xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 
39 struct mm_struct;
40 
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46 
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53 
54 DEFINE_SRCU(kfd_processes_srcu);
55 
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58 
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66 
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 					bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 	int i;
274 	struct kfd_cu_occupancy cu_occupancy[AMDGPU_MAX_QUEUES];
275 	u32 queue_format;
276 
277 	memset(cu_occupancy, 0x0, sizeof(cu_occupancy));
278 
279 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
280 	dev = pdd->dev;
281 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
282 		return -EINVAL;
283 
284 	cu_cnt = 0;
285 	proc = pdd->process;
286 	if (pdd->qpd.queue_count == 0) {
287 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
288 			 dev->id, proc->pasid);
289 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
290 	}
291 
292 	/* Collect wave count from device if it supports */
293 	wave_cnt = 0;
294 	max_waves_per_cu = 0;
295 
296 	/*
297 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
298 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
299 	 * by number of XCCs in the partition to get the total wave counts across all
300 	 * XCCs in the partition.
301 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
302 	 */
303 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
304 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
305 
306 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
307 		if (cu_occupancy[i].wave_cnt != 0 &&
308 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
309 						cu_occupancy[i].doorbell_off,
310 						&queue_format)) {
311 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
312 				wave_cnt += cu_occupancy[i].wave_cnt;
313 			else
314 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
315 						cu_occupancy[i].wave_cnt);
316 		}
317 	}
318 
319 	/* Translate wave count to number of compute units */
320 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
321 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
322 }
323 
324 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
325 			       char *buffer)
326 {
327 	if (strcmp(attr->name, "pasid") == 0) {
328 		struct kfd_process *p = container_of(attr, struct kfd_process,
329 						     attr_pasid);
330 
331 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
332 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
333 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
334 							      attr_vram);
335 		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
336 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
337 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338 							      attr_sdma);
339 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
340 
341 		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
342 					kfd_sdma_activity_worker);
343 
344 		sdma_activity_work_handler.pdd = pdd;
345 		sdma_activity_work_handler.sdma_activity_counter = 0;
346 
347 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
348 
349 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
350 
351 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
352 				(sdma_activity_work_handler.sdma_activity_counter)/
353 				 SDMA_ACTIVITY_DIVISOR);
354 	} else {
355 		pr_err("Invalid attribute");
356 		return -EINVAL;
357 	}
358 
359 	return 0;
360 }
361 
362 static void kfd_procfs_kobj_release(struct kobject *kobj)
363 {
364 	kfree(kobj);
365 }
366 
367 static const struct sysfs_ops kfd_procfs_ops = {
368 	.show = kfd_procfs_show,
369 };
370 
371 static const struct kobj_type procfs_type = {
372 	.release = kfd_procfs_kobj_release,
373 	.sysfs_ops = &kfd_procfs_ops,
374 };
375 
376 void kfd_procfs_init(void)
377 {
378 	int ret = 0;
379 
380 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
381 	if (!procfs.kobj)
382 		return;
383 
384 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
385 				   &kfd_device->kobj, "proc");
386 	if (ret) {
387 		pr_warn("Could not create procfs proc folder");
388 		/* If we fail to create the procfs, clean up */
389 		kfd_procfs_shutdown();
390 	}
391 }
392 
393 void kfd_procfs_shutdown(void)
394 {
395 	if (procfs.kobj) {
396 		kobject_del(procfs.kobj);
397 		kobject_put(procfs.kobj);
398 		procfs.kobj = NULL;
399 	}
400 }
401 
402 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
403 				     struct attribute *attr, char *buffer)
404 {
405 	struct queue *q = container_of(kobj, struct queue, kobj);
406 
407 	if (!strcmp(attr->name, "size"))
408 		return snprintf(buffer, PAGE_SIZE, "%llu",
409 				q->properties.queue_size);
410 	else if (!strcmp(attr->name, "type"))
411 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
412 	else if (!strcmp(attr->name, "gpuid"))
413 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
414 	else
415 		pr_err("Invalid attribute");
416 
417 	return 0;
418 }
419 
420 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
421 				     struct attribute *attr, char *buffer)
422 {
423 	if (strcmp(attr->name, "evicted_ms") == 0) {
424 		struct kfd_process_device *pdd = container_of(attr,
425 				struct kfd_process_device,
426 				attr_evict);
427 		uint64_t evict_jiffies;
428 
429 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
430 
431 		return snprintf(buffer,
432 				PAGE_SIZE,
433 				"%llu\n",
434 				jiffies64_to_msecs(evict_jiffies));
435 
436 	/* Sysfs handle that gets CU occupancy is per device */
437 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
438 		return kfd_get_cu_occupancy(attr, buffer);
439 	} else {
440 		pr_err("Invalid attribute");
441 	}
442 
443 	return 0;
444 }
445 
446 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
447 				       struct attribute *attr, char *buf)
448 {
449 	struct kfd_process_device *pdd;
450 
451 	if (!strcmp(attr->name, "faults")) {
452 		pdd = container_of(attr, struct kfd_process_device,
453 				   attr_faults);
454 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
455 	}
456 	if (!strcmp(attr->name, "page_in")) {
457 		pdd = container_of(attr, struct kfd_process_device,
458 				   attr_page_in);
459 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
460 	}
461 	if (!strcmp(attr->name, "page_out")) {
462 		pdd = container_of(attr, struct kfd_process_device,
463 				   attr_page_out);
464 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
465 	}
466 	return 0;
467 }
468 
469 static struct attribute attr_queue_size = {
470 	.name = "size",
471 	.mode = KFD_SYSFS_FILE_MODE
472 };
473 
474 static struct attribute attr_queue_type = {
475 	.name = "type",
476 	.mode = KFD_SYSFS_FILE_MODE
477 };
478 
479 static struct attribute attr_queue_gpuid = {
480 	.name = "gpuid",
481 	.mode = KFD_SYSFS_FILE_MODE
482 };
483 
484 static struct attribute *procfs_queue_attrs[] = {
485 	&attr_queue_size,
486 	&attr_queue_type,
487 	&attr_queue_gpuid,
488 	NULL
489 };
490 ATTRIBUTE_GROUPS(procfs_queue);
491 
492 static const struct sysfs_ops procfs_queue_ops = {
493 	.show = kfd_procfs_queue_show,
494 };
495 
496 static const struct kobj_type procfs_queue_type = {
497 	.sysfs_ops = &procfs_queue_ops,
498 	.default_groups = procfs_queue_groups,
499 };
500 
501 static const struct sysfs_ops procfs_stats_ops = {
502 	.show = kfd_procfs_stats_show,
503 };
504 
505 static const struct kobj_type procfs_stats_type = {
506 	.sysfs_ops = &procfs_stats_ops,
507 	.release = kfd_procfs_kobj_release,
508 };
509 
510 static const struct sysfs_ops sysfs_counters_ops = {
511 	.show = kfd_sysfs_counters_show,
