xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 7255fcc80d4b525cc10cfaaf7f485830d4ed2000)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 
274 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 	dev = pdd->dev;
276 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 		return -EINVAL;
278 
279 	cu_cnt = 0;
280 	proc = pdd->process;
281 	if (pdd->qpd.queue_count == 0) {
282 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 			 dev->id, proc->pasid);
284 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 	}
286 
287 	/* Collect wave count from device if it supports */
288 	wave_cnt = 0;
289 	max_waves_per_cu = 0;
290 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 			&max_waves_per_cu, 0);
292 
293 	/* Translate wave count to number of compute units */
294 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297 
298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 			       char *buffer)
300 {
301 	if (strcmp(attr->name, "pasid") == 0) {
302 		struct kfd_process *p = container_of(attr, struct kfd_process,
303 						     attr_pasid);
304 
305 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 							      attr_vram);
309 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 							      attr_sdma);
313 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314 
315 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 					kfd_sdma_activity_worker);
317 
318 		sdma_activity_work_handler.pdd = pdd;
319 		sdma_activity_work_handler.sdma_activity_counter = 0;
320 
321 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322 
323 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324 
325 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 				(sdma_activity_work_handler.sdma_activity_counter)/
327 				 SDMA_ACTIVITY_DIVISOR);
328 	} else {
329 		pr_err("Invalid attribute");
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 	kfree(kobj);
339 }
340 
341 static const struct sysfs_ops kfd_procfs_ops = {
342 	.show = kfd_procfs_show,
343 };
344 
345 static const struct kobj_type procfs_type = {
346 	.release = kfd_procfs_kobj_release,
347 	.sysfs_ops = &kfd_procfs_ops,
348 };
349 
350 void kfd_procfs_init(void)
351 {
352 	int ret = 0;
353 
354 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 	if (!procfs.kobj)
356 		return;
357 
358 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 				   &kfd_device->kobj, "proc");
360 	if (ret) {
361 		pr_warn("Could not create procfs proc folder");
362 		/* If we fail to create the procfs, clean up */
363 		kfd_procfs_shutdown();
364 	}
365 }
366 
367 void kfd_procfs_shutdown(void)
368 {
369 	if (procfs.kobj) {
370 		kobject_del(procfs.kobj);
371 		kobject_put(procfs.kobj);
372 		procfs.kobj = NULL;
373 	}
374 }
375 
376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 				     struct attribute *attr, char *buffer)
378 {
379 	struct queue *q = container_of(kobj, struct queue, kobj);
380 
381 	if (!strcmp(attr->name, "size"))
382 		return snprintf(buffer, PAGE_SIZE, "%llu",
383 				q->properties.queue_size);
384 	else if (!strcmp(attr->name, "type"))
385 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 	else if (!strcmp(attr->name, "gpuid"))
387 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 	else
389 		pr_err("Invalid attribute");
390 
391 	return 0;
392 }
393 
394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 				     struct attribute *attr, char *buffer)
396 {
397 	if (strcmp(attr->name, "evicted_ms") == 0) {
398 		struct kfd_process_device *pdd = container_of(attr,
399 				struct kfd_process_device,
400 				attr_evict);
401 		uint64_t evict_jiffies;
402 
403 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404 
405 		return snprintf(buffer,
406 				PAGE_SIZE,
407 				"%llu\n",
408 				jiffies64_to_msecs(evict_jiffies));
409 
410 	/* Sysfs handle that gets CU occupancy is per device */
411 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 		return kfd_get_cu_occupancy(attr, buffer);
413 	} else {
414 		pr_err("Invalid attribute");
415 	}
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 				       struct attribute *attr, char *buf)
422 {
423 	struct kfd_process_device *pdd;
424 
425 	if (!strcmp(attr->name, "faults")) {
426 		pdd = container_of(attr, struct kfd_process_device,
427 				   attr_faults);
428 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 	}
430 	if (!strcmp(attr->name, "page_in")) {
431 		pdd = container_of(attr, struct kfd_process_device,
432 				   attr_page_in);
433 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 	}
435 	if (!strcmp(attr->name, "page_out")) {
436 		pdd = container_of(attr, struct kfd_process_device,
437 				   attr_page_out);
438 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 	}
440 	return 0;
441 }
442 
443 static struct attribute attr_queue_size = {
444 	.name = "size",
445 	.mode = KFD_SYSFS_FILE_MODE
446 };
447 
448 static struct attribute attr_queue_type = {
449 	.name = "type",
450 	.mode = KFD_SYSFS_FILE_MODE
451 };
452 
453 static struct attribute attr_queue_gpuid = {
454 	.name = "gpuid",
455 	.mode = KFD_SYSFS_FILE_MODE
456 };
457 
458 static struct attribute *procfs_queue_attrs[] = {
459 	&attr_queue_size,
460 	&attr_queue_type,
461 	&attr_queue_gpuid,
462 	NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465 
466 static const struct sysfs_ops procfs_queue_ops = {
467 	.show = kfd_procfs_queue_show,
468 };
469 
470 static const struct kobj_type procfs_queue_type = {
471 	.sysfs_ops = &procfs_queue_ops,
472 	.default_groups = procfs_queue_groups,
473 };
474 
475 static const struct sysfs_ops procfs_stats_ops = {
476 	.show = kfd_procfs_stats_show,
477 };
478 
479 static const struct kobj_type procfs_stats_type = {
480 	.sysfs_ops = &procfs_stats_ops,
481 	.release = kfd_procfs_kobj_release,
482 };
483 
484 static const struct sysfs_ops sysfs_counters_ops = {
485 	.show = kfd_sysfs_counters_show,
486 };
487 
488 static const struct kobj_type sysfs_counters_type = {
489 	.sysfs_ops = &sysfs_counters_ops,
490 	.release = kfd_procfs_kobj_release,
491 };
492 
493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 	struct kfd_process *proc;
496 	int ret;
497 
498 	if (!q || !q->process)
499 		return -EINVAL;
500 	proc = q->process;
501 
502 	/* Create proc/<pid>/queues/<queue id> folder */
503 	if (!proc->kobj_queues)
504 		return -EFAULT;
505 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 			proc->kobj_queues, "%u", q->properties.queue_id);
507 	if (ret < 0) {
508 		pr_warn("Creating proc/<pid>/queues/%u failed",
509 			q->properties.queue_id);
510 		kobject_put(&q->kobj);
511 		return ret;
512 	}
513 
514 	return 0;
515 }
516 
517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 				 char *name)
519 {
520 	int ret;
521 
522 	if (!kobj || !attr || !name)
523 		return;
524 
525 	attr->name = name;
526 	attr->mode = KFD_SYSFS_FILE_MODE;
527 	sysfs_attr_init(attr);
528 
529 	ret = sysfs_create_file(kobj, attr);
530 	if (ret)
531 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533 
534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 	int ret;
537 	int i;
538 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539 
540 	if (!p || !p->kobj)
541 		return;
542 
543 	/*
544 	 * Create sysfs files for each GPU:
545 	 * - proc/<pid>/stats_<gpuid>/
