1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "amdgpu_reset.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_svm.h" 45 #include "kfd_smi_events.h" 46 #include "kfd_debug.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread, 69 bool ref); 70 static void kfd_process_ref_release(struct kref *ref); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n", 286 dev->id, (int)proc->lead_thread->pid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) 331 return snprintf(buffer, PAGE_SIZE, "%d\n", 0); 332 else if (strncmp(attr->name, "vram_", 5) == 0) { 333 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 334 attr_vram); 335 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 336 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 337 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 338 attr_sdma); 339 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 340 341 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 342 kfd_sdma_activity_worker); 343 344 sdma_activity_work_handler.pdd = pdd; 345 sdma_activity_work_handler.sdma_activity_counter = 0; 346 347 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 348 349 flush_work(&sdma_activity_work_handler.sdma_activity_work); 350 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 351 352 return snprintf(buffer, PAGE_SIZE, "%llu\n", 353 (sdma_activity_work_handler.sdma_activity_counter)/ 354 SDMA_ACTIVITY_DIVISOR); 355 } else { 356 pr_err("Invalid attribute"); 357 return -EINVAL; 358 } 359 360 return 0; 361 } 362 363 static void kfd_procfs_kobj_release(struct kobject *kobj) 364 { 365 kfree(kobj); 366 } 367 368 static const struct sysfs_ops kfd_procfs_ops = { 369 .show = kfd_procfs_show, 370 }; 371 372 static const struct kobj_type procfs_type = { 373 .release = kfd_procfs_kobj_release, 374 .sysfs_ops = &kfd_procfs_ops, 375 }; 376 377 void kfd_procfs_init(void) 378 { 379 int ret = 0; 380 381 procfs.kobj = kfd_alloc_struct(procfs.kobj); 382 if (!procfs.kobj) 383 return; 384 385 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 386 &kfd_device->kobj, "proc"); 387 if (ret) { 388 pr_warn("Could not create procfs proc folder"); 389 /* If we fail to create the procfs, clean up */ 390 kfd_procfs_shutdown(); 391 } 392 } 393 394 void kfd_procfs_shutdown(void) 395 { 396 if (procfs.kobj) { 397 kobject_del(procfs.kobj); 398 kobject_put(procfs.kobj); 399 procfs.kobj = NULL; 400 } 401 } 402 403 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 404 struct attribute *attr, char *buffer) 405 { 406 struct queue *q = container_of(kobj, struct queue, kobj); 407 408 if (!strcmp(attr->name, "size")) 409 return snprintf(buffer, PAGE_SIZE, "%llu", 410 q->properties.queue_size); 411 else if (!strcmp(attr->name, "type")) 412 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 413 else if (!strcmp(attr->name, "gpuid")) 414 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 415 else 416 pr_err("Invalid attribute"); 417 418 return 0; 419 } 420 421 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 422 struct attribute *attr, char *buffer) 423 { 424 if (strcmp(attr->name, "evicted_ms") == 0) { 425 struct kfd_process_device *pdd = container_of(attr, 426 struct kfd_process_device, 427 attr_evict); 428 uint64_t evict_jiffies; 429 430 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 431 432 return snprintf(buffer, 433 PAGE_SIZE, 434 "%llu\n", 435 jiffies64_to_msecs(evict_jiffies)); 436 437 /* Sysfs handle that gets CU occupancy is per device */ 438 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 439 return kfd_get_cu_occupancy(attr, buffer); 440 } else { 441 pr_err("Invalid attribute"); 442 } 443 444 return 0; 445 } 446 447 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 448 struct attribute *attr, char *buf) 449 { 450 struct kfd_process_device *pdd; 451 452 if (!strcmp(attr->name, "faults")) { 453 pdd = container_of(attr, struct kfd_process_device, 454 attr_faults); 455 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 456 } 457 if (!strcmp(attr->name, "page_in")) { 458 pdd = container_of(attr, struct kfd_process_device, 459 attr_page_in); 460 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 461 } 462 if (!strcmp(attr->name, "page_out")) { 463 pdd = container_of(attr, struct kfd_process_device, 464 attr_page_out); 465 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 466 } 467 return 0; 468 } 469 470 static struct attribute attr_queue_size = { 471 .name = "size", 472 .mode = KFD_SYSFS_FILE_MODE 473 }; 474 475 static struct attribute attr_queue_type = { 476 .name = "type", 477 .mode = KFD_SYSFS_FILE_MODE 478 }; 479 480 static struct attribute attr_queue_gpuid = { 481 .name = "gpuid", 482 .mode = KFD_SYSFS_FILE_MODE 483 }; 484 485 static struct attribute *procfs_queue_attrs[] = { 486 &attr_queue_size, 487 &attr_queue_type, 488 &attr_queue_gpuid, 489 NULL 490 }; 491 ATTRIBUTE_GROUPS(procfs_queue); 492 493 static const struct sysfs_ops procfs_queue_ops = { 494 .show = kfd_procfs_queue_show, 495 }; 496 497 static const struct kobj_type procfs_queue_type = { 498 .sysfs_ops = &procfs_queue_ops, 499 .default_groups = procfs_queue_groups, 500 }; 501 502 static const struct sysfs_ops procfs_stats_ops = { 503 .show = kfd_procfs_stats_show, 504 }; 505 506 static const struct kobj_type procfs_stats_type = { 507 .sysfs_ops = &procfs_stats_ops, 508 .release = kfd_procfs_kobj_release, 509 }; 510 511 static const struct sysfs_ops sysfs_counters_ops = { 512 .show = kfd_sysfs_counters_show, 513 }; 514 515 static const struct kobj_type sysfs_counters_type = { 516 .sysfs_ops = &sysfs_counters_ops, 517 .release = kfd_procfs_kobj_release, 518 }; 519 520 int kfd_procfs_add_queue(struct queue *q) 521 { 522 struct kfd_process *proc; 523 int ret; 524 525 if (!q || !q->process) 526 return -EINVAL; 527 proc = q->process; 528 529 /* Create proc/<pid>/queues/<queue id> folder */ 530 if (!proc->kobj_queues) 531 return -EFAULT; 532 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 533 proc->kobj_queues, "%u", q->properties.queue_id); 534 if (ret < 0) { 535 pr_warn("Creating proc/<pid>/queues/%u failed", 536 q->properties.queue_id); 537 kobject_put(&q->kobj); 538 return ret; 539 } 540 541 return 0; 542 } 543 544 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 545 char *name) 546 { 547 int ret; 548 549 if (!kobj || !attr || !name) 550 return; 551 552 attr->name = name; 553 attr->mode = KFD_SYSFS_FILE_MODE; 554 sysfs_attr_init(attr); 555 556 ret = sysfs_create_file(kobj, attr); 557 if (ret) 558 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 559 } 560 561 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 562 { 563 int ret; 564 int i; 565 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 566 567 if (!p || !p->kobj) 568 return; 569 570 /* 571 * Create sysfs files for each GPU: 572 * - proc/<pid>/stats_<gpuid>/ 573 * - proc/<pid>/stats_<gpuid>/evicted_ms 574 * - proc/<pid>/stats_<gpuid>/cu_occupancy 575 */ 576 for (i = 0; i < p->n_pdds; i++) { 577 struct kfd_process_device *pdd = p->pdds[i]; 578 579 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 580 "stats_%u", pdd->dev->id); 581 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 582 if (!pdd->kobj_stats) 583 return; 584 585 ret = kobject_init_and_add(pdd->kobj_stats, 586 &procfs_stats_type, 587 p->kobj, 588 stats_dir_filename); 589 590 if (ret) { 591 pr_warn("Creating