512 };
513 
514 static const struct kobj_type sysfs_counters_type = {
515 	.sysfs_ops = &sysfs_counters_ops,
516 	.release = kfd_procfs_kobj_release,
517 };
518 
519 int kfd_procfs_add_queue(struct queue *q)
520 {
521 	struct kfd_process *proc;
522 	int ret;
523 
524 	if (!q || !q->process)
525 		return -EINVAL;
526 	proc = q->process;
527 
528 	/* Create proc/<pid>/queues/<queue id> folder */
529 	if (!proc->kobj_queues)
530 		return -EFAULT;
531 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
532 			proc->kobj_queues, "%u", q->properties.queue_id);
533 	if (ret < 0) {
534 		pr_warn("Creating proc/<pid>/queues/%u failed",
535 			q->properties.queue_id);
536 		kobject_put(&q->kobj);
537 		return ret;
538 	}
539 
540 	return 0;
541 }
542 
543 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
544 				 char *name)
545 {
546 	int ret;
547 
548 	if (!kobj || !attr || !name)
549 		return;
550 
551 	attr->name = name;
552 	attr->mode = KFD_SYSFS_FILE_MODE;
553 	sysfs_attr_init(attr);
554 
555 	ret = sysfs_create_file(kobj, attr);
556 	if (ret)
557 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
558 }
559 
560 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
561 {
562 	int ret;
563 	int i;
564 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
565 
566 	if (!p || !p->kobj)
567 		return;
568 
569 	/*
570 	 * Create sysfs files for each GPU:
571 	 * - proc/<pid>/stats_<gpuid>/
572 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
573 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
574 	 */
575 	for (i = 0; i < p->n_pdds; i++) {
576 		struct kfd_process_device *pdd = p->pdds[i];
577 
578 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
579 				"stats_%u", pdd->dev->id);
580 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
581 		if (!pdd->kobj_stats)
582 			return;
583 
584 		ret = kobject_init_and_add(pdd->kobj_stats,
585 					   &procfs_stats_type,
586 					   p->kobj,
587 					   stats_dir_filename);
588 
589 		if (ret) {
590 			pr_warn("Creating KFD proc/stats_%s folder failed",
591 				stats_dir_filename);
592 			kobject_put(pdd->kobj_stats);
593 			pdd->kobj_stats = NULL;
594 			return;
595 		}
596 
597 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
598 				      "evicted_ms");
599 		/* Add sysfs file to report compute unit occupancy */
600 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
601 			kfd_sysfs_create_file(pdd->kobj_stats,
602 					      &pdd->attr_cu_occupancy,
603 					      "cu_occupancy");
604 	}
605 }
606 
607 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
608 {
609 	int ret = 0;
610 	int i;
611 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
612 
613 	if (!p || !p->kobj)
614 		return;
615 
616 	/*
617 	 * Create sysfs files for each GPU which supports SVM
618 	 * - proc/<pid>/counters_<gpuid>/
619 	 * - proc/<pid>/counters_<gpuid>/faults
620 	 * - proc/<pid>/counters_<gpuid>/page_in
621 	 * - proc/<pid>/counters_<gpuid>/page_out
622 	 */
623 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
624 		struct kfd_process_device *pdd = p->pdds[i];
625 		struct kobject *kobj_counters;
626 
627 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
628 			"counters_%u", pdd->dev->id);
629 		kobj_counters = kfd_alloc_struct(kobj_counters);
630 		if (!kobj_counters)
631 			return;
632 
633 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
634 					   p->kobj, counters_dir_filename);
635 		if (ret) {
636 			pr_warn("Creating KFD proc/%s folder failed",
637 				counters_dir_filename);
638 			kobject_put(kobj_counters);
639 			return;
640 		}
641 
642 		pdd->kobj_counters = kobj_counters;
643 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
644 				      "faults");
645 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
646 				      "page_in");
647 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
648 				      "page_out");
649 	}
650 }
651 
652 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
653 {
654 	int i;
655 
656 	if (!p || !p->kobj)
657 		return;
658 
659 	/*
660 	 * Create sysfs files for each GPU:
661 	 * - proc/<pid>/vram_<gpuid>
662 	 * - proc/<pid>/sdma_<gpuid>
663 	 */
664 	for (i = 0; i < p->n_pdds; i++) {
665 		struct kfd_process_device *pdd = p->pdds[i];
666 
667 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
668 			 pdd->dev->id);
669 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
670 				      pdd->vram_filename);
671 
672 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
673 			 pdd->dev->id);
674 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
675 					    pdd->sdma_filename);
676 	}
677 }
678 
679 void kfd_procfs_del_queue(struct queue *q)
680 {
681 	if (!q)
682 		return;
683 
684 	kobject_del(&q->kobj);
685 	kobject_put(&q->kobj);
686 }
687 
688 int kfd_process_create_wq(void)
689 {
690 	if (!kfd_process_wq)
691 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
692 	if (!kfd_restore_wq)
693 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
694 							 WQ_FREEZABLE);
695 
696 	if (!kfd_process_wq || !kfd_restore_wq) {
697 		kfd_process_destroy_wq();
698 		return -ENOMEM;
699 	}
700 
701 	return 0;
702 }
703 
704 void kfd_process_destroy_wq(void)
705 {
706 	if (kfd_process_wq) {
707 		destroy_workqueue(kfd_process_wq);
708 		kfd_process_wq = NULL;
709 	}
710 	if (kfd_restore_wq) {
711 		destroy_workqueue(kfd_restore_wq);
712 		kfd_restore_wq = NULL;
713 	}
714 }
715 
716 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
717 			struct kfd_process_device *pdd, void **kptr)
718 {
719 	struct kfd_node *dev = pdd->dev;
720 
721 	if (kptr && *kptr) {
722 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
723 		*kptr = NULL;
724 	}
725 
726 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
727 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
728 					       NULL);
729 }
730 
731 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
732  *	This function should be only called right after the process
733  *	is created and when kfd_processes_mutex is still being held
734  *	to avoid concurrency. Because of that exclusiveness, we do
735  *	not need to take p->mutex.
736  */
737 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
738 				   uint64_t gpu_va, uint32_t size,
739 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
740 {
741 	struct kfd_node *kdev = pdd->dev;
742 	int err;
743 
744 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
745 						 pdd->drm_priv, mem, NULL,
746 						 flags, false);
747 	if (err)
748 		goto err_alloc_mem;
749 
750 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
751 			pdd->drm_priv);
752 	if (err)
753 		goto err_map_mem;
754 
755 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
756 	if (err) {
757 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
758 		goto sync_memory_failed;
759 	}
760 
761 	if (kptr) {
762 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
763 				(struct kgd_mem *)*mem, kptr, NULL);
764 		if (err) {
765 			pr_debug("Map GTT BO to kernel failed\n");
766 			goto sync_memory_failed;
767 		}
768 	}
769 
770 	return err;
771 
772 sync_memory_failed:
773 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
774 
775 err_map_mem:
776 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
777 					       NULL);
778 err_alloc_mem:
779 	*mem = NULL;
780 	*kptr = NULL;
781 	return err;
782 }
783 
784 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
785  *	process for IB usage The memory reserved is for KFD to submit
786  *	IB to AMDGPU from kernel.  If the memory is reserved
787  *	successfully, ib_kaddr will have the CPU/kernel
788  *	address. Check ib_kaddr before accessing the memory.
