alloc_idr);
1046 
1047 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048 
1049 		if (pdd->dev->kfd->shared_resources.enable_mes)
1050 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051 						   pdd->proc_ctx_bo);
1052 		/*
1053 		 * before destroying pdd, make sure to report availability
1054 		 * for auto suspend
1055 		 */
1056 		if (pdd->runtime_inuse) {
1057 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059 			pdd->runtime_inuse = false;
1060 		}
1061 
1062 		kfree(pdd);
1063 		p->pdds[i] = NULL;
1064 	}
1065 	p->n_pdds = 0;
1066 }
1067 
1068 static void kfd_process_remove_sysfs(struct kfd_process *p)
1069 {
1070 	struct kfd_process_device *pdd;
1071 	int i;
1072 
1073 	if (!p->kobj)
1074 		return;
1075 
1076 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1077 	kobject_del(p->kobj_queues);
1078 	kobject_put(p->kobj_queues);
1079 	p->kobj_queues = NULL;
1080 
1081 	for (i = 0; i < p->n_pdds; i++) {
1082 		pdd = p->pdds[i];
1083 
1084 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086 
1087 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089 			sysfs_remove_file(pdd->kobj_stats,
1090 					  &pdd->attr_cu_occupancy);
1091 		kobject_del(pdd->kobj_stats);
1092 		kobject_put(pdd->kobj_stats);
1093 		pdd->kobj_stats = NULL;
1094 	}
1095 
1096 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097 		pdd = p->pdds[i];
1098 
1099 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102 		kobject_del(pdd->kobj_counters);
1103 		kobject_put(pdd->kobj_counters);
1104 		pdd->kobj_counters = NULL;
1105 	}
1106 
1107 	kobject_del(p->kobj);
1108 	kobject_put(p->kobj);
1109 	p->kobj = NULL;
1110 }
1111 
1112 /* No process locking is needed in this function, because the process
1113  * is not findable any more. We must assume that no other thread is
1114  * using it any more, otherwise we couldn't safely free the process
1115  * structure in the end.
1116  */
1117 static void kfd_process_wq_release(struct work_struct *work)
1118 {
1119 	struct kfd_process *p = container_of(work, struct kfd_process,
1120 					     release_work);
1121 	struct dma_fence *ef;
1122 
1123 	kfd_process_dequeue_from_all_devices(p);
1124 	pqm_uninit(&p->pqm);
1125 
1126 	/* Signal the eviction fence after user mode queues are
1127 	 * destroyed. This allows any BOs to be freed without
1128 	 * triggering pointless evictions or waiting for fences.
1129 	 */
1130 	synchronize_rcu();
1131 	ef = rcu_access_pointer(p->ef);
1132 	dma_fence_signal(ef);
1133 
1134 	kfd_process_remove_sysfs(p);
1135 
1136 	kfd_process_kunmap_signal_bo(p);
1137 	kfd_process_free_outstanding_kfd_bos(p);
1138 	svm_range_list_fini(p);
1139 
1140 	kfd_process_destroy_pdds(p);
1141 	dma_fence_put(ef);
1142 
1143 	kfd_event_free_process(p);
1144 
1145 	kfd_pasid_free(p->pasid);
1146 	mutex_destroy(&p->mutex);
1147 
1148 	put_task_struct(p->lead_thread);
1149 
1150 	kfree(p);
1151 }
1152 
1153 static void kfd_process_ref_release(struct kref *ref)
1154 {
1155 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156 
1157 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1158 	queue_work(kfd_process_wq, &p->release_work);
1159 }
1160 
1161 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162 {
1163 	int idx = srcu_read_lock(&kfd_processes_srcu);
1164 	struct kfd_process *p = find_process_by_mm(mm);
1165 
1166 	srcu_read_unlock(&kfd_processes_srcu, idx);
1167 
1168 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169 }
1170 
1171 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172 {
1173 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174 }
1175 
1176 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177 {
1178 	int i;
1179 
1180 	cancel_delayed_work_sync(&p->eviction_work);
1181 	cancel_delayed_work_sync(&p->restore_work);
1182 
1183 	for (i = 0; i < p->n_pdds; i++) {
1184 		struct kfd_process_device *pdd = p->pdds[i];
1185 
1186 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189 	}
1190 
1191 	/* Indicate to other users that MM is no longer valid */
1192 	p->mm = NULL;
1193 	kfd_dbg_trap_disable(p);
1194 
1195 	if (atomic_read(&p->debugged_process_count) > 0) {
1196 		struct kfd_process *target;
1197 		unsigned int temp;
1198 		int idx = srcu_read_lock(&kfd_processes_srcu);
1199 
1200 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201 			if (target->debugger_process && target->debugger_process == p) {
1202 				mutex_lock_nested(&target->mutex, 1);
1203 				kfd_dbg_trap_disable(target);
1204 				mutex_unlock(&target->mutex);
1205 				if (atomic_read(&p->debugged_process_count) == 0)
1206 					break;
1207 			}
1208 		}
1209 
1210 		srcu_read_unlock(&kfd_processes_srcu, idx);
1211 	}
1212 
1213 	mmu_notifier_put(&p->mmu_notifier);
1214 }
1215 
1216 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217 					struct mm_struct *mm)
1218 {
1219 	struct kfd_process *p;
1220 
1221 	/*
1222 	 * The kfd_process structure can not be free because the
1223 	 * mmu_notifier srcu is read locked
1224 	 */
1225 	p = container_of(mn, struct kfd_process, mmu_notifier);
1226 	if (WARN_ON(p->mm != mm))
1227 		return;
1228 
1229 	mutex_lock(&kfd_processes_mutex);
1230 	/*
1231 	 * Do early return if table is empty.