KFD proc/stats_%s folder failed", 592 stats_dir_filename); 593 kobject_put(pdd->kobj_stats); 594 pdd->kobj_stats = NULL; 595 return; 596 } 597 598 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 599 "evicted_ms"); 600 /* Add sysfs file to report compute unit occupancy */ 601 if (pdd->dev->kfd2kgd->get_cu_occupancy) 602 kfd_sysfs_create_file(pdd->kobj_stats, 603 &pdd->attr_cu_occupancy, 604 "cu_occupancy"); 605 } 606 } 607 608 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 609 { 610 int ret = 0; 611 int i; 612 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 613 614 if (!p || !p->kobj) 615 return; 616 617 /* 618 * Create sysfs files for each GPU which supports SVM 619 * - proc/<pid>/counters_<gpuid>/ 620 * - proc/<pid>/counters_<gpuid>/faults 621 * - proc/<pid>/counters_<gpuid>/page_in 622 * - proc/<pid>/counters_<gpuid>/page_out 623 */ 624 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 625 struct kfd_process_device *pdd = p->pdds[i]; 626 struct kobject *kobj_counters; 627 628 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 629 "counters_%u", pdd->dev->id); 630 kobj_counters = kfd_alloc_struct(kobj_counters); 631 if (!kobj_counters) 632 return; 633 634 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 635 p->kobj, counters_dir_filename); 636 if (ret) { 637 pr_warn("Creating KFD proc/%s folder failed", 638 counters_dir_filename); 639 kobject_put(kobj_counters); 640 return; 641 } 642 643 pdd->kobj_counters = kobj_counters; 644 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 645 "faults"); 646 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 647 "page_in"); 648 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 649 "page_out"); 650 } 651 } 652 653 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 654 { 655 int i; 656 657 if (!p || !p->kobj) 658 return; 659 660 /* 661 * Create sysfs files for each GPU: 662 * - proc/<pid>/vram_<gpuid> 663 * - proc/<pid>/sdma_<gpuid> 664 */ 665 for (i = 0; i < p->n_pdds; i++) { 666 struct kfd_process_device *pdd = p->pdds[i]; 667 668 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 669 pdd->dev->id); 670 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 671 pdd->vram_filename); 672 673 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 674 pdd->dev->id); 675 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 676 pdd->sdma_filename); 677 } 678 } 679 680 void kfd_procfs_del_queue(struct queue *q) 681 { 682 if (!q) 683 return; 684 685 kobject_del(&q->kobj); 686 kobject_put(&q->kobj); 687 } 688 689 int kfd_process_create_wq(void) 690 { 691 if (!kfd_process_wq) 692 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 693 if (!kfd_restore_wq) 694 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 695 WQ_FREEZABLE); 696 697 if (!kfd_process_wq || !kfd_restore_wq) { 698 kfd_process_destroy_wq(); 699 return -ENOMEM; 700 } 701 702 return 0; 703 } 704 705 void kfd_process_destroy_wq(void) 706 { 707 if (kfd_process_wq) { 708 destroy_workqueue(kfd_process_wq); 709 kfd_process_wq = NULL; 710 } 711 if (kfd_restore_wq) { 712 destroy_workqueue(kfd_restore_wq); 713 kfd_restore_wq = NULL; 714 } 715 } 716 717 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 718 struct kfd_process_device *pdd, void **kptr) 719 { 720 struct kfd_node *dev = pdd->dev; 721 722 if (kptr && *kptr) { 723 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 724 *kptr = NULL; 725 } 726 727 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 728 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 729 NULL); 730 } 731 732 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 733 * This function should be only called right after the process 734 * is created and when kfd_processes_mutex is still being held 735 * to avoid concurrency. Because of that exclusiveness, we do 736 * not need to take p->mutex. 737 */ 738 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 739 uint64_t gpu_va, uint32_t size, 740 uint32_t flags, struct kgd_mem **mem, void **kptr) 741 { 742 struct kfd_node *kdev = pdd->dev; 743 int err; 744 745 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 746 pdd->drm_priv, mem, NULL, 747 flags, false); 748 if (err) 749 goto err_alloc_mem; 750 751 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 752 pdd->drm_priv); 753 if (err) 754 goto err_map_mem; 755 756 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 757 if (err) { 758 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 759 goto sync_memory_failed; 760 } 761 762 if (kptr) { 763 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 764 (struct kgd_mem *)*mem, kptr, NULL); 765 if (err) { 766 pr_debug("Map GTT BO to kernel failed\n"); 767 goto sync_memory_failed; 768 } 769 } 770 771 return err; 772 773 sync_memory_failed: 774 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 775 776 err_map_mem: 777 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 778 NULL); 779 err_alloc_mem: 780 *mem = NULL; 781 *kptr = NULL; 782 return err; 783 } 784 785 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 786 * process for IB usage The memory reserved is for KFD to submit 787 * IB to AMDGPU from kernel. If the memory is reserved 788 * successfully, ib_kaddr will have the CPU/kernel 789 * address. Check ib_kaddr before accessing the memory. 790 */ 791 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 792 { 793 struct qcm_process_device *qpd = &pdd->qpd; 794 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 795 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 796 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 797 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 798 struct kgd_mem *mem; 799 void *kaddr; 800 int ret; 801 802 if (qpd->ib_kaddr || !qpd->ib_base) 803 return 0; 804 805 /* ib_base is only set for dGPU */ 806 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 807 &mem, &kaddr); 808 if (ret) 809 return ret; 810 811 qpd->ib_mem = mem; 812 qpd->ib_kaddr = kaddr; 813 814 return 0; 815 } 816 817 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 818 { 819 struct qcm_process_device *qpd = &pdd->qpd; 820 821 if (!qpd->ib_kaddr || !qpd->ib_base) 822 return; 823 824 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 825 } 826 827 int kfd_create_process_sysfs(struct kfd_process *process) 828 { 829 struct kfd_process *primary_process; 830 int ret; 831 832 if (process->kobj) { 833 pr_warn("kobject already exists for the kfd_process\n"); 834 return -EINVAL; 835 } 836 837 process->kobj = kfd_alloc_struct(process->kobj); 838 if (!process->kobj) { 839 pr_warn("Creating procfs kobject failed"); 840 return -ENOMEM; 841 } 842 843 if (process->context_id == KFD_CONTEXT_ID_PRIMARY) 844 ret = kobject_init_and_add(process->kobj, &procfs_type, 845 procfs.kobj, "%d", 846 (int)process->lead_thread->pid); 847 else { 848 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 849 if (!primary_process) 850 return -ESRCH; 851 852 ret = kobject_init_and_add(process->kobj, &procfs_type, 853 primary_process->kobj, "context_%u", 854 process->context_id); 855 kfd_unref_process(primary_process); 856 } 857 858 if (ret) { 859 pr_warn("Creating procfs pid directory failed"); 860 kobject_put(process->kobj); 861 return ret; 862 } 863 864 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 865 "pasid"); 866 867 process->kobj_queues = kobject_create_and_add("queues", 