1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "kfd_smi_events.h" 45 #include "kfd_debug.h" 46 47 /* 48 * List of struct kfd_process (field kfd_process). 49 * Unique/indexed by mm_struct* 50 */ 51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 52 DEFINE_MUTEX(kfd_processes_mutex); 53 54 DEFINE_SRCU(kfd_processes_srcu); 55 56 /* For process termination handling */ 57 static struct workqueue_struct *kfd_process_wq; 58 59 /* Ordered, single-threaded workqueue for restoring evicted 60 * processes. Restoring multiple processes concurrently under memory 61 * pressure can lead to processes blocking each other from validating 62 * their BOs and result in a live-lock situation where processes 63 * remain evicted indefinitely. 64 */ 65 static struct workqueue_struct *kfd_restore_wq; 66 67 static struct kfd_process *find_process(const struct task_struct *thread, 68 bool ref); 69 static void kfd_process_ref_release(struct kref *ref); 70 static struct kfd_process *create_process(const struct task_struct *thread); 71 72 static void evict_process_worker(struct work_struct *work); 73 static void restore_process_worker(struct work_struct *work); 74 75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 76 77 struct kfd_procfs_tree { 78 struct kobject *kobj; 79 }; 80 81 static struct kfd_procfs_tree procfs; 82 83 /* 84 * Structure for SDMA activity tracking 85 */ 86 struct kfd_sdma_activity_handler_workarea { 87 struct work_struct sdma_activity_work; 88 struct kfd_process_device *pdd; 89 uint64_t sdma_activity_counter; 90 }; 91 92 struct temp_sdma_queue_list { 93 uint64_t __user *rptr; 94 uint64_t sdma_val; 95 unsigned int queue_id; 96 struct list_head list; 97 }; 98 99 static void kfd_sdma_activity_worker(struct work_struct *work) 100 { 101 struct kfd_sdma_activity_handler_workarea *workarea; 102 struct kfd_process_device *pdd; 103 uint64_t val; 104 struct mm_struct *mm; 105 struct queue *q; 106 struct qcm_process_device *qpd; 107 struct device_queue_manager *dqm; 108 int ret = 0; 109 struct temp_sdma_queue_list sdma_q_list; 110 struct temp_sdma_queue_list *sdma_q, *next; 111 112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 113 sdma_activity_work); 114 115 pdd = workarea->pdd; 116 if (!pdd) 117 return; 118 dqm = pdd->dev->dqm; 119 qpd = &pdd->qpd; 120 if (!dqm || !qpd) 121 return; 122 /* 123 * Total SDMA activity is current SDMA activity + past SDMA activity 124 * Past SDMA count is stored in pdd. 125 * To get the current activity counters for all active SDMA queues, 126 * we loop over all SDMA queues and get their counts from user-space. 127 * 128 * We cannot call get_user() with dqm_lock held as it can cause 129 * a circular lock dependency situation. To read the SDMA stats, 130 * we need to do the following: 131 * 132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 133 * with dqm_lock/dqm_unlock(). 134 * 2. Call get_user() for each node in temporary list without dqm_lock. 135 * Save the SDMA count for each node and also add the count to the total 136 * SDMA count counter. 137 * Its possible, during this step, a few SDMA queue nodes got deleted 138 * from the qpd->queues_list. 139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 140 * If any node got deleted, its SDMA count would be captured in the sdma 141 * past activity counter. So subtract the SDMA counter stored in step 2 142 * for this node from the total SDMA count. 143 */ 144 INIT_LIST_HEAD(&sdma_q_list.list); 145 146 /* 147 * Create the temp list of all SDMA queues 148 */ 149 dqm_lock(dqm); 150 151 list_for_each_entry(q, &qpd->queues_list, list) { 152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 154 continue; 155 156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 157 if (!sdma_q) { 158 dqm_unlock(dqm); 159 goto cleanup; 160 } 161 162 INIT_LIST_HEAD(&sdma_q->list); 163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 164 sdma_q->queue_id = q->properties.queue_id; 165 list_add_tail(&sdma_q->list, &sdma_q_list.list); 166 } 167 168 /* 169 * If the temp list is empty, then no SDMA queues nodes were found in 170 * qpd->queues_list. Return the past activity count as the total sdma 171 * count 172 */ 173 if (list_empty(&sdma_q_list.list)) { 174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 175 dqm_unlock(dqm); 176 return; 177 } 178 179 dqm_unlock(dqm); 180 181 /* 182 * Get the usage count for each SDMA queue in temp_list. 183 */ 184 mm = get_task_mm(pdd->process->lead_thread); 185 if (!mm) 186 goto cleanup; 187 188 kthread_use_mm(mm); 189 190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 191 val = 0; 192 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 193 if (ret) { 194 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 195 sdma_q->queue_id); 196 } else { 197 sdma_q->sdma_val = val; 198 workarea->sdma_activity_counter += val; 199 } 200 } 201 202 kthread_unuse_mm(mm); 203 mmput(mm); 204 205 /* 206 * Do a second iteration over qpd_queues_list to check if any SDMA 207 * nodes got deleted while fetching SDMA counter. 