546 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 	 */
549 	for (i = 0; i < p->n_pdds; i++) {
550 		struct kfd_process_device *pdd = p->pdds[i];
551 
552 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 				"stats_%u", pdd->dev->id);
554 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 		if (!pdd->kobj_stats)
556 			return;
557 
558 		ret = kobject_init_and_add(pdd->kobj_stats,
559 					   &procfs_stats_type,
560 					   p->kobj,
561 					   stats_dir_filename);
562 
563 		if (ret) {
564 			pr_warn("Creating KFD proc/stats_%s folder failed",
565 				stats_dir_filename);
566 			kobject_put(pdd->kobj_stats);
567 			pdd->kobj_stats = NULL;
568 			return;
569 		}
570 
571 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 				      "evicted_ms");
573 		/* Add sysfs file to report compute unit occupancy */
574 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 			kfd_sysfs_create_file(pdd->kobj_stats,
576 					      &pdd->attr_cu_occupancy,
577 					      "cu_occupancy");
578 	}
579 }
580 
581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 	int ret = 0;
584 	int i;
585 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586 
587 	if (!p || !p->kobj)
588 		return;
589 
590 	/*
591 	 * Create sysfs files for each GPU which supports SVM
592 	 * - proc/<pid>/counters_<gpuid>/
593 	 * - proc/<pid>/counters_<gpuid>/faults
594 	 * - proc/<pid>/counters_<gpuid>/page_in
595 	 * - proc/<pid>/counters_<gpuid>/page_out
596 	 */
597 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 		struct kfd_process_device *pdd = p->pdds[i];
599 		struct kobject *kobj_counters;
600 
601 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 			"counters_%u", pdd->dev->id);
603 		kobj_counters = kfd_alloc_struct(kobj_counters);
604 		if (!kobj_counters)
605 			return;
606 
607 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 					   p->kobj, counters_dir_filename);
609 		if (ret) {
610 			pr_warn("Creating KFD proc/%s folder failed",
611 				counters_dir_filename);
612 			kobject_put(kobj_counters);
613 			return;
614 		}
615 
616 		pdd->kobj_counters = kobj_counters;
617 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 				      "faults");
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 				      "page_in");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 				      "page_out");
623 	}
624 }
625 
626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 	int i;
629 
630 	if (!p || !p->kobj)
631 		return;
632 
633 	/*
634 	 * Create sysfs files for each GPU:
635 	 * - proc/<pid>/vram_<gpuid>
636 	 * - proc/<pid>/sdma_<gpuid>
637 	 */
638 	for (i = 0; i < p->n_pdds; i++) {
639 		struct kfd_process_device *pdd = p->pdds[i];
640 
641 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 			 pdd->dev->id);
643 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 				      pdd->vram_filename);
645 
646 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 			 pdd->dev->id);
648 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 					    pdd->sdma_filename);
650 	}
651 }
652 
653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 	if (!q)
656 		return;
657 
658 	kobject_del(&q->kobj);
659 	kobject_put(&q->kobj);
660 }
661 
662 int kfd_process_create_wq(void)
663 {
664 	if (!kfd_process_wq)
665 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 	if (!kfd_restore_wq)
667 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 							 WQ_FREEZABLE);
669 
670 	if (!kfd_process_wq || !kfd_restore_wq) {
671 		kfd_process_destroy_wq();
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 void kfd_process_destroy_wq(void)
679 {
680 	if (kfd_process_wq) {
681 		destroy_workqueue(kfd_process_wq);
682 		kfd_process_wq = NULL;
683 	}
684 	if (kfd_restore_wq) {
685 		destroy_workqueue(kfd_restore_wq);
686 		kfd_restore_wq = NULL;
687 	}
688 }
689 
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 			struct kfd_process_device *pdd, void **kptr)
692 {
693 	struct kfd_node *dev = pdd->dev;
694 
695 	if (kptr && *kptr) {
696 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 		*kptr = NULL;
698 	}
699 
700 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 					       NULL);
703 }
704 
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *	This function should be only called right after the process
707  *	is created and when kfd_processes_mutex is still being held
708  *	to avoid concurrency. Because of that exclusiveness, we do
709  *	not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 				   uint64_t gpu_va, uint32_t size,
713 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 	struct kfd_node *kdev = pdd->dev;
716 	int err;
717 
718 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 						 pdd->drm_priv, mem, NULL,
720 						 flags, false);
721 	if (err)
722 		goto err_alloc_mem;
723 
724 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 			pdd->drm_priv);
726 	if (err)
727 		goto err_map_mem;
728 
729 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 	if (err) {
731 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 		goto sync_memory_failed;
733 	}
734 
735 	if (kptr) {
736 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 				(struct kgd_mem *)*mem, kptr, NULL);
738 		if (err) {
739 			pr_debug("Map GTT BO to kernel failed\n");
740 			goto sync_memory_failed;
741 		}
742 	}
743 
744 	return err;
745 
746 sync_memory_failed:
747 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748 
749 err_map_mem:
750 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 					       NULL);
752 err_alloc_mem:
753 	*mem = NULL;
754 	*kptr = NULL;
755 	return err;
756 }
757 
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *	process for IB usage The memory reserved is for KFD to submit
760  *	IB to AMDGPU from kernel.  If the memory is reserved
761  *	successfully, ib_kaddr will have the CPU/kernel
762  *	address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 	struct qcm_process_device *qpd = &pdd->qpd;
767 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 	struct kgd_mem *mem;
772 	void *kaddr;
773 	int ret;
774 
775 	if (qpd->ib_kaddr || !qpd->ib_base)
776 		return 0;
777 
778 	/* ib_base is only set for dGPU */
779 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 				      &mem, &kaddr);
781 	if (ret)
782 		return ret;
783 
784 	qpd->ib_mem = mem;
785 	qpd->ib_kaddr = kaddr;
786 
787 	return 0;
788 }
789 
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 
794 	if (!qpd->ib_kaddr || !qpd->ib_base)
795 		return;
796 
797 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798 }
799 
800 struct kfd_process *kfd_create_process(struct task_struct *thread)
801 {
802 	struct kfd_process *process;
803 	int ret;
804 
805 	if (!(thread->mm && mmget_not_zero(thread->mm)))
806 		return ERR_PTR(-EINVAL);
807 
808 	/* Only the pthreads threading model is supported. */
809 	if (thread->group_leader->mm != thread->mm) {
810 		mmput(thread->mm);
811 		return ERR_PTR(-EINVAL);
812 	}
813 
814 	/*
815 	 * take kfd processes mutex before starting of process creation
816 	 * so there won't be a case where two threads of the same process
817 	 * create two kfd_process structures
818 	 */
819 	mutex_lock(&kfd_processes_mutex);
820 
821 	if (kfd_is_locked()) {
822 		pr_debug("KFD is locked! Cannot create process");