868 process->kobj); 869 if (!process->kobj_queues) 870 pr_warn("Creating KFD proc/queues folder failed"); 871 872 kfd_procfs_add_sysfs_stats(process); 873 kfd_procfs_add_sysfs_files(process); 874 kfd_procfs_add_sysfs_counters(process); 875 876 return 0; 877 } 878 879 static int kfd_process_alloc_id(struct kfd_process *process) 880 { 881 int ret; 882 struct kfd_process *primary_process; 883 884 /* already assign 0xFFFF when create */ 885 if (process->context_id == KFD_CONTEXT_ID_PRIMARY) 886 return 0; 887 888 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 889 if (!primary_process) 890 return -ESRCH; 891 892 /* id range: KFD_CONTEXT_ID_MIN to 0xFFFE */ 893 ret = ida_alloc_range(&primary_process->id_table, KFD_CONTEXT_ID_MIN, 894 KFD_CONTEXT_ID_PRIMARY - 1, GFP_KERNEL); 895 if (ret < 0) 896 goto out; 897 898 process->context_id = ret; 899 ret = 0; 900 901 out: 902 kfd_unref_process(primary_process); 903 904 return ret; 905 } 906 907 static void kfd_process_free_id(struct kfd_process *process) 908 { 909 struct kfd_process *primary_process; 910 911 if (process->context_id != KFD_CONTEXT_ID_PRIMARY) 912 return; 913 914 primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm); 915 if (!primary_process) 916 return; 917 918 ida_free(&primary_process->id_table, process->context_id); 919 920 kfd_unref_process(primary_process); 921 } 922 923 struct kfd_process *kfd_create_process(struct task_struct *thread) 924 { 925 struct kfd_process *process; 926 int ret; 927 928 if (!(thread->mm && mmget_not_zero(thread->mm))) 929 return ERR_PTR(-EINVAL); 930 931 /* Only the pthreads threading model is supported. */ 932 if (thread->group_leader->mm != thread->mm) { 933 mmput(thread->mm); 934 return ERR_PTR(-EINVAL); 935 } 936 937 /* If the process just called exec(3), it is possible that the 938 * cleanup of the kfd_process (following the release of the mm 939 * of the old process image) is still in the cleanup work queue. 940 * Make sure to drain any job before trying to recreate any 941 * resource for this process. 942 */ 943 flush_workqueue(kfd_process_wq); 944 945 /* 946 * take kfd processes mutex before starting of process creation 947 * so there won't be a case where two threads of the same process 948 * create two kfd_process structures 949 */ 950 mutex_lock(&kfd_processes_mutex); 951 952 if (kfd_is_locked(NULL)) { 953 pr_debug("KFD is locked! Cannot create process"); 954 process = ERR_PTR(-EINVAL); 955 goto out; 956 } 957 958 /* A prior open of /dev/kfd could have already created the process. 959 * find_process will increase process kref in this case 960 */ 961 process = find_process(thread, true); 962 if (process) { 963 pr_debug("Process already found\n"); 964 } else { 965 process = create_process(thread, true); 966 if (IS_ERR(process)) 967 goto out; 968 969 if (!procfs.kobj) 970 goto out; 971 972 ret = kfd_create_process_sysfs(process); 973 if (ret) 974 pr_warn("Failed to create sysfs entry for the kfd_process"); 975 976 kfd_debugfs_add_process(process); 977 978 init_waitqueue_head(&process->wait_irq_drain); 979 } 980 out: 981 mutex_unlock(&kfd_processes_mutex); 982 mmput(thread->mm); 983 984 return process; 985 } 986 987 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 988 { 989 struct kfd_process *process; 990 991 hash_for_each_possible_rcu(kfd_processes_table, process, 992 kfd_processes, (uintptr_t)mm) 993 if (process->mm == mm && process->context_id == KFD_CONTEXT_ID_PRIMARY) 994 return process; 995 996 return NULL; 997 } 998 999 static struct kfd_process *find_process(const struct task_struct *thread, 1000 bool ref) 1001 { 1002 struct kfd_process *p; 1003 int idx; 1004 1005 idx = srcu_read_lock(&kfd_processes_srcu); 1006 p = find_process_by_mm(thread->mm); 1007 if (p && ref) 1008 kref_get(&p->ref); 1009 srcu_read_unlock(&kfd_processes_srcu, idx); 1010 1011 return p; 1012 } 1013 1014 void kfd_unref_process(struct kfd_process *p) 1015 { 1016 kref_put(&p->ref, kfd_process_ref_release); 1017 } 1018 1019 /* This increments the process->ref counter. */ 1020 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 1021 { 1022 struct task_struct *task = NULL; 1023 struct kfd_process *p = NULL; 1024 1025 if (!pid) { 1026 task = current; 1027 get_task_struct(task); 1028 } else { 1029 task = get_pid_task(pid, PIDTYPE_PID); 1030 } 1031 1032 if (task) { 1033 p = find_process(task, true); 1034 put_task_struct(task); 1035 } 1036 1037 return p; 1038 } 1039 1040 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 1041 { 1042 struct kfd_process *p = pdd->process; 1043 void *mem; 1044 int id; 1045 int i; 1046 1047 /* 1048 * Remove all handles from idr and release appropriate 1049 * local memory object 1050 */ 1051 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1052 1053 for (i = 0; i < p->n_pdds; i++) { 1054 struct kfd_process_device *peer_pdd = p->pdds[i]; 1055 1056 if (!peer_pdd->drm_priv) 1057 continue; 1058 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1059 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1060 } 1061 1062 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1063 pdd->drm_priv, NULL); 1064 kfd_process_device_remove_obj_handle(pdd, id); 1065 } 1066 } 1067 1068 /* 1069 * Just kunmap and unpin signal BO here. It will be freed in 1070 * kfd_process_free_outstanding_kfd_bos() 1071 */ 1072 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1073 { 1074 struct kfd_process_device *pdd; 1075 struct kfd_node *kdev; 1076 void *mem; 1077 1078 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1079 if (!kdev) 1080 return; 1081 1082 mutex_lock(&p->mutex); 1083 1084 pdd = kfd_get_process_device_data(kdev, p); 1085 if (!pdd) 1086 goto out; 1087 1088 mem = kfd_process_device_translate_handle( 1089 pdd, GET_IDR_HANDLE(p->signal_handle)); 1090 if (!mem) 1091 goto out; 1092 1093 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1094 1095 out: 1096 mutex_unlock(&p->mutex); 1097 } 1098 1099 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1100 { 1101 int i; 1102 1103 for (i = 0; i < p->n_pdds; i++) 1104 kfd_process_device_free_bos(p->pdds[i]); 1105 } 1106 1107 static void kfd_process_destroy_pdds(struct kfd_process *p) 1108 { 1109 int i; 1110 1111 for (i = 0; i < p->n_pdds; i++) { 1112 struct kfd_process_device *pdd = p->pdds[i]; 1113 1114 kfd_smi_event_process(pdd, false); 1115 1116 pr_debug("Releasing pdd (topology id %d, for pid %d)\n", 1117 pdd->dev->id, p->lead_thread->pid); 1118 kfd_process_device_destroy_cwsr_dgpu(pdd); 1119 kfd_process_device_destroy_ib_mem(pdd); 1120 1121 if (pdd->drm_file) 1122 fput(pdd->drm_file); 1123 1124 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1125 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1126 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1127 1128 idr_destroy(&pdd->alloc_idr); 1129 1130 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1131 1132 if (pdd->dev->kfd->shared_resources.enable_mes && 1133 pdd->proc_ctx_cpu_ptr) 1134 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1135 &pdd->proc_ctx_bo); 1136 /* 1137 * before destroying pdd, make sure to report availability 1138 * for auto suspend 1139 */ 1140 if (pdd->runtime_inuse) { 1141 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1142 pdd->runtime_inuse = false; 1143 } 1144 1145 atomic_dec(&pdd->dev->kfd->kfd_processes_count); 1146 1147 