208 */ 209 dqm_lock(dqm); 210 211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 212 213 list_for_each_entry(q, &qpd->queues_list, list) { 214 if (list_empty(&sdma_q_list.list)) 215 break; 216 217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 219 continue; 220 221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 223 (sdma_q->queue_id == q->properties.queue_id)) { 224 list_del(&sdma_q->list); 225 kfree(sdma_q); 226 break; 227 } 228 } 229 } 230 231 dqm_unlock(dqm); 232 233 /* 234 * If temp list is not empty, it implies some queues got deleted 235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 236 * count for each node from the total SDMA count. 237 */ 238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 239 workarea->sdma_activity_counter -= sdma_q->sdma_val; 240 list_del(&sdma_q->list); 241 kfree(sdma_q); 242 } 243 244 return; 245 246 cleanup: 247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 248 list_del(&sdma_q->list); 249 kfree(sdma_q); 250 } 251 } 252 253 /** 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 255 * by current process. Translates acquired wave count into number of compute units 256 * that are occupied. 257 * 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute 259 * handle encapsulates GPU device it is associated with, thereby allowing collection 260 * of waves in flight, etc 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_node *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 int i; 274 struct kfd_cu_occupancy *cu_occupancy; 275 u32 queue_format; 276 277 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 278 dev = pdd->dev; 279 if (dev->kfd2kgd->get_cu_occupancy == NULL) 280 return -EINVAL; 281 282 cu_cnt = 0; 283 proc = pdd->process; 284 if (pdd->qpd.queue_count == 0) { 285 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 286 dev->id, proc->pasid); 287 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 288 } 289 290 /* Collect wave count from device if it supports */ 291 wave_cnt = 0; 292 max_waves_per_cu = 0; 293 294 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 295 if (!cu_occupancy) 296 return -ENOMEM; 297 298 /* 299 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 300 * For AQL queues, because of cooperative dispatch we multiply the wave count 301 * by number of XCCs in the partition to get the total wave counts across all 302 * XCCs in the partition. 303 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 304 */ 305 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 306 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 307 308 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 309 if (cu_occupancy[i].wave_cnt != 0 && 310 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 311 cu_occupancy[i].doorbell_off, 312 &queue_format)) { 313 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 314 wave_cnt += cu_occupancy[i].wave_cnt; 315 else 316 wave_cnt += (NUM_XCC(dev->xcc_mask) * 317 cu_occupancy[i].wave_cnt); 318 } 319 } 320 321 /* Translate wave count to number of compute units */ 322 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 323 kfree(cu_occupancy); 324 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 325 } 326 327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 328 char *buffer) 329 { 330 if (strcmp(attr->name, "pasid") == 0) { 331 struct kfd_process *p = container_of(attr, struct kfd_process, 332 attr_pasid); 333 334 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 335 } else if (strncmp(attr->name, "vram_", 5) == 0) { 336 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 337 attr_vram); 338 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 339 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 340 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 341 attr_sdma); 342 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 343 344 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 345 kfd_sdma_activity_worker); 346 347 sdma_activity_work_handler.pdd = pdd; 348 sdma_activity_work_handler.sdma_activity_counter = 0; 349 350 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 351 352 flush_work(&sdma_activity_work_handler.sdma_activity_work); 353 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 354 355 return snprintf(buffer, PAGE_SIZE, "%llu\n", 356 (sdma_activity_work_handler.sdma_activity_counter)/ 357 SDMA_ACTIVITY_DIVISOR); 358 } else { 359 pr_err("Invalid attribute"); 