1232 	 *
1233 	 * This could potentially happen if this function is called concurrently
1234 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1235 	 *
1236 	 */
1237 	if (hash_empty(kfd_processes_table)) {
1238 		mutex_unlock(&kfd_processes_mutex);
1239 		return;
1240 	}
1241 	hash_del_rcu(&p->kfd_processes);
1242 	mutex_unlock(&kfd_processes_mutex);
1243 	synchronize_srcu(&kfd_processes_srcu);
1244 
1245 	kfd_process_notifier_release_internal(p);
1246 }
1247 
1248 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249 	.release = kfd_process_notifier_release,
1250 	.alloc_notifier = kfd_process_alloc_notifier,
1251 	.free_notifier = kfd_process_free_notifier,
1252 };
1253 
1254 /*
1255  * This code handles the case when driver is being unloaded before all
1256  * mm_struct are released.  We need to safely free the kfd_process and
1257  * avoid race conditions with mmu_notifier that might try to free them.
1258  *
1259  */
1260 void kfd_cleanup_processes(void)
1261 {
1262 	struct kfd_process *p;
1263 	struct hlist_node *p_temp;
1264 	unsigned int temp;
1265 	HLIST_HEAD(cleanup_list);
1266 
1267 	/*
1268 	 * Move all remaining kfd_process from the process table to a
1269 	 * temp list for processing.   Once done, callback from mmu_notifier
1270 	 * release will not see the kfd_process in the table and do early return,
1271 	 * avoiding double free issues.
1272 	 */
1273 	mutex_lock(&kfd_processes_mutex);
1274 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275 		hash_del_rcu(&p->kfd_processes);
1276 		synchronize_srcu(&kfd_processes_srcu);
1277 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1278 	}
1279 	mutex_unlock(&kfd_processes_mutex);
1280 
1281 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282 		kfd_process_notifier_release_internal(p);
1283 
1284 	/*
1285 	 * Ensures that all outstanding free_notifier get called, triggering
1286 	 * the release of the kfd_process struct.
1287 	 */
1288 	mmu_notifier_synchronize();
1289 }
1290 
1291 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1292 {
1293 	unsigned long  offset;
1294 	int i;
1295 
1296 	if (p->has_cwsr)
1297 		return 0;
1298 
1299 	for (i = 0; i < p->n_pdds; i++) {
1300 		struct kfd_node *dev = p->pdds[i]->dev;
1301 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302 
1303 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304 			continue;
1305 
1306 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309 			MAP_SHARED, offset);
1310 
1311 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1312 			int err = qpd->tba_addr;
1313 
1314 			dev_err(dev->adev->dev,
1315 				"Failure to set tba address. error %d.\n", err);
1316 			qpd->tba_addr = 0;
1317 			qpd->cwsr_kaddr = NULL;
1318 			return err;
1319 		}
1320 
1321 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1322 
1323 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1324 
1325 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1326 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1327 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1328 	}
1329 
1330 	p->has_cwsr = true;
1331 
1332 	return 0;
1333 }
1334 
1335 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1336 {
1337 	struct kfd_node *dev = pdd->dev;
1338 	struct qcm_process_device *qpd = &pdd->qpd;
1339 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1340 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1341 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1342 	struct kgd_mem *mem;
1343 	void *kaddr;
1344 	int ret;
1345 
1346 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1347 		return 0;
1348 
1349 	/* cwsr_base is only set for dGPU */
1350 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1351 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1352 	if (ret)
1353 		return ret;
1354 
1355 	qpd->cwsr_mem = mem;
1356 	qpd->cwsr_kaddr = kaddr;
1357 	qpd->tba_addr = qpd->cwsr_base;
1358 
1359 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1360 
1361 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1362 					pdd->process->debug_trap_enabled);
1363 
1364 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1365 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1366 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1367 
1368 	return 0;
1369 }
1370 
1371 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1372 {
1373 	struct kfd_node *dev = pdd->dev;
1374 	struct qcm_process_device *qpd = &pdd->qpd;
1375 
1376 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1377 		return;
1378 
1379 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1380 }
1381 
1382 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1383 				  uint64_t tba_addr,
1384 				  uint64_t tma_addr)
1385 {
1386 	if (qpd->cwsr_kaddr) {
1387 		/* KFD trap handler is bound, record as second-level TBA/TMA
1388 		 * in first-level TMA. First-level trap will jump to second.