kfree(pdd); 1148 p->pdds[i] = NULL; 1149 } 1150 p->n_pdds = 0; 1151 } 1152 1153 static void kfd_process_remove_sysfs(struct kfd_process *p) 1154 { 1155 struct kfd_process_device *pdd; 1156 int i; 1157 1158 if (!p->kobj) 1159 return; 1160 1161 sysfs_remove_file(p->kobj, &p->attr_pasid); 1162 kobject_del(p->kobj_queues); 1163 kobject_put(p->kobj_queues); 1164 p->kobj_queues = NULL; 1165 1166 for (i = 0; i < p->n_pdds; i++) { 1167 pdd = p->pdds[i]; 1168 1169 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1170 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1171 1172 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1173 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1174 sysfs_remove_file(pdd->kobj_stats, 1175 &pdd->attr_cu_occupancy); 1176 kobject_del(pdd->kobj_stats); 1177 kobject_put(pdd->kobj_stats); 1178 pdd->kobj_stats = NULL; 1179 } 1180 1181 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1182 pdd = p->pdds[i]; 1183 1184 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1185 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1186 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1187 kobject_del(pdd->kobj_counters); 1188 kobject_put(pdd->kobj_counters); 1189 pdd->kobj_counters = NULL; 1190 } 1191 1192 kobject_del(p->kobj); 1193 kobject_put(p->kobj); 1194 p->kobj = NULL; 1195 } 1196 1197 /* 1198 * If any GPU is ongoing reset, wait for reset complete. 1199 */ 1200 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p) 1201 { 1202 int i; 1203 1204 for (i = 0; i < p->n_pdds; i++) 1205 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq); 1206 } 1207 1208 /* No process locking is needed in this function, because the process 1209 * is not findable any more. We must assume that no other thread is 1210 * using it any more, otherwise we couldn't safely free the process 1211 * structure in the end. 1212 */ 1213 static void kfd_process_wq_release(struct work_struct *work) 1214 { 1215 struct kfd_process *p = container_of(work, struct kfd_process, 1216 release_work); 1217 struct dma_fence *ef; 1218 1219 /* 1220 * If GPU in reset, user queues may still running, wait for reset complete. 1221 */ 1222 kfd_process_wait_gpu_reset_complete(p); 1223 1224 /* Signal the eviction fence after user mode queues are 1225 * destroyed. This allows any BOs to be freed without 1226 * triggering pointless evictions or waiting for fences. 1227 */ 1228 synchronize_rcu(); 1229 ef = rcu_access_pointer(p->ef); 1230 if (ef) 1231 dma_fence_signal(ef); 1232 1233 if (p->context_id != KFD_CONTEXT_ID_PRIMARY) 1234 kfd_process_free_id(p); 1235 else 1236 ida_destroy(&p->id_table); 1237 1238 kfd_process_remove_sysfs(p); 1239 kfd_debugfs_remove_process(p); 1240 1241 kfd_process_kunmap_signal_bo(p); 1242 kfd_process_free_outstanding_kfd_bos(p); 1243 svm_range_list_fini(p); 1244 1245 kfd_process_destroy_pdds(p); 1246 dma_fence_put(ef); 1247 1248 kfd_event_free_process(p); 1249 1250 mutex_destroy(&p->mutex); 1251 1252 put_task_struct(p->lead_thread); 1253 1254 kfree(p); 1255 } 1256 1257 static void kfd_process_ref_release(struct kref *ref) 1258 { 1259 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1260 1261 INIT_WORK(&p->release_work, kfd_process_wq_release); 1262 queue_work(kfd_process_wq, &p->release_work); 1263 } 1264 1265 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1266 { 1267 /* This increments p->ref counter if kfd process p exists */ 1268 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1269 1270 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1271 } 1272 1273 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1274 { 1275 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1276 } 1277 1278 static void kfd_process_table_remove(struct kfd_process *p) 1279 { 1280 mutex_lock(&kfd_processes_mutex); 1281 /* 1282 * Do early return if table is empty. 1283 * 1284 * This could potentially happen if this function is called concurrently 1285 * by mmu_notifier and by kfd_cleanup_pocesses. 1286 * 1287 */ 1288 if (hash_empty(kfd_processes_table)) { 1289 mutex_unlock(&kfd_processes_mutex); 1290 return; 1291 } 1292 hash_del_rcu(&p->kfd_processes); 1293 mutex_unlock(&kfd_processes_mutex); 1294 synchronize_srcu(&kfd_processes_srcu); 1295 } 1296 1297 void kfd_process_notifier_release_internal(struct kfd_process *p) 1298 { 1299 int i; 1300 1301 kfd_process_table_remove(p); 1302 cancel_delayed_work_sync(&p->eviction_work); 1303 cancel_delayed_work_sync(&p->restore_work); 1304 1305 /* 1306 * Dequeue and destroy user queues, it is not safe for GPU to access 1307 * system memory after mmu release notifier callback returns because 1308 * exit_mmap free process memory afterwards. 1309 */ 1310 kfd_process_dequeue_from_all_devices(p); 1311 pqm_uninit(&p->pqm); 1312 1313 for (i = 0; i < p->n_pdds; i++) { 1314 struct kfd_process_device *pdd = p->pdds[i]; 1315 1316 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1317 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1318 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1319 } 1320 1321 /* Indicate to other users that MM is no longer valid */ 1322 p->mm = NULL; 1323 kfd_dbg_trap_disable(p); 1324 1325 if (atomic_read(&p->debugged_process_count) > 0) { 1326 struct kfd_process *target; 1327 unsigned int temp; 1328 int idx = srcu_read_lock(&kfd_processes_srcu); 1329 1330 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1331 if (target->debugger_process && target->debugger_process == p) { 1332 mutex_lock_nested(&target->mutex, 1); 1333 kfd_dbg_trap_disable(target); 1334 mutex_unlock(&target->mutex); 1335 if (atomic_read(&p->debugged_process_count) == 0) 1336 break; 1337 } 1338 } 1339 1340 srcu_read_unlock(&kfd_processes_srcu, idx); 1341 } 1342 1343 if (p->context_id == KFD_CONTEXT_ID_PRIMARY) 1344 mmu_notifier_put(&p->mmu_notifier); 1345 } 1346 1347 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1348 struct mm_struct *mm) 1349 { 1350 struct kfd_process *p; 1351 1352 /* 1353 * The kfd_process structure can not be free because the 1354 * mmu_notifier srcu is read locked 1355 */ 1356 p = container_of(mn, struct kfd_process, mmu_notifier); 1357 if (WARN_ON(p->mm != mm)) 1358 return; 1359 1360 kfd_process_notifier_release_internal(p); 1361 } 1362 1363 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1364 .release = kfd_process_notifier_release, 1365 .alloc_notifier = kfd_process_alloc_notifier, 1366 .free_notifier = kfd_process_free_notifier, 1367 }; 1368 1369 /* 1370 * This code handles the case when driver is being unloaded before all 1371 * mm_struct are released. We need to safely free the kfd_process and 1372 * avoid race conditions with mmu_notifier that might try to free them. 1373 * 1374 */ 1375 void kfd_cleanup_processes(void) 1376 { 1377 struct kfd_process *p; 1378 struct hlist_node *p_temp; 1379 unsigned int temp; 1380 HLIST_HEAD(cleanup_list); 1381 1382 /* 1383 * Move all remaining kfd_process from the process table to a 1384 * temp list for processing. Once done, callback from mmu_notifier 1385 * release will not see the kfd_process in the table and do early return, 1386 * avoiding double free issues. 