360 return -EINVAL; 361 } 362 363 return 0; 364 } 365 366 static void kfd_procfs_kobj_release(struct kobject *kobj) 367 { 368 kfree(kobj); 369 } 370 371 static const struct sysfs_ops kfd_procfs_ops = { 372 .show = kfd_procfs_show, 373 }; 374 375 static const struct kobj_type procfs_type = { 376 .release = kfd_procfs_kobj_release, 377 .sysfs_ops = &kfd_procfs_ops, 378 }; 379 380 void kfd_procfs_init(void) 381 { 382 int ret = 0; 383 384 procfs.kobj = kfd_alloc_struct(procfs.kobj); 385 if (!procfs.kobj) 386 return; 387 388 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 389 &kfd_device->kobj, "proc"); 390 if (ret) { 391 pr_warn("Could not create procfs proc folder"); 392 /* If we fail to create the procfs, clean up */ 393 kfd_procfs_shutdown(); 394 } 395 } 396 397 void kfd_procfs_shutdown(void) 398 { 399 if (procfs.kobj) { 400 kobject_del(procfs.kobj); 401 kobject_put(procfs.kobj); 402 procfs.kobj = NULL; 403 } 404 } 405 406 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 407 struct attribute *attr, char *buffer) 408 { 409 struct queue *q = container_of(kobj, struct queue, kobj); 410 411 if (!strcmp(attr->name, "size")) 412 return snprintf(buffer, PAGE_SIZE, "%llu", 413 q->properties.queue_size); 414 else if (!strcmp(attr->name, "type")) 415 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 416 else if (!strcmp(attr->name, "gpuid")) 417 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 418 else 419 pr_err("Invalid attribute"); 420 421 return 0; 422 } 423 424 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 425 struct attribute *attr, char *buffer) 426 { 427 if (strcmp(attr->name, "evicted_ms") == 0) { 428 struct kfd_process_device *pdd = container_of(attr, 429 struct kfd_process_device, 430 attr_evict); 431 uint64_t evict_jiffies; 432 433 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 434 435 return snprintf(buffer, 436 PAGE_SIZE, 437 "%llu\n", 438 jiffies64_to_msecs(evict_jiffies)); 439 440 /* Sysfs handle that gets CU occupancy is per device */ 441 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 442 return kfd_get_cu_occupancy(attr, buffer); 443 } else { 444 pr_err("Invalid attribute"); 445 } 446 447 return 0; 448 } 449 450 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 451 struct attribute *attr, char *buf) 452 { 453 struct kfd_process_device *pdd; 454 455 if (!strcmp(attr->name, "faults")) { 456 pdd = container_of(attr, struct kfd_process_device, 457 attr_faults); 458 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 459 } 460 if (!strcmp(attr->name, "page_in")) { 461 pdd = container_of(attr, struct kfd_process_device, 462 attr_page_in); 463 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 464 } 465 if (!strcmp(attr->name, "page_out")) { 466 pdd = container_of(attr, struct kfd_process_device, 467 attr_page_out); 468 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 469 } 470 return 0; 471 } 472 473 static struct attribute attr_queue_size = { 474 .name = "size", 475 .mode = KFD_SYSFS_FILE_MODE 476 }; 477 478 static struct attribute attr_queue_type = { 479 .name = "type", 480 .mode = KFD_SYSFS_FILE_MODE 481 }; 482 483 static struct attribute attr_queue_gpuid = { 484 .name = "gpuid", 485 .mode = KFD_SYSFS_FILE_MODE 486 }; 487 488 static struct attribute *procfs_queue_attrs[] = { 489 &attr_queue_size, 490 &attr_queue_type, 491 &attr_queue_gpuid, 492 NULL 493 }; 494 ATTRIBUTE_GROUPS(procfs_queue); 495 496 static const struct sysfs_ops procfs_queue_ops = { 497 .show = kfd_procfs_queue_show, 498 }; 499 500 static const struct kobj_type procfs_queue_type = { 501 .sysfs_ops = &procfs_queue_ops, 502 .default_groups = procfs_queue_groups, 503 }; 504 505 static const struct sysfs_ops procfs_stats_ops = { 506 .show = kfd_procfs_stats_show, 507 }; 508 509 static const struct kobj_type procfs_stats_type = { 510 .sysfs_ops = &procfs_stats_ops, 511 .release = kfd_procfs_kobj_release, 512 }; 513 514 static const struct sysfs_ops sysfs_counters_ops = { 515 .show = kfd_sysfs_counters_show, 516 }; 517 518 static const struct kobj_type sysfs_counters_type = { 519 .sysfs_ops = &sysfs_counters_ops, 520 .release = kfd_procfs_kobj_release, 521 }; 522 523 int kfd_procfs_add_queue(struct queue *q) 524 { 525 struct kfd_process *proc; 526 int ret; 527 528 if (!q || !q->process) 529 return -EINVAL; 530 proc = q->process; 531 532 /* Create proc/<pid>/queues/<queue id> folder */ 533 if (!proc->kobj_queues) 534 return -EFAULT; 535 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 536 proc->kobj_queues, "%u", q->properties.queue_id); 537 if (ret < 0) { 538 pr_warn("Creating proc/<pid>/queues/%u failed", 539 q->properties.queue_id); 540 kobject_put(&q->kobj); 541 return ret; 542 } 543 544 return 