xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_dev *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 
275 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 	dev = pdd->dev;
277 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 		return -EINVAL;
279 
280 	cu_cnt = 0;
281 	proc = pdd->process;
282 	if (pdd->qpd.queue_count == 0) {
283 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 			 dev->id, proc->pasid);
285 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 	}
287 
288 	/* Collect wave count from device if it supports */
289 	wave_cnt = 0;
290 	max_waves_per_cu = 0;
291 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
292 			&max_waves_per_cu);
293 
294 	/* Translate wave count to number of compute units */
295 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298 
299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 			       char *buffer)
301 {
302 	if (strcmp(attr->name, "pasid") == 0) {
303 		struct kfd_process *p = container_of(attr, struct kfd_process,
304 						     attr_pasid);
305 
306 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
308 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 							      attr_vram);
310 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 							      attr_sdma);
314 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315 
316 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317 					kfd_sdma_activity_worker);
318 
319 		sdma_activity_work_handler.pdd = pdd;
320 		sdma_activity_work_handler.sdma_activity_counter = 0;
321 
322 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323 
324 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
325 
326 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
327 				(sdma_activity_work_handler.sdma_activity_counter)/
328 				 SDMA_ACTIVITY_DIVISOR);
329 	} else {
330 		pr_err("Invalid attribute");
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339 	kfree(kobj);
340 }
341 
342 static const struct sysfs_ops kfd_procfs_ops = {
343 	.show = kfd_procfs_show,
344 };
345 
346 static struct kobj_type procfs_type = {
347 	.release = kfd_procfs_kobj_release,
348 	.sysfs_ops = &kfd_procfs_ops,
349 };
350 
351 void kfd_procfs_init(void)
352 {
353 	int ret = 0;
354 
355 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
356 	if (!procfs.kobj)
357 		return;
358 
359 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360 				   &kfd_device->kobj, "proc");
361 	if (ret) {
362 		pr_warn("Could not create procfs proc folder");
363 		/* If we fail to create the procfs, clean up */
364 		kfd_procfs_shutdown();
365 	}
366 }
367 
368 void kfd_procfs_shutdown(void)
369 {
370 	if (procfs.kobj) {
371 		kobject_del(procfs.kobj);
372 		kobject_put(procfs.kobj);
373 		procfs.kobj = NULL;
374 	}
375 }
376 
377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378 				     struct attribute *attr, char *buffer)
379 {
380 	struct queue *q = container_of(kobj, struct queue, kobj);
381 
382 	if (!strcmp(attr->name, "size"))
383 		return snprintf(buffer, PAGE_SIZE, "%llu",
384 				q->properties.queue_size);
385 	else if (!strcmp(attr->name, "type"))
386 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387 	else if (!strcmp(attr->name, "gpuid"))
388 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389 	else
390 		pr_err("Invalid attribute");
391 
392 	return 0;
393 }
394 
395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396 				     struct attribute *attr, char *buffer)
397 {
398 	if (strcmp(attr->name, "evicted_ms") == 0) {
399 		struct kfd_process_device *pdd = container_of(attr,
400 				struct kfd_process_device,
401 				attr_evict);
402 		uint64_t evict_jiffies;
403 
404 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405 
406 		return snprintf(buffer,
407 				PAGE_SIZE,
408 				"%llu\n",
409 				jiffies64_to_msecs(evict_jiffies));
410 
411 	/* Sysfs handle that gets CU occupancy is per device */
412 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
413 		return kfd_get_cu_occupancy(attr, buffer);
414 	} else {
415 		pr_err("Invalid attribute");
416 	}
417 
418 	return 0;
419 }
420 
421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422 				       struct attribute *attr, char *buf)
423 {
424 	struct kfd_process_device *pdd;
425 
426 	if (!strcmp(attr->name, "faults")) {
427 		pdd = container_of(attr, struct kfd_process_device,
428 				   attr_faults);
429 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430 	}
431 	if (!strcmp(attr->name, "page_in")) {
432 		pdd = container_of(attr, struct kfd_process_device,
433 				   attr_page_in);
434 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435 	}
436 	if (!strcmp(attr->name, "page_out")) {
437 		pdd = container_of(attr, struct kfd_process_device,
438 				   attr_page_out);
439 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440 	}
441 	return 0;
442 }
443 
444 static struct attribute attr_queue_size = {
445 	.name = "size",
446 	.mode = KFD_SYSFS_FILE_MODE
447 };
448 
449 static struct attribute attr_queue_type = {
450 	.name = "type",
451 	.mode = KFD_SYSFS_FILE_MODE
452 };
453 
454 static struct attribute attr_queue_gpuid = {
455 	.name = "gpuid",
456 	.mode = KFD_SYSFS_FILE_MODE
457 };
458 
459 static struct attribute *procfs_queue_attrs[] = {
460 	&attr_queue_size,
461 	&attr_queue_type,
462 	&attr_queue_gpuid,
463 	NULL
464 };
465 ATTRIBUTE_GROUPS(procfs_queue);
466 
467 static const struct sysfs_ops procfs_queue_ops = {
468 	.show = kfd_procfs_queue_show,
469 };
470 
471 static struct kobj_type procfs_queue_type = {
472 	.sysfs_ops = &procfs_queue_ops,
473 	.default_groups = procfs_queue_groups,
474 };
475 
476 static const struct sysfs_ops procfs_stats_ops = {
477 	.show = kfd_procfs_stats_show,
478 };
479 
480 static struct kobj_type procfs_stats_type = {
481 	.sysfs_ops = &procfs_stats_ops,
482 	.release = kfd_procfs_kobj_release,
483 };
484 
485 static const struct sysfs_ops sysfs_counters_ops = {
486 	.show = kfd_sysfs_counters_show,
487 };
488 
489 static struct kobj_type sysfs_counters_type = {
490 	.sysfs_ops = &sysfs_counters_ops,
491 	.release = kfd_procfs_kobj_release,
492 };
493 
494 int kfd_procfs_add_queue(struct queue *q)
495 {
496 	struct kfd_process *proc;
497 	int ret;
498 
499 	if (!q || !q->process)
500 		return -EINVAL;
501 	proc = q->process;
502 
503 	/* Create proc/<pid>/queues/<queue id> folder */
504 	if (!proc->kobj_queues)
505 		return -EFAULT;
506 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
507 			proc->kobj_queues, "%u", q->properties.queue_id);
508 	if (ret < 0) {
509 		pr_warn("Creating proc/<pid>/queues/%u failed",
510 			q->properties.queue_id);
511 		kobject_put(&q->kobj);
512 		return ret;
513 	}
514 
515 	return 0;
516 }
517 
