1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "kfd_smi_events.h" 45 #include "kfd_debug.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 286 dev->id, proc->pasid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) { 331 struct kfd_process *p = container_of(attr, struct kfd_process, 332 attr_pasid); 333 334 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 335 } else if (strncmp(attr->name, "vram_", 5) == 0) { 336 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 337 attr_vram); 338 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 339 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 340 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 341 attr_sdma); 342 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 343 344 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 345 kfd_sdma_activity_worker); 346 347 sdma_activity_work_handler.pdd = pdd; 348 sdma_activity_work_handler.sdma_activity_counter = 0; 349 350 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 351 352 flush_work(&sdma_activity_work_handler.sdma_activity_work); 353 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 354 355 return snprintf(buffer, PAGE_SIZE, "%llu\n", 356 (sdma_activity_work_handler.sdma_activity_counter)/ 357 SDMA_ACTIVITY_DIVISOR); 358 } else { 359 pr_err("Invalid attribute"); 360 return -EINVAL; 361 } 362 363 return 0; 364 } 365 366 static void kfd_procfs_kobj_release(struct kobject *kobj) 367 { 368 kfree(kobj); 369 } 370 371 static const struct sysfs_ops kfd_procfs_ops = { 372 .show = kfd_procfs_show, 373 }; 374 375 static const struct kobj_type procfs_type = { 376 .release = kfd_procfs_kobj_release, 377 .sysfs_ops = &kfd_procfs_ops, 378 }; 379 380 void kfd_procfs_init(void) 381 { 382 int ret = 0; 383 384 procfs.kobj = kfd_alloc_struct(procfs.kobj); 385 if (!procfs.kobj) 386 return; 387 388 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 389 &kfd_device->kobj, "proc"); 390 if (ret) { 391 pr_warn("Could not create procfs proc folder"); 392 /* If we fail to create the procfs, clean up */ 393 kfd_procfs_shutdown(); 394 } 395 } 396 397 void kfd_procfs_shutdown(void) 398 { 399 if (procfs.kobj) { 400 kobject_del(procfs.kobj); 401 kobject_put(procfs.kobj); 402 procfs.kobj = NULL; 403 } 404 } 405 406 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 407 struct attribute *attr, char *buffer) 408 { 409 struct queue *q = container_of(kobj, struct queue, kobj); 410 411 if (!strcmp(attr->name, "size")) 412 return snprintf(buffer, PAGE_SIZE, "%llu", 413 q->properties.queue_size); 414 else if (!strcmp(attr->name, "type")) 415 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 416 else if (!strcmp(attr->name, "gpuid")) 417 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 418 else 419 pr_err("Invalid attribute"); 420 421 return 0; 422 } 423 424 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 425 struct attribute *attr, char *buffer) 426 { 427 if (strcmp(attr->name, "evicted_ms") == 0) { 428 struct kfd_process_device *pdd = container_of(attr, 429 struct kfd_process_device, 430 attr_evict); 431 uint64_t evict_jiffies; 432 433 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 434 435 return snprintf(buffer, 436 PAGE_SIZE, 437 "%llu\n", 438 jiffies64_to_msecs(evict_jiffies)); 439 440 /* Sysfs handle that gets CU occupancy is per device */ 441 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 442 return kfd_get_cu_occupancy(attr, buffer); 443 } else { 444 pr_err("Invalid attribute"); 445 } 446 447 return 0; 448 } 449 450 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 451 struct attribute *attr, char *buf) 452 { 453 struct kfd_process_device *pdd; 454 455 if (!strcmp(attr->name, "faults")) { 456 pdd = container_of(attr, struct kfd_process_device, 457 attr_faults); 458 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 459 } 460 if (!strcmp(attr->name, "page_in")) { 461 pdd = container_of(attr, struct kfd_process_device, 462 attr_page_in); 463 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 464 } 465 if (!strcmp(attr->name, "page_out")) { 466 pdd = container_of(attr, struct kfd_process_device, 467 attr_page_out); 468 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 469 } 470 return 0; 471 } 472 473 static struct attribute attr_queue_size = { 474 .name = "size", 475 .mode = KFD_SYSFS_FILE_MODE 476 }; 477 478 static struct attribute attr_queue_type = { 479 .name = "type", 480 .mode = KFD_SYSFS_FILE_MODE 481 }; 482 483 static struct attribute attr_queue_gpuid = { 484 .name = "gpuid", 485 .mode = KFD_SYSFS_FILE_MODE 486 }; 487 488 static struct attribute *procfs_queue_attrs[] = { 489 &attr_queue_size, 490 &attr_queue_type, 491 &attr_queue_gpuid, 492 NULL 493 }; 494 ATTRIBUTE_GROUPS(procfs_queue); 495 496 static const struct sysfs_ops procfs_queue_ops = { 497 .show = kfd_procfs_queue_show, 498 }; 499 500 static const struct kobj_type procfs_queue_type = { 501 .sysfs_ops = &procfs_queue_ops, 502 .default_groups = procfs_queue_groups, 503 }; 504 505 static const struct sysfs_ops procfs_stats_ops = { 506 .show = kfd_procfs_stats_show, 507 }; 508 509 static const struct kobj_type procfs_stats_type = { 510 .sysfs_ops = &procfs_stats_ops, 511 .release = kfd_procfs_kobj_release, 512 }; 513 514 static const struct sysfs_ops sysfs_counters_ops = { 515 .show = kfd_sysfs_counters_show, 516 }; 517 518 static const struct kobj_type sysfs_counters_type = { 519 .sysfs_ops = &sysfs_counters_ops, 520 .release = kfd_procfs_kobj_release, 521 }; 522 523 int kfd_procfs_add_queue(struct queue *q) 524 { 525 struct kfd_process *proc; 526 int ret; 527 528 if (!q || !q->process) 529 return -EINVAL; 530 proc = q->process; 531 532 /* Create proc/<pid>/queues/<queue id> folder */ 533 if (!proc->kobj_queues) 534 return -EFAULT; 535 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 536 proc->kobj_queues, "%u", q->properties.queue_id); 537 if (ret < 0) { 538 pr_warn("Creating proc/<pid>/queues/%u failed", 539 q->properties.queue_id); 540 kobject_put(&q->kobj); 541 return ret; 542 } 543 544 return 0; 545 } 546 547 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 548 char *name) 549 { 550 int ret; 551 552 if (!kobj || !attr || !name) 553 return; 554 555 attr->name = name; 556 attr->mode = KFD_SYSFS_FILE_MODE; 557 sysfs_attr_init(attr); 558 559 ret = sysfs_create_file(kobj, attr); 560 if (ret) 561 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 562 } 563 564 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 565 { 566 int ret; 567 int i; 568 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 569 570 if (!p || !p->kobj) 571 return; 572 573 /* 574 * Create sysfs files for each GPU: 575 * - proc/<pid>/stats_<gpuid>/ 576 * - proc/<pid>/stats_<gpuid>/evicted_ms 577 * - proc/<pid>/stats_<gpuid>/cu_occupancy 578 */ 579 for (i = 0; i < p->n_pdds; i++) { 580 struct