823 		process = ERR_PTR(-EINVAL);
824 		goto out;
825 	}
826 
827 	/* A prior open of /dev/kfd could have already created the process. */
828 	process = find_process(thread, false);
829 	if (process) {
830 		pr_debug("Process already found\n");
831 	} else {
832 		process = create_process(thread);
833 		if (IS_ERR(process))
834 			goto out;
835 
836 		if (!procfs.kobj)
837 			goto out;
838 
839 		process->kobj = kfd_alloc_struct(process->kobj);
840 		if (!process->kobj) {
841 			pr_warn("Creating procfs kobject failed");
842 			goto out;
843 		}
844 		ret = kobject_init_and_add(process->kobj, &procfs_type,
845 					   procfs.kobj, "%d",
846 					   (int)process->lead_thread->pid);
847 		if (ret) {
848 			pr_warn("Creating procfs pid directory failed");
849 			kobject_put(process->kobj);
850 			goto out;
851 		}
852 
853 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854 				      "pasid");
855 
856 		process->kobj_queues = kobject_create_and_add("queues",
857 							process->kobj);
858 		if (!process->kobj_queues)
859 			pr_warn("Creating KFD proc/queues folder failed");
860 
861 		kfd_procfs_add_sysfs_stats(process);
862 		kfd_procfs_add_sysfs_files(process);
863 		kfd_procfs_add_sysfs_counters(process);
864 
865 		init_waitqueue_head(&process->wait_irq_drain);
866 	}
867 out:
868 	if (!IS_ERR(process))
869 		kref_get(&process->ref);
870 	mutex_unlock(&kfd_processes_mutex);
871 	mmput(thread->mm);
872 
873 	return process;
874 }
875 
876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878 	struct kfd_process *process;
879 
880 	if (!thread->mm)
881 		return ERR_PTR(-EINVAL);
882 
883 	/* Only the pthreads threading model is supported. */
884 	if (thread->group_leader->mm != thread->mm)
885 		return ERR_PTR(-EINVAL);
886 
887 	process = find_process(thread, false);
888 	if (!process)
889 		return ERR_PTR(-EINVAL);
890 
891 	return process;
892 }
893 
894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896 	struct kfd_process *process;
897 
898 	hash_for_each_possible_rcu(kfd_processes_table, process,
899 					kfd_processes, (uintptr_t)mm)
900 		if (process->mm == mm)
901 			return process;
902 
903 	return NULL;
904 }
905 
906 static struct kfd_process *find_process(const struct task_struct *thread,
907 					bool ref)
908 {
909 	struct kfd_process *p;
910 	int idx;
911 
912 	idx = srcu_read_lock(&kfd_processes_srcu);
913 	p = find_process_by_mm(thread->mm);
914 	if (p && ref)
915 		kref_get(&p->ref);
916 	srcu_read_unlock(&kfd_processes_srcu, idx);
917 
918 	return p;
919 }
920 
921 void kfd_unref_process(struct kfd_process *p)
922 {
923 	kref_put(&p->ref, kfd_process_ref_release);
924 }
925 
926 /* This increments the process->ref counter. */
927 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928 {
929 	struct task_struct *task = NULL;
930 	struct kfd_process *p    = NULL;
931 
932 	if (!pid) {
933 		task = current;
934 		get_task_struct(task);
935 	} else {
936 		task = get_pid_task(pid, PIDTYPE_PID);
937 	}
938 
939 	if (task) {
940 		p = find_process(task, true);
941 		put_task_struct(task);
942 	}
943 
944 	return p;
945 }
946 
947 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948 {
949 	struct kfd_process *p = pdd->process;
950 	void *mem;
951 	int id;
952 	int i;
953 
954 	/*
955 	 * Remove all handles from idr and release appropriate
956 	 * local memory object
957 	 */
958 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959 
960 		for (i = 0; i < p->n_pdds; i++) {
961 			struct kfd_process_device *peer_pdd = p->pdds[i];
962 
963 			if (!peer_pdd->drm_priv)
964 				continue;
965 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967 		}
968 
969 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970 						       pdd->drm_priv, NULL);
971 		kfd_process_device_remove_obj_handle(pdd, id);
972 	}
973 }
974 
975 /*
976  * Just kunmap and unpin signal BO here. It will be freed in
977  * kfd_process_free_outstanding_kfd_bos()
978  */
979 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980 {
981 	struct kfd_process_device *pdd;
982 	struct kfd_node *kdev;
983 	void *mem;
984 
985 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986 	if (!kdev)
987 		return;
988 
989 	mutex_lock(&p->mutex);
990 
991 	pdd = kfd_get_process_device_data(kdev, p);
992 	if (!pdd)
993 		goto out;
994 
995 	mem = kfd_process_device_translate_handle(
996 		pdd, GET_IDR_HANDLE(p->signal_handle));
997 	if (!mem)
998 		goto out;
999 
1000 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001 
1002 out:
1003 	mutex_unlock(&p->mutex);
1004 }
1005 
1006 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < p->n_pdds; i++)
1011 		kfd_process_device_free_bos(p->pdds[i]);
1012 }
1013 
1014 static void kfd_process_destroy_pdds(struct kfd_process *p)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < p->n_pdds; i++) {
1019 		struct kfd_process_device *pdd = p->pdds[i];
1020 
1021 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022 				pdd->dev->id, p->pasid);
1023 
1024 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1025 		kfd_process_device_destroy_ib_mem(pdd);
1026 
1027 		if (pdd->drm_file) {
1028 			amdgpu_amdkfd_gpuvm_release_process_vm(
1029 					pdd->dev->adev, pdd->drm_priv);
1030 			fput(pdd->drm_file);
1031 		}
1032 
1033 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1036 
1037 		idr_destroy(&pdd->alloc_idr);
1038 
1039 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040 
1041 		if (pdd->dev->kfd->shared_resources.enable_mes)
1042 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043 						   pdd->proc_ctx_bo);
1044 		/*
1045 		 * before destroying pdd, make sure to report availability
1046 		 * for auto suspend
1047 		 */
1048 		if (pdd->runtime_inuse) {
1049 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051 			pdd->runtime_inuse = false;
1052 		}
1053 
1054 		kfree(pdd);
1055 		p->pdds[i] = NULL;
1056 	}
1057 	p->n_pdds = 0;
1058 }
1059 
1060 static void kfd_process_remove_sysfs(struct kfd_process *p)
1061 {
1062 	struct kfd_process_device *pdd;
1063 	int i;
1064 
1065 	if (!p->kobj)
1066 		return;
1067 
1068 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1069 	kobject_del(p->kobj_queues);
1070 	kobject_put(p->kobj_queues);
1071 	p->kobj_queues = NULL;
1072 
1073 	for (i = 0; i < p->n_pdds; i++) {
1074 		pdd = p->pdds[i];
1075 
1076 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078 
1079 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081 			sysfs_remove_file(pdd->kobj_stats,
1082 					  &pdd->attr_cu_occupancy);
1083 		kobject_del(pdd->kobj_stats);
1084 		kobject_put(pdd->kobj_stats);
1085 		pdd->kobj_stats = NULL;
1086 	}
1087 
1088 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089 		pdd = p->pdds[i];
1090 
1091 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094 		kobject_del(pdd->kobj_counters);
1095 		kobject_put(pdd->kobj_counters);
1096 		pdd->kobj_counters = NULL;
1097 	}
1098 
1099 	kobject_del(p->kobj);
1100 	kobject_put(p->kobj);
1101 	p->kobj = NULL;
1102 }
1103 
1104 /* No process locking is needed in this function, because the process
1105  * is not findable any more. We must assume that no other thread is
1106  * using it any more, otherwise we couldn't safely free the process
1107  * structure in the end.