518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
519 				 char *name)
520 {
521 	int ret;
522 
523 	if (!kobj || !attr || !name)
524 		return;
525 
526 	attr->name = name;
527 	attr->mode = KFD_SYSFS_FILE_MODE;
528 	sysfs_attr_init(attr);
529 
530 	ret = sysfs_create_file(kobj, attr);
531 	if (ret)
532 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
533 }
534 
535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
536 {
537 	int ret;
538 	int i;
539 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
540 
541 	if (!p || !p->kobj)
542 		return;
543 
544 	/*
545 	 * Create sysfs files for each GPU:
546 	 * - proc/<pid>/stats_<gpuid>/
547 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
548 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
549 	 */
550 	for (i = 0; i < p->n_pdds; i++) {
551 		struct kfd_process_device *pdd = p->pdds[i];
552 
553 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
554 				"stats_%u", pdd->dev->id);
555 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
556 		if (!pdd->kobj_stats)
557 			return;
558 
559 		ret = kobject_init_and_add(pdd->kobj_stats,
560 					   &procfs_stats_type,
561 					   p->kobj,
562 					   stats_dir_filename);
563 
564 		if (ret) {
565 			pr_warn("Creating KFD proc/stats_%s folder failed",
566 				stats_dir_filename);
567 			kobject_put(pdd->kobj_stats);
568 			pdd->kobj_stats = NULL;
569 			return;
570 		}
571 
572 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
573 				      "evicted_ms");
574 		/* Add sysfs file to report compute unit occupancy */
575 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
576 			kfd_sysfs_create_file(pdd->kobj_stats,
577 					      &pdd->attr_cu_occupancy,
578 					      "cu_occupancy");
579 	}
580 }
581 
582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
583 {
584 	int ret = 0;
585 	int i;
586 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
587 
588 	if (!p || !p->kobj)
589 		return;
590 
591 	/*
592 	 * Create sysfs files for each GPU which supports SVM
593 	 * - proc/<pid>/counters_<gpuid>/
594 	 * - proc/<pid>/counters_<gpuid>/faults
595 	 * - proc/<pid>/counters_<gpuid>/page_in
596 	 * - proc/<pid>/counters_<gpuid>/page_out
597 	 */
598 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
599 		struct kfd_process_device *pdd = p->pdds[i];
600 		struct kobject *kobj_counters;
601 
602 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
603 			"counters_%u", pdd->dev->id);
604 		kobj_counters = kfd_alloc_struct(kobj_counters);
605 		if (!kobj_counters)
606 			return;
607 
608 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
609 					   p->kobj, counters_dir_filename);
610 		if (ret) {
611 			pr_warn("Creating KFD proc/%s folder failed",
612 				counters_dir_filename);
613 			kobject_put(kobj_counters);
614 			return;
615 		}
616 
617 		pdd->kobj_counters = kobj_counters;
618 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
619 				      "faults");
620 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
621 				      "page_in");
622 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
623 				      "page_out");
624 	}
625 }
626 
627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
628 {
629 	int i;
630 
631 	if (!p || !p->kobj)
632 		return;
633 
634 	/*
635 	 * Create sysfs files for each GPU:
636 	 * - proc/<pid>/vram_<gpuid>
637 	 * - proc/<pid>/sdma_<gpuid>
638 	 */
639 	for (i = 0; i < p->n_pdds; i++) {
640 		struct kfd_process_device *pdd = p->pdds[i];
641 
642 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
643 			 pdd->dev->id);
644 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
645 				      pdd->vram_filename);
646 
647 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
648 			 pdd->dev->id);
649 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
650 					    pdd->sdma_filename);
651 	}
652 }
653 
654 void kfd_procfs_del_queue(struct queue *q)
655 {
656 	if (!q)
657 		return;
658 
659 	kobject_del(&q->kobj);
660 	kobject_put(&q->kobj);
661 }
662 
663 int kfd_process_create_wq(void)
664 {
665 	if (!kfd_process_wq)
666 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
667 	if (!kfd_restore_wq)
668 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
669 
670 	if (!kfd_process_wq || !kfd_restore_wq) {
671 		kfd_process_destroy_wq();
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 void kfd_process_destroy_wq(void)
679 {
680 	if (kfd_process_wq) {
681 		destroy_workqueue(kfd_process_wq);
682 		kfd_process_wq = NULL;
683 	}
684 	if (kfd_restore_wq) {
685 		destroy_workqueue(kfd_restore_wq);
686 		kfd_restore_wq = NULL;
687 	}
688 }
689 
690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 			struct kfd_process_device *pdd, void *kptr)
692 {
693 	struct kfd_dev *dev = pdd->dev;
694 
695 	if (kptr) {
696 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem);
697 		kptr = NULL;
698 	}
699 
700 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 					       NULL);
703 }
704 
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706  *	This function should be only called right after the process
707  *	is created and when kfd_processes_mutex is still being held
708  *	to avoid concurrency. Because of that exclusiveness, we do
709  *	not need to take p->mutex.
710  */
711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 				   uint64_t gpu_va, uint32_t size,
713 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 	struct kfd_dev *kdev = pdd->dev;
716 	int err;
717 
718 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 						 pdd->drm_priv, mem, NULL,
720 						 flags, false);
721 	if (err)
722 		goto err_alloc_mem;
723 
724 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 			pdd->drm_priv, NULL);
726 	if (err)
727 		goto err_map_mem;
728 
729 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 	if (err) {
731 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 		goto sync_memory_failed;
733 	}
734 
735 	if (kptr) {
736 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev,
737 				(struct kgd_mem *)*mem, kptr, NULL);
738 		if (err) {
739 			pr_debug("Map GTT BO to kernel failed\n");
740 			goto sync_memory_failed;
741 		}
742 	}
743 
744 	return err;
745 
746 sync_memory_failed:
747 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748 
749 err_map_mem:
750 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 					       NULL);
752 err_alloc_mem:
753 	*mem = NULL;
754 	*kptr = NULL;
755 	return err;
756 }
757 
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759  *	process for IB usage The memory reserved is for KFD to submit
760  *	IB to AMDGPU from kernel.  If the memory is reserved
761  *	successfully, ib_kaddr will have the CPU/kernel
762  *	address. Check ib_kaddr before accessing the memory.