kfd_process_device *pdd = p->pdds[i]; 581 582 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 583 "stats_%u", pdd->dev->id); 584 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 585 if (!pdd->kobj_stats) 586 return; 587 588 ret = kobject_init_and_add(pdd->kobj_stats, 589 &procfs_stats_type, 590 p->kobj, 591 stats_dir_filename); 592 593 if (ret) { 594 pr_warn("Creating KFD proc/stats_%s folder failed", 595 stats_dir_filename); 596 kobject_put(pdd->kobj_stats); 597 pdd->kobj_stats = NULL; 598 return; 599 } 600 601 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 602 "evicted_ms"); 603 /* Add sysfs file to report compute unit occupancy */ 604 if (pdd->dev->kfd2kgd->get_cu_occupancy) 605 kfd_sysfs_create_file(pdd->kobj_stats, 606 &pdd->attr_cu_occupancy, 607 "cu_occupancy"); 608 } 609 } 610 611 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 612 { 613 int ret = 0; 614 int i; 615 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 616 617 if (!p || !p->kobj) 618 return; 619 620 /* 621 * Create sysfs files for each GPU which supports SVM 622 * - proc/<pid>/counters_<gpuid>/ 623 * - proc/<pid>/counters_<gpuid>/faults 624 * - proc/<pid>/counters_<gpuid>/page_in 625 * - proc/<pid>/counters_<gpuid>/page_out 626 */ 627 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 628 struct kfd_process_device *pdd = p->pdds[i]; 629 struct kobject *kobj_counters; 630 631 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 632 "counters_%u", pdd->dev->id); 633 kobj_counters = kfd_alloc_struct(kobj_counters); 634 if (!kobj_counters) 635 return; 636 637 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 638 p->kobj, counters_dir_filename); 639 if (ret) { 640 pr_warn("Creating KFD proc/%s folder failed", 641 counters_dir_filename); 642 kobject_put(kobj_counters); 643 return; 644 } 645 646 pdd->kobj_counters = kobj_counters; 647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 648 "faults"); 649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 650 "page_in"); 651 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 652 "page_out"); 653 } 654 } 655 656 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 657 { 658 int i; 659 660 if (!p || !p->kobj) 661 return; 662 663 /* 664 * Create sysfs files for each GPU: 665 * - proc/<pid>/vram_<gpuid> 666 * - proc/<pid>/sdma_<gpuid> 667 */ 668 for (i = 0; i < p->n_pdds; i++) { 669 struct kfd_process_device *pdd = p->pdds[i]; 670 671 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 672 pdd->dev->id); 673 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 674 pdd->vram_filename); 675 676 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 677 pdd->dev->id); 678 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 679 pdd->sdma_filename); 680 } 681 } 682 683 void kfd_procfs_del_queue(struct queue *q) 684 { 685 if (!q) 686 return; 687 688 kobject_del(&q->kobj); 689 kobject_put(&q->kobj); 690 } 691 692 int kfd_process_create_wq(void) 693 { 694 if (!kfd_process_wq) 695 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 696 if (!kfd_restore_wq) 697 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 698 WQ_FREEZABLE); 699 700 if (!kfd_process_wq || !kfd_restore_wq) { 701 kfd_process_destroy_wq(); 702 return -ENOMEM; 703 } 704 705 return 0; 706 } 707 708 void kfd_process_destroy_wq(void) 709 { 710 if (kfd_process_wq) { 711 destroy_workqueue(kfd_process_wq); 712 kfd_process_wq = NULL; 713 } 714 if (kfd_restore_wq) { 715 destroy_workqueue(kfd_restore_wq); 716 kfd_restore_wq = NULL; 717 } 718 } 719 720 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 721 struct kfd_process_device *pdd, void **kptr) 722 { 723 struct kfd_node *dev = pdd->dev; 724 725 if (kptr && *kptr) { 726 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 727 *kptr = NULL; 728 } 729 730 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 731 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 732 NULL); 733 } 734 735 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 736 * This function should be only called right after the process 737 * is created and when kfd_processes_mutex is still being held 738 * to avoid concurrency. Because of that exclusiveness, we do 739 * not need to take p->mutex. 740 */ 741 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 742 uint64_t gpu_va, uint32_t size, 743 uint32_t flags, struct kgd_mem **mem, void **kptr) 744 { 745 struct kfd_node *kdev = pdd->dev; 746 int err; 747 748 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 749 pdd->drm_priv, mem, NULL, 750 flags, false); 751 if (err) 752 goto err_alloc_mem; 753 754 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 755 pdd->drm_priv); 756 if (err) 757 goto err_map_mem; 758 759 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 760 if (err) { 761 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 762 goto sync_memory_failed; 763 } 764 765 if (kptr) { 766 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 767 (struct kgd_mem *)*mem, kptr, NULL); 768 if (err) { 769 pr_debug("Map GTT BO to kernel failed\n"); 770 goto sync_memory_failed; 771 } 772 } 773 774 return err; 775 776 sync_memory_failed: 777 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 778 779 err_map_mem: 780 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 781 NULL); 782 err_alloc_mem: 783 *mem = NULL; 784 *kptr = NULL; 785 return err; 786 } 787 788 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 789 * process for IB usage The memory reserved is for KFD to submit 790 * IB to AMDGPU from kernel. If the memory is reserved 791 * successfully, ib_kaddr will have the CPU/kernel 792 * address. Check ib_kaddr before accessing the memory. 793 */ 794 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 795 { 796 struct qcm_process_device *qpd = &pdd->qpd; 797 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 798 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 799 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 800 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 801 struct kgd_mem *mem; 802 void *kaddr; 803 int ret; 804 805 if (qpd->ib_kaddr || !qpd->ib_base) 806 return 0; 807 808 /* ib_base is only set for dGPU */ 809 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 810 &mem, &kaddr); 811 if (ret) 812 return ret; 813 814 qpd->ib_mem = mem; 815 qpd->ib_kaddr = kaddr; 816 817 return 0; 818 } 819 820 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 821 { 822 struct qcm_process_device *qpd = &pdd->qpd; 823 824 if (!qpd->ib_kaddr || !qpd->ib_base) 825 return; 826 827 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 828 } 829 830 struct kfd_process *kfd_create_process(struct task_struct *thread) 831 { 832 struct kfd_process *process; 833 int ret; 834 835 if (!