1389 		 */
1390 		uint64_t *tma =
1391 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1392 		tma[0] = tba_addr;
1393 		tma[1] = tma_addr;
1394 	} else {
1395 		/* No trap handler bound, bind as first-level TBA/TMA. */
1396 		qpd->tba_addr = tba_addr;
1397 		qpd->tma_addr = tma_addr;
1398 	}
1399 }
1400 
1401 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1402 {
1403 	int i;
1404 
1405 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1406 	 * boot time retry setting. Mixing processes with different
1407 	 * XNACK/retry settings can hang the GPU.
1408 	 *
1409 	 * Different GPUs can have different noretry settings depending
1410 	 * on HW bugs or limitations. We need to find at least one
1411 	 * XNACK mode for this process that's compatible with all GPUs.
1412 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1413 	 * built for XNACK-off. On GFXv9 it may perform slower.
1414 	 *
1415 	 * Therefore applications built for XNACK-off can always be
1416 	 * supported and will be our fallback if any GPU does not
1417 	 * support retry.
1418 	 */
1419 	for (i = 0; i < p->n_pdds; i++) {
1420 		struct kfd_node *dev = p->pdds[i]->dev;
1421 
1422 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1423 		 * support the SVM APIs and don't need to be considered
1424 		 * for the XNACK mode selection.
1425 		 */
1426 		if (!KFD_IS_SOC15(dev))
1427 			continue;
1428 		/* Aldebaran can always support XNACK because it can support
1429 		 * per-process XNACK mode selection. But let the dev->noretry
1430 		 * setting still influence the default XNACK mode.
1431 		 */
1432 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1433 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1434 				pr_debug("SRIOV platform xnack not supported\n");
1435 				return false;
1436 			}
1437 			continue;
1438 		}
1439 
1440 		/* GFXv10 and later GPUs do not support shader preemption
1441 		 * during page faults. This can lead to poor QoS for queue
1442 		 * management and memory-manager-related preemptions or
1443 		 * even deadlocks.
1444 		 */
1445 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1446 			return false;
1447 
1448 		if (dev->kfd->noretry)
1449 			return false;
1450 	}
1451 
1452 	return true;
1453 }
1454 
1455 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1456 				     bool enabled)
1457 {
1458 	if (qpd->cwsr_kaddr) {
1459 		uint64_t *tma =
1460 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1461 		tma[2] = enabled;
1462 	}
1463 }
1464 
1465 /*
1466  * On return the kfd_process is fully operational and will be freed when the
1467  * mm is released
1468  */
1469 static struct kfd_process *create_process(const struct task_struct *thread)
1470 {
1471 	struct kfd_process *process;
1472 	struct mmu_notifier *mn;
1473 	int err = -ENOMEM;
1474 
1475 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1476 	if (!process)
1477 		goto err_alloc_process;
1478 
1479 	kref_init(&process->ref);
1480 	mutex_init(&process->mutex);
1481 	process->mm = thread->mm;
1482 	process->lead_thread = thread->group_leader;
1483 	process->n_pdds = 0;
1484 	process->queues_paused = false;
1485 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1486 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1487 	process->last_restore_timestamp = get_jiffies_64();
1488 	err = kfd_event_init_process(process);
1489 	if (err)
1490 		goto err_event_init;
1491 	process->is_32bit_user_mode = in_compat_syscall();
1492 	process->debug_trap_enabled = false;
1493 	process->debugger_process = NULL;
1494 	process->exception_enable_mask = 0;
1495 	atomic_set(&process->debugged_process_count, 0);
1496 	sema_init(&process->runtime_enable_sema, 0);
1497 
1498 	process->pasid = kfd_pasid_alloc();
1499 	if (process->pasid == 0) {
1500 		err = -ENOSPC;
1501 		goto err_alloc_pasid;
1502 	}
1503 
1504 	err = pqm_init(&process->pqm, process);
1505 	if (err != 0)
1506 		goto err_process_pqm_init;
1507 
1508 	/* init process apertures*/
1509 	err = kfd_init_apertures(process);
1510 	if (err != 0)
1511 		goto err_init_apertures;
1512 
1513 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1514 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1515 
1516 	err = svm_range_list_init(process);
1517 	if (err)
1518 		goto err_init_svm_range_list;
1519 
1520 	/* alloc_notifier needs to find the process in the hash table */
1521 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1522 			(uintptr_t)process->mm);
1523 
1524 	/* Avoid free_notifier to start kfd_process_wq_release if
1525 	 * mmu_notifier_get failed because of pending signal.