763  */
764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 	struct qcm_process_device *qpd = &pdd->qpd;
767 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 	struct kgd_mem *mem;
772 	void *kaddr;
773 	int ret;
774 
775 	if (qpd->ib_kaddr || !qpd->ib_base)
776 		return 0;
777 
778 	/* ib_base is only set for dGPU */
779 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 				      &mem, &kaddr);
781 	if (ret)
782 		return ret;
783 
784 	qpd->ib_mem = mem;
785 	qpd->ib_kaddr = kaddr;
786 
787 	return 0;
788 }
789 
790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 
794 	if (!qpd->ib_kaddr || !qpd->ib_base)
795 		return;
796 
797 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
798 }
799 
800 struct kfd_process *kfd_create_process(struct file *filep)
801 {
802 	struct kfd_process *process;
803 	struct task_struct *thread = current;
804 	int ret;
805 
806 	if (!thread->mm)
807 		return ERR_PTR(-EINVAL);
808 
809 	/* Only the pthreads threading model is supported. */
810 	if (thread->group_leader->mm != thread->mm)
811 		return ERR_PTR(-EINVAL);
812 
813 	/*
814 	 * take kfd processes mutex before starting of process creation
815 	 * so there won't be a case where two threads of the same process
816 	 * create two kfd_process structures
817 	 */
818 	mutex_lock(&kfd_processes_mutex);
819 
820 	/* A prior open of /dev/kfd could have already created the process. */
821 	process = find_process(thread, false);
822 	if (process) {
823 		pr_debug("Process already found\n");
824 	} else {
825 		process = create_process(thread);
826 		if (IS_ERR(process))
827 			goto out;
828 
829 		ret = kfd_process_init_cwsr_apu(process, filep);
830 		if (ret)
831 			goto out_destroy;
832 
833 		if (!procfs.kobj)
834 			goto out;
835 
836 		process->kobj = kfd_alloc_struct(process->kobj);
837 		if (!process->kobj) {
838 			pr_warn("Creating procfs kobject failed");
839 			goto out;
840 		}
841 		ret = kobject_init_and_add(process->kobj, &procfs_type,
842 					   procfs.kobj, "%d",
843 					   (int)process->lead_thread->pid);
844 		if (ret) {
845 			pr_warn("Creating procfs pid directory failed");
846 			kobject_put(process->kobj);
847 			goto out;
848 		}
849 
850 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
851 				      "pasid");
852 
853 		process->kobj_queues = kobject_create_and_add("queues",
854 							process->kobj);
855 		if (!process->kobj_queues)
856 			pr_warn("Creating KFD proc/queues folder failed");
857 
858 		kfd_procfs_add_sysfs_stats(process);
859 		kfd_procfs_add_sysfs_files(process);
860 		kfd_procfs_add_sysfs_counters(process);
861 	}
862 out:
863 	if (!IS_ERR(process))
864 		kref_get(&process->ref);
865 	mutex_unlock(&kfd_processes_mutex);
866 
867 	return process;
868 
869 out_destroy:
870 	hash_del_rcu(&process->kfd_processes);
871 	mutex_unlock(&kfd_processes_mutex);
872 	synchronize_srcu(&kfd_processes_srcu);
873 	/* kfd_process_free_notifier will trigger the cleanup */
874 	mmu_notifier_put(&process->mmu_notifier);
875 	return ERR_PTR(ret);
876 }
877 
878 struct kfd_process *kfd_get_process(const struct task_struct *thread)
879 {
880 	struct kfd_process *process;
881 
882 	if (!thread->mm)
883 		return ERR_PTR(-EINVAL);
884 
885 	/* Only the pthreads threading model is supported. */
886 	if (thread->group_leader->mm != thread->mm)
887 		return ERR_PTR(-EINVAL);
888 
889 	process = find_process(thread, false);
890 	if (!process)
891 		return ERR_PTR(-EINVAL);
892 
893 	return process;
894 }
895 
896 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
897 {
898 	struct kfd_process *process;
899 
900 	hash_for_each_possible_rcu(kfd_processes_table, process,
901 					kfd_processes, (uintptr_t)mm)
902 		if (process->mm == mm)
903 			return process;
904 
905 	return NULL;
906 }
907 
908 static struct kfd_process *find_process(const struct task_struct *thread,
909 					bool ref)
910 {
911 	struct kfd_process *p;
912 	int idx;
913 
914 	idx = srcu_read_lock(&kfd_processes_srcu);
915 	p = find_process_by_mm(thread->mm);
916 	if (p && ref)
917 		kref_get(&p->ref);
918 	srcu_read_unlock(&kfd_processes_srcu, idx);
919 
920 	return p;
921 }
922 
923 void kfd_unref_process(struct kfd_process *p)
924 {
925 	kref_put(&p->ref, kfd_process_ref_release);
926 }
927 
928 /* This increments the process->ref counter. */
929 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
930 {
931 	struct task_struct *task = NULL;
932 	struct kfd_process *p    = NULL;
933 
934 	if (!pid) {
935 		task = current;
936 		get_task_struct(task);
937 	} else {
938 		task = get_pid_task(pid, PIDTYPE_PID);
939 	}
940 
941 	if (task) {
942 		p = find_process(task, true);
943 		put_task_struct(task);
944 	}
945 
946 	return p;
947 }
948 
949 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
950 {
951 	struct kfd_process *p = pdd->process;
952 	void *mem;
953 	int id;
954 	int i;
955 
956 	/*
957 	 * Remove all handles from idr and release appropriate
958 	 * local memory object
959 	 */
960 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
961 
962 		for (i = 0; i < p->n_pdds; i++) {
963 			struct kfd_process_device *peer_pdd = p->pdds[i];
964 
965 			if (!peer_pdd->drm_priv)
966 				continue;
967 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
968 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
969 		}
970 
971 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
972 						       pdd->drm_priv, NULL);
973 		kfd_process_device_remove_obj_handle(pdd, id);
974 	}
975 }
976 
977 /*
978  * Just kunmap and unpin signal BO here. It will be freed in
979  * kfd_process_free_outstanding_kfd_bos()
980  */
981 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
982 {