(thread->mm && mmget_not_zero(thread->mm))) 836 return ERR_PTR(-EINVAL); 837 838 /* Only the pthreads threading model is supported. */ 839 if (thread->group_leader->mm != thread->mm) { 840 mmput(thread->mm); 841 return ERR_PTR(-EINVAL); 842 } 843 844 /* 845 * take kfd processes mutex before starting of process creation 846 * so there won't be a case where two threads of the same process 847 * create two kfd_process structures 848 */ 849 mutex_lock(&kfd_processes_mutex); 850 851 if (kfd_is_locked()) { 852 pr_debug("KFD is locked! Cannot create process"); 853 process = ERR_PTR(-EINVAL); 854 goto out; 855 } 856 857 /* A prior open of /dev/kfd could have already created the process. 858 * find_process will increase process kref in this case 859 */ 860 process = find_process(thread, true); 861 if (process) { 862 pr_debug("Process already found\n"); 863 } else { 864 /* If the process just called exec(3), it is possible that the 865 * cleanup of the kfd_process (following the release of the mm 866 * of the old process image) is still in the cleanup work queue. 867 * Make sure to drain any job before trying to recreate any 868 * resource for this process. 869 */ 870 flush_workqueue(kfd_process_wq); 871 872 process = create_process(thread); 873 if (IS_ERR(process)) 874 goto out; 875 876 if (!procfs.kobj) 877 goto out; 878 879 process->kobj = kfd_alloc_struct(process->kobj); 880 if (!process->kobj) { 881 pr_warn("Creating procfs kobject failed"); 882 goto out; 883 } 884 ret = kobject_init_and_add(process->kobj, &procfs_type, 885 procfs.kobj, "%d", 886 (int)process->lead_thread->pid); 887 if (ret) { 888 pr_warn("Creating procfs pid directory failed"); 889 kobject_put(process->kobj); 890 goto out; 891 } 892 893 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 894 "pasid"); 895 896 process->kobj_queues = kobject_create_and_add("queues", 897 process->kobj); 898 if (!process->kobj_queues) 899 pr_warn("Creating KFD proc/queues folder failed"); 900 901 kfd_procfs_add_sysfs_stats(process); 902 kfd_procfs_add_sysfs_files(process); 903 kfd_procfs_add_sysfs_counters(process); 904 905 init_waitqueue_head(&process->wait_irq_drain); 906 } 907 out: 908 mutex_unlock(&kfd_processes_mutex); 909 mmput(thread->mm); 910 911 return process; 912 } 913 914 struct kfd_process *kfd_get_process(const struct task_struct *thread) 915 { 916 struct kfd_process *process; 917 918 if (!thread->mm) 919 return ERR_PTR(-EINVAL); 920 921 /* Only the pthreads threading model is supported. */ 922 if (thread->group_leader->mm != thread->mm) 923 return ERR_PTR(-EINVAL); 924 925 process = find_process(thread, false); 926 if (!process) 927 return ERR_PTR(-EINVAL); 928 929 return process; 930 } 931 932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 933 { 934 struct kfd_process *process; 935 936 hash_for_each_possible_rcu(kfd_processes_table, process, 937 kfd_processes, (uintptr_t)mm) 938 if (process->mm == mm) 939 return process; 940 941 return NULL; 942 } 943 944 static struct kfd_process *find_process(const struct task_struct *thread, 945 bool ref) 946 { 947 struct kfd_process *p; 948 int idx; 949 950 idx = srcu_read_lock(&kfd_processes_srcu); 951 p = find_process_by_mm(thread->mm); 952 if (p && ref) 953 kref_get(&p->ref); 954 srcu_read_unlock(&kfd_processes_srcu, idx); 955 956 return p; 957 } 958 959 void kfd_unref_process(struct kfd_process *p) 960 { 961 kref_put(&p->ref, kfd_process_ref_release); 962 } 963 964 /* This increments the process->ref counter. */ 965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 966 { 967 struct task_struct *task = NULL; 968 struct kfd_process *p = NULL; 969 970 if (!pid) { 971 task = current; 972 get_task_struct(task); 973 } else { 974 task = get_pid_task(pid, PIDTYPE_PID); 975 } 976 977 if (task) { 978 p = find_process(task, true); 979 put_task_struct(task); 980 } 981 982 return p; 983 } 984 985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 986 { 987 struct kfd_process *p = pdd->process; 988 void *mem; 989 int id; 990 int i; 991 992 /* 993 * Remove all handles from idr and release appropriate 994 * local memory object 995 */ 996 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 997 998 for (i = 0; i < p->n_pdds; i++) { 999 struct kfd_process_device *peer_pdd = p->pdds[i]; 1000 1001 if (!peer_pdd->drm_priv) 1002 continue; 1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1005 } 1006 1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1008 pdd->drm_priv, NULL); 1009 kfd_process_device_remove_obj_handle(pdd, id); 1010 } 1011 } 1012 1013 /* 1014 * Just kunmap and unpin signal BO here. It will be freed in 1015 * kfd_process_free_outstanding_kfd_bos() 1016 */ 1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1018 { 1019 struct kfd_process_device *pdd; 1020 struct kfd_node *kdev; 1021 void *mem; 1022 1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1024 if (!kdev) 1025 return; 1026 1027 mutex_lock(&p->mutex); 1028 1029 pdd = kfd_get_process_device_data(kdev, p); 1030 if (!pdd) 1031 goto out; 1032 1033 mem = kfd_process_device_translate_handle( 1034 pdd, GET_IDR_HANDLE(p->signal_handle)); 1035 if (!mem) 1036 goto out; 1037 1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1039 1040 out: 1041 mutex_unlock(&p->mutex); 1042 } 1043 1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1045 { 1046 int i; 1047 1048 for (i = 0; i < p->n_pdds; i++) 1049 kfd_process_device_free_bos(p->pdds[i]); 1050 } 1051 1052 static void kfd_process_destroy_pdds(struct kfd_process *p) 1053 { 1054 int i; 1055 1056 for (i = 0; i < p->n_pdds; i++) { 1057 struct kfd_process_device *pdd = p->pdds[i]; 1058 1059 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1060 pdd->dev->id, p->pasid); 1061 1062 kfd_process_device_destroy_cwsr_dgpu(pdd); 1063 kfd_process_device_destroy_ib_mem(pdd); 1064 1065 if (pdd->drm_file) { 1066 amdgpu_amdkfd_gpuvm_release_process_vm( 1067 pdd->dev->adev, pdd->drm_priv); 1068 fput(pdd->drm_file); 1069 } 1070 1071 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1072 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1073 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1074 1075 idr_destroy(&pdd->alloc_idr); 1076 1077 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1078 1079 if (pdd->dev->kfd->shared_resources.enable_mes) 1080 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1081 &pdd->proc_ctx_bo); 1082 /* 1083 * before destroying pdd, make sure to report availability 1084 * for auto suspend 1085 */ 1086 if (pdd->runtime_inuse) { 1087 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1088 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1089 pdd->runtime_inuse = false; 1090 } 1091 1092 kfree(pdd); 1093 p->pdds[i] = NULL; 1094 } 1095 p->n_pdds = 0; 1096 } 1097 1098 static void kfd_process_remove_sysfs(struct kfd_process *p) 1099 { 1100 struct kfd_process_device *pdd; 1101 int i; 1102 1103 if (!p->kobj) 1104 return; 1105 1106 sysfs_remove_file(p->kobj, &p->attr_pasid); 