1526 	 */
1527 	kref_get(&process->ref);
1528 
1529 	/* MMU notifier registration must be the last call that can fail
1530 	 * because after this point we cannot unwind the process creation.
1531 	 * After this point, mmu_notifier_put will trigger the cleanup by
1532 	 * dropping the last process reference in the free_notifier.
1533 	 */
1534 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1535 	if (IS_ERR(mn)) {
1536 		err = PTR_ERR(mn);
1537 		goto err_register_notifier;
1538 	}
1539 	BUG_ON(mn != &process->mmu_notifier);
1540 
1541 	kfd_unref_process(process);
1542 	get_task_struct(process->lead_thread);
1543 
1544 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1545 
1546 	return process;
1547 
1548 err_register_notifier:
1549 	hash_del_rcu(&process->kfd_processes);
1550 	svm_range_list_fini(process);
1551 err_init_svm_range_list:
1552 	kfd_process_free_outstanding_kfd_bos(process);
1553 	kfd_process_destroy_pdds(process);
1554 err_init_apertures:
1555 	pqm_uninit(&process->pqm);
1556 err_process_pqm_init:
1557 	kfd_pasid_free(process->pasid);
1558 err_alloc_pasid:
1559 	kfd_event_free_process(process);
1560 err_event_init:
1561 	mutex_destroy(&process->mutex);
1562 	kfree(process);
1563 err_alloc_process:
1564 	return ERR_PTR(err);
1565 }
1566 
1567 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1568 							struct kfd_process *p)
1569 {
1570 	int i;
1571 
1572 	for (i = 0; i < p->n_pdds; i++)
1573 		if (p->pdds[i]->dev == dev)
1574 			return p->pdds[i];
1575 
1576 	return NULL;
1577 }
1578 
1579 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1580 							struct kfd_process *p)
1581 {
1582 	struct kfd_process_device *pdd = NULL;
1583 	int retval = 0;
1584 
1585 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1586 		return NULL;
1587 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1588 	if (!pdd)
1589 		return NULL;
1590 
1591 	pdd->dev = dev;
1592 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1593 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1594 	pdd->qpd.dqm = dev->dqm;
1595 	pdd->qpd.pqm = &p->pqm;
1596 	pdd->qpd.evicted = 0;
1597 	pdd->qpd.mapped_gws_queue = false;
1598 	pdd->process = p;
1599 	pdd->bound = PDD_UNBOUND;
1600 	pdd->already_dequeued = false;
1601 	pdd->runtime_inuse = false;
1602 	pdd->vram_usage = 0;
1603 	pdd->sdma_past_activity_counter = 0;
1604 	pdd->user_gpu_id = dev->id;
1605 	atomic64_set(&pdd->evict_duration_counter, 0);
1606 
1607 	if (dev->kfd->shared_resources.enable_mes) {
1608 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1609 						AMDGPU_MES_PROC_CTX_SIZE,
1610 						&pdd->proc_ctx_bo,
1611 						&pdd->proc_ctx_gpu_addr,
1612 						&pdd->proc_ctx_cpu_ptr,
1613 						false);
1614 		if (retval) {
1615 			dev_err(dev->adev->dev,
1616 				"failed to allocate process context bo\n");
1617 			goto err_free_pdd;
1618 		}
1619 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1620 	}
1621 
1622 	p->pdds[p->n_pdds++] = pdd;
1623 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1624 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1625 							pdd->dev->adev,
1626 							false,
1627 							0);
1628 
1629 	/* Init idr used for memory handle translation */
1630 	idr_init(&pdd->alloc_idr);
1631 
1632 	return pdd;
1633 
1634 err_free_pdd:
1635 	kfree(pdd);
1636 	return NULL;
1637 }
1638 
1639 /**
1640  * kfd_process_device_init_vm - Initialize a VM for a process-device
1641  *
1642  * @pdd: The process-device
1643  * @drm_file: Optional pointer to a DRM file descriptor
1644  *
1645  * If @drm_file is specified, it will be used to acquire the VM from
1646  * that file descriptor. If successful, the @pdd takes ownership of
1647  * the file descriptor.