983 	struct kfd_process_device *pdd;
984 	struct kfd_dev *kdev;
985 	void *mem;
986 
987 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
988 	if (!kdev)
989 		return;
990 
991 	mutex_lock(&p->mutex);
992 
993 	pdd = kfd_get_process_device_data(kdev, p);
994 	if (!pdd)
995 		goto out;
996 
997 	mem = kfd_process_device_translate_handle(
998 		pdd, GET_IDR_HANDLE(p->signal_handle));
999 	if (!mem)
1000 		goto out;
1001 
1002 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem);
1003 
1004 out:
1005 	mutex_unlock(&p->mutex);
1006 }
1007 
1008 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < p->n_pdds; i++)
1013 		kfd_process_device_free_bos(p->pdds[i]);
1014 }
1015 
1016 static void kfd_process_destroy_pdds(struct kfd_process *p)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < p->n_pdds; i++) {
1021 		struct kfd_process_device *pdd = p->pdds[i];
1022 
1023 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1024 				pdd->dev->id, p->pasid);
1025 
1026 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1027 		kfd_process_device_destroy_ib_mem(pdd);
1028 
1029 		if (pdd->drm_file) {
1030 			amdgpu_amdkfd_gpuvm_release_process_vm(
1031 					pdd->dev->adev, pdd->drm_priv);
1032 			fput(pdd->drm_file);
1033 		}
1034 
1035 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1036 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1037 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1038 
1039 		bitmap_free(pdd->qpd.doorbell_bitmap);
1040 		idr_destroy(&pdd->alloc_idr);
1041 
1042 		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1043 
1044 		/*
1045 		 * before destroying pdd, make sure to report availability
1046 		 * for auto suspend
1047 		 */
1048 		if (pdd->runtime_inuse) {
1049 			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1050 			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1051 			pdd->runtime_inuse = false;
1052 		}
1053 
1054 		kfree(pdd);
1055 		p->pdds[i] = NULL;
1056 	}
1057 	p->n_pdds = 0;
1058 }
1059 
1060 static void kfd_process_remove_sysfs(struct kfd_process *p)
1061 {
1062 	struct kfd_process_device *pdd;
1063 	int i;
1064 
1065 	if (!p->kobj)
1066 		return;
1067 
1068 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1069 	kobject_del(p->kobj_queues);
1070 	kobject_put(p->kobj_queues);
1071 	p->kobj_queues = NULL;
1072 
1073 	for (i = 0; i < p->n_pdds; i++) {
1074 		pdd = p->pdds[i];
1075 
1076 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078 
1079 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081 			sysfs_remove_file(pdd->kobj_stats,
1082 					  &pdd->attr_cu_occupancy);
1083 		kobject_del(pdd->kobj_stats);
1084 		kobject_put(pdd->kobj_stats);
1085 		pdd->kobj_stats = NULL;
1086 	}
1087 
1088 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089 		pdd = p->pdds[i];
1090 
1091 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094 		kobject_del(pdd->kobj_counters);
1095 		kobject_put(pdd->kobj_counters);
1096 		pdd->kobj_counters = NULL;
1097 	}
1098 
1099 	kobject_del(p->kobj);
1100 	kobject_put(p->kobj);
1101 	p->kobj = NULL;
1102 }
1103 
1104 /* No process locking is needed in this function, because the process
1105  * is not findable any more. We must assume that no other thread is
1106  * using it any more, otherwise we couldn't safely free the process
1107  * structure in the end.
1108  */
1109 static void kfd_process_wq_release(struct work_struct *work)
1110 {
1111 	struct kfd_process *p = container_of(work, struct kfd_process,
1112 					     release_work);
1113 
1114 	kfd_process_remove_sysfs(p);
1115 	kfd_iommu_unbind_process(p);
1116 
1117 	kfd_process_kunmap_signal_bo(p);
1118 	kfd_process_free_outstanding_kfd_bos(p);
1119 	svm_range_list_fini(p);
1120 
1121 	kfd_process_destroy_pdds(p);
1122 	dma_fence_put(p->ef);
1123 
1124 	kfd_event_free_process(p);
1125 
1126 	kfd_pasid_free(p->pasid);
1127 	mutex_destroy(&p->mutex);
1128 
1129 	put_task_struct(p->lead_thread);
1130 
1131 	kfree(p);
1132 }
1133 
1134 static void kfd_process_ref_release(struct kref *ref)
1135 {
1136 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1137 
1138 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1139 	queue_work(kfd_process_wq, &p->release_work);
1140 }
1141 
1142 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1143 {
1144 	int idx = srcu_read_lock(&kfd_processes_srcu);
1145 	struct kfd_process *p = find_process_by_mm(mm);
1146 
1147 	srcu_read_unlock(&kfd_processes_srcu, idx);
1148 
1149 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1150 }
1151 
1152 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1153 {
1154 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1155 }
1156 
1157 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1158 					struct mm_struct *mm)
1159 {
1160 	struct kfd_process *p;
1161 
1162 	/*
1163 	 * The kfd_process structure can not be free because the
1164 	 * mmu_notifier srcu is read locked
1165 	 */
1166 	p = container_of(mn, struct kfd_process, mmu_notifier);
1167 	if (WARN_ON(p->mm != mm))
1168 		return;
1169 
1170 	mutex_lock(&kfd_processes_mutex);
1171 	hash_del_rcu(&p->kfd_processes);
1172 	mutex_unlock(&kfd_processes_mutex);
1173 	synchronize_srcu(&kfd_processes_srcu);
1174 
1175 	cancel_delayed_work_sync(&p->eviction_work);
1176 	cancel_delayed_work_sync(&p->restore_work);
1177 
1178 	mutex_lock(&p->mutex);
1179 
1180 	kfd_process_dequeue_from_all_devices(p);
1181 	pqm_uninit(&p->pqm);
1182 
1183 	/* Indicate to other users that MM is no longer valid */
1184 	p->mm = NULL;
1185 	/* Signal the eviction fence after user mode queues are
1186 	 * destroyed. This allows any BOs to be freed without
1187 	 * triggering pointless evictions or waiting for fences.