1107 kobject_del(p->kobj_queues); 1108 kobject_put(p->kobj_queues); 1109 p->kobj_queues = NULL; 1110 1111 for (i = 0; i < p->n_pdds; i++) { 1112 pdd = p->pdds[i]; 1113 1114 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1115 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1116 1117 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1118 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1119 sysfs_remove_file(pdd->kobj_stats, 1120 &pdd->attr_cu_occupancy); 1121 kobject_del(pdd->kobj_stats); 1122 kobject_put(pdd->kobj_stats); 1123 pdd->kobj_stats = NULL; 1124 } 1125 1126 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1127 pdd = p->pdds[i]; 1128 1129 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1131 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1132 kobject_del(pdd->kobj_counters); 1133 kobject_put(pdd->kobj_counters); 1134 pdd->kobj_counters = NULL; 1135 } 1136 1137 kobject_del(p->kobj); 1138 kobject_put(p->kobj); 1139 p->kobj = NULL; 1140 } 1141 1142 /* No process locking is needed in this function, because the process 1143 * is not findable any more. We must assume that no other thread is 1144 * using it any more, otherwise we couldn't safely free the process 1145 * structure in the end. 1146 */ 1147 static void kfd_process_wq_release(struct work_struct *work) 1148 { 1149 struct kfd_process *p = container_of(work, struct kfd_process, 1150 release_work); 1151 struct dma_fence *ef; 1152 1153 kfd_process_dequeue_from_all_devices(p); 1154 pqm_uninit(&p->pqm); 1155 1156 /* Signal the eviction fence after user mode queues are 1157 * destroyed. This allows any BOs to be freed without 1158 * triggering pointless evictions or waiting for fences. 1159 */ 1160 synchronize_rcu(); 1161 ef = rcu_access_pointer(p->ef); 1162 dma_fence_signal(ef); 1163 1164 kfd_process_remove_sysfs(p); 1165 1166 kfd_process_kunmap_signal_bo(p); 1167 kfd_process_free_outstanding_kfd_bos(p); 1168 svm_range_list_fini(p); 1169 1170 kfd_process_destroy_pdds(p); 1171 dma_fence_put(ef); 1172 1173 kfd_event_free_process(p); 1174 1175 kfd_pasid_free(p->pasid); 1176 mutex_destroy(&p->mutex); 1177 1178 put_task_struct(p->lead_thread); 1179 1180 kfree(p); 1181 } 1182 1183 static void kfd_process_ref_release(struct kref *ref) 1184 { 1185 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1186 1187 INIT_WORK(&p->release_work, kfd_process_wq_release); 1188 queue_work(kfd_process_wq, &p->release_work); 1189 } 1190 1191 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1192 { 1193 /* This increments p->ref counter if kfd process p exists */ 1194 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1195 1196 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1197 } 1198 1199 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1200 { 1201 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1202 } 1203 1204 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1205 { 1206 int i; 1207 1208 cancel_delayed_work_sync(&p->eviction_work); 1209 cancel_delayed_work_sync(&p->restore_work); 1210 1211 for (i = 0; i < p->n_pdds; i++) { 1212 struct kfd_process_device *pdd = p->pdds[i]; 1213 1214 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1215 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1216 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1217 } 1218 1219 /* Indicate to other users that MM is no longer valid */ 1220 p->mm = NULL; 1221 kfd_dbg_trap_disable(p); 1222 1223 if (atomic_read(&p->debugged_process_count) > 0) { 1224 struct kfd_process *target; 1225 unsigned int temp; 1226 int idx = srcu_read_lock(&kfd_processes_srcu); 1227 1228 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1229 if (target->debugger_process && target->debugger_process == p) { 1230 mutex_lock_nested(&target->mutex, 1); 1231 kfd_dbg_trap_disable(target); 1232 mutex_unlock(&target->mutex); 1233 if (atomic_read(&p->debugged_process_count) == 0) 1234 break; 1235 } 1236 } 1237 1238 srcu_read_unlock(&kfd_processes_srcu, idx); 1239 } 1240 1241 mmu_notifier_put(&p->mmu_notifier); 1242 } 1243 1244 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1245 struct mm_struct *mm) 1246 { 1247 struct kfd_process *p; 1248 1249 /* 1250 * The kfd_process structure can not be free because the 1251 * mmu_notifier srcu is read locked 1252 */ 1253 p = container_of(mn, struct kfd_process, mmu_notifier); 1254 if (WARN_ON(p->mm != mm)) 1255 return; 1256 1257 mutex_lock(&kfd_processes_mutex); 1258 /* 1259 * Do early return if table is empty. 1260 * 1261 * This could potentially happen if this function is called concurrently 1262 * by mmu_notifier and by kfd_cleanup_pocesses. 1263 * 1264 */ 1265 if (hash_empty(kfd_processes_table)) { 1266 mutex_unlock(&kfd_processes_mutex); 1267 return; 1268 } 1269 hash_del_rcu(&p->kfd_processes); 1270 mutex_unlock(&kfd_processes_mutex); 1271 synchronize_srcu(&kfd_processes_srcu); 1272 1273 kfd_process_notifier_release_internal(p); 1274 } 1275 1276 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1277 .release = kfd_process_notifier_release, 1278 .alloc_notifier = kfd_process_alloc_notifier, 1279 .free_notifier = kfd_process_free_notifier, 1280 }; 1281 1282 /* 1283 * This code handles the case when driver is being unloaded before all 1284 * mm_struct are released. We need to safely free the kfd_process and 1285 * avoid race conditions with mmu_notifier that might try to free them. 1286 * 1287 */ 1288 void kfd_cleanup_processes(void) 1289 { 1290 struct kfd_process *p; 1291 struct hlist_node *p_temp; 1292 unsigned int temp; 1293 HLIST_HEAD(cleanup_list); 1294 1295 /* 1296 * Move all remaining kfd_process from the process table to a 1297 * temp list for processing. Once done, callback from mmu_notifier 1298 * release will not see the kfd_process in the table and do early return, 1299 * avoiding double free issues. 1300 */ 1301 mutex_lock(&kfd_processes_mutex); 1302 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1303 hash_del_rcu(&p->kfd_processes); 1304 synchronize_srcu(&kfd_processes_srcu); 1305 hlist_add_head(&p->kfd_processes, &cleanup_list); 1306 } 1307 mutex_unlock(&kfd_processes_mutex); 1308 1309 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1310 kfd_process_notifier_release_internal(p); 1311 1312 /* 1313 * Ensures that all outstanding free_notifier get called, triggering 1314 * the release of the kfd_process struct. 1315 */ 1316 mmu_notifier_synchronize(); 1317 } 1318 1319 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1320 { 1321 unsigned long offset; 1322 int i; 1323 1324 if (p->has_cwsr) 1325 return 0; 1326 1327 for (i = 0; i < p->n_pdds; i++) { 1328 struct kfd_node *dev = p->pdds[i]->dev; 1329 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1330 1331 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1332 continue; 1333 1334 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1335 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1336 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1337 MAP_SHARED, offset); 1338 1339 if (IS_ERR_VALUE(qpd->tba_addr)) { 1340 int err = qpd->tba_addr; 1341 1342 dev_err(dev->adev->dev, 1343 "Failure to set tba address. error %d.