1648  *
1649  * If @drm_file is NULL, a new VM is created.
1650  *
1651  * Returns 0 on success, -errno on failure.
1652  */
1653 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1654 			       struct file *drm_file)
1655 {
1656 	struct amdgpu_fpriv *drv_priv;
1657 	struct amdgpu_vm *avm;
1658 	struct kfd_process *p;
1659 	struct dma_fence *ef;
1660 	struct kfd_node *dev;
1661 	int ret;
1662 
1663 	if (!drm_file)
1664 		return -EINVAL;
1665 
1666 	if (pdd->drm_priv)
1667 		return -EBUSY;
1668 
1669 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1670 	if (ret)
1671 		return ret;
1672 	avm = &drv_priv->vm;
1673 
1674 	p = pdd->process;
1675 	dev = pdd->dev;
1676 
1677 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1678 						     &p->kgd_process_info,
1679 						     &ef);
1680 	if (ret) {
1681 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1682 		return ret;
1683 	}
1684 	RCU_INIT_POINTER(p->ef, ef);
1685 	pdd->drm_priv = drm_file->private_data;
1686 
1687 	ret = kfd_process_device_reserve_ib_mem(pdd);
1688 	if (ret)
1689 		goto err_reserve_ib_mem;
1690 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1691 	if (ret)
1692 		goto err_init_cwsr;
1693 
1694 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1695 	if (ret)
1696 		goto err_set_pasid;
1697 
1698 	pdd->drm_file = drm_file;
1699 
1700 	return 0;
1701 
1702 err_set_pasid:
1703 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1704 err_init_cwsr:
1705 	kfd_process_device_destroy_ib_mem(pdd);
1706 err_reserve_ib_mem:
1707 	pdd->drm_priv = NULL;
1708 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1709 
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1715  * to the device.
1716  * Unbinding occurs when the process dies or the device is removed.
1717  *
1718  * Assumes that the process lock is held.
1719  */
1720 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1721 							struct kfd_process *p)
1722 {
1723 	struct kfd_process_device *pdd;
1724 	int err;
1725 
1726 	pdd = kfd_get_process_device_data(dev, p);
1727 	if (!pdd) {
1728 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1729 		return ERR_PTR(-ENOMEM);
1730 	}
1731 
1732 	if (!pdd->drm_priv)
1733 		return ERR_PTR(-ENODEV);
1734 
1735 	/*
1736 	 * signal runtime-pm system to auto resume and prevent
1737 	 * further runtime suspend once device pdd is created until
1738 	 * pdd is destroyed.
1739 	 */
1740 	if (!pdd->runtime_inuse) {
1741 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1742 		if (err < 0) {
1743 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1744 			return ERR_PTR(err);
1745 		}
1746 	}
1747 
1748 	/*
1749 	 * make sure that runtime_usage counter is incremented just once
1750 	 * per pdd
1751 	 */
1752 	pdd->runtime_inuse = true;
1753 
1754 	return pdd;
1755 }
1756 
1757 /* Create specific handle mapped to mem from process local memory idr
1758  * Assumes that the process lock is held.
1759  */
1760 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1761 					void *mem)
1762 {
1763 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1764 }
1765 
1766 /* Translate specific handle from process local memory idr
1767  * Assumes that the process lock is held.
1768  */
1769 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1770 					int handle)
1771 {
1772 	if (handle < 0)
1773 		return NULL;
1774 
1775 	return idr_find(&pdd->alloc_idr, handle);
1776 }
1777 
1778 /* Remove specific handle from process local memory idr
1779  * Assumes that the process lock is held.