789  */
790 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
791 {
792 	struct qcm_process_device *qpd = &pdd->qpd;
793 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
794 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
795 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
796 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
797 	struct kgd_mem *mem;
798 	void *kaddr;
799 	int ret;
800 
801 	if (qpd->ib_kaddr || !qpd->ib_base)
802 		return 0;
803 
804 	/* ib_base is only set for dGPU */
805 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
806 				      &mem, &kaddr);
807 	if (ret)
808 		return ret;
809 
810 	qpd->ib_mem = mem;
811 	qpd->ib_kaddr = kaddr;
812 
813 	return 0;
814 }
815 
816 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
817 {
818 	struct qcm_process_device *qpd = &pdd->qpd;
819 
820 	if (!qpd->ib_kaddr || !qpd->ib_base)
821 		return;
822 
823 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
824 }
825 
826 struct kfd_process *kfd_create_process(struct task_struct *thread)
827 {
828 	struct kfd_process *process;
829 	int ret;
830 
831 	if (!(thread->mm && mmget_not_zero(thread->mm)))
832 		return ERR_PTR(-EINVAL);
833 
834 	/* Only the pthreads threading model is supported. */
835 	if (thread->group_leader->mm != thread->mm) {
836 		mmput(thread->mm);
837 		return ERR_PTR(-EINVAL);
838 	}
839 
840 	/*
841 	 * take kfd processes mutex before starting of process creation
842 	 * so there won't be a case where two threads of the same process
843 	 * create two kfd_process structures
844 	 */
845 	mutex_lock(&kfd_processes_mutex);
846 
847 	if (kfd_is_locked()) {
848 		pr_debug("KFD is locked! Cannot create process");
849 		process = ERR_PTR(-EINVAL);
850 		goto out;
851 	}
852 
853 	/* A prior open of /dev/kfd could have already created the process. */
854 	process = find_process(thread, false);
855 	if (process) {
856 		pr_debug("Process already found\n");
857 	} else {
858 		/* If the process just called exec(3), it is possible that the
859 		 * cleanup of the kfd_process (following the release of the mm
860 		 * of the old process image) is still in the cleanup work queue.
861 		 * Make sure to drain any job before trying to recreate any
862 		 * resource for this process.
863 		 */
864 		flush_workqueue(kfd_process_wq);
865 
866 		process = create_process(thread);
867 		if (IS_ERR(process))
868 			goto out;
869 
870 		if (!procfs.kobj)
871 			goto out;
872 
873 		process->kobj = kfd_alloc_struct(process->kobj);
874 		if (!process->kobj) {
875 			pr_warn("Creating procfs kobject failed");
876 			goto out;
877 		}
878 		ret = kobject_init_and_add(process->kobj, &procfs_type,
879 					   procfs.kobj, "%d",
880 					   (int)process->lead_thread->pid);
881 		if (ret) {
882 			pr_warn("Creating procfs pid directory failed");
883 			kobject_put(process->kobj);
884 			goto out;
885 		}
886 
887 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
888 				      "pasid");
889 
890 		process->kobj_queues = kobject_create_and_add("queues",
891 							process->kobj);
892 		if (!process->kobj_queues)
893 			pr_warn("Creating KFD proc/queues folder failed");
894 
895 		kfd_procfs_add_sysfs_stats(process);
896 		kfd_procfs_add_sysfs_files(process);
897 		kfd_procfs_add_sysfs_counters(process);
898 
899 		init_waitqueue_head(&process->wait_irq_drain);
900 	}
901 out:
902 	if (!IS_ERR(process))
903 		kref_get(&process->ref);
904 	mutex_unlock(&kfd_processes_mutex);
905 	mmput(thread->mm);
906 
907 	return process;
908 }
909 
910 struct kfd_process *kfd_get_process(const struct task_struct *thread)
911 {
912 	struct kfd_process *process;
913 
914 	if (!thread->mm)
915 		return ERR_PTR(-EINVAL);
916 
917 	/* Only the pthreads threading model is supported. */
918 	if (thread->group_leader->mm != thread->mm)
919 		return ERR_PTR(-EINVAL);
920 
921 	process = find_process(thread, false);
922 	if (!process)
923 		return ERR_PTR(-EINVAL);
924 
925 	return process;
926 }
927 
928 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
929 {
930 	struct kfd_process *process;
931 
932 	hash_for_each_possible_rcu(kfd_processes_table, process,
933 					kfd_processes, (uintptr_t)mm)
934 		if (process->mm == mm)
935 			return process;
936 
937 	return NULL;
938 }
939 
940 static struct kfd_process *find_process(const struct task_struct *thread,
941 					bool ref)
942 {
943 	struct kfd_process *p;
944 	int idx;
945 
946 	idx = srcu_read_lock(&kfd_processes_srcu);
947 	p = find_process_by_mm(thread->mm);
948 	if (p && ref)
949 		kref_get(&p->ref);
950 	srcu_read_unlock(&kfd_processes_srcu, idx);
951 
952 	return p;
953 }
954 
955 void kfd_unref_process(struct kfd_process *p)
956 {
957 	kref_put(&p->ref, kfd_process_ref_release);
958 }
959 
960 /* This increments the process->ref counter. */
961 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
962 {
963 	struct task_struct *task = NULL;
964 	struct kfd_process *p    = NULL;
965 
966 	if (!pid) {
967 		task = current;
968 		get_task_struct(task);
969 	} else {
970 		task = get_pid_task(pid, PIDTYPE_PID);
971 	}
972 
973 	if (task) {
974 		p = find_process(task, true);
975 		put_task_struct(task);
976 	}
977 
978 	return p;
979 }
980 
981 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
982 {
983 	struct kfd_process *p = pdd->process;
984 	void *mem;
985 	int id;
986 	int i;
987 
988 	/*
989 	 * Remove all handles from idr and release appropriate
990 	 * local memory object
991 	 */
992 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
993 
994 		for (i = 0; i < p->n_pdds; i++) {
995 			struct kfd_process_device *peer_pdd = p->pdds[i];
996 
997 			if (!peer_pdd->drm_priv)
998 				continue;
999 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1000 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1001 		}
1002 
1003 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1004 						       pdd->drm_priv, NULL);
1005 		kfd_process_device_remove_obj_handle(pdd, id);
1006 	}
1007 }
1008 
1009 /*
1010  * Just kunmap and unpin signal BO here. It will be freed in
1011  * kfd_process_free_outstanding_kfd_bos()
1012  */
1013 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1014 {
1015 	struct kfd_process_device *pdd;
1016 	struct kfd_node *kdev;
1017 	void *mem;
1018 
1019 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1020 	if (!kdev)
1021 		return;
1022 
1023 	mutex_lock(&p->mutex);
1024 
1025 	pdd = kfd_get_process_device_data(kdev, p);
1026 	if (!pdd)
1027 		goto out;
1028 
1029 	mem = kfd_process_device_translate_handle(
1030 		pdd, GET_IDR_HANDLE(p->signal_handle));
1031 	if (!mem)
1032 		goto out;
1033 
1034 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1035 
1036 out:
1037 	mutex_unlock(&p->mutex);
1038 }
1039 
1040 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < p->n_pdds; i++)
1045 		kfd_process_device_free_bos(p->pdds[i]);
1046 }
1047 
1048 static void kfd_process_destroy_pdds(struct kfd_process *p)
1049 {
1050 	int i;
1051 
1052 	for (i = 0; i < p->n_pdds; i++) {
1053 		struct kfd_process_device *pdd = p->pdds[i];
1054 
1055 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1056 				pdd->dev->id, p->pasid);
1057 
1058 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1059 		kfd_process_device_destroy_ib_mem(pdd);
1060 
1061 		if (pdd->drm_file) {