1108  */
1109 static void kfd_process_wq_release(struct work_struct *work)
1110 {
1111 	struct kfd_process *p = container_of(work, struct kfd_process,
1112 					     release_work);
1113 	struct dma_fence *ef;
1114 
1115 	kfd_process_dequeue_from_all_devices(p);
1116 	pqm_uninit(&p->pqm);
1117 
1118 	/* Signal the eviction fence after user mode queues are
1119 	 * destroyed. This allows any BOs to be freed without
1120 	 * triggering pointless evictions or waiting for fences.
1121 	 */
1122 	synchronize_rcu();
1123 	ef = rcu_access_pointer(p->ef);
1124 	dma_fence_signal(ef);
1125 
1126 	kfd_process_remove_sysfs(p);
1127 
1128 	kfd_process_kunmap_signal_bo(p);
1129 	kfd_process_free_outstanding_kfd_bos(p);
1130 	svm_range_list_fini(p);
1131 
1132 	kfd_process_destroy_pdds(p);
1133 	dma_fence_put(ef);
1134 
1135 	kfd_event_free_process(p);
1136 
1137 	kfd_pasid_free(p->pasid);
1138 	mutex_destroy(&p->mutex);
1139 
1140 	put_task_struct(p->lead_thread);
1141 
1142 	kfree(p);
1143 }
1144 
1145 static void kfd_process_ref_release(struct kref *ref)
1146 {
1147 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1148 
1149 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1150 	queue_work(kfd_process_wq, &p->release_work);
1151 }
1152 
1153 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1154 {
1155 	int idx = srcu_read_lock(&kfd_processes_srcu);
1156 	struct kfd_process *p = find_process_by_mm(mm);
1157 
1158 	srcu_read_unlock(&kfd_processes_srcu, idx);
1159 
1160 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1161 }
1162 
1163 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1164 {
1165 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1166 }
1167 
1168 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1169 {
1170 	int i;
1171 
1172 	cancel_delayed_work_sync(&p->eviction_work);
1173 	cancel_delayed_work_sync(&p->restore_work);
1174 
1175 	for (i = 0; i < p->n_pdds; i++) {
1176 		struct kfd_process_device *pdd = p->pdds[i];
1177 
1178 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1179 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1180 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1181 	}
1182 
1183 	/* Indicate to other users that MM is no longer valid */
1184 	p->mm = NULL;
1185 	kfd_dbg_trap_disable(p);
1186 
1187 	if (atomic_read(&p->debugged_process_count) > 0) {
1188 		struct kfd_process *target;
1189 		unsigned int temp;
1190 		int idx = srcu_read_lock(&kfd_processes_srcu);
1191 
1192 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1193 			if (target->debugger_process && target->debugger_process == p) {
1194 				mutex_lock_nested(&target->mutex, 1);
1195 				kfd_dbg_trap_disable(target);
1196 				mutex_unlock(&target->mutex);
1197 				if (atomic_read(&p->debugged_process_count) == 0)
1198 					break;
1199 			}
1200 		}
1201 
1202 		srcu_read_unlock(&kfd_processes_srcu, idx);
1203 	}
1204 
1205 	mmu_notifier_put(&p->mmu_notifier);
1206 }
1207 
1208 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1209 					struct mm_struct *mm)
1210 {
1211 	struct kfd_process *p;
1212 
1213 	/*
1214 	 * The kfd_process structure can not be free because the
1215 	 * mmu_notifier srcu is read locked
1216 	 */
1217 	p = container_of(mn, struct kfd_process, mmu_notifier);
1218 	if (WARN_ON(p->mm != mm))
1219 		return;
1220 
1221 	mutex_lock(&kfd_processes_mutex);
1222 	/*
1223 	 * Do early return if table is empty.
1224 	 *
1225 	 * This could potentially happen if this function is called concurrently
1226 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1227 	 *
1228 	 */
1229 	if (hash_empty(kfd_processes_table)) {
1230 		mutex_unlock(&kfd_processes_mutex);
1231 		return;
1232 	}
1233 	hash_del_rcu(&p->kfd_processes);
1234 	mutex_unlock(&kfd_processes_mutex);
1235 	synchronize_srcu(&kfd_processes_srcu);
1236 
1237 	kfd_process_notifier_release_internal(p);
1238 }
1239 
1240 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1241 	.release = kfd_process_notifier_release,
1242 	.alloc_notifier = kfd_process_alloc_notifier,
1243 	.free_notifier = kfd_process_free_notifier,
1244 };
1245 
1246 /*
1247  * This code handles the case when driver is being unloaded before all
1248  * mm_struct are released.  We need to safely free the kfd_process and
1249  * avoid race conditions with mmu_notifier that might try to free them.
1250  *
1251  */
1252 void kfd_cleanup_processes(void)
1253 {
1254 	struct kfd_process *p;
1255 	struct hlist_node *p_temp;
1256 	unsigned int temp;
1257 	HLIST_HEAD(cleanup_list);
1258 
1259 	/*
1260 	 * Move all remaining kfd_process from the process table to a
1261 	 * temp list for processing.   Once done, callback from mmu_notifier
1262 	 * release will not see the kfd_process in the table and do early return,
1263 	 * avoiding double free issues.
1264 	 */
1265 	mutex_lock(&kfd_processes_mutex);
1266 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1267 		hash_del_rcu(&p->kfd_processes);
1268 		synchronize_srcu(&kfd_processes_srcu);
1269 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1270 	}
1271 	mutex_unlock(&kfd_processes_mutex);
1272 
1273 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1274 		kfd_process_notifier_release_internal(p);
1275 
1276 	/*
1277 	 * Ensures that all outstanding free_notifier get called, triggering
1278 	 * the release of the kfd_process struct.