1188 	 */
1189 	dma_fence_signal(p->ef);
1190 
1191 	mutex_unlock(&p->mutex);
1192 
1193 	mmu_notifier_put(&p->mmu_notifier);
1194 }
1195 
1196 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1197 	.release = kfd_process_notifier_release,
1198 	.alloc_notifier = kfd_process_alloc_notifier,
1199 	.free_notifier = kfd_process_free_notifier,
1200 };
1201 
1202 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1203 {
1204 	unsigned long  offset;
1205 	int i;
1206 
1207 	for (i = 0; i < p->n_pdds; i++) {
1208 		struct kfd_dev *dev = p->pdds[i]->dev;
1209 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1210 
1211 		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1212 			continue;
1213 
1214 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1215 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1216 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1217 			MAP_SHARED, offset);
1218 
1219 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1220 			int err = qpd->tba_addr;
1221 
1222 			pr_err("Failure to set tba address. error %d.\n", err);
1223 			qpd->tba_addr = 0;
1224 			qpd->cwsr_kaddr = NULL;
1225 			return err;
1226 		}
1227 
1228 		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1229 
1230 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1231 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1232 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1239 {
1240 	struct kfd_dev *dev = pdd->dev;
1241 	struct qcm_process_device *qpd = &pdd->qpd;
1242 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1243 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1244 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1245 	struct kgd_mem *mem;
1246 	void *kaddr;
1247 	int ret;
1248 
1249 	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1250 		return 0;
1251 
1252 	/* cwsr_base is only set for dGPU */
1253 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1254 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1255 	if (ret)
1256 		return ret;
1257 
1258 	qpd->cwsr_mem = mem;
1259 	qpd->cwsr_kaddr = kaddr;
1260 	qpd->tba_addr = qpd->cwsr_base;
1261 
1262 	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1263 
1264 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1265 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1266 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1267 
1268 	return 0;
1269 }
1270 
1271 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1272 {
1273 	struct kfd_dev *dev = pdd->dev;
1274 	struct qcm_process_device *qpd = &pdd->qpd;
1275 
1276 	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1277 		return;
1278 
1279 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1280 }
1281 
1282 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1283 				  uint64_t tba_addr,
1284 				  uint64_t tma_addr)
1285 {
1286 	if (qpd->cwsr_kaddr) {
1287 		/* KFD trap handler is bound, record as second-level TBA/TMA
1288 		 * in first-level TMA. First-level trap will jump to second.
1289 		 */
1290 		uint64_t *tma =
1291 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1292 		tma[0] = tba_addr;
1293 		tma[1] = tma_addr;
1294 	} else {
1295 		/* No trap handler bound, bind as first-level TBA/TMA. */
1296 		qpd->tba_addr = tba_addr;
1297 		qpd->tma_addr = tma_addr;
1298 	}
1299 }
1300 
1301 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1302 {
1303 	int i;
1304 
1305 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1306 	 * boot time retry setting. Mixing processes with different
1307 	 * XNACK/retry settings can hang the GPU.
1308 	 *
1309 	 * Different GPUs can have different noretry settings depending
1310 	 * on HW bugs or limitations. We need to find at least one
1311 	 * XNACK mode for this process that's compatible with all GPUs.
1312 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1313 	 * built for XNACK-off. On GFXv9 it may perform slower.
1314 	 *
1315 	 * Therefore applications built for XNACK-off can always be
1316 	 * supported and will be our fallback if any GPU does not
1317 	 * support retry.
1318 	 */
1319 	for (i = 0; i < p->n_pdds; i++) {
1320 		struct kfd_dev *dev = p->pdds[i]->dev;
1321 
1322 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1323 		 * support the SVM APIs and don't need to be considered
1324 		 * for the XNACK mode selection.
1325 		 */
1326 		if (!KFD_IS_SOC15(dev))
1327 			continue;
1328 		/* Aldebaran can always support XNACK because it can support
1329 		 * per-process XNACK mode selection. But let the dev->noretry
1330 		 * setting still influence the default XNACK mode.
1331 		 */
1332 		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1333 			continue;
1334 
1335 		/* GFXv10 and later GPUs do not support shader preemption
1336 		 * during page faults. This can lead to poor QoS for queue
1337 		 * management and memory-manager-related preemptions or
1338 		 * even deadlocks.
1339 		 */
1340 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1341 			return false;
1342 
1343 		if (dev->noretry)
1344 			return false;
1345 	}
1346 
1347 	return true;
1348 }
1349 
1350 /*
1351  * On return the kfd_process is fully operational and will be freed when the
1352  * mm is released
1353  */
1354 static struct kfd_process *create_process(const struct task_struct *thread)
1355 {
1356 	struct kfd_process *process;
1357 	struct mmu_notifier *mn;
1358 	int err = -ENOMEM;
1359 
1360 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1361 	if (!process)
1362 		goto err_alloc_process;
1363 
1364 	kref_init(&process->ref);
1365 	mutex_init(&process->mutex);
1366 	process->mm = thread->mm;
1367 	process->lead_thread = thread->group_leader;
1368 	process->n_pdds = 0;
1369 	process->queues_paused = false;
1370 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1371 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1372 	process->last_restore_timestamp = get_jiffies_64();
1373 	kfd_event_init_process(process);
1374 	process->is_32bit_user_mode = in_compat_syscall();
1375 
1376 	process->pasid = kfd_pasid_alloc();
1377 	if (process->pasid == 0)
1378 		goto err_alloc_pasid;
1379 
1380 	err = pqm_init(&process->pqm, process);
1381 	if (err != 0)
1382 		goto err_process_pqm_init;
1383 
1384 	/* init process apertures*/
1385 	err = kfd_init_apertures(process);
1386 	if (err != 0)
1387 		goto err_init_apertures;
1388 
1389 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1390 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1391 
1392 	err = svm_range_list_init(process);
1393 	if (err)
1394 		goto err_init_svm_range_list;
1395 
1396 	/* alloc_notifier needs to find the process in the hash table */
1397 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1398 			(uintptr_t)process->mm);
1399 
1400 	/* MMU notifier registration must be the last call that can fail
1401 	 * because after this point we cannot unwind the process creation.