1062 			amdgpu_amdkfd_gpuvm_release_process_vm(
1063 					pdd->dev->adev, pdd->drm_priv);
1064 			fput(pdd->drm_file);
1065 		}
1066 
1067 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1068 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1069 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1070 
1071 		idr_destroy(&pdd->alloc_idr);
1072 
1073 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1074 
1075 		if (pdd->dev->kfd->shared_resources.enable_mes)
1076 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1077 						   &pdd->proc_ctx_bo);
1078 		/*
1079 		 * before destroying pdd, make sure to report availability
1080 		 * for auto suspend
1081 		 */
1082 		if (pdd->runtime_inuse) {
1083 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1084 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1085 			pdd->runtime_inuse = false;
1086 		}
1087 
1088 		kfree(pdd);
1089 		p->pdds[i] = NULL;
1090 	}
1091 	p->n_pdds = 0;
1092 }
1093 
1094 static void kfd_process_remove_sysfs(struct kfd_process *p)
1095 {
1096 	struct kfd_process_device *pdd;
1097 	int i;
1098 
1099 	if (!p->kobj)
1100 		return;
1101 
1102 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1103 	kobject_del(p->kobj_queues);
1104 	kobject_put(p->kobj_queues);
1105 	p->kobj_queues = NULL;
1106 
1107 	for (i = 0; i < p->n_pdds; i++) {
1108 		pdd = p->pdds[i];
1109 
1110 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1111 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1112 
1113 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1114 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1115 			sysfs_remove_file(pdd->kobj_stats,
1116 					  &pdd->attr_cu_occupancy);
1117 		kobject_del(pdd->kobj_stats);
1118 		kobject_put(pdd->kobj_stats);
1119 		pdd->kobj_stats = NULL;
1120 	}
1121 
1122 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1123 		pdd = p->pdds[i];
1124 
1125 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1126 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1127 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1128 		kobject_del(pdd->kobj_counters);
1129 		kobject_put(pdd->kobj_counters);
1130 		pdd->kobj_counters = NULL;
1131 	}
1132 
1133 	kobject_del(p->kobj);
1134 	kobject_put(p->kobj);
1135 	p->kobj = NULL;
1136 }
1137 
1138 /* No process locking is needed in this function, because the process
1139  * is not findable any more. We must assume that no other thread is
1140  * using it any more, otherwise we couldn't safely free the process
1141  * structure in the end.
1142  */
1143 static void kfd_process_wq_release(struct work_struct *work)
1144 {
1145 	struct kfd_process *p = container_of(work, struct kfd_process,
1146 					     release_work);
1147 	struct dma_fence *ef;
1148 
1149 	kfd_process_dequeue_from_all_devices(p);
1150 	pqm_uninit(&p->pqm);
1151 
1152 	/* Signal the eviction fence after user mode queues are
1153 	 * destroyed. This allows any BOs to be freed without
1154 	 * triggering pointless evictions or waiting for fences.
1155 	 */
1156 	synchronize_rcu();
1157 	ef = rcu_access_pointer(p->ef);
1158 	dma_fence_signal(ef);
1159 
1160 	kfd_process_remove_sysfs(p);
1161 
1162 	kfd_process_kunmap_signal_bo(p);
1163 	kfd_process_free_outstanding_kfd_bos(p);
1164 	svm_range_list_fini(p);
1165 
1166 	kfd_process_destroy_pdds(p);
1167 	dma_fence_put(ef);
1168 
1169 	kfd_event_free_process(p);
1170 
1171 	kfd_pasid_free(p->pasid);
1172 	mutex_destroy(&p->mutex);
1173 
1174 	put_task_struct(p->lead_thread);
1175 
1176 	kfree(p);
1177 }
1178 
1179 static void kfd_process_ref_release(struct kref *ref)
1180 {
1181 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1182 
1183 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1184 	queue_work(kfd_process_wq, &p->release_work);
1185 }
1186 
1187 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1188 {
1189 	int idx = srcu_read_lock(&kfd_processes_srcu);
1190 	struct kfd_process *p = find_process_by_mm(mm);
1191 
1192 	srcu_read_unlock(&kfd_processes_srcu, idx);
1193 
1194 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1195 }
1196 
1197 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1198 {
1199 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1200 }
1201 
1202 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1203 {
1204 	int i;
1205 
1206 	cancel_delayed_work_sync(&p->eviction_work);
1207 	cancel_delayed_work_sync(&p->restore_work);
1208 
1209 	for (i = 0; i < p->n_pdds; i++) {
1210 		struct kfd_process_device *pdd = p->pdds[i];
1211 
1212 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1213 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1214 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1215 	}
1216 
1217 	/* Indicate to other users that MM is no longer valid */
1218 	p->mm = NULL;
1219 	kfd_dbg_trap_disable(p);
1220 
1221 	if (atomic_read(&p->debugged_process_count) > 0) {
1222 		struct kfd_process *target;
1223 		unsigned int temp;
1224 		int idx = srcu_read_lock(&kfd_processes_srcu);
1225 
1226 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1227 			if (target->debugger_process && target->debugger_process == p) {
1228 				mutex_lock_nested(&target->mutex, 1);
1229 				kfd_dbg_trap_disable(target);
1230 				mutex_unlock(&target->mutex);
1231 				if (atomic_read(&p->debugged_process_count) == 0)
1232 					break;
1233 			}
1234 		}
1235 
1236 		srcu_read_unlock(&kfd_processes_srcu, idx);
1237 	}
1238 
1239 	mmu_notifier_put(&p->mmu_notifier);
1240 }
1241 
1242 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1243 					struct mm_struct *mm)
1244 {
1245 	struct kfd_process *p;
1246 
1247 	/*
1248 	 * The kfd_process structure can not be free because the
1249 	 * mmu_notifier srcu is read locked
1250 	 */
1251 	p = container_of(mn, struct kfd_process, mmu_notifier);
1252 	if (WARN_ON(p->mm != mm))
1253 		return;
1254 
1255 	mutex_lock(&kfd_processes_mutex);
1256 	/*
1257 	 * Do early return if table is empty.
1258 	 *
1259 	 * This could potentially happen if this function is called concurrently
1260 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1261 	 *
1262 	 */
1263 	if (hash_empty(kfd_processes_table)) {
1264 		mutex_unlock(&kfd_processes_mutex);
1265 		return;
1266 	}
1267 	hash_del_rcu(&p->kfd_processes);
1268 	mutex_unlock(&kfd_processes_mutex);
1269 	synchronize_srcu(&kfd_processes_srcu);
1270 
1271 	kfd_process_notifier_release_internal(p);
1272 }
1273 
1274 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1275 	.release = kfd_process_notifier_release,
1276 	.alloc_notifier = kfd_process_alloc_notifier,
1277 	.free_notifier = kfd_process_free_notifier,
1278 };
1279 
1280 /*
1281  * This code handles the case when driver is being unloaded before all
1282  * mm_struct are released.  We need to safely free the kfd_process and
1283  * avoid race conditions with mmu_notifier that might try to free them.
1284  *
1285  */
1286 void kfd_cleanup_processes(void)
1287 {
1288 	struct kfd_process *p;
1289 	struct hlist_node *p_temp;
1290 	unsigned int temp;
1291 	HLIST_HEAD(cleanup_list);
1292 
1293 	/*
1294 	 * Move all remaining kfd_process from the process table to a
1295 	 * temp list for processing.   Once done, callback from mmu_notifier
1296 	 * release will not see the kfd_process in the table and do early return,
1297 	 * avoiding double free issues.