1279 	 */
1280 	mmu_notifier_synchronize();
1281 }
1282 
1283 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1284 {
1285 	unsigned long  offset;
1286 	int i;
1287 
1288 	if (p->has_cwsr)
1289 		return 0;
1290 
1291 	for (i = 0; i < p->n_pdds; i++) {
1292 		struct kfd_node *dev = p->pdds[i]->dev;
1293 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1294 
1295 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1296 			continue;
1297 
1298 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1299 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1300 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1301 			MAP_SHARED, offset);
1302 
1303 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1304 			int err = qpd->tba_addr;
1305 
1306 			pr_err("Failure to set tba address. error %d.\n", err);
1307 			qpd->tba_addr = 0;
1308 			qpd->cwsr_kaddr = NULL;
1309 			return err;
1310 		}
1311 
1312 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1313 
1314 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1315 
1316 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1317 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1318 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1319 	}
1320 
1321 	p->has_cwsr = true;
1322 
1323 	return 0;
1324 }
1325 
1326 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1327 {
1328 	struct kfd_node *dev = pdd->dev;
1329 	struct qcm_process_device *qpd = &pdd->qpd;
1330 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1331 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1332 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1333 	struct kgd_mem *mem;
1334 	void *kaddr;
1335 	int ret;
1336 
1337 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1338 		return 0;
1339 
1340 	/* cwsr_base is only set for dGPU */
1341 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1342 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1343 	if (ret)
1344 		return ret;
1345 
1346 	qpd->cwsr_mem = mem;
1347 	qpd->cwsr_kaddr = kaddr;
1348 	qpd->tba_addr = qpd->cwsr_base;
1349 
1350 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1351 
1352 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1353 					pdd->process->debug_trap_enabled);
1354 
1355 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358 
1359 	return 0;
1360 }
1361 
1362 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1363 {
1364 	struct kfd_node *dev = pdd->dev;
1365 	struct qcm_process_device *qpd = &pdd->qpd;
1366 
1367 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1368 		return;
1369 
1370 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1371 }
1372 
1373 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1374 				  uint64_t tba_addr,
1375 				  uint64_t tma_addr)
1376 {
1377 	if (qpd->cwsr_kaddr) {
1378 		/* KFD trap handler is bound, record as second-level TBA/TMA
1379 		 * in first-level TMA. First-level trap will jump to second.
1380 		 */
1381 		uint64_t *tma =
1382 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1383 		tma[0] = tba_addr;
1384 		tma[1] = tma_addr;
1385 	} else {
1386 		/* No trap handler bound, bind as first-level TBA/TMA. */
1387 		qpd->tba_addr = tba_addr;
1388 		qpd->tma_addr = tma_addr;
1389 	}
1390 }
1391 
1392 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1393 {
1394 	int i;
1395 
1396 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1397 	 * boot time retry setting. Mixing processes with different
1398 	 * XNACK/retry settings can hang the GPU.
1399 	 *
1400 	 * Different GPUs can have different noretry settings depending
1401 	 * on HW bugs or limitations. We need to find at least one
1402 	 * XNACK mode for this process that's compatible with all GPUs.
1403 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1404 	 * built for XNACK-off. On GFXv9 it may perform slower.
1405 	 *
1406 	 * Therefore applications built for XNACK-off can always be
1407 	 * supported and will be our fallback if any GPU does not
1408 	 * support retry.
1409 	 */
1410 	for (i = 0; i < p->n_pdds; i++) {
1411 		struct kfd_node *dev = p->pdds[i]->dev;
1412 
1413 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1414 		 * support the SVM APIs and don't need to be considered
1415 		 * for the XNACK mode selection.
1416 		 */
1417 		if (!KFD_IS_SOC15(dev))
1418 			continue;
1419 		/* Aldebaran can always support XNACK because it can support
1420 		 * per-process XNACK mode selection. But let the dev->noretry
1421 		 * setting still influence the default XNACK mode.
1422 		 */
1423 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1424 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1425 				pr_debug("SRIOV platform xnack not supported\n");
1426 				return false;
1427 			}
1428 			continue;
1429 		}
1430 
1431 		/* GFXv10 and later GPUs do not support shader preemption
1432 		 * during page faults. This can lead to poor QoS for queue
1433 		 * management and memory-manager-related preemptions or
1434 		 * even deadlocks.
1435 		 */
1436 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1437 			return false;
1438 
1439 		if (dev->kfd->noretry)
1440 			return false;
1441 	}
1442 
1443 	return true;
1444 }
1445 
1446 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1447 				     bool enabled)
1448 {
1449 	if (qpd->cwsr_kaddr) {
1450 		uint64_t *tma =
1451 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1452 		tma[2] = enabled;
1453 	}
1454 }
1455 
1456 /*
1457  * On return the kfd_process is fully operational and will be freed when the
1458  * mm is released
1459  */
1460 static struct kfd_process *create_process(const struct task_struct *thread)
1461 {
1462 	struct kfd_process *process;
1463 	struct mmu_notifier *mn;
1464 	int err = -ENOMEM;
1465 
1466 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1467 	if (!process)
1468 		goto err_alloc_process;
1469 
1470 	kref_init(&process->ref);
1471 	mutex_init(&process->mutex);
1472 	process->mm = thread->mm;
1473 	process->lead_thread = thread->group_leader;
1474 	process->n_pdds = 0;
1475 	process->queues_paused = false;
1476 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1477 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1478 	process->last_restore_timestamp = get_jiffies_64();
1479 	err = kfd_event_init_process(process);
1480 	if (err)
1481 		goto err_event_init;
1482 	process->is_32bit_user_mode = in_compat_syscall();
1483 	process->debug_trap_enabled = false;
1484 	process->debugger_process = NULL;
1485 	process->exception_enable_mask = 0;
1486 	atomic_set(&process->debugged_process_count, 0);
1487 	sema_init(&process->runtime_enable_sema, 0);
1488 
1489 	process->pasid = kfd_pasid_alloc();
1490 	if (process->pasid == 0) {
1491 		err = -ENOSPC;
1492 		goto err_alloc_pasid;
1493 	}
1494 
1495 	err = pqm_init(&process->pqm, process);
1496 	if (err != 0)
1497 		goto err_process_pqm_init;
1498 
1499 	/* init process apertures*/
1500 	err = kfd_init_apertures(process);
1501 	if (err != 0)
1502 		goto err_init_apertures;
1503 
1504 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1505 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1506 
1507 	err = svm_range_list_init(process);
1508 	if (err)
1509 		goto err_init_svm_range_list;
1510 
1511 	/* alloc_notifier needs to find the process in the hash table */
1512 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1513 			(uintptr_t)process->mm);
1514 
1515 	/* Avoid free_notifier to start kfd_process_wq_release if
1516 	 * mmu_notifier_get failed because of pending signal.
1517 	 */
1518 	kref_get(&process->ref);
1519 
1520 	/* MMU notifier registration must be the last call that can fail
1521 	 * because after this point we cannot unwind the process creation.
1522 	 * After this point, mmu_notifier_put will trigger the cleanup by
1523 	 * dropping the last process reference in the free_notifier.