1402 	 * After this point, mmu_notifier_put will trigger the cleanup by
1403 	 * dropping the last process reference in the free_notifier.
1404 	 */
1405 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1406 	if (IS_ERR(mn)) {
1407 		err = PTR_ERR(mn);
1408 		goto err_register_notifier;
1409 	}
1410 	BUG_ON(mn != &process->mmu_notifier);
1411 
1412 	get_task_struct(process->lead_thread);
1413 
1414 	return process;
1415 
1416 err_register_notifier:
1417 	hash_del_rcu(&process->kfd_processes);
1418 	svm_range_list_fini(process);
1419 err_init_svm_range_list:
1420 	kfd_process_free_outstanding_kfd_bos(process);
1421 	kfd_process_destroy_pdds(process);
1422 err_init_apertures:
1423 	pqm_uninit(&process->pqm);
1424 err_process_pqm_init:
1425 	kfd_pasid_free(process->pasid);
1426 err_alloc_pasid:
1427 	mutex_destroy(&process->mutex);
1428 	kfree(process);
1429 err_alloc_process:
1430 	return ERR_PTR(err);
1431 }
1432 
1433 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1434 			struct kfd_dev *dev)
1435 {
1436 	unsigned int i;
1437 	int range_start = dev->shared_resources.non_cp_doorbells_start;
1438 	int range_end = dev->shared_resources.non_cp_doorbells_end;
1439 
1440 	if (!KFD_IS_SOC15(dev))
1441 		return 0;
1442 
1443 	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1444 					     GFP_KERNEL);
1445 	if (!qpd->doorbell_bitmap)
1446 		return -ENOMEM;
1447 
1448 	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1449 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1450 	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1451 			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1452 			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1453 
1454 	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1455 		if (i >= range_start && i <= range_end) {
1456 			__set_bit(i, qpd->doorbell_bitmap);
1457 			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1458 				  qpd->doorbell_bitmap);
1459 		}
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1466 							struct kfd_process *p)
1467 {
1468 	int i;
1469 
1470 	for (i = 0; i < p->n_pdds; i++)
1471 		if (p->pdds[i]->dev == dev)
1472 			return p->pdds[i];
1473 
1474 	return NULL;
1475 }
1476 
1477 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1478 							struct kfd_process *p)
1479 {
1480 	struct kfd_process_device *pdd = NULL;
1481 
1482 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1483 		return NULL;
1484 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1485 	if (!pdd)
1486 		return NULL;
1487 
1488 	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1489 		pr_err("Failed to alloc doorbell for pdd\n");
1490 		goto err_free_pdd;
1491 	}
1492 
1493 	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1494 		pr_err("Failed to init doorbell for process\n");
1495 		goto err_free_pdd;
1496 	}
1497 
1498 	pdd->dev = dev;
1499 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1500 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1501 	pdd->qpd.dqm = dev->dqm;
1502 	pdd->qpd.pqm = &p->pqm;
1503 	pdd->qpd.evicted = 0;
1504 	pdd->qpd.mapped_gws_queue = false;
1505 	pdd->process = p;
1506 	pdd->bound = PDD_UNBOUND;
1507 	pdd->already_dequeued = false;
1508 	pdd->runtime_inuse = false;
1509 	pdd->vram_usage = 0;
1510 	pdd->sdma_past_activity_counter = 0;
1511 	pdd->user_gpu_id = dev->id;
1512 	atomic64_set(&pdd->evict_duration_counter, 0);
1513 	p->pdds[p->n_pdds++] = pdd;
1514 
1515 	/* Init idr used for memory handle translation */
1516 	idr_init(&pdd->alloc_idr);
1517 
1518 	return pdd;
1519 
1520 err_free_pdd:
1521 	kfree(pdd);
1522 	return NULL;
1523 }
1524 
1525 /**
1526  * kfd_process_device_init_vm - Initialize a VM for a process-device
1527  *
1528  * @pdd: The process-device
1529  * @drm_file: Optional pointer to a DRM file descriptor
1530  *
1531  * If @drm_file is specified, it will be used to acquire the VM from
1532  * that file descriptor. If successful, the @pdd takes ownership of
1533  * the file descriptor.
1534  *
1535  * If @drm_file is NULL, a new VM is created.
1536  *
1537  * Returns 0 on success, -errno on failure.
1538  */
1539 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1540 			       struct file *drm_file)
1541 {
1542 	struct kfd_process *p;
1543 	struct kfd_dev *dev;
1544 	int ret;
1545 
1546 	if (!drm_file)
1547 		return -EINVAL;
1548 
1549 	if (pdd->drm_priv)
1550 		return -EBUSY;
1551 
1552 	p = pdd->process;
1553 	dev = pdd->dev;
1554 
1555 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1556 		dev->adev, drm_file, p->pasid,
1557 		&p->kgd_process_info, &p->ef);
1558 	if (ret) {
1559 		pr_err("Failed to create process VM object\n");
1560 		return ret;
1561 	}
1562 	pdd->drm_priv = drm_file->private_data;
1563 
1564 	ret = kfd_process_device_reserve_ib_mem(pdd);
1565 	if (ret)
1566 		goto err_reserve_ib_mem;
1567 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1568 	if (ret)
1569 		goto err_init_cwsr;
1570 
1571 	pdd->drm_file = drm_file;
1572 
1573 	return 0;
1574 
1575 err_init_cwsr:
1576 err_reserve_ib_mem:
1577 	kfd_process_device_free_bos(pdd);
1578 	pdd->drm_priv = NULL;
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1585  * to the device.
1586  * Unbinding occurs when the process dies or the device is removed.
1587  *
1588  * Assumes that the process lock is held.
1589  */
1590 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1591 							struct kfd_process *p)
1592 {
1593 	struct kfd_process_device *pdd;
1594 	int err;
1595 
1596 	pdd = kfd_get_process_device_data(dev, p);
1597 	if (!pdd) {
1598 		pr_err("Process device data doesn't exist\n");
1599 		return ERR_PTR(-ENOMEM);
1600 	}
1601 
1602 	if (!pdd->drm_priv)
1603 		return ERR_PTR(-ENODEV);
1604 
1605 	/*
1606 	 * signal runtime-pm system to auto resume and prevent
1607 	 * further runtime suspend once device pdd is created until
1608 	 * pdd is destroyed.