1780  */
1781 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1782 					int handle)
1783 {
1784 	if (handle >= 0)
1785 		idr_remove(&pdd->alloc_idr, handle);
1786 }
1787 
1788 /* This increments the process->ref counter. */
1789 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1790 {
1791 	struct kfd_process *p, *ret_p = NULL;
1792 	unsigned int temp;
1793 
1794 	int idx = srcu_read_lock(&kfd_processes_srcu);
1795 
1796 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1797 		if (p->pasid == pasid) {
1798 			kref_get(&p->ref);
1799 			ret_p = p;
1800 			break;
1801 		}
1802 	}
1803 
1804 	srcu_read_unlock(&kfd_processes_srcu, idx);
1805 
1806 	return ret_p;
1807 }
1808 
1809 /* This increments the process->ref counter. */
1810 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1811 {
1812 	struct kfd_process *p;
1813 
1814 	int idx = srcu_read_lock(&kfd_processes_srcu);
1815 
1816 	p = find_process_by_mm(mm);
1817 	if (p)
1818 		kref_get(&p->ref);
1819 
1820 	srcu_read_unlock(&kfd_processes_srcu, idx);
1821 
1822 	return p;
1823 }
1824 
1825 /* kfd_process_evict_queues - Evict all user queues of a process
1826  *
1827  * Eviction is reference-counted per process-device. This means multiple
1828  * evictions from different sources can be nested safely.
1829  */
1830 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1831 {
1832 	int r = 0;
1833 	int i;
1834 	unsigned int n_evicted = 0;
1835 
1836 	for (i = 0; i < p->n_pdds; i++) {
1837 		struct kfd_process_device *pdd = p->pdds[i];
1838 		struct device *dev = pdd->dev->adev->dev;
1839 
1840 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1841 					     trigger);
1842 
1843 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1844 							    &pdd->qpd);
1845 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1846 		 * we would like to set all the queues to be in evicted state to prevent
1847 		 * them been add back since they actually not be saved right now.
1848 		 */
1849 		if (r && r != -EIO) {
1850 			dev_err(dev, "Failed to evict process queues\n");
1851 			goto fail;
1852 		}
1853 		n_evicted++;
1854 	}
1855 
1856 	return r;
1857 
1858 fail:
1859 	/* To keep state consistent, roll back partial eviction by
1860 	 * restoring queues
1861 	 */
1862 	for (i = 0; i < p->n_pdds; i++) {
1863 		struct kfd_process_device *pdd = p->pdds[i];
1864 
1865 		if (n_evicted == 0)
1866 			break;
1867 
1868 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1869 
1870 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1871 							      &pdd->qpd))
1872 			dev_err(pdd->dev->adev->dev,
1873 				"Failed to restore queues\n");
1874 
1875 		n_evicted--;
1876 	}
1877 
1878 	return r;
1879 }
1880 
1881 /* kfd_process_restore_queues - Restore all user queues of a process */
1882 int kfd_process_restore_queues(struct kfd_process *p)
1883 {
1884 	int r, ret = 0;
1885 	int i;
1886 
1887 	for (i = 0; i < p->n_pdds; i++) {
1888 		struct kfd_process_device *pdd = p->pdds[i];
1889 		struct device *dev = pdd->dev->adev->dev;
1890 
1891 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1892 
1893 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1894 							      &pdd->qpd);
1895 		if (r) {
1896 			dev_err(dev, "Failed to restore process queues\n");
1897 			if (!ret)
1898 				ret = r;
1899 		}
1900 	}
1901 
1902 	return ret;
1903 }
1904 
1905 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1906 {
1907 	int i;
1908 
1909 	for (i = 0; i < p->n_pdds; i++)
1910 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1911 			return i;
1912 	return -EINVAL;
1913 }
1914 
1915 int
1916 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1917 			    uint32_t *gpuid, uint32_t *gpuidx)
1918 {
1919 	int i;
1920 
1921 	for (i = 0; i < p->n_pdds; i++)
1922 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1923 			*gpuid = p->pdds[i]->user_gpu_id;
1924 			*gpuidx = i;
1925 			return 0;
1926 		}
1927 	return -EINVAL;
1928 }
1929 
1930 static int signal_eviction_fence(struct kfd_process *p)
1931 {
1932 	struct dma_fence *ef;
1933 	int ret;
1934 
1935 	rcu_read_lock();
1936 	ef = dma_fence_get_rcu_safe(&p->ef);
1937 	rcu_read_unlock();
1938 	if (!ef)
1939 		return -EINVAL;
1940 
1941 	ret = dma_fence_signal(ef);
1942 	dma_fence_put(ef);
1943 
1944 	return ret;
1945 }
1946 
1947 static void evict_process_worker(struct work_struct *work)
1948 {
1949 	int ret;
1950 	struct kfd_process *p;
1951 	struct delayed_work *dwork;
1952 
1953 	dwork = to_delayed_work(work);
1954 
1955 	/* Process termination destroys this worker thread. So during the
1956 	 * lifetime of this thread, kfd_process p will be valid
1957 	 */
1958 	p = container_of(dwork, struct kfd_process, eviction_work);
1959 
1960 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1961 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1962 	if (!ret) {
1963 		/* If another thread already signaled the eviction fence,
1964 		 * they are responsible stopping the queues and scheduling
1965 		 * the restore work.