\n", err); 1344 qpd->tba_addr = 0; 1345 qpd->cwsr_kaddr = NULL; 1346 return err; 1347 } 1348 1349 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1350 1351 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1352 1353 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1354 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1355 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1356 } 1357 1358 p->has_cwsr = true; 1359 1360 return 0; 1361 } 1362 1363 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1364 { 1365 struct kfd_node *dev = pdd->dev; 1366 struct qcm_process_device *qpd = &pdd->qpd; 1367 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1368 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1369 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1370 struct kgd_mem *mem; 1371 void *kaddr; 1372 int ret; 1373 1374 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1375 return 0; 1376 1377 /* cwsr_base is only set for dGPU */ 1378 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1379 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1380 if (ret) 1381 return ret; 1382 1383 qpd->cwsr_mem = mem; 1384 qpd->cwsr_kaddr = kaddr; 1385 qpd->tba_addr = qpd->cwsr_base; 1386 1387 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1388 1389 kfd_process_set_trap_debug_flag(&pdd->qpd, 1390 pdd->process->debug_trap_enabled); 1391 1392 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1393 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1394 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1395 1396 return 0; 1397 } 1398 1399 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1400 { 1401 struct kfd_node *dev = pdd->dev; 1402 struct qcm_process_device *qpd = &pdd->qpd; 1403 1404 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1405 return; 1406 1407 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1408 } 1409 1410 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1411 uint64_t tba_addr, 1412 uint64_t tma_addr) 1413 { 1414 if (qpd->cwsr_kaddr) { 1415 /* KFD trap handler is bound, record as second-level TBA/TMA 1416 * in first-level TMA. First-level trap will jump to second. 1417 */ 1418 uint64_t *tma = 1419 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1420 tma[0] = tba_addr; 1421 tma[1] = tma_addr; 1422 } else { 1423 /* No trap handler bound, bind as first-level TBA/TMA. */ 1424 qpd->tba_addr = tba_addr; 1425 qpd->tma_addr = tma_addr; 1426 } 1427 } 1428 1429 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1430 { 1431 int i; 1432 1433 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1434 * boot time retry setting. Mixing processes with different 1435 * XNACK/retry settings can hang the GPU. 1436 * 1437 * Different GPUs can have different noretry settings depending 1438 * on HW bugs or limitations. We need to find at least one 1439 * XNACK mode for this process that's compatible with all GPUs. 1440 * Fortunately GPUs with retry enabled (noretry=0) can run code 1441 * built for XNACK-off. On GFXv9 it may perform slower. 1442 * 1443 * Therefore applications built for XNACK-off can always be 1444 * supported and will be our fallback if any GPU does not 1445 * support retry. 1446 */ 1447 for (i = 0; i < p->n_pdds; i++) { 1448 struct kfd_node *dev = p->pdds[i]->dev; 1449 1450 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1451 * support the SVM APIs and don't need to be considered 1452 * for the XNACK mode selection. 1453 */ 1454 if (!KFD_IS_SOC15(dev)) 1455 continue; 1456 /* Aldebaran can always support XNACK because it can support 1457 * per-process XNACK mode selection. But let the dev->noretry 1458 * setting still influence the default XNACK mode. 1459 */ 1460 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1461 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1462 pr_debug("SRIOV platform xnack not supported\n"); 1463 return false; 1464 } 1465 continue; 1466 } 1467 1468 /* GFXv10 and later GPUs do not support shader preemption 1469 * during page faults. This can lead to poor QoS for queue 1470 * management and memory-manager-related preemptions or 1471 * even deadlocks. 1472 */ 1473 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1474 return false; 1475 1476 if (dev->kfd->noretry) 1477 return false; 1478 } 1479 1480 return true; 1481 } 1482 1483 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1484 bool enabled) 1485 { 1486 if (qpd->cwsr_kaddr) { 1487 uint64_t *tma = 1488 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1489 tma[2] = enabled; 1490 } 1491 } 1492 1493 /* 1494 * On return the kfd_process is fully operational and will be freed when the 1495 * mm is released 1496 */ 1497 static struct kfd_process *create_process(const struct task_struct *thread) 1498 { 1499 struct kfd_process *process; 1500 struct mmu_notifier *mn; 1501 int err = -ENOMEM; 1502 1503 process = kzalloc(sizeof(*process), GFP_KERNEL); 1504 if (!process) 1505 goto err_alloc_process; 1506 1507 kref_init(&process->ref); 1508 mutex_init(&process->mutex); 1509 process->mm = thread->mm; 1510 process->lead_thread = thread->group_leader; 1511 process->n_pdds = 0; 1512 process->queues_paused = false; 1513 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1514 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1515 process->last_restore_timestamp = get_jiffies_64(); 1516 err = kfd_event_init_process(process); 1517 if (err) 1518 goto err_event_init; 1519 process->is_32bit_user_mode = in_compat_syscall(); 1520 process->debug_trap_enabled = false; 1521 process->debugger_process = NULL; 1522 process->exception_enable_mask = 0; 1523 atomic_set(&process->debugged_process_count, 0); 1524 sema_init(&process->runtime_enable_sema, 0); 1525 1526 process->pasid = kfd_pasid_alloc(); 1527 if (process->pasid == 0) { 1528 err = -ENOSPC; 1529 goto err_alloc_pasid; 1530 } 1531 1532 err = pqm_init(&process->pqm, process); 1533 if (err != 0) 1534 goto err_process_pqm_init; 1535 1536 /* init process apertures*/ 1537 err = kfd_init_apertures(process); 1538 if (err != 0) 1539 goto err_init_apertures; 1540 1541 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1542 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1543 1544 err = svm_range_list_init(process); 1545 if (err) 1546 goto err_init_svm_range_list; 1547 1548 /* alloc_notifier needs to find the process in the hash table */ 1549 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1550 (uintptr_t)process->mm); 1551 1552 /* Avoid free_notifier to start kfd_process_wq_release if 1553 * mmu_notifier_get failed because of pending signal. 