1298 	 */
1299 	mutex_lock(&kfd_processes_mutex);
1300 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1301 		hash_del_rcu(&p->kfd_processes);
1302 		synchronize_srcu(&kfd_processes_srcu);
1303 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1304 	}
1305 	mutex_unlock(&kfd_processes_mutex);
1306 
1307 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1308 		kfd_process_notifier_release_internal(p);
1309 
1310 	/*
1311 	 * Ensures that all outstanding free_notifier get called, triggering
1312 	 * the release of the kfd_process struct.
1313 	 */
1314 	mmu_notifier_synchronize();
1315 }
1316 
1317 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1318 {
1319 	unsigned long  offset;
1320 	int i;
1321 
1322 	if (p->has_cwsr)
1323 		return 0;
1324 
1325 	for (i = 0; i < p->n_pdds; i++) {
1326 		struct kfd_node *dev = p->pdds[i]->dev;
1327 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1328 
1329 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1330 			continue;
1331 
1332 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1333 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1334 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1335 			MAP_SHARED, offset);
1336 
1337 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1338 			int err = qpd->tba_addr;
1339 
1340 			dev_err(dev->adev->dev,
1341 				"Failure to set tba address. error %d.\n", err);
1342 			qpd->tba_addr = 0;
1343 			qpd->cwsr_kaddr = NULL;
1344 			return err;
1345 		}
1346 
1347 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1348 
1349 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1350 
1351 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354 	}
1355 
1356 	p->has_cwsr = true;
1357 
1358 	return 0;
1359 }
1360 
1361 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1362 {
1363 	struct kfd_node *dev = pdd->dev;
1364 	struct qcm_process_device *qpd = &pdd->qpd;
1365 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1366 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1367 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1368 	struct kgd_mem *mem;
1369 	void *kaddr;
1370 	int ret;
1371 
1372 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1373 		return 0;
1374 
1375 	/* cwsr_base is only set for dGPU */
1376 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1377 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1378 	if (ret)
1379 		return ret;
1380 
1381 	qpd->cwsr_mem = mem;
1382 	qpd->cwsr_kaddr = kaddr;
1383 	qpd->tba_addr = qpd->cwsr_base;
1384 
1385 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1386 
1387 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1388 					pdd->process->debug_trap_enabled);
1389 
1390 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1391 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1392 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1393 
1394 	return 0;
1395 }
1396 
1397 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1398 {
1399 	struct kfd_node *dev = pdd->dev;
1400 	struct qcm_process_device *qpd = &pdd->qpd;
1401 
1402 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1403 		return;
1404 
1405 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1406 }
1407 
1408 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1409 				  uint64_t tba_addr,
1410 				  uint64_t tma_addr)
1411 {
1412 	if (qpd->cwsr_kaddr) {
1413 		/* KFD trap handler is bound, record as second-level TBA/TMA
1414 		 * in first-level TMA. First-level trap will jump to second.
1415 		 */
1416 		uint64_t *tma =
1417 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1418 		tma[0] = tba_addr;
1419 		tma[1] = tma_addr;
1420 	} else {
1421 		/* No trap handler bound, bind as first-level TBA/TMA. */
1422 		qpd->tba_addr = tba_addr;
1423 		qpd->tma_addr = tma_addr;
1424 	}
1425 }
1426 
1427 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1428 {
1429 	int i;
1430 
1431 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1432 	 * boot time retry setting. Mixing processes with different
1433 	 * XNACK/retry settings can hang the GPU.
1434 	 *
1435 	 * Different GPUs can have different noretry settings depending
1436 	 * on HW bugs or limitations. We need to find at least one
1437 	 * XNACK mode for this process that's compatible with all GPUs.
1438 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1439 	 * built for XNACK-off. On GFXv9 it may perform slower.
1440 	 *
1441 	 * Therefore applications built for XNACK-off can always be
1442 	 * supported and will be our fallback if any GPU does not
1443 	 * support retry.
1444 	 */
1445 	for (i = 0; i < p->n_pdds; i++) {
1446 		struct kfd_node *dev = p->pdds[i]->dev;
1447 
1448 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1449 		 * support the SVM APIs and don't need to be considered
1450 		 * for the XNACK mode selection.
1451 		 */
1452 		if (!KFD_IS_SOC15(dev))
1453 			continue;
1454 		/* Aldebaran can always support XNACK because it can support
1455 		 * per-process XNACK mode selection. But let the dev->noretry
1456 		 * setting still influence the default XNACK mode.
1457 		 */
1458 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1459 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1460 				pr_debug("SRIOV platform xnack not supported\n");
1461 				return false;
1462 			}
1463 			continue;
1464 		}
1465 
1466 		/* GFXv10 and later GPUs do not support shader preemption
1467 		 * during page faults. This can lead to poor QoS for queue
1468 		 * management and memory-manager-related preemptions or
1469 		 * even deadlocks.
1470 		 */
1471 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1472 			return false;
1473 
1474 		if (dev->kfd->noretry)
1475 			return false;
1476 	}
1477 
1478 	return true;
1479 }
1480 
1481 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1482 				     bool enabled)
1483 {
1484 	if (qpd->cwsr_kaddr) {
1485 		uint64_t *tma =
1486 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1487 		tma[2] = enabled;
1488 	}
1489 }
1490 
1491 /*
1492  * On return the kfd_process is fully operational and will be freed when the
1493  * mm is released
1494  */
1495 static struct kfd_process *create_process(const struct task_struct *thread)
1496 {
1497 	struct kfd_process *process;
1498 	struct mmu_notifier *mn;
1499 	int err = -ENOMEM;
1500 
1501 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1502 	if (!process)
1503 		goto err_alloc_process;
1504 
1505 	kref_init(&process->ref);
1506 	mutex_init(&process->mutex);
1507 	process->mm = thread->mm;
1508 	process->lead_thread = thread->group_leader;
1509 	process->n_pdds = 0;
1510 	process->queues_paused = false;
1511 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1512 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1513 	process->last_restore_timestamp = get_jiffies_64();
1514 	err = kfd_event_init_process(process);
1515 	if (err)
1516 		goto err_event_init;
1517 	process->is_32bit_user_mode = in_compat_syscall();
1518 	process->debug_trap_enabled = false;
1519 	process->debugger_process = NULL;
1520 	process->exception_enable_mask = 0;
1521 	atomic_set(&process->debugged_process_count, 0);
1522 	sema_init(&process->runtime_enable_sema, 0);
1523 
1524 	process->pasid = kfd_pasid_alloc();
1525 	if (process->pasid == 0) {
1526 		err = -ENOSPC;
1527 		goto err_alloc_pasid;
1528 	}
1529 
1530 	err = pqm_init(&process->pqm, process);
1531 	if (err != 0)
1532 		goto err_process_pqm_init;
1533 
1534 	/* init process apertures*/
1535 	err = kfd_init_apertures(process);
1536 	if (err != 0)
1537 		goto err_init_apertures;
1538 
1539 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1540 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1541 
1542 	err = svm_range_list_init(process);
1543 	if (err)
1544 		goto err_init_svm_range_list;
1545 
1546 	/* alloc_notifier needs to find the process in the hash table */
1547 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1548 			(uintptr_t)process->mm);
1549 
1550 	/* Avoid free_notifier to start kfd_process_wq_release if
1551 	 * mmu_notifier_get failed because of pending signal.