0; 545 } 546 547 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 548 char *name) 549 { 550 int ret; 551 552 if (!kobj || !attr || !name) 553 return; 554 555 attr->name = name; 556 attr->mode = KFD_SYSFS_FILE_MODE; 557 sysfs_attr_init(attr); 558 559 ret = sysfs_create_file(kobj, attr); 560 if (ret) 561 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 562 } 563 564 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 565 { 566 int ret; 567 int i; 568 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 569 570 if (!p || !p->kobj) 571 return; 572 573 /* 574 * Create sysfs files for each GPU: 575 * - proc/<pid>/stats_<gpuid>/ 576 * - proc/<pid>/stats_<gpuid>/evicted_ms 577 * - proc/<pid>/stats_<gpuid>/cu_occupancy 578 */ 579 for (i = 0; i < p->n_pdds; i++) { 580 struct kfd_process_device *pdd = p->pdds[i]; 581 582 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 583 "stats_%u", pdd->dev->id); 584 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 585 if (!pdd->kobj_stats) 586 return; 587 588 ret = kobject_init_and_add(pdd->kobj_stats, 589 &procfs_stats_type, 590 p->kobj, 591 stats_dir_filename); 592 593 if (ret) { 594 pr_warn("Creating KFD proc/stats_%s folder failed", 595 stats_dir_filename); 596 kobject_put(pdd->kobj_stats); 597 pdd->kobj_stats = NULL; 598 return; 599 } 600 601 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 602 "evicted_ms"); 603 /* Add sysfs file to report compute unit occupancy */ 604 if (pdd->dev->kfd2kgd->get_cu_occupancy) 605 kfd_sysfs_create_file(pdd->kobj_stats, 606 &pdd->attr_cu_occupancy, 607 "cu_occupancy"); 608 } 609 } 610 611 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 612 { 613 int ret = 0; 614 int i; 615 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 616 617 if (!p || !p->kobj) 618 return; 619 620 /* 621 * Create sysfs files for each GPU which supports SVM 622 * - proc/<pid>/counters_<gpuid>/ 623 * - proc/<pid>/counters_<gpuid>/faults 624 * - proc/<pid>/counters_<gpuid>/page_in 625 * - proc/<pid>/counters_<gpuid>/page_out 626 */ 627 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 628 struct kfd_process_device *pdd = p->pdds[i]; 629 struct kobject *kobj_counters; 630 631 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 632 "counters_%u", pdd->dev->id); 633 kobj_counters = kfd_alloc_struct(kobj_counters); 634 if (!kobj_counters) 635 return; 636 637 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 638 p->kobj, counters_dir_filename); 639 if (ret) { 640 pr_warn("Creating KFD proc/%s folder failed", 641 counters_dir_filename); 642 kobject_put(kobj_counters); 643 return; 644 } 645 646 pdd->kobj_counters = kobj_counters; 647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 648 "faults"); 649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 650 "page_in"); 651 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 652 "page_out"); 653 } 654 } 655 656 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 657 { 658 int i; 659 660 if (!p || !p->kobj) 661 return; 662 663 /* 664 * Create sysfs files for each GPU: 665 * - proc/<pid>/vram_<gpuid> 666 * - proc/<pid>/sdma_<gpuid> 667 */ 668 for (i = 0; i < p->n_pdds; i++) { 669 struct kfd_process_device *pdd = p->pdds[i]; 670 671 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 672 pdd->dev->id); 673 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 674 pdd->vram_filename); 675 676 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 677 pdd->dev->id); 678 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 679 pdd->sdma_filename); 680 } 681 } 682 683 void kfd_procfs_del_queue(struct queue *q) 684 { 685 if (!q) 686 return; 687 688 kobject_del(&q->kobj); 689 kobject_put(&q->kobj); 690 } 691 692 int kfd_process_create_wq(void) 693 { 694 if (!kfd_process_wq) 695 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 696 if (!kfd_restore_wq) 697 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 698 WQ_FREEZABLE); 699 700 if (!kfd_process_wq || !kfd_restore_wq) { 701 kfd_process_destroy_wq(); 702 return -ENOMEM; 703 } 704 705 return 0; 706 } 707 708 void kfd_process_destroy_wq(void) 709 { 710 if (kfd_process_wq) { 711 destroy_workqueue(kfd_process_wq); 712 kfd_process_wq = NULL; 713 } 714 if (kfd_restore_wq) { 715 destroy_workqueue(kfd_restore_wq); 716 kfd_restore_wq = NULL; 717 } 718 } 719 720 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 721 struct kfd_process_device *pdd, void **kptr) 722 { 723 struct kfd_node *dev = pdd->dev; 724 725 if (kptr && *kptr) { 726 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 727 *kptr = NULL; 728 } 729 730 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 731 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 732 NULL); 733 } 734 735 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 736 * This function should be only called right after the process 737 * is created and when kfd_processes_mutex is still being held 738 * to avoid concurrency. Because of that exclusiveness, we do 739 * not need to take p->mutex. 