1554 */ 1555 kref_get(&process->ref); 1556 1557 /* MMU notifier registration must be the last call that can fail 1558 * because after this point we cannot unwind the process creation. 1559 * After this point, mmu_notifier_put will trigger the cleanup by 1560 * dropping the last process reference in the free_notifier. 1561 */ 1562 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1563 if (IS_ERR(mn)) { 1564 err = PTR_ERR(mn); 1565 goto err_register_notifier; 1566 } 1567 BUG_ON(mn != &process->mmu_notifier); 1568 1569 kfd_unref_process(process); 1570 get_task_struct(process->lead_thread); 1571 1572 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1573 1574 return process; 1575 1576 err_register_notifier: 1577 hash_del_rcu(&process->kfd_processes); 1578 svm_range_list_fini(process); 1579 err_init_svm_range_list: 1580 kfd_process_free_outstanding_kfd_bos(process); 1581 kfd_process_destroy_pdds(process); 1582 err_init_apertures: 1583 pqm_uninit(&process->pqm); 1584 err_process_pqm_init: 1585 kfd_pasid_free(process->pasid); 1586 err_alloc_pasid: 1587 kfd_event_free_process(process); 1588 err_event_init: 1589 mutex_destroy(&process->mutex); 1590 kfree(process); 1591 err_alloc_process: 1592 return ERR_PTR(err); 1593 } 1594 1595 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1596 struct kfd_process *p) 1597 { 1598 int i; 1599 1600 for (i = 0; i < p->n_pdds; i++) 1601 if (p->pdds[i]->dev == dev) 1602 return p->pdds[i]; 1603 1604 return NULL; 1605 } 1606 1607 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1608 struct kfd_process *p) 1609 { 1610 struct kfd_process_device *pdd = NULL; 1611 int retval = 0; 1612 1613 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1614 return NULL; 1615 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1616 if (!pdd) 1617 return NULL; 1618 1619 pdd->dev = dev; 1620 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1621 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1622 pdd->qpd.dqm = dev->dqm; 1623 pdd->qpd.pqm = &p->pqm; 1624 pdd->qpd.evicted = 0; 1625 pdd->qpd.mapped_gws_queue = false; 1626 pdd->process = p; 1627 pdd->bound = PDD_UNBOUND; 1628 pdd->already_dequeued = false; 1629 pdd->runtime_inuse = false; 1630 atomic64_set(&pdd->vram_usage, 0); 1631 pdd->sdma_past_activity_counter = 0; 1632 pdd->user_gpu_id = dev->id; 1633 atomic64_set(&pdd->evict_duration_counter, 0); 1634 1635 if (dev->kfd->shared_resources.enable_mes) { 1636 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, 1637 AMDGPU_MES_PROC_CTX_SIZE, 1638 &pdd->proc_ctx_bo, 1639 &pdd->proc_ctx_gpu_addr, 1640 &pdd->proc_ctx_cpu_ptr, 1641 false); 1642 if (retval) { 1643 dev_err(dev->adev->dev, 1644 "failed to allocate process context bo\n"); 1645 goto err_free_pdd; 1646 } 1647 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); 1648 } 1649 1650 p->pdds[p->n_pdds++] = pdd; 1651 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1652 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1653 pdd->dev->adev, 1654 false, 1655 0); 1656 1657 /* Init idr used for memory handle translation */ 1658 idr_init(&pdd->alloc_idr); 1659 1660 return pdd; 1661 1662 err_free_pdd: 1663 kfree(pdd); 1664 return NULL; 1665 } 1666 1667 /** 1668 * kfd_process_device_init_vm - Initialize a VM for a process-device 1669 * 1670 * @pdd: The process-device 1671 * @drm_file: Optional pointer to a DRM file descriptor 1672 * 1673 * If @drm_file is specified, it will be used to acquire the VM from 1674 * that file descriptor. If successful, the @pdd takes ownership of 1675 * the file descriptor. 1676 * 1677 * If @drm_file is NULL, a new VM is created. 1678 * 1679 * Returns 0 on success, -errno on failure. 1680 */ 1681 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1682 struct file *drm_file) 1683 { 1684 struct amdgpu_fpriv *drv_priv; 1685 struct amdgpu_vm *avm; 1686 struct kfd_process *p; 1687 struct dma_fence *ef; 1688 struct kfd_node *dev; 1689 int ret; 1690 1691 if (!drm_file) 1692 return -EINVAL; 1693 1694 if (pdd->drm_priv) 1695 return -EBUSY; 1696 1697 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1698 if (ret) 1699 return ret; 1700 avm = &drv_priv->vm; 1701 1702 p = pdd->process; 1703 dev = pdd->dev; 1704 1705 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1706 &p->kgd_process_info, 1707 p->ef ? NULL : &ef); 1708 if (ret) { 1709 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1710 return ret; 1711 } 1712 1713 if (!p->ef) 1714 RCU_INIT_POINTER(p->ef, ef); 1715 1716 pdd->drm_priv = drm_file->private_data; 1717 1718 ret = kfd_process_device_reserve_ib_mem(pdd); 1719 if (ret) 1720 goto err_reserve_ib_mem; 1721 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1722 if (ret) 1723 goto err_init_cwsr; 1724 1725 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1726 if (ret) 1727 goto err_set_pasid; 1728 1729 pdd->drm_file = drm_file; 1730 1731 return 0; 1732 1733 err_set_pasid: 1734 kfd_process_device_destroy_cwsr_dgpu(pdd); 1735 err_init_cwsr: 1736 kfd_process_device_destroy_ib_mem(pdd); 1737 err_reserve_ib_mem: 1738 pdd->drm_priv = NULL; 1739 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1740 1741 return ret; 1742 } 1743 1744 /* 1745 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1746 * to the device. 1747 * Unbinding occurs when the process dies or the device is removed. 1748 * 1749 * Assumes that the process lock is held. 1750 */ 1751 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1752 struct kfd_process *p) 1753 { 1754 struct kfd_process_device *pdd; 1755 int err; 1756 1757 pdd = kfd_get_process_device_data(dev, p); 1758 if (!pdd) { 1759 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1760 return ERR_PTR(-ENOMEM); 1761 } 1762 1763 if (!pdd->drm_priv) 1764 return ERR_PTR(-ENODEV); 1765 1766 /* 1767 * signal runtime-pm system to auto resume and prevent 1768 * further runtime suspend once device pdd is created until 1769 * pdd is destroyed. 