1609 	 */
1610 	if (!pdd->runtime_inuse) {
1611 		err = pm_runtime_get_sync(dev->ddev->dev);
1612 		if (err < 0) {
1613 			pm_runtime_put_autosuspend(dev->ddev->dev);
1614 			return ERR_PTR(err);
1615 		}
1616 	}
1617 
1618 	err = kfd_iommu_bind_process_to_device(pdd);
1619 	if (err)
1620 		goto out;
1621 
1622 	/*
1623 	 * make sure that runtime_usage counter is incremented just once
1624 	 * per pdd
1625 	 */
1626 	pdd->runtime_inuse = true;
1627 
1628 	return pdd;
1629 
1630 out:
1631 	/* balance runpm reference count and exit with error */
1632 	if (!pdd->runtime_inuse) {
1633 		pm_runtime_mark_last_busy(dev->ddev->dev);
1634 		pm_runtime_put_autosuspend(dev->ddev->dev);
1635 	}
1636 
1637 	return ERR_PTR(err);
1638 }
1639 
1640 /* Create specific handle mapped to mem from process local memory idr
1641  * Assumes that the process lock is held.
1642  */
1643 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1644 					void *mem)
1645 {
1646 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1647 }
1648 
1649 /* Translate specific handle from process local memory idr
1650  * Assumes that the process lock is held.
1651  */
1652 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1653 					int handle)
1654 {
1655 	if (handle < 0)
1656 		return NULL;
1657 
1658 	return idr_find(&pdd->alloc_idr, handle);
1659 }
1660 
1661 /* Remove specific handle from process local memory idr
1662  * Assumes that the process lock is held.
1663  */
1664 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1665 					int handle)
1666 {
1667 	if (handle >= 0)
1668 		idr_remove(&pdd->alloc_idr, handle);
1669 }
1670 
1671 /* This increments the process->ref counter. */
1672 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1673 {
1674 	struct kfd_process *p, *ret_p = NULL;
1675 	unsigned int temp;
1676 
1677 	int idx = srcu_read_lock(&kfd_processes_srcu);
1678 
1679 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1680 		if (p->pasid == pasid) {
1681 			kref_get(&p->ref);
1682 			ret_p = p;
1683 			break;
1684 		}
1685 	}
1686 
1687 	srcu_read_unlock(&kfd_processes_srcu, idx);
1688 
1689 	return ret_p;
1690 }
1691 
1692 /* This increments the process->ref counter. */
1693 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1694 {
1695 	struct kfd_process *p;
1696 
1697 	int idx = srcu_read_lock(&kfd_processes_srcu);
1698 
1699 	p = find_process_by_mm(mm);
1700 	if (p)
1701 		kref_get(&p->ref);
1702 
1703 	srcu_read_unlock(&kfd_processes_srcu, idx);
1704 
1705 	return p;
1706 }
1707 
1708 /* kfd_process_evict_queues - Evict all user queues of a process
1709  *
1710  * Eviction is reference-counted per process-device. This means multiple
1711  * evictions from different sources can be nested safely.
1712  */
1713 int kfd_process_evict_queues(struct kfd_process *p)
1714 {
1715 	int r = 0;
1716 	int i;
1717 	unsigned int n_evicted = 0;
1718 
1719 	for (i = 0; i < p->n_pdds; i++) {
1720 		struct kfd_process_device *pdd = p->pdds[i];
1721 
1722 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1723 							    &pdd->qpd);
1724 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1725 		 * we would like to set all the queues to be in evicted state to prevent
1726 		 * them been add back since they actually not be saved right now.
1727 		 */
1728 		if (r && r != -EIO) {
1729 			pr_err("Failed to evict process queues\n");
1730 			goto fail;
1731 		}
1732 		n_evicted++;
1733 	}
1734 
1735 	return r;
1736 
1737 fail:
1738 	/* To keep state consistent, roll back partial eviction by
1739 	 * restoring queues
1740 	 */
1741 	for (i = 0; i < p->n_pdds; i++) {
1742 		struct kfd_process_device *pdd = p->pdds[i];
1743 
1744 		if (n_evicted == 0)
1745 			break;
1746 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1747 							      &pdd->qpd))
1748 			pr_err("Failed to restore queues\n");
1749 
1750 		n_evicted--;
1751 	}
1752 
1753 	return r;
1754 }
1755 
1756 /* kfd_process_restore_queues - Restore all user queues of a process */
1757 int kfd_process_restore_queues(struct kfd_process *p)
1758 {
1759 	int r, ret = 0;
1760 	int i;
1761 
1762 	for (i = 0; i < p->n_pdds; i++) {
1763 		struct kfd_process_device *pdd = p->pdds[i];
1764 
1765 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1766 							      &pdd->qpd);
1767 		if (r) {
1768 			pr_err("Failed to restore process queues\n");
1769 			if (!ret)
1770 				ret = r;
1771 		}
1772 	}
1773 
1774 	return ret;
1775 }
1776 
1777 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < p->n_pdds; i++)
1782 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1783 			return i;
1784 	return -EINVAL;
1785 }
1786 
1787 int
1788 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1789 			   uint32_t *gpuid, uint32_t *gpuidx)
1790 {
1791 	int i;
1792 
1793 	for (i = 0; i < p->n_pdds; i++)
1794 		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1795 			*gpuid = p->pdds[i]->user_gpu_id;
1796 			*gpuidx = i;
1797 			return 0;
1798 		}
1799 	return -EINVAL;
1800 }
1801 
1802 static void evict_process_worker(struct work_struct *work)
1803 {
1804 	int ret;
1805 	struct kfd_process *p;
1806 	struct delayed_work *dwork;
1807 
1808 	dwork = to_delayed_work(work);
1809 
1810 	/* Process termination destroys this worker thread. So during the
1811 	 * lifetime of this thread, kfd_process p will be valid
1812 	 */
1813 	p = container_of(dwork, struct kfd_process, eviction_work);
1814 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1815 		  "Eviction fence mismatch\n");
1816 
1817 	/* Narrow window of overlap between restore and evict work
1818 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1819 	 * unreserves KFD BOs, it is possible to evicted again. But
1820 	 * restore has few more steps of finish. So lets wait for any
1821 	 * previous restore work to complete
1822 	 */
1823 	flush_delayed_work(&p->restore_work);
1824 
1825 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1826 	ret = kfd_process_evict_queues(p);
1827 	if (!ret) {
1828 		dma_fence_signal(p->ef);
1829 		dma_fence_put(p->ef);
1830 		p->ef = NULL;
1831 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1832 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1833 
1834 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1835 	} else
1836 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1837 }
1838 
1839 static void restore_process_worker(struct work_struct *work)
1840 {
1841 	struct delayed_work *dwork;
1842 	struct kfd_process *p;
1843 	int ret = 0;
1844 
1845 	dwork = to_delayed_work(work);
1846 
1847 	/* Process termination destroys this worker thread. So during the
1848 	 * lifetime of this thread, kfd_process p will be valid
1849 	 */
1850 	p = container_of(dwork, struct kfd_process, restore_work);
1851 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1852 
1853 	/* Setting last_restore_timestamp before successful restoration.