1966 		 */
1967 		if (signal_eviction_fence(p) ||
1968 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
1969 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1970 			kfd_process_restore_queues(p);
1971 
1972 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1973 	} else
1974 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1975 }
1976 
1977 static int restore_process_helper(struct kfd_process *p)
1978 {
1979 	int ret = 0;
1980 
1981 	/* VMs may not have been acquired yet during debugging. */
1982 	if (p->kgd_process_info) {
1983 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1984 			p->kgd_process_info, &p->ef);
1985 		if (ret)
1986 			return ret;
1987 	}
1988 
1989 	ret = kfd_process_restore_queues(p);
1990 	if (!ret)
1991 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1992 	else
1993 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1994 
1995 	return ret;
1996 }
1997 
1998 static void restore_process_worker(struct work_struct *work)
1999 {
2000 	struct delayed_work *dwork;
2001 	struct kfd_process *p;
2002 	int ret = 0;
2003 
2004 	dwork = to_delayed_work(work);
2005 
2006 	/* Process termination destroys this worker thread. So during the
2007 	 * lifetime of this thread, kfd_process p will be valid
2008 	 */
2009 	p = container_of(dwork, struct kfd_process, restore_work);
2010 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2011 
2012 	/* Setting last_restore_timestamp before successful restoration.
2013 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2014 	 * before KFD BOs are unreserved. If not, the process can be evicted
2015 	 * again before the timestamp is set.
2016 	 * If restore fails, the timestamp will be set again in the next
2017 	 * attempt. This would mean that the minimum GPU quanta would be
2018 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2019 	 * functions)
2020 	 */
2021 
2022 	p->last_restore_timestamp = get_jiffies_64();
2023 
2024 	ret = restore_process_helper(p);
2025 	if (ret) {
2026 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2027 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2028 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2029 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2030 			kfd_process_restore_queues(p);
2031 	}
2032 }
2033 
2034 void kfd_suspend_all_processes(void)
2035 {
2036 	struct kfd_process *p;
2037 	unsigned int temp;
2038 	int idx = srcu_read_lock(&kfd_processes_srcu);
2039 
2040 	WARN(debug_evictions, "Evicting all processes");
2041 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2043 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2044 		signal_eviction_fence(p);
2045 	}
2046 	srcu_read_unlock(&kfd_processes_srcu, idx);
2047 }
2048 
2049 int kfd_resume_all_processes(void)
2050 {
2051 	struct kfd_process *p;
2052 	unsigned int temp;
2053 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2054 
2055 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2056 		if (restore_process_helper(p)) {
2057 			pr_err("Restore process %d failed during resume\n",
2058 			       p->pasid);
2059 			ret = -EFAULT;
2060 		}
2061 	}
2062 	srcu_read_unlock(&kfd_processes_srcu, idx);
2063 	return ret;
2064 }
2065 
2066 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2067 			  struct vm_area_struct *vma)
2068 {
2069 	struct kfd_process_device *pdd;
2070 	struct qcm_process_device *qpd;
2071 
2072 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2073 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2074 		return -EINVAL;
2075 	}
2076 
2077 	pdd = kfd_get_process_device_data(dev, process);
2078 	if (!pdd)
2079 		return -EINVAL;
2080 	qpd = &pdd->qpd;
2081 
2082 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2083 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2084 	if (!qpd->cwsr_kaddr) {
2085 		dev_err(dev->adev->dev,
2086 			"Error allocating per process CWSR buffer.\n");
2087 		return -ENOMEM;
2088 	}
2089 
2090 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2091 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2092 	/* Mapping pages to user process */
2093 	return remap_pfn_range(vma, vma->vm_start,
2094 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2095 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2096 }
2097 
2098 /* assumes caller holds process lock. */
2099 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2100 {
2101 	uint32_t irq_drain_fence[8];
2102 	uint8_t node_id = 0;
2103 	int r = 0;
2104 
2105 	if (!KFD_IS_SOC15(pdd->dev))