1552 	 */
1553 	kref_get(&process->ref);
1554 
1555 	/* MMU notifier registration must be the last call that can fail
1556 	 * because after this point we cannot unwind the process creation.
1557 	 * After this point, mmu_notifier_put will trigger the cleanup by
1558 	 * dropping the last process reference in the free_notifier.
1559 	 */
1560 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1561 	if (IS_ERR(mn)) {
1562 		err = PTR_ERR(mn);
1563 		goto err_register_notifier;
1564 	}
1565 	BUG_ON(mn != &process->mmu_notifier);
1566 
1567 	kfd_unref_process(process);
1568 	get_task_struct(process->lead_thread);
1569 
1570 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1571 
1572 	return process;
1573 
1574 err_register_notifier:
1575 	hash_del_rcu(&process->kfd_processes);
1576 	svm_range_list_fini(process);
1577 err_init_svm_range_list:
1578 	kfd_process_free_outstanding_kfd_bos(process);
1579 	kfd_process_destroy_pdds(process);
1580 err_init_apertures:
1581 	pqm_uninit(&process->pqm);
1582 err_process_pqm_init:
1583 	kfd_pasid_free(process->pasid);
1584 err_alloc_pasid:
1585 	kfd_event_free_process(process);
1586 err_event_init:
1587 	mutex_destroy(&process->mutex);
1588 	kfree(process);
1589 err_alloc_process:
1590 	return ERR_PTR(err);
1591 }
1592 
1593 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1594 							struct kfd_process *p)
1595 {
1596 	int i;
1597 
1598 	for (i = 0; i < p->n_pdds; i++)
1599 		if (p->pdds[i]->dev == dev)
1600 			return p->pdds[i];
1601 
1602 	return NULL;
1603 }
1604 
1605 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1606 							struct kfd_process *p)
1607 {
1608 	struct kfd_process_device *pdd = NULL;
1609 	int retval = 0;
1610 
1611 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1612 		return NULL;
1613 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1614 	if (!pdd)
1615 		return NULL;
1616 
1617 	pdd->dev = dev;
1618 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1619 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1620 	pdd->qpd.dqm = dev->dqm;
1621 	pdd->qpd.pqm = &p->pqm;
1622 	pdd->qpd.evicted = 0;
1623 	pdd->qpd.mapped_gws_queue = false;
1624 	pdd->process = p;
1625 	pdd->bound = PDD_UNBOUND;
1626 	pdd->already_dequeued = false;
1627 	pdd->runtime_inuse = false;
1628 	pdd->vram_usage = 0;
1629 	pdd->sdma_past_activity_counter = 0;
1630 	pdd->user_gpu_id = dev->id;
1631 	atomic64_set(&pdd->evict_duration_counter, 0);
1632 
1633 	if (dev->kfd->shared_resources.enable_mes) {
1634 		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1635 						AMDGPU_MES_PROC_CTX_SIZE,
1636 						&pdd->proc_ctx_bo,
1637 						&pdd->proc_ctx_gpu_addr,
1638 						&pdd->proc_ctx_cpu_ptr,
1639 						false);
1640 		if (retval) {
1641 			dev_err(dev->adev->dev,
1642 				"failed to allocate process context bo\n");
1643 			goto err_free_pdd;
1644 		}
1645 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1646 	}
1647 
1648 	p->pdds[p->n_pdds++] = pdd;
1649 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1650 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1651 							pdd->dev->adev,
1652 							false,
1653 							0);
1654 
1655 	/* Init idr used for memory handle translation */
1656 	idr_init(&pdd->alloc_idr);
1657 
1658 	return pdd;
1659 
1660 err_free_pdd:
1661 	kfree(pdd);
1662 	return NULL;
1663 }
1664 
1665 /**
1666  * kfd_process_device_init_vm - Initialize a VM for a process-device
1667  *
1668  * @pdd: The process-device
1669  * @drm_file: Optional pointer to a DRM file descriptor
1670  *
1671  * If @drm_file is specified, it will be used to acquire the VM from
1672  * that file descriptor. If successful, the @pdd takes ownership of
1673  * the file descriptor.
1674  *
1675  * If @drm_file is NULL, a new VM is created.
1676  *
1677  * Returns 0 on success, -errno on failure.
1678  */
1679 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1680 			       struct file *drm_file)
1681 {
1682 	struct amdgpu_fpriv *drv_priv;
1683 	struct amdgpu_vm *avm;
1684 	struct kfd_process *p;
1685 	struct dma_fence *ef;
1686 	struct kfd_node *dev;
1687 	int ret;
1688 
1689 	if (!drm_file)
1690 		return -EINVAL;
1691 
1692 	if (pdd->drm_priv)
1693 		return -EBUSY;
1694 
1695 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1696 	if (ret)
1697 		return ret;
1698 	avm = &drv_priv->vm;
1699 
1700 	p = pdd->process;
1701 	dev = pdd->dev;
1702 
1703 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1704 						     &p->kgd_process_info,
1705 						     p->ef ? NULL : &ef);
1706 	if (ret) {
1707 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1708 		return ret;
1709 	}
1710 
1711 	if (!p->ef)
1712 		RCU_INIT_POINTER(p->ef, ef);
1713 
1714 	pdd->drm_priv = drm_file->private_data;
1715 
1716 	ret = kfd_process_device_reserve_ib_mem(pdd);
1717 	if (ret)
1718 		goto err_reserve_ib_mem;
1719 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1720 	if (ret)
1721 		goto err_init_cwsr;
1722 
1723 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1724 	if (ret)
1725 		goto err_set_pasid;
1726 
1727 	pdd->drm_file = drm_file;
1728 
1729 	return 0;
1730 
1731 err_set_pasid:
1732 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1733 err_init_cwsr:
1734 	kfd_process_device_destroy_ib_mem(pdd);
1735 err_reserve_ib_mem:
1736 	pdd->drm_priv = NULL;
1737 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1738 
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1744  * to the device.
1745  * Unbinding occurs when the process dies or the device is removed.
1746  *
1747  * Assumes that the process lock is held.
1748  */
1749 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1750 							struct kfd_process *p)
1751 {
1752 	struct kfd_process_device *pdd;
1753 	int err;
1754 
1755 	pdd = kfd_get_process_device_data(dev, p);
1756 	if (!pdd) {
1757 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1758 		return ERR_PTR(-ENOMEM);
1759 	}
1760 
1761 	if (!pdd->drm_priv)
1762 		return ERR_PTR(-ENODEV);
1763 
1764 	/*
1765 	 * signal runtime-pm system to auto resume and prevent
1766 	 * further runtime suspend once device pdd is created until
1767 	 * pdd is destroyed.
1768 	 */
1769 	if (!pdd->runtime_inuse) {
1770 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1771 		if (err < 0) {
1772 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1773 			return ERR_PTR(err);
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * make sure that runtime_usage counter is incremented just once
1779 	 * per pdd
1780 	 */
1781 	pdd->runtime_inuse = true;
1782 
1783 	return pdd;
1784 }
1785 
1786 /* Create specific handle mapped to mem from process local memory idr
1787  * Assumes that the process lock is held.