1387 */ 1388 mutex_lock(&kfd_processes_mutex); 1389 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1390 hash_del_rcu(&p->kfd_processes); 1391 synchronize_srcu(&kfd_processes_srcu); 1392 hlist_add_head(&p->kfd_processes, &cleanup_list); 1393 } 1394 mutex_unlock(&kfd_processes_mutex); 1395 1396 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1397 kfd_process_notifier_release_internal(p); 1398 1399 /* 1400 * Ensures that all outstanding free_notifier get called, triggering 1401 * the release of the kfd_process struct. 1402 */ 1403 mmu_notifier_synchronize(); 1404 } 1405 1406 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1407 { 1408 unsigned long offset; 1409 int i; 1410 1411 if (p->has_cwsr) 1412 return 0; 1413 1414 for (i = 0; i < p->n_pdds; i++) { 1415 struct kfd_node *dev = p->pdds[i]->dev; 1416 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1417 1418 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1419 continue; 1420 1421 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1422 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1423 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1424 MAP_SHARED, offset); 1425 1426 if (IS_ERR_VALUE(qpd->tba_addr)) { 1427 int err = qpd->tba_addr; 1428 1429 dev_err(dev->adev->dev, 1430 "Failure to set tba address. error %d.\n", err); 1431 qpd->tba_addr = 0; 1432 qpd->cwsr_kaddr = NULL; 1433 return err; 1434 } 1435 1436 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1437 1438 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1439 1440 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1441 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1442 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1443 } 1444 1445 p->has_cwsr = true; 1446 1447 return 0; 1448 } 1449 1450 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1451 { 1452 struct kfd_node *dev = pdd->dev; 1453 struct qcm_process_device *qpd = &pdd->qpd; 1454 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1455 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1456 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1457 struct kgd_mem *mem; 1458 void *kaddr; 1459 int ret; 1460 1461 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1462 return 0; 1463 1464 /* cwsr_base is only set for dGPU */ 1465 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1466 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1467 if (ret) 1468 return ret; 1469 1470 qpd->cwsr_mem = mem; 1471 qpd->cwsr_kaddr = kaddr; 1472 qpd->tba_addr = qpd->cwsr_base; 1473 1474 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1475 1476 kfd_process_set_trap_debug_flag(&pdd->qpd, 1477 pdd->process->debug_trap_enabled); 1478 1479 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1480 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1481 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1482 1483 return 0; 1484 } 1485 1486 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1487 { 1488 struct kfd_node *dev = pdd->dev; 1489 struct qcm_process_device *qpd = &pdd->qpd; 1490 1491 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1492 return; 1493 1494 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1495 } 1496 1497 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1498 uint64_t tba_addr, 1499 uint64_t tma_addr) 1500 { 1501 if (qpd->cwsr_kaddr) { 1502 /* KFD trap handler is bound, record as second-level TBA/TMA 1503 * in first-level TMA. First-level trap will jump to second. 1504 */ 1505 uint64_t *tma = 1506 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1507 tma[0] = tba_addr; 1508 tma[1] = tma_addr; 1509 } else { 1510 /* No trap handler bound, bind as first-level TBA/TMA. */ 1511 qpd->tba_addr = tba_addr; 1512 qpd->tma_addr = tma_addr; 1513 } 1514 } 1515 1516 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1517 { 1518 int i; 1519 1520 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1521 * boot time retry setting. Mixing processes with different 1522 * XNACK/retry settings can hang the GPU. 1523 * 1524 * Different GPUs can have different noretry settings depending 1525 * on HW bugs or limitations. We need to find at least one 1526 * XNACK mode for this process that's compatible with all GPUs. 1527 * Fortunately GPUs with retry enabled (noretry=0) can run code 1528 * built for XNACK-off. On GFXv9 it may perform slower. 1529 * 1530 * Therefore applications built for XNACK-off can always be 1531 * supported and will be our fallback if any GPU does not 1532 * support retry. 1533 */ 1534 for (i = 0; i < p->n_pdds; i++) { 1535 struct kfd_node *dev = p->pdds[i]->dev; 1536 1537 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1538 * support the SVM APIs and don't need to be considered 1539 * for the XNACK mode selection. 1540 */ 1541 if (!KFD_IS_SOC15(dev)) 1542 continue; 1543 /* Aldebaran can always support XNACK because it can support 1544 * per-process XNACK mode selection. But let the dev->noretry 1545 * setting still influence the default XNACK mode. 1546 */ 1547 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1548 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1549 pr_debug("SRIOV platform xnack not supported\n"); 1550 return false; 1551 } 1552 continue; 1553 } 1554 1555 /* GFXv10 and later GPUs do not support shader preemption 1556 * during page faults. This can lead to poor QoS for queue 1557 * management and memory-manager-related preemptions or 1558 * even deadlocks. 1559 */ 1560 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1) && 1561 KFD_GC_VERSION(dev) < IP_VERSION(12, 1, 0)) 1562 return false; 1563 1564 if (dev->kfd->noretry) 1565 return false; 1566 } 1567 1568 return true; 1569 } 1570 1571 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1572 bool enabled) 1573 { 1574 if (qpd->cwsr_kaddr) { 1575 uint64_t *tma = 1576 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1577 tma[2] = enabled; 1578 } 1579 } 1580 1581 /* 1582 * On return the kfd_process is fully operational and will be freed when the 1583 * mm is released 1584 */ 1585 struct kfd_process *create_process(const struct task_struct *thread, bool primary) 1586 { 1587 struct kfd_process *process; 1588 struct mmu_notifier *mn; 1589 int err = -ENOMEM; 1590 1591 process = kzalloc(sizeof(*process), GFP_KERNEL); 1592 if (!process) 1593 goto err_alloc_process; 1594 1595 kref_init(&process->ref); 1596 mutex_init(&process->mutex); 1597 process->mm = thread->mm; 1598 process->lead_thread = thread->group_leader; 1599 process->n_pdds = 0; 1600 process->queues_paused = false; 1601 1602 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1603 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1604 process->last_restore_timestamp = get_jiffies_64(); 1605 err = kfd_event_init_process(process); 1606 if (err) 1607 goto err_event_init; 1608 process->is_32bit_user_mode = in_compat_syscall(); 1609 process->debug_trap_enabled = false; 1610 process->debugger_process = NULL; 1611 process->exception_enable_mask = 0; 1612 atomic_set(&process->debugged_process_count, 0); 1613 sema_init(&process->runtime_enable_sema, 0); 1614 1615 err = pqm_init(&process->pqm, process); 1616 if (err != 0) 1617 goto err_process_pqm_init; 1618 1619 /* init process apertures*/ 1620 err = kfd_init_apertures(process); 1621 if (err != 0) 1622 goto err_init_apertures; 1623 1624 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1625 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1626 1627 err = svm_range_list_init(process); 1628 if (err) 1629 goto err_init_svm_range_list; 1630 1631 /* alloc_notifier needs to find the process in the hash table */ 1632 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1633 (uintptr_t)process->mm); 1634 1635 /* Avoid free_notifier to start kfd_process_wq_release if 1636 * mmu_notifier_get failed because of pending signal. 