2106 		return 0;
2107 
2108 	pdd->process->irq_drain_is_open = true;
2109 
2110 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2111 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2112 							KFD_IRQ_FENCE_CLIENTID;
2113 	irq_drain_fence[3] = pdd->process->pasid;
2114 
2115 	/*
2116 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2117 	 */
2118 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2119 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2120 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2121 		irq_drain_fence[3] |= node_id << 16;
2122 	}
2123 
2124 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2125 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2126 						     irq_drain_fence)) {
2127 		pdd->process->irq_drain_is_open = false;
2128 		return 0;
2129 	}
2130 
2131 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2132 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2133 	if (r)
2134 		pdd->process->irq_drain_is_open = false;
2135 
2136 	return r;
2137 }
2138 
2139 void kfd_process_close_interrupt_drain(unsigned int pasid)
2140 {
2141 	struct kfd_process *p;
2142 
2143 	p = kfd_lookup_process_by_pasid(pasid);
2144 
2145 	if (!p)
2146 		return;
2147 
2148 	WRITE_ONCE(p->irq_drain_is_open, false);
2149 	wake_up_all(&p->wait_irq_drain);
2150 	kfd_unref_process(p);
2151 }
2152 
2153 struct send_exception_work_handler_workarea {
2154 	struct work_struct work;
2155 	struct kfd_process *p;
2156 	unsigned int queue_id;
2157 	uint64_t error_reason;
2158 };
2159 
2160 static void send_exception_work_handler(struct work_struct *work)
2161 {
2162 	struct send_exception_work_handler_workarea *workarea;
2163 	struct kfd_process *p;
2164 	struct queue *q;
2165 	struct mm_struct *mm;
2166 	struct kfd_context_save_area_header __user *csa_header;
2167 	uint64_t __user *err_payload_ptr;
2168 	uint64_t cur_err;
2169 	uint32_t ev_id;
2170 
2171 	workarea = container_of(work,
2172 				struct send_exception_work_handler_workarea,
2173 				work);
2174 	p = workarea->p;
2175 
2176 	mm = get_task_mm(p->lead_thread);
2177 
2178 	if (!mm)
2179 		return;
2180 
2181 	kthread_use_mm(mm);
2182 
2183 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2184 
2185 	if (!q)
2186 		goto out;
2187 
2188 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2189 
2190 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2191 	get_user(cur_err, err_payload_ptr);
2192 	cur_err |= workarea->error_reason;
2193 	put_user(cur_err, err_payload_ptr);
2194 	get_user(ev_id, &csa_header->err_event_id);
2195 
2196 	kfd_set_event(p, ev_id);
2197 
2198 out:
2199 	kthread_unuse_mm(mm);
2200 	mmput(mm);
2201 }
2202 
2203 int kfd_send_exception_to_runtime(struct kfd_process *p,
2204 			unsigned int queue_id,
2205 			uint64_t error_reason)
2206 {
2207 	struct send_exception_work_handler_workarea worker;
2208 
2209 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2210 
2211 	worker.p = p;
2212 	worker.queue_id = queue_id;
2213 	worker.error_reason = error_reason;
2214 
2215 	schedule_work(&worker.work);
2216 	flush_work(&worker.work);
2217 	destroy_work_on_stack(&worker.work);
2218 
2219 	return 0;
2220 }
2221 
2222 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2223 {
2224 	int i;
2225 
2226 	if (gpu_id) {
2227 		for (i = 0; i < p->n_pdds; i++) {
2228 			struct kfd_process_device *pdd = p->pdds[i];
2229 
2230 			if (pdd->user_gpu_id == gpu_id)
2231 				return pdd;
2232 		}
2233 	}
2234 	return NULL;
2235 }
2236 
2237 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2238 {
2239 	int i;
2240 
2241 	if (!actual_gpu_id)
2242 		return 0;
2243 
2244 	for (i = 0; i < p->n_pdds; i++) {
2245 		struct kfd_process_device *pdd = p->pdds[i];
2246 
2247 		if (pdd->dev->id == actual_gpu_id)
2248 			return pdd->user_gpu_id;
2249 	}
2250 	return -EINVAL;
2251 }
2252 
2253 #if defined(CONFIG_DEBUG_FS)
2254 
2255 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2256 {
2257 	struct kfd_process *p;
2258 	unsigned int temp;
2259 	int r = 0;
2260 
2261 	int idx = srcu_read_lock(&kfd_processes_srcu);
2262 
2263 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2264 		seq_printf(m, "Process %d PASID 0x%x:\n",
2265 			   p->lead_thread->tgid, p->pasid);
2266 
2267 		mutex_lock(&p->mutex);
2268 		r = pqm_debugfs_mqds(m, &p->pqm);
2269 		mutex_unlock(&p->mutex);
2270 
2271 		if (r)
2272 			break;
2273 	}
2274 
2275 	srcu_read_unlock(&kfd_processes_srcu, idx);
2276 
2277 	return r;
2278 }
2279 
2280 #endif
2281