1788  */
1789 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1790 					void *mem)
1791 {
1792 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1793 }
1794 
1795 /* Translate specific handle from process local memory idr
1796  * Assumes that the process lock is held.
1797  */
1798 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1799 					int handle)
1800 {
1801 	if (handle < 0)
1802 		return NULL;
1803 
1804 	return idr_find(&pdd->alloc_idr, handle);
1805 }
1806 
1807 /* Remove specific handle from process local memory idr
1808  * Assumes that the process lock is held.
1809  */
1810 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1811 					int handle)
1812 {
1813 	if (handle >= 0)
1814 		idr_remove(&pdd->alloc_idr, handle);
1815 }
1816 
1817 /* This increments the process->ref counter. */
1818 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1819 {
1820 	struct kfd_process *p, *ret_p = NULL;
1821 	unsigned int temp;
1822 
1823 	int idx = srcu_read_lock(&kfd_processes_srcu);
1824 
1825 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1826 		if (p->pasid == pasid) {
1827 			kref_get(&p->ref);
1828 			ret_p = p;
1829 			break;
1830 		}
1831 	}
1832 
1833 	srcu_read_unlock(&kfd_processes_srcu, idx);
1834 
1835 	return ret_p;
1836 }
1837 
1838 /* This increments the process->ref counter. */
1839 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1840 {
1841 	struct kfd_process *p;
1842 
1843 	int idx = srcu_read_lock(&kfd_processes_srcu);
1844 
1845 	p = find_process_by_mm(mm);
1846 	if (p)
1847 		kref_get(&p->ref);
1848 
1849 	srcu_read_unlock(&kfd_processes_srcu, idx);
1850 
1851 	return p;
1852 }
1853 
1854 /* kfd_process_evict_queues - Evict all user queues of a process
1855  *
1856  * Eviction is reference-counted per process-device. This means multiple
1857  * evictions from different sources can be nested safely.
1858  */
1859 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1860 {
1861 	int r = 0;
1862 	int i;
1863 	unsigned int n_evicted = 0;
1864 
1865 	for (i = 0; i < p->n_pdds; i++) {
1866 		struct kfd_process_device *pdd = p->pdds[i];
1867 		struct device *dev = pdd->dev->adev->dev;
1868 
1869 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1870 					     trigger);
1871 
1872 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1873 							    &pdd->qpd);
1874 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1875 		 * we would like to set all the queues to be in evicted state to prevent
1876 		 * them been add back since they actually not be saved right now.
1877 		 */
1878 		if (r && r != -EIO) {
1879 			dev_err(dev, "Failed to evict process queues\n");
1880 			goto fail;
1881 		}
1882 		n_evicted++;
1883 
1884 		pdd->dev->dqm->is_hws_hang = false;
1885 	}
1886 
1887 	return r;
1888 
1889 fail:
1890 	/* To keep state consistent, roll back partial eviction by
1891 	 * restoring queues
1892 	 */
1893 	for (i = 0; i < p->n_pdds; i++) {
1894 		struct kfd_process_device *pdd = p->pdds[i];
1895 
1896 		if (n_evicted == 0)
1897 			break;
1898 
1899 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1900 
1901 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1902 							      &pdd->qpd))
1903 			dev_err(pdd->dev->adev->dev,
1904 				"Failed to restore queues\n");
1905 
1906 		n_evicted--;
1907 	}
1908 
1909 	return r;
1910 }
1911 
1912 /* kfd_process_restore_queues - Restore all user queues of a process */
1913 int kfd_process_restore_queues(struct kfd_process *p)
1914 {
1915 	int r, ret = 0;
1916 	int i;
1917 
1918 	for (i = 0; i < p->n_pdds; i++) {
1919 		struct kfd_process_device *pdd = p->pdds[i];
1920 		struct device *dev = pdd->dev->adev->dev;
1921 
1922 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1923 
1924 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1925 							      &pdd->qpd);
1926 		if (r) {
1927 			dev_err(dev, "Failed to restore process queues\n");
1928 			if (!ret)
1929 				ret = r;
1930 		}
1931 	}
1932 
1933 	return ret;
1934 }
1935 
1936 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1937 {
1938 	int i;
1939 
1940 	for (i = 0; i < p->n_pdds; i++)
1941 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1942 			return i;
1943 	return -EINVAL;
1944 }
1945 
1946 int
1947 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1948 			    uint32_t *gpuid, uint32_t *gpuidx)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < p->n_pdds; i++)
1953 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1954 			*gpuid = p->pdds[i]->user_gpu_id;
1955 			*gpuidx = i;
1956 			return 0;
1957 		}
1958 	return -EINVAL;
1959 }
1960 
1961 static int signal_eviction_fence(struct kfd_process *p)
1962 {
1963 	struct dma_fence *ef;
1964 	int ret;
1965 
1966 	rcu_read_lock();
1967 	ef = dma_fence_get_rcu_safe(&p->ef);
1968 	rcu_read_unlock();
1969 	if (!ef)
1970 		return -EINVAL;
1971 
1972 	ret = dma_fence_signal(ef);
1973 	dma_fence_put(ef);
1974 
1975 	return ret;
1976 }
1977 
1978 static void evict_process_worker(struct work_struct *work)
1979 {
1980 	int ret;
1981 	struct kfd_process *p;
1982 	struct delayed_work *dwork;
1983 
1984 	dwork = to_delayed_work(work);
1985 
1986 	/* Process termination destroys this worker thread. So during the
1987 	 * lifetime of this thread, kfd_process p will be valid
1988 	 */
1989 	p = container_of(dwork, struct kfd_process, eviction_work);
1990 
1991 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1992 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1993 	if (!ret) {
1994 		/* If another thread already signaled the eviction fence,
1995 		 * they are responsible stopping the queues and scheduling
1996 		 * the restore work.
1997 		 */
1998 		if (signal_eviction_fence(p) ||
1999 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2000 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2001 			kfd_process_restore_queues(p);
2002 
2003 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
2004 	} else
2005 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
2006 }
2007 
2008 static int restore_process_helper(struct kfd_process *p)
2009 {
2010 	int ret = 0;
2011 
2012 	/* VMs may not have been acquired yet during debugging. */
2013 	if (p->kgd_process_info) {
2014 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2015 			p->kgd_process_info, &p->ef);
2016 		if (ret)
2017 			return ret;
2018 	}
2019 
2020 	ret = kfd_process_restore_queues(p);
2021 	if (!ret)
2022 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2023 	else
2024 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2025 
2026 	return ret;
2027 }
2028 
2029 static void restore_process_worker(struct work_struct *work)
2030 {
2031 	struct delayed_work *dwork;
2032 	struct kfd_process *p;
2033 	int ret = 0;
2034 
2035 	dwork = to_delayed_work(work);
2036 
2037 	/* Process termination destroys this worker thread. So during the
2038 	 * lifetime of this thread, kfd_process p will be valid
2039 	 */
2040 	p = container_of(dwork, struct kfd_process, restore_work);
2041 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2042 
2043 	/* Setting last_restore_timestamp before successful restoration.
2044 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2045 	 * before KFD BOs are unreserved. If not, the process can be evicted
2046 	 * again before the timestamp is set.