1637 */ 1638 kref_get(&process->ref); 1639 1640 /* MMU notifier registration must be the last call that can fail 1641 * because after this point we cannot unwind the process creation. 1642 * After this point, mmu_notifier_put will trigger the cleanup by 1643 * dropping the last process reference in the free_notifier. 1644 */ 1645 if (primary) { 1646 process->context_id = KFD_CONTEXT_ID_PRIMARY; 1647 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1648 if (IS_ERR(mn)) { 1649 err = PTR_ERR(mn); 1650 goto err_register_notifier; 1651 } 1652 BUG_ON(mn != &process->mmu_notifier); 1653 ida_init(&process->id_table); 1654 } 1655 1656 err = kfd_process_alloc_id(process); 1657 if (err) { 1658 pr_err("Creating kfd process: failed to alloc an id\n"); 1659 goto err_alloc_id; 1660 } 1661 1662 kfd_unref_process(process); 1663 get_task_struct(process->lead_thread); 1664 1665 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1666 1667 return process; 1668 1669 err_alloc_id: 1670 kfd_process_free_id(process); 1671 err_register_notifier: 1672 hash_del_rcu(&process->kfd_processes); 1673 svm_range_list_fini(process); 1674 err_init_svm_range_list: 1675 kfd_process_free_outstanding_kfd_bos(process); 1676 kfd_process_destroy_pdds(process); 1677 err_init_apertures: 1678 pqm_uninit(&process->pqm); 1679 err_process_pqm_init: 1680 kfd_event_free_process(process); 1681 err_event_init: 1682 mutex_destroy(&process->mutex); 1683 kfree(process); 1684 err_alloc_process: 1685 return ERR_PTR(err); 1686 } 1687 1688 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1689 struct kfd_process *p) 1690 { 1691 int i; 1692 1693 for (i = 0; i < p->n_pdds; i++) 1694 if (p->pdds[i]->dev == dev) 1695 return p->pdds[i]; 1696 1697 return NULL; 1698 } 1699 1700 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1701 struct kfd_process *p) 1702 { 1703 struct kfd_process_device *pdd = NULL; 1704 1705 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1706 return NULL; 1707 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1708 if (!pdd) 1709 return NULL; 1710 1711 pdd->dev = dev; 1712 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1713 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1714 pdd->qpd.dqm = dev->dqm; 1715 pdd->qpd.pqm = &p->pqm; 1716 pdd->qpd.evicted = 0; 1717 pdd->qpd.mapped_gws_queue = false; 1718 pdd->process = p; 1719 pdd->bound = PDD_UNBOUND; 1720 pdd->already_dequeued = false; 1721 pdd->runtime_inuse = false; 1722 atomic64_set(&pdd->vram_usage, 0); 1723 pdd->sdma_past_activity_counter = 0; 1724 pdd->user_gpu_id = dev->id; 1725 atomic64_set(&pdd->evict_duration_counter, 0); 1726 1727 p->pdds[p->n_pdds++] = pdd; 1728 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1729 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1730 pdd->dev->adev, 1731 false, 1732 0); 1733 1734 /* Init idr used for memory handle translation */ 1735 idr_init(&pdd->alloc_idr); 1736 1737 atomic_inc(&dev->kfd->kfd_processes_count); 1738 1739 return pdd; 1740 } 1741 1742 /** 1743 * kfd_process_device_init_vm - Initialize a VM for a process-device 1744 * 1745 * @pdd: The process-device 1746 * @drm_file: Optional pointer to a DRM file descriptor 1747 * 1748 * If @drm_file is specified, it will be used to acquire the VM from 1749 * that file descriptor. If successful, the @pdd takes ownership of 1750 * the file descriptor. 1751 * 1752 * If @drm_file is NULL, a new VM is created. 1753 * 1754 * Returns 0 on success, -errno on failure. 1755 */ 1756 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1757 struct file *drm_file) 1758 { 1759 struct amdgpu_fpriv *drv_priv; 1760 struct amdgpu_vm *avm; 1761 struct kfd_process *p; 1762 struct dma_fence *ef; 1763 struct kfd_node *dev; 1764 int ret; 1765 1766 if (!drm_file) 1767 return -EINVAL; 1768 1769 if (pdd->drm_priv) 1770 return -EBUSY; 1771 1772 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1773 if (ret) 1774 return ret; 1775 avm = &drv_priv->vm; 1776 1777 p = pdd->process; 1778 dev = pdd->dev; 1779 1780 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1781 &p->kgd_process_info, 1782 p->ef ? NULL : &ef); 1783 if (ret) { 1784 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1785 return ret; 1786 } 1787 1788 if (!p->ef) 1789 RCU_INIT_POINTER(p->ef, ef); 1790 1791 pdd->drm_priv = drm_file->private_data; 1792 1793 ret = kfd_process_device_reserve_ib_mem(pdd); 1794 if (ret) 1795 goto err_reserve_ib_mem; 1796 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1797 if (ret) 1798 goto err_init_cwsr; 1799 1800 if (unlikely(!avm->pasid)) { 1801 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated", 1802 avm); 1803 ret = -EINVAL; 1804 goto err_get_pasid; 1805 } 1806 1807 pdd->pasid = avm->pasid; 1808 pdd->drm_file = drm_file; 1809 1810 kfd_smi_event_process(pdd, true); 1811 1812 return 0; 1813 1814 err_get_pasid: 1815 kfd_process_device_destroy_cwsr_dgpu(pdd); 1816 err_init_cwsr: 1817 kfd_process_device_destroy_ib_mem(pdd); 1818 err_reserve_ib_mem: 1819 pdd->drm_priv = NULL; 1820 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1821 1822 return ret; 1823 } 1824 1825 /* 1826 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1827 * to the device. 1828 * Unbinding occurs when the process dies or the device is removed. 1829 * 1830 * Assumes that the process lock is held. 1831 */ 1832 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1833 struct kfd_process *p) 1834 { 1835 struct kfd_process_device *pdd; 1836 int err; 1837 1838 pdd = kfd_get_process_device_data(dev, p); 1839 if (!pdd) { 1840 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1841 return ERR_PTR(-ENOMEM); 1842 } 1843 1844 if (!pdd->drm_priv) 1845 return ERR_PTR(-ENODEV); 1846 1847 /* 1848 * signal runtime-pm system to auto resume and prevent 1849 * further runtime suspend once device pdd is created until 1850 * pdd is destroyed. 1851 */ 1852 if (!pdd->runtime_inuse) { 1853 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1854 if (err < 0) { 1855 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1856 return ERR_PTR(err); 1857 } 1858 } 1859 1860 /* 1861 * make sure that runtime_usage counter is incremented just once 1862 * per pdd 1863 */ 1864 pdd->runtime_inuse = true; 1865 1866 return pdd; 1867 } 1868 1869 /* Create specific handle mapped to mem from process local memory idr 1870 * Assumes that the process lock is held. 1871 */ 1872 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1873 void *mem) 1874 { 1875 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1876 } 1877 1878 /* Translate specific handle from process local memory idr 1879 * Assumes that the process lock is held. 1880 */ 1881 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1882 int handle) 1883 { 1884 if (handle < 0) 1885 return NULL; 1886 1887 return idr_find(&pdd->alloc_idr, handle); 1888 } 1889 1890 /* Remove specific handle from process local memory idr 1891 * Assumes that the process lock is held. 1892 */ 1893 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1894 int handle) 1895 { 1896 if (handle >= 0) 1897 idr_remove(&pdd->alloc_idr, handle); 1898 } 1899 1900 