1524 	 */
1525 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1526 	if (IS_ERR(mn)) {
1527 		err = PTR_ERR(mn);
1528 		goto err_register_notifier;
1529 	}
1530 	BUG_ON(mn != &process->mmu_notifier);
1531 
1532 	kfd_unref_process(process);
1533 	get_task_struct(process->lead_thread);
1534 
1535 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1536 
1537 	return process;
1538 
1539 err_register_notifier:
1540 	hash_del_rcu(&process->kfd_processes);
1541 	svm_range_list_fini(process);
1542 err_init_svm_range_list:
1543 	kfd_process_free_outstanding_kfd_bos(process);
1544 	kfd_process_destroy_pdds(process);
1545 err_init_apertures:
1546 	pqm_uninit(&process->pqm);
1547 err_process_pqm_init:
1548 	kfd_pasid_free(process->pasid);
1549 err_alloc_pasid:
1550 	kfd_event_free_process(process);
1551 err_event_init:
1552 	mutex_destroy(&process->mutex);
1553 	kfree(process);
1554 err_alloc_process:
1555 	return ERR_PTR(err);
1556 }
1557 
1558 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1559 							struct kfd_process *p)
1560 {
1561 	int i;
1562 
1563 	for (i = 0; i < p->n_pdds; i++)
1564 		if (p->pdds[i]->dev == dev)
1565 			return p->pdds[i];
1566 
1567 	return NULL;
1568 }
1569 
1570 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1571 							struct kfd_process *p)
1572 {
1573 	struct kfd_process_device *pdd = NULL;
1574 	int retval = 0;
1575 
1576 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1577 		return NULL;
1578 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1579 	if (!pdd)
1580 		return NULL;
1581 
1582 	pdd->dev = dev;
1583 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1584 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1585 	pdd->qpd.dqm = dev->dqm;
1586 	pdd->qpd.pqm = &p->pqm;
1587 	pdd->qpd.evicted = 0;
1588 	pdd->qpd.mapped_gws_queue = false;
1589 	pdd->process = p;
1590 	pdd->bound = PDD_UNBOUND;
1591 	pdd->already_dequeued = false;
1592 	pdd->runtime_inuse = false;
1593 	pdd->vram_usage = 0;
1594 	pdd->sdma_past_activity_counter = 0;
1595 	pdd->user_gpu_id = dev->id;
1596 	atomic64_set(&pdd->evict_duration_counter, 0);
1597 
1598 	if (dev->kfd->shared_resources.enable_mes) {
1599 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1600 						AMDGPU_MES_PROC_CTX_SIZE,
1601 						&pdd->proc_ctx_bo,
1602 						&pdd->proc_ctx_gpu_addr,
1603 						&pdd->proc_ctx_cpu_ptr,
1604 						false);
1605 		if (retval) {
1606 			pr_err("failed to allocate process context bo\n");
1607 			goto err_free_pdd;
1608 		}
1609 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1610 	}
1611 
1612 	p->pdds[p->n_pdds++] = pdd;
1613 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1614 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1615 							pdd->dev->adev,
1616 							false,
1617 							0);
1618 
1619 	/* Init idr used for memory handle translation */
1620 	idr_init(&pdd->alloc_idr);
1621 
1622 	return pdd;
1623 
1624 err_free_pdd:
1625 	kfree(pdd);
1626 	return NULL;
1627 }
1628 
1629 /**
1630  * kfd_process_device_init_vm - Initialize a VM for a process-device
1631  *
1632  * @pdd: The process-device
1633  * @drm_file: Optional pointer to a DRM file descriptor
1634  *
1635  * If @drm_file is specified, it will be used to acquire the VM from
1636  * that file descriptor. If successful, the @pdd takes ownership of
1637  * the file descriptor.
1638  *
1639  * If @drm_file is NULL, a new VM is created.
1640  *
1641  * Returns 0 on success, -errno on failure.
1642  */
1643 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644 			       struct file *drm_file)
1645 {
1646 	struct amdgpu_fpriv *drv_priv;
1647 	struct amdgpu_vm *avm;
1648 	struct kfd_process *p;
1649 	struct dma_fence *ef;
1650 	struct kfd_node *dev;
1651 	int ret;
1652 
1653 	if (!drm_file)
1654 		return -EINVAL;
1655 
1656 	if (pdd->drm_priv)
1657 		return -EBUSY;
1658 
1659 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1660 	if (ret)
1661 		return ret;
1662 	avm = &drv_priv->vm;
1663 
1664 	p = pdd->process;
1665 	dev = pdd->dev;
1666 
1667 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1668 						     &p->kgd_process_info,
1669 						     &ef);
1670 	if (ret) {
1671 		pr_err("Failed to create process VM object\n");
1672 		return ret;
1673 	}
1674 	RCU_INIT_POINTER(p->ef, ef);
1675 	pdd->drm_priv = drm_file->private_data;
1676 
1677 	ret = kfd_process_device_reserve_ib_mem(pdd);
1678 	if (ret)
1679 		goto err_reserve_ib_mem;
1680 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1681 	if (ret)
1682 		goto err_init_cwsr;
1683 
1684 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1685 	if (ret)
1686 		goto err_set_pasid;
1687 
1688 	pdd->drm_file = drm_file;
1689 
1690 	return 0;
1691 
1692 err_set_pasid:
1693 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1694 err_init_cwsr:
1695 	kfd_process_device_destroy_ib_mem(pdd);
1696 err_reserve_ib_mem:
1697 	pdd->drm_priv = NULL;
1698 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1699 
1700 	return ret;
1701 }
1702 
1703 /*
1704  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1705  * to the device.
1706  * Unbinding occurs when the process dies or the device is removed.
1707  *
1708  * Assumes that the process lock is held.
1709  */
1710 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1711 							struct kfd_process *p)
1712 {
1713 	struct kfd_process_device *pdd;
1714 	int err;
1715 
1716 	pdd = kfd_get_process_device_data(dev, p);
1717 	if (!pdd) {
1718 		pr_err("Process device data doesn't exist\n");
1719 		return ERR_PTR(-ENOMEM);
1720 	}
1721 
1722 	if (!pdd->drm_priv)
1723 		return ERR_PTR(-ENODEV);
1724 
1725 	/*
1726 	 * signal runtime-pm system to auto resume and prevent
1727 	 * further runtime suspend once device pdd is created until
1728 	 * pdd is destroyed.
1729 	 */
1730 	if (!pdd->runtime_inuse) {
1731 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1732 		if (err < 0) {
1733 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1734 			return ERR_PTR(err);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * make sure that runtime_usage counter is incremented just once
1740 	 * per pdd
1741 	 */
1742 	pdd->runtime_inuse = true;
1743 
1744 	return pdd;
1745 }
1746 
1747 /* Create specific handle mapped to mem from process local memory idr
1748  * Assumes that the process lock is held.
1749  */
1750 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1751 					void *mem)
1752 {
1753 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1754 }
1755 
1756 /* Translate specific handle from process local memory idr
1757  * Assumes that the process lock is held.
1758  */
1759 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1760 					int handle)
1761 {
1762 	if (handle < 0)
1763 		return NULL;
1764 
1765 	return idr_find(&pdd->alloc_idr, handle);
1766 }
1767 
1768 /* Remove specific handle from process local memory idr
1769  * Assumes that the process lock is held.