2047 	 * If restore fails, the timestamp will be set again in the next
2048 	 * attempt. This would mean that the minimum GPU quanta would be
2049 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2050 	 * functions)
2051 	 */
2052 
2053 	p->last_restore_timestamp = get_jiffies_64();
2054 
2055 	ret = restore_process_helper(p);
2056 	if (ret) {
2057 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2058 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2059 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2060 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2061 			kfd_process_restore_queues(p);
2062 	}
2063 }
2064 
2065 void kfd_suspend_all_processes(void)
2066 {
2067 	struct kfd_process *p;
2068 	unsigned int temp;
2069 	int idx = srcu_read_lock(&kfd_processes_srcu);
2070 
2071 	WARN(debug_evictions, "Evicting all processes");
2072 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2073 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2074 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2075 		signal_eviction_fence(p);
2076 	}
2077 	srcu_read_unlock(&kfd_processes_srcu, idx);
2078 }
2079 
2080 int kfd_resume_all_processes(void)
2081 {
2082 	struct kfd_process *p;
2083 	unsigned int temp;
2084 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2085 
2086 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2087 		if (restore_process_helper(p)) {
2088 			pr_err("Restore process %d failed during resume\n",
2089 			       p->pasid);
2090 			ret = -EFAULT;
2091 		}
2092 	}
2093 	srcu_read_unlock(&kfd_processes_srcu, idx);
2094 	return ret;
2095 }
2096 
2097 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2098 			  struct vm_area_struct *vma)
2099 {
2100 	struct kfd_process_device *pdd;
2101 	struct qcm_process_device *qpd;
2102 
2103 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2104 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2105 		return -EINVAL;
2106 	}
2107 
2108 	pdd = kfd_get_process_device_data(dev, process);
2109 	if (!pdd)
2110 		return -EINVAL;
2111 	qpd = &pdd->qpd;
2112 
2113 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2114 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2115 	if (!qpd->cwsr_kaddr) {
2116 		dev_err(dev->adev->dev,
2117 			"Error allocating per process CWSR buffer.\n");
2118 		return -ENOMEM;
2119 	}
2120 
2121 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2122 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2123 	/* Mapping pages to user process */
2124 	return remap_pfn_range(vma, vma->vm_start,
2125 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2126 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2127 }
2128 
2129 /* assumes caller holds process lock. */
2130 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2131 {
2132 	uint32_t irq_drain_fence[8];
2133 	uint8_t node_id = 0;
2134 	int r = 0;
2135 
2136 	if (!KFD_IS_SOC15(pdd->dev))
2137 		return 0;
2138 
2139 	pdd->process->irq_drain_is_open = true;
2140 
2141 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2142 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2143 							KFD_IRQ_FENCE_CLIENTID;
2144 	irq_drain_fence[3] = pdd->process->pasid;
2145 
2146 	/*
2147 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2148 	 */
2149 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2150 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2151 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2152 		irq_drain_fence[3] |= node_id << 16;
2153 	}
2154 
2155 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2156 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2157 						     irq_drain_fence)) {
2158 		pdd->process->irq_drain_is_open = false;
2159 		return 0;
2160 	}
2161 
2162 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2163 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2164 	if (r)
2165 		pdd->process->irq_drain_is_open = false;
2166 
2167 	return r;
2168 }
2169 
2170 void kfd_process_close_interrupt_drain(unsigned int pasid)
2171 {
2172 	struct kfd_process *p;
2173 
2174 	p = kfd_lookup_process_by_pasid(pasid);
2175 
2176 	if (!p)
2177 		return;
2178 
2179 	WRITE_ONCE(p->irq_drain_is_open, false);
2180 	wake_up_all(&p->wait_irq_drain);
2181 	kfd_unref_process(p);
2182 }
2183 
2184 struct send_exception_work_handler_workarea {
2185 	struct work_struct work;
2186 	struct kfd_process *p;
2187 	unsigned int queue_id;
2188 	uint64_t error_reason;
2189 };
2190 
2191 static void send_exception_work_handler(struct work_struct *work)
2192 {
2193 	struct send_exception_work_handler_workarea *workarea;
2194 	struct kfd_process *p;
2195 	struct queue *q;
2196 	struct mm_struct *mm;
2197 	struct kfd_context_save_area_header __user *csa_header;
2198 	uint64_t __user *err_payload_ptr;
2199 	uint64_t cur_err;
2200 	uint32_t ev_id;
2201 
2202 	workarea = container_of(work,
2203 				struct send_exception_work_handler_workarea,
2204 				work);
2205 	p = workarea->p;
2206 
2207 	mm = get_task_mm(p->lead_thread);
2208 
2209 	if (!mm)
2210 		return;
2211 
2212 	kthread_use_mm(mm);
2213 
2214 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2215 
2216 	if (!q)
2217 		goto out;
2218 
2219 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2220 
2221 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2222 	get_user(cur_err, err_payload_ptr);
2223 	cur_err |= workarea->error_reason;
2224 	put_user(cur_err, err_payload_ptr);
2225 	get_user(ev_id, &csa_header->err_event_id);
2226 
2227 	kfd_set_event(p, ev_id);
2228 
2229 out:
2230 	kthread_unuse_mm(mm);
2231 	mmput(mm);
2232 }
2233 
2234 int kfd_send_exception_to_runtime(struct kfd_process *p,
2235 			unsigned int queue_id,
2236 			uint64_t error_reason)
2237 {
2238 	struct send_exception_work_handler_workarea worker;
2239 
2240 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2241 
2242 	worker.p = p;
2243 	worker.queue_id = queue_id;
2244 	worker.error_reason = error_reason;
2245 
2246 	schedule_work(&worker.work);
2247 	flush_work(&worker.work);
2248 	destroy_work_on_stack(&worker.work);
2249 
2250 	return 0;
2251 }
2252 
2253 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2254 {
2255 	int i;
2256 
2257 	if (gpu_id) {
2258 		for (i = 0; i < p->n_pdds; i++) {
2259 			struct kfd_process_device *pdd = p->pdds[i];
2260 
2261 			if (pdd->user_gpu_id == gpu_id)
2262 				return pdd;
2263 		}
2264 	}
2265 	return NULL;
2266 }
2267 
2268 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2269 {
2270 	int i;
2271 
2272 	if (!actual_gpu_id)
2273 		return 0;
2274 
2275 	for (i = 0; i < p->n_pdds; i++) {
2276 		struct kfd_process_device *pdd = p->pdds[i];
2277 
2278 		if (pdd->dev->id == actual_gpu_id)
2279 			return pdd->user_gpu_id;
2280 	}
2281 	return -EINVAL;
2282 }
2283 
2284 #if defined(CONFIG_DEBUG_FS)
2285 
2286 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2287 {
2288 	struct kfd_process *p;
2289 	unsigned int temp;
2290 	int r = 0;
2291 
2292 	int idx = srcu_read_lock(&kfd_processes_srcu);
2293 
2294 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2295 		seq_printf(m, "Process %d PASID 0x%x:\n",
2296 			   p->lead_thread->tgid, p->pasid);
2297 
2298 		mutex_lock(&p->mutex);
2299 		r = pqm_debugfs_mqds(m, &p->pqm);
2300 		mutex_unlock(&p->mutex);
2301 
2302 		if (r)
2303 			break;
2304 	}
2305 
2306 	srcu_read_unlock(&kfd_processes_srcu, idx);
2307 
2308 	return r;
2309 }
2310 
2311 #endif
2312