1854 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1855 	 * before KFD BOs are unreserved. If not, the process can be evicted
1856 	 * again before the timestamp is set.
1857 	 * If restore fails, the timestamp will be set again in the next
1858 	 * attempt. This would mean that the minimum GPU quanta would be
1859 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1860 	 * functions)
1861 	 */
1862 
1863 	p->last_restore_timestamp = get_jiffies_64();
1864 	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1865 						     &p->ef);
1866 	if (ret) {
1867 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1868 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1869 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1870 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1871 		WARN(!ret, "reschedule restore work failed\n");
1872 		return;
1873 	}
1874 
1875 	ret = kfd_process_restore_queues(p);
1876 	if (!ret)
1877 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1878 	else
1879 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1880 }
1881 
1882 void kfd_suspend_all_processes(void)
1883 {
1884 	struct kfd_process *p;
1885 	unsigned int temp;
1886 	int idx = srcu_read_lock(&kfd_processes_srcu);
1887 
1888 	WARN(debug_evictions, "Evicting all processes");
1889 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1890 		cancel_delayed_work_sync(&p->eviction_work);
1891 		cancel_delayed_work_sync(&p->restore_work);
1892 
1893 		if (kfd_process_evict_queues(p))
1894 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1895 		dma_fence_signal(p->ef);
1896 		dma_fence_put(p->ef);
1897 		p->ef = NULL;
1898 	}
1899 	srcu_read_unlock(&kfd_processes_srcu, idx);
1900 }
1901 
1902 int kfd_resume_all_processes(void)
1903 {
1904 	struct kfd_process *p;
1905 	unsigned int temp;
1906 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1907 
1908 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1909 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1910 			pr_err("Restore process %d failed during resume\n",
1911 			       p->pasid);
1912 			ret = -EFAULT;
1913 		}
1914 	}
1915 	srcu_read_unlock(&kfd_processes_srcu, idx);
1916 	return ret;
1917 }
1918 
1919 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1920 			  struct vm_area_struct *vma)
1921 {
1922 	struct kfd_process_device *pdd;
1923 	struct qcm_process_device *qpd;
1924 
1925 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1926 		pr_err("Incorrect CWSR mapping size.\n");
1927 		return -EINVAL;
1928 	}
1929 
1930 	pdd = kfd_get_process_device_data(dev, process);
1931 	if (!pdd)
1932 		return -EINVAL;
1933 	qpd = &pdd->qpd;
1934 
1935 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1936 					get_order(KFD_CWSR_TBA_TMA_SIZE));
1937 	if (!qpd->cwsr_kaddr) {
1938 		pr_err("Error allocating per process CWSR buffer.\n");
1939 		return -ENOMEM;
1940 	}
1941 
1942 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1943 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1944 	/* Mapping pages to user process */
1945 	return remap_pfn_range(vma, vma->vm_start,
1946 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1947 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1948 }
1949 
1950 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1951 {
1952 	struct kfd_dev *dev = pdd->dev;
1953 
1954 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1955 		/* Nothing to flush until a VMID is assigned, which
1956 		 * only happens when the first queue is created.
1957 		 */
1958 		if (pdd->qpd.vmid)
1959 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
1960 							pdd->qpd.vmid);
1961 	} else {
1962 		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
1963 					pdd->process->pasid, type);
1964 	}
1965 }
1966 
1967 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
1968 {
1969 	int i;
1970 
1971 	if (gpu_id) {
1972 		for (i = 0; i < p->n_pdds; i++) {
1973 			struct kfd_process_device *pdd = p->pdds[i];
1974 
1975 			if (pdd->user_gpu_id == gpu_id)
1976 				return pdd;
1977 		}
1978 	}
1979 	return NULL;
1980 }
1981 
1982 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
1983 {
1984 	int i;
1985 
1986 	if (!actual_gpu_id)
1987 		return 0;
1988 
1989 	for (i = 0; i < p->n_pdds; i++) {
1990 		struct kfd_process_device *pdd = p->pdds[i];
1991 
1992 		if (pdd->dev->id == actual_gpu_id)
1993 			return pdd->user_gpu_id;
1994 	}
1995 	return -EINVAL;
1996 }
1997 
1998 #if defined(CONFIG_DEBUG_FS)
1999 
2000 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2001 {
2002 	struct kfd_process *p;
2003 	unsigned int temp;
2004 	int r = 0;
2005 
2006 	int idx = srcu_read_lock(&kfd_processes_srcu);
2007 
2008 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2009 		seq_printf(m, "Process %d PASID 0x%x:\n",
2010 			   p->lead_thread->tgid, p->pasid);
2011 
2012 		mutex_lock(&p->mutex);
2013 		r = pqm_debugfs_mqds(m, &p->pqm);
2014 		mutex_unlock(&p->mutex);
2015 
2016 		if (r)
2017 			break;
2018 	}
2019 
2020 	srcu_read_unlock(&kfd_processes_srcu, idx);
2021 
2022 	return r;
2023 }
2024 
2025 #endif
2026 
2027