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid) 1901 { 1902 struct kfd_process_device *ret_p = NULL; 1903 struct kfd_process *p; 1904 unsigned int temp; 1905 int i; 1906 1907 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1908 for (i = 0; i < p->n_pdds; i++) { 1909 if (p->pdds[i]->pasid == pasid) { 1910 ret_p = p->pdds[i]; 1911 break; 1912 } 1913 } 1914 if (ret_p) 1915 break; 1916 } 1917 return ret_p; 1918 } 1919 1920 /* This increments the process->ref counter. */ 1921 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1922 struct kfd_process_device **pdd) 1923 { 1924 struct kfd_process_device *ret_p; 1925 1926 int idx = srcu_read_lock(&kfd_processes_srcu); 1927 1928 ret_p = kfd_lookup_process_device_by_pasid(pasid); 1929 if (ret_p) { 1930 if (pdd) 1931 *pdd = ret_p; 1932 kref_get(&ret_p->process->ref); 1933 1934 srcu_read_unlock(&kfd_processes_srcu, idx); 1935 return ret_p->process; 1936 } 1937 1938 srcu_read_unlock(&kfd_processes_srcu, idx); 1939 1940 if (pdd) 1941 *pdd = NULL; 1942 1943 return NULL; 1944 } 1945 1946 /* This increments the process->ref counter. */ 1947 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1948 { 1949 struct kfd_process *p; 1950 1951 int idx = srcu_read_lock(&kfd_processes_srcu); 1952 1953 p = find_process_by_mm(mm); 1954 if (p) 1955 kref_get(&p->ref); 1956 1957 srcu_read_unlock(&kfd_processes_srcu, idx); 1958 1959 return p; 1960 } 1961 1962 /* This increments the process->ref counter. */ 1963 struct kfd_process *kfd_lookup_process_by_id(const struct mm_struct *mm, u16 id) 1964 { 1965 struct kfd_process *p, *ret_p = NULL; 1966 unsigned int temp; 1967 1968 int idx = srcu_read_lock(&kfd_processes_srcu); 1969 1970 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1971 if (p->mm == mm && p->context_id == id) { 1972 kref_get(&p->ref); 1973 ret_p = p; 1974 break; 1975 } 1976 } 1977 1978 srcu_read_unlock(&kfd_processes_srcu, idx); 1979 1980 return ret_p; 1981 } 1982 1983 /* kfd_process_evict_queues - Evict all user queues of a process 1984 * 1985 * Eviction is reference-counted per process-device. This means multiple 1986 * evictions from different sources can be nested safely. 1987 */ 1988 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1989 { 1990 int r = 0; 1991 int i; 1992 unsigned int n_evicted = 0; 1993 1994 for (i = 0; i < p->n_pdds; i++) { 1995 struct kfd_process_device *pdd = p->pdds[i]; 1996 struct device *dev = pdd->dev->adev->dev; 1997 1998 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1999 trigger); 2000 2001 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 2002 &pdd->qpd); 2003 /* evict return -EIO if HWS is hang or asic is resetting, in this case 2004 * we would like to set all the queues to be in evicted state to prevent 2005 * them been add back since they actually not be saved right now. 2006 */ 2007 if (r && r != -EIO) { 2008 dev_err(dev, "Failed to evict process queues\n"); 2009 goto fail; 2010 } 2011 n_evicted++; 2012 2013 pdd->dev->dqm->is_hws_hang = false; 2014 } 2015 2016 return r; 2017 2018 fail: 2019 /* To keep state consistent, roll back partial eviction by 2020 * restoring queues 2021 */ 2022 for (i = 0; i < p->n_pdds; i++) { 2023 struct kfd_process_device *pdd = p->pdds[i]; 2024 2025 if (n_evicted == 0) 2026 break; 2027 2028 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 2029 2030 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 2031 &pdd->qpd)) 2032 dev_err(pdd->dev->adev->dev, 2033 "Failed to restore queues\n"); 2034 2035 n_evicted--; 2036 } 2037 2038 return r; 2039 } 2040 2041 /* kfd_process_restore_queues - Restore all user queues of a process */ 2042 int kfd_process_restore_queues(struct kfd_process *p) 2043 { 2044 int r, ret = 0; 2045 int i; 2046 2047 for (i = 0; i < p->n_pdds; i++) { 2048 struct kfd_process_device *pdd = p->pdds[i]; 2049 struct device *dev = pdd->dev->adev->dev; 2050 2051 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 2052 2053 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 2054 &pdd->qpd); 2055 if (r) { 2056 dev_err(dev, "Failed to restore process queues\n"); 2057 if (!ret) 2058 ret = r; 2059 } 2060 } 2061 2062 return ret; 2063 } 2064 2065 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 2066 { 2067 int i; 2068 2069 for (i = 0; i < p->n_pdds; i++) 2070 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 2071 return i; 2072 return -EINVAL; 2073 } 2074 2075 int 2076 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 2077 uint32_t *gpuid, uint32_t *gpuidx) 2078 { 2079 int i; 2080 2081 for (i = 0; i < p->n_pdds; i++) 2082 if (p->pdds[i] && p->pdds[i]->dev == node) { 2083 *gpuid = p->pdds[i]->user_gpu_id; 2084 *gpuidx = i; 2085 return 0; 2086 } 2087 return -EINVAL; 2088 } 2089 2090 static int signal_eviction_fence(struct kfd_process *p) 2091 { 2092 struct dma_fence *ef; 2093 int ret; 2094 2095 rcu_read_lock(); 2096 ef = dma_fence_get_rcu_safe(&p->ef); 2097 rcu_read_unlock(); 2098 if (!ef) 2099 return true; 2100 2101 ret = dma_fence_signal(ef); 2102 dma_fence_put(ef); 2103 2104 return ret; 2105 } 2106 2107 static void evict_process_worker(struct work_struct *work) 2108 { 2109 int ret; 2110 struct kfd_process *p; 2111 struct delayed_work *dwork; 2112 2113 dwork = to_delayed_work(work); 2114 2115 /* Process termination destroys this worker thread. So during the 2116 * lifetime of this thread, kfd_process p will be valid 2117 */ 2118 p = container_of(dwork, struct kfd_process, eviction_work); 2119 2120 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid); 2121 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 2122 if (!ret) { 2123 /* If another thread already signaled the eviction fence, 2124 * they are responsible stopping the queues and scheduling 2125 * the restore work. 2126 */ 2127 if (signal_eviction_fence(p) || 2128 mod_delayed_work(kfd_restore_wq, &p->restore_work, 2129 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2130 kfd_process_restore_queues(p); 2131 2132 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid); 2133 } else 2134 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid); 2135 } 2136 2137 static int restore_process_helper(struct kfd_process *p) 2138 { 2139 int ret = 0; 2140 2141 /* VMs may not have been acquired yet during debugging. */ 2142 if (p->kgd_process_info) { 2143 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2144 p->kgd_process_info, &p->ef); 2145 if (ret) 2146 return ret; 2147 } 2148 2149 ret = kfd_process_restore_queues(p); 2150 if (!ret) 2151 pr_debug("Finished restoring process pid %d\n", 2152 p->lead_thread->pid); 2153 else 2154 pr_err("Failed to restore queues of process pid %d\n", 2155 p->lead_thread->pid); 2156 2157 return ret; 2158 } 2159 2160 static void restore_process_worker(struct work_struct *work) 2161 { 2162 struct delayed_work *dwork; 2163 struct kfd_process *p; 2164 int ret = 0; 2165 2166 dwork = to_delayed_work(work); 2167 2168 /* Process termination destroys this worker thread. So during the 2169 * lifetime of this thread, kfd_process p will be valid 2170 */ 2171 p = container_of(dwork, struct kfd_process, restore_work); 2172 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid); 2173 2174 /* Setting last_restore_timestamp before successful restoration. 