740 */ 741 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 742 uint64_t gpu_va, uint32_t size, 743 uint32_t flags, struct kgd_mem **mem, void **kptr) 744 { 745 struct kfd_node *kdev = pdd->dev; 746 int err; 747 748 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 749 pdd->drm_priv, mem, NULL, 750 flags, false); 751 if (err) 752 goto err_alloc_mem; 753 754 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 755 pdd->drm_priv); 756 if (err) 757 goto err_map_mem; 758 759 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 760 if (err) { 761 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 762 goto sync_memory_failed; 763 } 764 765 if (kptr) { 766 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 767 (struct kgd_mem *)*mem, kptr, NULL); 768 if (err) { 769 pr_debug("Map GTT BO to kernel failed\n"); 770 goto sync_memory_failed; 771 } 772 } 773 774 return err; 775 776 sync_memory_failed: 777 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 778 779 err_map_mem: 780 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 781 NULL); 782 err_alloc_mem: 783 *mem = NULL; 784 *kptr = NULL; 785 return err; 786 } 787 788 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 789 * process for IB usage The memory reserved is for KFD to submit 790 * IB to AMDGPU from kernel. If the memory is reserved 791 * successfully, ib_kaddr will have the CPU/kernel 792 * address. Check ib_kaddr before accessing the memory. 793 */ 794 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 795 { 796 struct qcm_process_device *qpd = &pdd->qpd; 797 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 798 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 799 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 800 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 801 struct kgd_mem *mem; 802 void *kaddr; 803 int ret; 804 805 if (qpd->ib_kaddr || !qpd->ib_base) 806 return 0; 807 808 /* ib_base is only set for dGPU */ 809 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 810 &mem, &kaddr); 811 if (ret) 812 return ret; 813 814 qpd->ib_mem = mem; 815 qpd->ib_kaddr = kaddr; 816 817 return 0; 818 } 819 820 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 821 { 822 struct qcm_process_device *qpd = &pdd->qpd; 823 824 if (!qpd->ib_kaddr || !qpd->ib_base) 825 return; 826 827 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 828 } 829 830 struct kfd_process *kfd_create_process(struct task_struct *thread) 831 { 832 struct kfd_process *process; 833 int ret; 834 835 if (!(thread->mm && mmget_not_zero(thread->mm))) 836 return ERR_PTR(-EINVAL); 837 838 /* Only the pthreads threading model is supported. */ 839 if (thread->group_leader->mm != thread->mm) { 840 mmput(thread->mm); 841 return ERR_PTR(-EINVAL); 842 } 843 844 /* 845 * take kfd processes mutex before starting of process creation 846 * so there won't be a case where two threads of the same process 847 * create two kfd_process structures 848 */ 849 mutex_lock(&kfd_processes_mutex); 850 851 if (kfd_is_locked()) { 852 pr_debug("KFD is locked! Cannot create process"); 853 process = ERR_PTR(-EINVAL); 854 goto out; 855 } 856 857 /* A prior open of /dev/kfd could have already created the process. 858 * find_process will increase process kref in this case 859 */ 860 process = find_process(thread, true); 861 if (process) { 862 pr_debug("Process already found\n"); 863 } else { 864 /* If the process just called exec(3), it is possible that the 865 * cleanup of the kfd_process (following the release of the mm 866 * of the old process image) is still in the cleanup work queue. 867 * Make sure to drain any job before trying to recreate any 868 * resource for this process. 869 */ 870 flush_workqueue(kfd_process_wq); 871 872 process = create_process(thread); 873 if (IS_ERR(process)) 874 goto out; 875 876 if (!procfs.kobj) 877 goto out; 878 879 process->kobj = kfd_alloc_struct(process->kobj); 880 if (!process->kobj) { 881 pr_warn("Creating procfs kobject failed"); 882 goto out; 883 } 884 ret = kobject_init_and_add(process->kobj, &procfs_type, 885 procfs.kobj, "%d", 886 (int)process->lead_thread->pid); 887 if (ret) { 888 pr_warn("Creating procfs pid directory failed"); 889 kobject_put(process->kobj); 890 goto out; 891 } 892 893 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 894 "pasid"); 895 896 process->kobj_queues = kobject_create_and_add("queues", 897 process->kobj); 898 if (!process->kobj_queues) 