1770  */
1771 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1772 					int handle)
1773 {
1774 	if (handle >= 0)
1775 		idr_remove(&pdd->alloc_idr, handle);
1776 }
1777 
1778 /* This increments the process->ref counter. */
1779 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1780 {
1781 	struct kfd_process *p, *ret_p = NULL;
1782 	unsigned int temp;
1783 
1784 	int idx = srcu_read_lock(&kfd_processes_srcu);
1785 
1786 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1787 		if (p->pasid == pasid) {
1788 			kref_get(&p->ref);
1789 			ret_p = p;
1790 			break;
1791 		}
1792 	}
1793 
1794 	srcu_read_unlock(&kfd_processes_srcu, idx);
1795 
1796 	return ret_p;
1797 }
1798 
1799 /* This increments the process->ref counter. */
1800 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1801 {
1802 	struct kfd_process *p;
1803 
1804 	int idx = srcu_read_lock(&kfd_processes_srcu);
1805 
1806 	p = find_process_by_mm(mm);
1807 	if (p)
1808 		kref_get(&p->ref);
1809 
1810 	srcu_read_unlock(&kfd_processes_srcu, idx);
1811 
1812 	return p;
1813 }
1814 
1815 /* kfd_process_evict_queues - Evict all user queues of a process
1816  *
1817  * Eviction is reference-counted per process-device. This means multiple
1818  * evictions from different sources can be nested safely.
1819  */
1820 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1821 {
1822 	int r = 0;
1823 	int i;
1824 	unsigned int n_evicted = 0;
1825 
1826 	for (i = 0; i < p->n_pdds; i++) {
1827 		struct kfd_process_device *pdd = p->pdds[i];
1828 
1829 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830 					     trigger);
1831 
1832 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833 							    &pdd->qpd);
1834 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1835 		 * we would like to set all the queues to be in evicted state to prevent
1836 		 * them been add back since they actually not be saved right now.
1837 		 */
1838 		if (r && r != -EIO) {
1839 			pr_err("Failed to evict process queues\n");
1840 			goto fail;
1841 		}
1842 		n_evicted++;
1843 	}
1844 
1845 	return r;
1846 
1847 fail:
1848 	/* To keep state consistent, roll back partial eviction by
1849 	 * restoring queues
1850 	 */
1851 	for (i = 0; i < p->n_pdds; i++) {
1852 		struct kfd_process_device *pdd = p->pdds[i];
1853 
1854 		if (n_evicted == 0)
1855 			break;
1856 
1857 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858 
1859 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860 							      &pdd->qpd))
1861 			pr_err("Failed to restore queues\n");
1862 
1863 		n_evicted--;
1864 	}
1865 
1866 	return r;
1867 }
1868 
1869 /* kfd_process_restore_queues - Restore all user queues of a process */
1870 int kfd_process_restore_queues(struct kfd_process *p)
1871 {
1872 	int r, ret = 0;
1873 	int i;
1874 
1875 	for (i = 0; i < p->n_pdds; i++) {
1876 		struct kfd_process_device *pdd = p->pdds[i];
1877 
1878 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1879 
1880 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1881 							      &pdd->qpd);
1882 		if (r) {
1883 			pr_err("Failed to restore process queues\n");
1884 			if (!ret)
1885 				ret = r;
1886 		}
1887 	}
1888 
1889 	return ret;
1890 }
1891 
1892 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1893 {
1894 	int i;
1895 
1896 	for (i = 0; i < p->n_pdds; i++)
1897 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1898 			return i;
1899 	return -EINVAL;
1900 }
1901 
1902 int
1903 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1904 			    uint32_t *gpuid, uint32_t *gpuidx)
1905 {
1906 	int i;
1907 
1908 	for (i = 0; i < p->n_pdds; i++)
1909 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1910 			*gpuid = p->pdds[i]->user_gpu_id;
1911 			*gpuidx = i;
1912 			return 0;
1913 		}
1914 	return -EINVAL;
1915 }
1916 
1917 static int signal_eviction_fence(struct kfd_process *p)
1918 {
1919 	struct dma_fence *ef;
1920 	int ret;
1921 
1922 	rcu_read_lock();
1923 	ef = dma_fence_get_rcu_safe(&p->ef);
1924 	rcu_read_unlock();
1925 
1926 	ret = dma_fence_signal(ef);
1927 	dma_fence_put(ef);
1928 
1929 	return ret;
1930 }
1931 
1932 static void evict_process_worker(struct work_struct *work)
1933 {
1934 	int ret;
1935 	struct kfd_process *p;
1936 	struct delayed_work *dwork;
1937 
1938 	dwork = to_delayed_work(work);
1939 
1940 	/* Process termination destroys this worker thread. So during the
1941 	 * lifetime of this thread, kfd_process p will be valid
1942 	 */
1943 	p = container_of(dwork, struct kfd_process, eviction_work);
1944 
1945 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1946 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1947 	if (!ret) {
1948 		/* If another thread already signaled the eviction fence,
1949 		 * they are responsible stopping the queues and scheduling
1950 		 * the restore work.
1951 		 */
1952 		if (!signal_eviction_fence(p))
1953 			queue_delayed_work(kfd_restore_wq, &p->restore_work,
1954 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1955 		else
1956 			kfd_process_restore_queues(p);
1957 
1958 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1959 	} else
1960 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1961 }
1962 
1963 static int restore_process_helper(struct kfd_process *p)
1964 {
1965 	int ret = 0;
1966 
1967 	/* VMs may not have been acquired yet during debugging. */
1968 	if (p->kgd_process_info) {
1969 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1970 			p->kgd_process_info, &p->ef);
1971 		if (ret)
1972 			return ret;
1973 	}
1974 
1975 	ret = kfd_process_restore_queues(p);
1976 	if (!ret)
1977 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978 	else
1979 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980 
1981 	return ret;
1982 }
1983 
1984 static void restore_process_worker(struct work_struct *work)
1985 {
1986 	struct delayed_work *dwork;
1987 	struct kfd_process *p;
1988 	int ret = 0;
1989 
1990 	dwork = to_delayed_work(work);
1991 
1992 	/* Process termination destroys this worker thread. So during the
1993 	 * lifetime of this thread, kfd_process p will be valid
1994 	 */
1995 	p = container_of(dwork, struct kfd_process, restore_work);
1996 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1997 
1998 	/* Setting last_restore_timestamp before successful restoration.
1999 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2000 	 * before KFD BOs are unreserved. If not, the process can be evicted
2001 	 * again before the timestamp is set.