2175 * Otherwise this would have to be set by KGD (restore_process_bos) 2176 * before KFD BOs are unreserved. If not, the process can be evicted 2177 * again before the timestamp is set. 2178 * If restore fails, the timestamp will be set again in the next 2179 * attempt. This would mean that the minimum GPU quanta would be 2180 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2181 * functions) 2182 */ 2183 2184 p->last_restore_timestamp = get_jiffies_64(); 2185 2186 ret = restore_process_helper(p); 2187 if (ret) { 2188 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n", 2189 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS); 2190 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2191 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2192 kfd_process_restore_queues(p); 2193 } 2194 } 2195 2196 void kfd_suspend_all_processes(void) 2197 { 2198 struct kfd_process *p; 2199 unsigned int temp; 2200 int idx = srcu_read_lock(&kfd_processes_srcu); 2201 2202 WARN(debug_evictions, "Evicting all processes"); 2203 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2204 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2205 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid); 2206 signal_eviction_fence(p); 2207 } 2208 srcu_read_unlock(&kfd_processes_srcu, idx); 2209 } 2210 2211 int kfd_resume_all_processes(void) 2212 { 2213 struct kfd_process *p; 2214 unsigned int temp; 2215 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2216 2217 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2218 if (restore_process_helper(p)) { 2219 pr_err("Restore process pid %d failed during resume\n", 2220 p->lead_thread->pid); 2221 ret = -EFAULT; 2222 } 2223 } 2224 srcu_read_unlock(&kfd_processes_srcu, idx); 2225 return ret; 2226 } 2227 2228 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2229 struct vm_area_struct *vma) 2230 { 2231 struct kfd_process_device *pdd; 2232 struct qcm_process_device *qpd; 2233 2234 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2235 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2236 return -EINVAL; 2237 } 2238 2239 pdd = kfd_get_process_device_data(dev, process); 2240 if (!pdd) 2241 return -EINVAL; 2242 qpd = &pdd->qpd; 2243 2244 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2245 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2246 if (!qpd->cwsr_kaddr) { 2247 dev_err(dev->adev->dev, 2248 "Error allocating per process CWSR buffer.\n"); 2249 return -ENOMEM; 2250 } 2251 2252 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2253 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2254 /* Mapping pages to user process */ 2255 return remap_pfn_range(vma, vma->vm_start, 2256 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2257 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2258 } 2259 2260 /* assumes caller holds process lock. */ 2261 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2262 { 2263 uint32_t irq_drain_fence[8]; 2264 uint8_t node_id = 0; 2265 int r = 0; 2266 2267 if (!KFD_IS_SOC15(pdd->dev)) 2268 return 0; 2269 2270 pdd->process->irq_drain_is_open = true; 2271 2272 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2273 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2274 KFD_IRQ_FENCE_CLIENTID; 2275 irq_drain_fence[3] = pdd->pasid; 2276 2277 /* 2278 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3] 2279 */ 2280 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2281 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) || 2282 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0) || 2283 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(12, 1, 0)) { 2284 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2285 irq_drain_fence[3] |= node_id << 16; 2286 } 2287 2288 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2289 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2290 irq_drain_fence)) { 2291 pdd->process->irq_drain_is_open = false; 2292 return 0; 2293 } 2294 2295 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2296 !READ_ONCE(pdd->process->irq_drain_is_open)); 2297 if (r) 2298 pdd->process->irq_drain_is_open = false; 2299 2300 return r; 2301 } 2302 2303 void kfd_process_close_interrupt_drain(unsigned int pasid) 2304 { 2305 struct kfd_process *p; 2306 2307 p = kfd_lookup_process_by_pasid(pasid, NULL); 2308 2309 if (!p) 2310 return; 2311 2312 WRITE_ONCE(p->irq_drain_is_open, false); 2313 wake_up_all(&p->wait_irq_drain); 2314 kfd_unref_process(p); 2315 } 2316 2317 struct send_exception_work_handler_workarea { 2318 struct work_struct work; 2319 struct kfd_process *p; 2320 unsigned int queue_id; 2321 uint64_t error_reason; 2322 }; 2323 2324 static void send_exception_work_handler(struct work_struct *work) 2325 { 2326 struct send_exception_work_handler_workarea *workarea; 2327 struct kfd_process *p; 2328 struct queue *q; 2329 struct mm_struct *mm; 2330 struct kfd_context_save_area_header __user *csa_header; 2331 uint64_t __user *err_payload_ptr; 2332 uint64_t cur_err; 2333 uint32_t ev_id; 2334 2335 workarea = container_of(work, 2336 struct send_exception_work_handler_workarea, 2337 work); 2338 p = workarea->p; 2339 2340 mm = get_task_mm(p->lead_thread); 2341 2342 if (!mm) 2343 return; 2344 2345 kthread_use_mm(mm); 2346 2347 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2348 2349 if (!q) 2350 goto out; 2351 2352 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2353 2354 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2355 get_user(cur_err, err_payload_ptr); 2356 cur_err |= workarea->error_reason; 2357 put_user(cur_err, err_payload_ptr); 2358 get_user(ev_id, &csa_header->err_event_id); 2359 2360 kfd_set_event(p, ev_id); 2361 2362 out: 2363 kthread_unuse_mm(mm); 2364 mmput(mm); 2365 } 2366 2367 int kfd_send_exception_to_runtime(struct kfd_process *p, 2368 unsigned int queue_id, 2369 uint64_t error_reason) 2370 { 2371 struct send_exception_work_handler_workarea worker; 2372 2373 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2374 2375 worker.p = p; 2376 worker.queue_id = queue_id; 2377 worker.error_reason = error_reason; 2378 2379 schedule_work(&worker.work); 2380 flush_work(&worker.work); 2381 destroy_work_on_stack(&worker.work); 2382 2383 return 0; 2384 } 2385 2386 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2387 { 2388 int i; 2389 2390 if (gpu_id) { 2391 for (i = 0; i < p->n_pdds; i++) { 2392 struct kfd_process_device *pdd = p->pdds[i]; 2393 2394 if (pdd->user_gpu_id == gpu_id) 2395 return pdd; 2396 } 2397 } 2398 return NULL; 2399 } 2400 2401 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2402 { 2403 int i; 2404 2405 if (!actual_gpu_id) 2406 return 0; 2407 2408 for (i = 0; i < p->n_pdds; i++) { 2409 struct kfd_process_device *pdd = p->pdds[i]; 2410 2411 if (pdd->dev->id == actual_gpu_id) 2412 return pdd->user_gpu_id; 2413 } 2414 return -EINVAL; 2415 } 2416 2417 #if defined(CONFIG_DEBUG_FS) 2418 2419 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2420 { 2421 struct kfd_process *p; 2422 unsigned int temp; 2423 int r = 0; 2424 2425 int idx = srcu_read_lock(&kfd_processes_srcu); 2426 2427 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2428 seq_printf(m, "Process %d PASID %d:\n", 2429 p->lead_thread->tgid, p->lead_thread->pid); 2430 2431 mutex_lock(&p->mutex); 2432 r = pqm_debugfs_mqds(m, &p->pqm); 2433 mutex_unlock(&p->mutex); 2434 2435 if (r) 2436 break; 2437 } 2438 2439 srcu_read_unlock(&kfd_processes_srcu, idx); 2440 2441 return r; 2442 } 2443 2444 #endif 2445