899 pr_warn("Creating KFD proc/queues folder failed"); 900 901 kfd_procfs_add_sysfs_stats(process); 902 kfd_procfs_add_sysfs_files(process); 903 kfd_procfs_add_sysfs_counters(process); 904 905 init_waitqueue_head(&process->wait_irq_drain); 906 } 907 out: 908 mutex_unlock(&kfd_processes_mutex); 909 mmput(thread->mm); 910 911 return process; 912 } 913 914 struct kfd_process *kfd_get_process(const struct task_struct *thread) 915 { 916 struct kfd_process *process; 917 918 if (!thread->mm) 919 return ERR_PTR(-EINVAL); 920 921 /* Only the pthreads threading model is supported. */ 922 if (thread->group_leader->mm != thread->mm) 923 return ERR_PTR(-EINVAL); 924 925 process = find_process(thread, false); 926 if (!process) 927 return ERR_PTR(-EINVAL); 928 929 return process; 930 } 931 932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 933 { 934 struct kfd_process *process; 935 936 hash_for_each_possible_rcu(kfd_processes_table, process, 937 kfd_processes, (uintptr_t)mm) 938 if (process->mm == mm) 939 return process; 940 941 return NULL; 942 } 943 944 static struct kfd_process *find_process(const struct task_struct *thread, 945 bool ref) 946 { 947 struct kfd_process *p; 948 int idx; 949 950 idx = srcu_read_lock(&kfd_processes_srcu); 951 p = find_process_by_mm(thread->mm); 952 if (p && ref) 953 kref_get(&p->ref); 954 srcu_read_unlock(&kfd_processes_srcu, idx); 955 956 return p; 957 } 958 959 void kfd_unref_process(struct kfd_process *p) 960 { 961 kref_put(&p->ref, kfd_process_ref_release); 962 } 963 964 /* This increments the process->ref counter. */ 965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 966 { 967 struct task_struct *task = NULL; 968 struct kfd_process *p = NULL; 969 970 if (!pid) { 971 task = current; 972 get_task_struct(task); 973 } else { 974 task = get_pid_task(pid, PIDTYPE_PID); 975 } 976 977 if (task) { 978 p = find_process(task, true); 979 put_task_struct(task); 980 } 981 982 return p; 983 } 984 985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 986 { 987 struct kfd_process *p = pdd->process; 988 void *mem; 989 int id; 990 int i; 991 992 /* 993 * Remove all handles from idr and release appropriate 994 * local memory object 995 */ 996 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 997 998 for (i = 0; i < p->n_pdds; i++) { 999 struct kfd_process_device *peer_pdd = p->pdds[i]; 1000 1001 if (!peer_pdd->drm_priv) 1002 continue; 1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1005 } 1006 1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1008 pdd->drm_priv, NULL); 1009 kfd_process_device_remove_obj_handle(pdd, id); 1010 } 1011 } 1012 1013 /* 1014 * Just kunmap and unpin signal BO here. It will be freed in 1015 * kfd_process_free_outstanding_kfd_bos() 1016 */ 1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1018 { 1019 struct kfd_process_device *pdd; 1020 struct kfd_node *kdev; 1021 void *mem; 1022 1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1024 if (!kdev) 1025 return; 1026 1027 mutex_lock(&p->mutex); 1028 1029 pdd = kfd_get_process_device_data(kdev, p); 1030 if (!pdd) 1031 goto out; 1032 1033 mem = kfd_process_device_translate_handle( 1034 pdd, GET_IDR_HANDLE(p->signal_handle)); 1035 if (!mem) 1036 goto out; 1037 1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1039 1040 out: 1041 mutex_unlock(&p->mutex); 1042 } 1043 1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1045 { 1046 int i; 1047 1048 for (i = 0; i < p->n_pdds; i++) 1049 kfd_process_device_free_bos(p->pdds[i]); 1050 } 1051 1052 static void kfd_process_destroy_pdds(struct kfd_process *p) 1053 { 1054 int i; 1055 1056 for (i = 0; i < p->n_pdds; i++) { 1057 struct kfd_process_device *pdd = p->pdds[i]; 1058 1059 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 1060 pdd->dev->id, p->pasid); 1061 1062 kfd_process_device_destroy_cwsr_dgpu(pdd); 1063 kfd_process_device_destroy_ib_mem(pdd); 1064 1065 if (pdd->drm_file) { 1066 amdgpu_amdkfd_gpuvm_release_process_vm( 1067 pdd->dev->adev, pdd->drm_priv); 1068 fput(pdd->drm_file); 1069 } 1070 1071 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1072 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1073 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1074 1075 idr_destroy(&pdd->alloc_idr); 1076 1077 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1078 1079 if (pdd->dev->kfd->shared_resources.enable_mes && 1080 pdd->proc_ctx_cpu_ptr) 1081 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1082 &pdd->proc_ctx_bo); 1083 /* 1084 * before destroying pdd, make sure to report availability 1085 * for auto suspend 1086 */ 1087 if (pdd->runtime_inuse) { 1088 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1089 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1090 