1770 */ 1771 if (!pdd->runtime_inuse) { 1772 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1773 if (err < 0) { 1774 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1775 return ERR_PTR(err); 1776 } 1777 } 1778 1779 /* 1780 * make sure that runtime_usage counter is incremented just once 1781 * per pdd 1782 */ 1783 pdd->runtime_inuse = true; 1784 1785 return pdd; 1786 } 1787 1788 /* Create specific handle mapped to mem from process local memory idr 1789 * Assumes that the process lock is held. 1790 */ 1791 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1792 void *mem) 1793 { 1794 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1795 } 1796 1797 /* Translate specific handle from process local memory idr 1798 * Assumes that the process lock is held. 1799 */ 1800 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1801 int handle) 1802 { 1803 if (handle < 0) 1804 return NULL; 1805 1806 return idr_find(&pdd->alloc_idr, handle); 1807 } 1808 1809 /* Remove specific handle from process local memory idr 1810 * Assumes that the process lock is held. 1811 */ 1812 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1813 int handle) 1814 { 1815 if (handle >= 0) 1816 idr_remove(&pdd->alloc_idr, handle); 1817 } 1818 1819 /* This increments the process->ref counter. */ 1820 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1821 { 1822 struct kfd_process *p, *ret_p = NULL; 1823 unsigned int temp; 1824 1825 int idx = srcu_read_lock(&kfd_processes_srcu); 1826 1827 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1828 if (p->pasid == pasid) { 1829 kref_get(&p->ref); 1830 ret_p = p; 1831 break; 1832 } 1833 } 1834 1835 srcu_read_unlock(&kfd_processes_srcu, idx); 1836 1837 return ret_p; 1838 } 1839 1840 /* This increments the process->ref counter. */ 1841 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1842 { 1843 struct kfd_process *p; 1844 1845 int idx = srcu_read_lock(&kfd_processes_srcu); 1846 1847 p = find_process_by_mm(mm); 1848 if (p) 1849 kref_get(&p->ref); 1850 1851 srcu_read_unlock(&kfd_processes_srcu, idx); 1852 1853 return p; 1854 } 1855 1856 /* kfd_process_evict_queues - Evict all user queues of a process 1857 * 1858 * Eviction is reference-counted per process-device. This means multiple 1859 * evictions from different sources can be nested safely. 1860 */ 1861 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1862 { 1863 int r = 0; 1864 int i; 1865 unsigned int n_evicted = 0; 1866 1867 for (i = 0; i < p->n_pdds; i++) { 1868 struct kfd_process_device *pdd = p->pdds[i]; 1869 struct device *dev = pdd->dev->adev->dev; 1870 1871 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1872 trigger); 1873 1874 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1875 &pdd->qpd); 1876 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1877 * we would like to set all the queues to be in evicted state to prevent 1878 * them been add back since they actually not be saved right now. 1879 */ 1880 if (r && r != -EIO) { 1881 dev_err(dev, "Failed to evict process queues\n"); 1882 goto fail; 1883 } 1884 n_evicted++; 1885 1886 pdd->dev->dqm->is_hws_hang = false; 1887 } 1888 1889 return r; 1890 1891 fail: 1892 /* To keep state consistent, roll back partial eviction by 1893 * restoring queues 1894 */ 1895 for (i = 0; i < p->n_pdds; i++) { 1896 struct kfd_process_device *pdd = p->pdds[i]; 1897 1898 if (n_evicted == 0) 1899 break; 1900 1901 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1902 1903 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1904 &pdd->qpd)) 1905 dev_err(pdd->dev->adev->dev, 1906 "Failed to restore queues\n"); 1907 1908 n_evicted--; 1909 } 1910 1911 return r; 1912 } 1913 1914 /* kfd_process_restore_queues - Restore all user queues of a process */ 1915 int kfd_process_restore_queues(struct kfd_process *p) 1916 { 1917 int r, ret = 0; 1918 int i; 1919 1920 for (i = 0; i < p->n_pdds; i++) { 1921 struct kfd_process_device *pdd = p->pdds[i]; 1922 struct device *dev = pdd->dev->adev->dev; 1923 1924 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1925 1926 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1927 &pdd->qpd); 1928 if (r) { 1929 dev_err(dev, "Failed to restore process queues\n"); 1930 if (!ret) 1931 ret = r; 1932 } 1933 } 1934 1935 return ret; 1936 } 1937 1938 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1939 { 1940 int i; 1941 1942 for (i = 0; i < p->n_pdds; i++) 1943 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1944 return i; 1945 return -EINVAL; 1946 } 1947 1948 int 1949 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1950 uint32_t *gpuid, uint32_t *gpuidx) 1951 { 1952 int i; 1953 1954 for (i = 0; i < p->n_pdds; i++) 1955 if (p->pdds[i] && p->pdds[i]->dev == node) { 1956 *gpuid = p->pdds[i]->user_gpu_id; 1957 *gpuidx = i; 1958 return 0; 1959 } 1960 return -EINVAL; 1961 } 1962 1963 static int signal_eviction_fence(struct kfd_process *p) 1964 { 1965 struct dma_fence *ef; 1966 int ret; 1967 1968 rcu_read_lock(); 1969 ef = dma_fence_get_rcu_safe(&p->ef); 1970 rcu_read_unlock(); 1971 if (!ef) 1972 return -EINVAL; 1973 1974 ret = dma_fence_signal(ef); 1975 dma_fence_put(ef); 1976 1977 return ret; 1978 } 1979 1980 static void evict_process_worker(struct work_struct *work) 1981 { 1982 int ret; 1983 struct kfd_process *p; 1984 struct delayed_work *dwork; 1985 1986 dwork = to_delayed_work(work); 1987 1988 /* Process termination destroys this worker thread. So during the 1989 * lifetime of this thread, kfd_process p will be valid 1990 */ 1991 p = container_of(dwork, struct kfd_process, eviction_work); 1992 1993 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1994 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1995 if (!ret) { 1996 /* If another thread already signaled the eviction fence, 1997 * they are responsible stopping the queues and scheduling 1998 * the restore work. 1999 */ 2000 if (signal_eviction_fence(p) || 2001 mod_delayed_work(kfd_restore_wq, &p->restore_work, 2002 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2003 kfd_process_restore_queues(p); 2004 2005 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 2006 } else 2007 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 2008 } 2009 2010 static int restore_process_helper(struct kfd_process *p) 2011 { 2012 int ret = 0; 2013 2014 /* VMs may not have been acquired yet during debugging. */ 2015 if (p->kgd_process_info) { 2016 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2017 p->kgd_process_info, &p->ef); 2018 if (ret) 2019 return ret; 2020 } 2021 2022 ret = kfd_process_restore_queues(p); 2023 if (!ret) 2024 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 2025 else 2026 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 2027 2028 return ret; 2029 } 2030 2031 static void restore_process_worker(struct work_struct *work) 2032 { 2033 struct delayed_work *dwork; 2034 struct kfd_process *p; 2035 int ret = 0; 2036 2037 dwork = to_delayed_work(work); 2038 2039 /* Process termination destroys this worker thread. So during the 2040 * lifetime of this thread, kfd_process p will be valid 2041 */ 2042 p = container_of(dwork, struct kfd_process, restore_work); 2043 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 2044 2045 /* Setting last_restore_timestamp before successful restoration. 