2002 	 * If restore fails, the timestamp will be set again in the next
2003 	 * attempt. This would mean that the minimum GPU quanta would be
2004 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2005 	 * functions)
2006 	 */
2007 
2008 	p->last_restore_timestamp = get_jiffies_64();
2009 
2010 	ret = restore_process_helper(p);
2011 	if (ret) {
2012 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2013 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2014 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2015 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2016 		WARN(!ret, "reschedule restore work failed\n");
2017 	}
2018 }
2019 
2020 void kfd_suspend_all_processes(void)
2021 {
2022 	struct kfd_process *p;
2023 	unsigned int temp;
2024 	int idx = srcu_read_lock(&kfd_processes_srcu);
2025 
2026 	WARN(debug_evictions, "Evicting all processes");
2027 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2029 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2030 		signal_eviction_fence(p);
2031 	}
2032 	srcu_read_unlock(&kfd_processes_srcu, idx);
2033 }
2034 
2035 int kfd_resume_all_processes(void)
2036 {
2037 	struct kfd_process *p;
2038 	unsigned int temp;
2039 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2040 
2041 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042 		if (restore_process_helper(p)) {
2043 			pr_err("Restore process %d failed during resume\n",
2044 			       p->pasid);
2045 			ret = -EFAULT;
2046 		}
2047 	}
2048 	srcu_read_unlock(&kfd_processes_srcu, idx);
2049 	return ret;
2050 }
2051 
2052 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2053 			  struct vm_area_struct *vma)
2054 {
2055 	struct kfd_process_device *pdd;
2056 	struct qcm_process_device *qpd;
2057 
2058 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2059 		pr_err("Incorrect CWSR mapping size.\n");
2060 		return -EINVAL;
2061 	}
2062 
2063 	pdd = kfd_get_process_device_data(dev, process);
2064 	if (!pdd)
2065 		return -EINVAL;
2066 	qpd = &pdd->qpd;
2067 
2068 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2069 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2070 	if (!qpd->cwsr_kaddr) {
2071 		pr_err("Error allocating per process CWSR buffer.\n");
2072 		return -ENOMEM;
2073 	}
2074 
2075 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2076 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2077 	/* Mapping pages to user process */
2078 	return remap_pfn_range(vma, vma->vm_start,
2079 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2080 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2081 }
2082 
2083 /* assumes caller holds process lock. */
2084 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2085 {
2086 	uint32_t irq_drain_fence[8];
2087 	uint8_t node_id = 0;
2088 	int r = 0;
2089 
2090 	if (!KFD_IS_SOC15(pdd->dev))
2091 		return 0;
2092 
2093 	pdd->process->irq_drain_is_open = true;
2094 
2095 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2096 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2097 							KFD_IRQ_FENCE_CLIENTID;
2098 	irq_drain_fence[3] = pdd->process->pasid;
2099 
2100 	/*
2101 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2102 	 */
2103 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2104 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2105 		irq_drain_fence[3] |= node_id << 16;
2106 	}
2107 
2108 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2109 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2110 						     irq_drain_fence)) {
2111 		pdd->process->irq_drain_is_open = false;
2112 		return 0;
2113 	}
2114 
2115 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2116 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2117 	if (r)
2118 		pdd->process->irq_drain_is_open = false;
2119 
2120 	return r;
2121 }
2122 
2123 void kfd_process_close_interrupt_drain(unsigned int pasid)
2124 {
2125 	struct kfd_process *p;
2126 
2127 	p = kfd_lookup_process_by_pasid(pasid);
2128 
2129 	if (!p)
2130 		return;
2131 
2132 	WRITE_ONCE(p->irq_drain_is_open, false);
2133 	wake_up_all(&p->wait_irq_drain);
2134 	kfd_unref_process(p);
2135 }
2136 
2137 struct send_exception_work_handler_workarea {
2138 	struct work_struct work;
2139 	struct kfd_process *p;
2140 	unsigned int queue_id;
2141 	uint64_t error_reason;
2142 };
2143 
2144 static void send_exception_work_handler(struct work_struct *work)
2145 {
2146 	struct send_exception_work_handler_workarea *workarea;
2147 	struct kfd_process *p;
2148 	struct queue *q;
2149 	struct mm_struct *mm;
2150 	struct kfd_context_save_area_header __user *csa_header;
2151 	uint64_t __user *err_payload_ptr;
2152 	uint64_t cur_err;
2153 	uint32_t ev_id;
2154 
2155 	workarea = container_of(work,
2156 				struct send_exception_work_handler_workarea,
2157 				work);
2158 	p = workarea->p;
2159 
2160 	mm = get_task_mm(p->lead_thread);
2161 
2162 	if (!mm)
2163 		return;
2164 
2165 	kthread_use_mm(mm);
2166 
2167 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2168 
2169 	if (!q)
2170 		goto out;
2171 
2172 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2173 
2174 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2175 	get_user(cur_err, err_payload_ptr);
2176 	cur_err |= workarea->error_reason;
2177 	put_user(cur_err, err_payload_ptr);
2178 	get_user(ev_id, &csa_header->err_event_id);
2179 
2180 	kfd_set_event(p, ev_id);
2181 
2182 out:
2183 	kthread_unuse_mm(mm);
2184 	mmput(mm);
2185 }
2186 
2187 int kfd_send_exception_to_runtime(struct kfd_process *p,
2188 			unsigned int queue_id,
2189 			uint64_t error_reason)
2190 {
2191 	struct send_exception_work_handler_workarea worker;
2192 
2193 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2194 
2195 	worker.p = p;
2196 	worker.queue_id = queue_id;
2197 	worker.error_reason = error_reason;
2198 
2199 	schedule_work(&worker.work);
2200 	flush_work(&worker.work);
2201 	destroy_work_on_stack(&worker.work);
2202 
2203 	return 0;
2204 }
2205 
2206 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2207 {
2208 	int i;
2209 
2210 	if (gpu_id) {
2211 		for (i = 0; i < p->n_pdds; i++) {
2212 			struct kfd_process_device *pdd = p->pdds[i];
2213 
2214 			if (pdd->user_gpu_id == gpu_id)
2215 				return pdd;
2216 		}
2217 	}
2218 	return NULL;
2219 }
2220 
2221 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2222 {
2223 	int i;
2224 
2225 	if (!actual_gpu_id)
2226 		return 0;
2227 
2228 	for (i = 0; i < p->n_pdds; i++) {
2229 		struct kfd_process_device *pdd = p->pdds[i];
2230 
2231 		if (pdd->dev->id == actual_gpu_id)
2232 			return pdd->user_gpu_id;
2233 	}
2234 	return -EINVAL;
2235 }
2236 
2237 #if defined(CONFIG_DEBUG_FS)
2238 
2239 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2240 {
2241 	struct kfd_process *p;
2242 	unsigned int temp;
2243 	int r = 0;
2244 
2245 	int idx = srcu_read_lock(&kfd_processes_srcu);
2246 
2247 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2248 		seq_printf(m, "Process %d PASID 0x%x:\n",
2249 			   p->lead_thread->tgid, p->pasid);
2250 
2251 		mutex_lock(&p->mutex);
2252 		r = pqm_debugfs_mqds(m, &p->pqm);
2253 		mutex_unlock(&p->mutex);
2254 
2255 		if (r)
2256 			break;
2257 	}
2258 
2259 	srcu_read_unlock(&kfd_processes_srcu, idx);
2260 
2261 	return r;
2262 }
2263 
2264 #endif
2265