pdd->runtime_inuse = false; 1091 } 1092 1093 kfree(pdd); 1094 p->pdds[i] = NULL; 1095 } 1096 p->n_pdds = 0; 1097 } 1098 1099 static void kfd_process_remove_sysfs(struct kfd_process *p) 1100 { 1101 struct kfd_process_device *pdd; 1102 int i; 1103 1104 if (!p->kobj) 1105 return; 1106 1107 sysfs_remove_file(p->kobj, &p->attr_pasid); 1108 kobject_del(p->kobj_queues); 1109 kobject_put(p->kobj_queues); 1110 p->kobj_queues = NULL; 1111 1112 for (i = 0; i < p->n_pdds; i++) { 1113 pdd = p->pdds[i]; 1114 1115 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1116 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1117 1118 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1119 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1120 sysfs_remove_file(pdd->kobj_stats, 1121 &pdd->attr_cu_occupancy); 1122 kobject_del(pdd->kobj_stats); 1123 kobject_put(pdd->kobj_stats); 1124 pdd->kobj_stats = NULL; 1125 } 1126 1127 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1128 pdd = p->pdds[i]; 1129 1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1131 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1132 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1133 kobject_del(pdd->kobj_counters); 1134 kobject_put(pdd->kobj_counters); 1135 pdd->kobj_counters = NULL; 1136 } 1137 1138 kobject_del(p->kobj); 1139 kobject_put(p->kobj); 1140 p->kobj = NULL; 1141 } 1142 1143 /* No process locking is needed in this function, because the process 1144 * is not findable any more. We must assume that no other thread is 1145 * using it any more, otherwise we couldn't safely free the process 1146 * structure in the end. 1147 */ 1148 static void kfd_process_wq_release(struct work_struct *work) 1149 { 1150 struct kfd_process *p = container_of(work, struct kfd_process, 1151 release_work); 1152 struct dma_fence *ef; 1153 1154 kfd_process_dequeue_from_all_devices(p); 1155 pqm_uninit(&p->pqm); 1156 1157 /* Signal the eviction fence after user mode queues are 1158 * destroyed. This allows any BOs to be freed without 1159 * triggering pointless evictions or waiting for fences. 1160 */ 1161 synchronize_rcu(); 1162 ef = rcu_access_pointer(p->ef); 1163 if (ef) 1164 dma_fence_signal(ef); 1165 1166 kfd_process_remove_sysfs(p); 1167 1168 kfd_process_kunmap_signal_bo(p); 1169 kfd_process_free_outstanding_kfd_bos(p); 1170 svm_range_list_fini(p); 1171 1172 kfd_process_destroy_pdds(p); 1173 dma_fence_put(ef); 1174 1175 kfd_event_free_process(p); 1176 1177 kfd_pasid_free(p->pasid); 1178 mutex_destroy(&p->mutex); 1179 1180 put_task_struct(p->lead_thread); 1181 1182 kfree(p); 1183 } 1184 1185 static void kfd_process_ref_release(struct kref *ref) 1186 { 1187 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1188 1189 INIT_WORK(&p->release_work, kfd_process_wq_release); 1190 queue_work(kfd_process_wq, &p->release_work); 1191 } 1192 1193 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1194 { 1195 /* This increments p->ref counter if kfd process p exists */ 1196 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1197 1198 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1199 } 1200 1201 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1202 { 1203 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1204 } 1205 1206 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1207 { 1208 int i; 1209 1210 cancel_delayed_work_sync(&p->eviction_work); 1211 cancel_delayed_work_sync(&p->restore_work); 1212 1213 for (i = 0; i < p->n_pdds; i++) { 1214 struct kfd_process_device *pdd = p->pdds[i]; 1215 1216 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1217 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1218 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1219 } 1220 1221 /* Indicate to other users that MM is no longer valid */ 1222 p->mm = NULL; 1223 kfd_dbg_trap_disable(p); 1224 1225 if (atomic_read(&p->debugged_process_count) > 0) { 1226 struct kfd_process *target; 1227 unsigned int temp; 1228 int idx = srcu_read_lock(&kfd_processes_srcu); 1229 1230 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1231 if (target->debugger_process && target->debugger_process == p) { 1232 mutex_lock_nested(&target->mutex, 1); 1233 kfd_dbg_trap_disable(target); 1234 mutex_unlock(&target->mutex); 1235 if (atomic_read(&p->debugged_process_count) == 0) 1236 break; 1237 } 1238 } 1239 1240 srcu_read_unlock(&kfd_processes_srcu, idx); 1241 } 1242 1243 mmu_notifier_put(&p->mmu_notifier); 1244 } 1245 1246 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1247 struct mm_struct *mm) 1248 { 1249 struct kfd_process *p; 1250 1251 /* 1252 * The kfd_process structure can not be free because the 1253 * mmu_notifier srcu is read locked 1254 */ 1255 p = container_of(mn, struct kfd_process, mmu_notifier); 1256 if (WARN_ON(p->mm != mm)) 1257 return; 1258 1259 mutex_lock(&kfd_processes_mutex); 1260 /* 1261 * Do early return if table is empty. 