2046 * Otherwise this would have to be set by KGD (restore_process_bos) 2047 * before KFD BOs are unreserved. If not, the process can be evicted 2048 * again before the timestamp is set. 2049 * If restore fails, the timestamp will be set again in the next 2050 * attempt. This would mean that the minimum GPU quanta would be 2051 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2052 * functions) 2053 */ 2054 2055 p->last_restore_timestamp = get_jiffies_64(); 2056 2057 ret = restore_process_helper(p); 2058 if (ret) { 2059 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 2060 p->pasid, PROCESS_BACK_OFF_TIME_MS); 2061 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2062 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2063 kfd_process_restore_queues(p); 2064 } 2065 } 2066 2067 void kfd_suspend_all_processes(void) 2068 { 2069 struct kfd_process *p; 2070 unsigned int temp; 2071 int idx = srcu_read_lock(&kfd_processes_srcu); 2072 2073 WARN(debug_evictions, "Evicting all processes"); 2074 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2075 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2076 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2077 signal_eviction_fence(p); 2078 } 2079 srcu_read_unlock(&kfd_processes_srcu, idx); 2080 } 2081 2082 int kfd_resume_all_processes(void) 2083 { 2084 struct kfd_process *p; 2085 unsigned int temp; 2086 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2087 2088 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2089 if (restore_process_helper(p)) { 2090 pr_err("Restore process %d failed during resume\n", 2091 p->pasid); 2092 ret = -EFAULT; 2093 } 2094 } 2095 srcu_read_unlock(&kfd_processes_srcu, idx); 2096 return ret; 2097 } 2098 2099 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2100 struct vm_area_struct *vma) 2101 { 2102 struct kfd_process_device *pdd; 2103 struct qcm_process_device *qpd; 2104 2105 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2106 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2107 return -EINVAL; 2108 } 2109 2110 pdd = kfd_get_process_device_data(dev, process); 2111 if (!pdd) 2112 return -EINVAL; 2113 qpd = &pdd->qpd; 2114 2115 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2116 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2117 if (!qpd->cwsr_kaddr) { 2118 dev_err(dev->adev->dev, 2119 "Error allocating per process CWSR buffer.\n"); 2120 return -ENOMEM; 2121 } 2122 2123 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2124 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2125 /* Mapping pages to user process */ 2126 return remap_pfn_range(vma, vma->vm_start, 2127 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2128 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2129 } 2130 2131 /* assumes caller holds process lock. */ 2132 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2133 { 2134 uint32_t irq_drain_fence[8]; 2135 uint8_t node_id = 0; 2136 int r = 0; 2137 2138 if (!KFD_IS_SOC15(pdd->dev)) 2139 return 0; 2140 2141 pdd->process->irq_drain_is_open = true; 2142 2143 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2144 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2145 KFD_IRQ_FENCE_CLIENTID; 2146 irq_drain_fence[3] = pdd->process->pasid; 2147 2148 /* 2149 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] 2150 */ 2151 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2152 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) { 2153 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2154 irq_drain_fence[3] |= node_id << 16; 2155 } 2156 2157 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2158 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2159 irq_drain_fence)) { 2160 pdd->process->irq_drain_is_open = false; 2161 return 0; 2162 } 2163 2164 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2165 !READ_ONCE(pdd->process->irq_drain_is_open)); 2166 if (r) 2167 pdd->process->irq_drain_is_open = false; 2168 2169 return r; 2170 } 2171 2172 void kfd_process_close_interrupt_drain(unsigned int pasid) 2173 { 2174 struct kfd_process *p; 2175 2176 p = kfd_lookup_process_by_pasid(pasid); 2177 2178 if (!p) 2179 return; 2180 2181 WRITE_ONCE(p->irq_drain_is_open, false); 2182 wake_up_all(&p->wait_irq_drain); 2183 kfd_unref_process(p); 2184 } 2185 2186 struct send_exception_work_handler_workarea { 2187 struct work_struct work; 2188 struct kfd_process *p; 2189 unsigned int queue_id; 2190 uint64_t error_reason; 2191 }; 2192 2193 static void send_exception_work_handler(struct work_struct *work) 2194 { 2195 struct send_exception_work_handler_workarea *workarea; 2196 struct kfd_process *p; 2197 struct queue *q; 2198 struct mm_struct *mm; 2199 struct kfd_context_save_area_header __user *csa_header; 2200 uint64_t __user *err_payload_ptr; 2201 uint64_t cur_err; 2202 uint32_t ev_id; 2203 2204 workarea = container_of(work, 2205 struct send_exception_work_handler_workarea, 2206 work); 2207 p = workarea->p; 2208 2209 mm = get_task_mm(p->lead_thread); 2210 2211 if (!mm) 2212 return; 2213 2214 kthread_use_mm(mm); 2215 2216 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2217 2218 if (!q) 2219 goto out; 2220 2221 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2222 2223 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2224 get_user(cur_err, err_payload_ptr); 2225 cur_err |= workarea->error_reason; 2226 put_user(cur_err, err_payload_ptr); 2227 get_user(ev_id, &csa_header->err_event_id); 2228 2229 kfd_set_event(p, ev_id); 2230 2231 out: 2232 kthread_unuse_mm(mm); 2233 mmput(mm); 2234 } 2235 2236 int kfd_send_exception_to_runtime(struct kfd_process *p, 2237 unsigned int queue_id, 2238 uint64_t error_reason) 2239 { 2240 struct send_exception_work_handler_workarea worker; 2241 2242 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2243 2244 worker.p = p; 2245 worker.queue_id = queue_id; 2246 worker.error_reason = error_reason; 2247 2248 schedule_work(&worker.work); 2249 flush_work(&worker.work); 2250 destroy_work_on_stack(&worker.work); 2251 2252 return 0; 2253 } 2254 2255 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2256 { 2257 int i; 2258 2259 if (gpu_id) { 2260 for (i = 0; i < p->n_pdds; i++) { 2261 struct kfd_process_device *pdd = p->pdds[i]; 2262 2263 if (pdd->user_gpu_id == gpu_id) 2264 return pdd; 2265 } 2266 } 2267 return NULL; 2268 } 2269 2270 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2271 { 2272 int i; 2273 2274 if (!actual_gpu_id) 2275 return 0; 2276 2277 for (i = 0; i < p->n_pdds; i++) { 2278 struct kfd_process_device *pdd = p->pdds[i]; 2279 2280 if (pdd->dev->id == actual_gpu_id) 2281 return pdd->user_gpu_id; 2282 } 2283 return -EINVAL; 2284 } 2285 2286 #if defined(CONFIG_DEBUG_FS) 2287 2288 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2289 { 2290 struct kfd_process *p; 2291 unsigned int temp; 2292 int r = 0; 2293 2294 int idx = srcu_read_lock(&kfd_processes_srcu); 2295 2296 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2297 seq_printf(m, "Process %d PASID 0x%x:\n", 2298 p->lead_thread->tgid, p->pasid); 2299 2300 mutex_lock(&p->mutex); 2301 r = pqm_debugfs_mqds(m, &p->pqm); 2302 mutex_unlock(&p->mutex); 2303 2304 if (r) 2305 break; 2306 } 2307 2308 srcu_read_unlock(&kfd_processes_srcu, idx); 2309 2310 return r; 2311 } 2312 2313 #endif 2314