1262 * 1263 * This could potentially happen if this function is called concurrently 1264 * by mmu_notifier and by kfd_cleanup_pocesses. 1265 * 1266 */ 1267 if (hash_empty(kfd_processes_table)) { 1268 mutex_unlock(&kfd_processes_mutex); 1269 return; 1270 } 1271 hash_del_rcu(&p->kfd_processes); 1272 mutex_unlock(&kfd_processes_mutex); 1273 synchronize_srcu(&kfd_processes_srcu); 1274 1275 kfd_process_notifier_release_internal(p); 1276 } 1277 1278 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1279 .release = kfd_process_notifier_release, 1280 .alloc_notifier = kfd_process_alloc_notifier, 1281 .free_notifier = kfd_process_free_notifier, 1282 }; 1283 1284 /* 1285 * This code handles the case when driver is being unloaded before all 1286 * mm_struct are released. We need to safely free the kfd_process and 1287 * avoid race conditions with mmu_notifier that might try to free them. 1288 * 1289 */ 1290 void kfd_cleanup_processes(void) 1291 { 1292 struct kfd_process *p; 1293 struct hlist_node *p_temp; 1294 unsigned int temp; 1295 HLIST_HEAD(cleanup_list); 1296 1297 /* 1298 * Move all remaining kfd_process from the process table to a 1299 * temp list for processing. Once done, callback from mmu_notifier 1300 * release will not see the kfd_process in the table and do early return, 1301 * avoiding double free issues. 1302 */ 1303 mutex_lock(&kfd_processes_mutex); 1304 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1305 hash_del_rcu(&p->kfd_processes); 1306 synchronize_srcu(&kfd_processes_srcu); 1307 hlist_add_head(&p->kfd_processes, &cleanup_list); 1308 } 1309 mutex_unlock(&kfd_processes_mutex); 1310 1311 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1312 kfd_process_notifier_release_internal(p); 1313 1314 /* 1315 * Ensures that all outstanding free_notifier get called, triggering 1316 * the release of the kfd_process struct. 1317 */ 1318 mmu_notifier_synchronize(); 1319 } 1320 1321 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1322 { 1323 unsigned long offset; 1324 int i; 1325 1326 if (p->has_cwsr) 1327 return 0; 1328 1329 for (i = 0; i < p->n_pdds; i++) { 1330 struct kfd_node *dev = p->pdds[i]->dev; 1331 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1332 1333 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1334 continue; 1335 1336 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1337 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1338 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1339 MAP_SHARED, offset); 1340 1341 if (IS_ERR_VALUE(qpd->tba_addr)) { 1342 int err = qpd->tba_addr; 1343 1344 dev_err(dev->adev->dev, 1345 "Failure to set tba address. error %d.\n", err); 1346 qpd->tba_addr = 0; 1347 qpd->cwsr_kaddr = NULL; 1348 return err; 1349 } 1350 1351 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1352 1353 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1354 1355 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1356 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1357 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1358 } 1359 1360 p->has_cwsr = true; 1361 1362 return 0; 1363 } 1364 1365 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1366 { 1367 struct kfd_node *dev = pdd->dev; 1368 struct qcm_process_device *qpd = &pdd->qpd; 1369 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1370 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1371 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1372 struct kgd_mem *mem; 1373 void *kaddr; 1374 int ret; 1375 1376 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1377 return 0; 1378 1379 /* cwsr_base is only set for dGPU */ 1380 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1381 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1382 if (ret) 1383 return ret; 1384 1385 qpd->cwsr_mem = mem; 1386 qpd->cwsr_kaddr = kaddr; 1387 qpd->tba_addr = qpd->cwsr_base; 1388 1389 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1390 1391 kfd_process_set_trap_debug_flag(&pdd->qpd, 1392 pdd->process->debug_trap_enabled); 1393 1394 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1395 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1396 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1397 1398 return 0; 1399 } 1400 1401 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1402 { 1403 struct kfd_node *dev = pdd->dev; 1404 struct qcm_process_device *qpd = &pdd->qpd; 1405 1406 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1407 return; 1408 1409 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1410 } 1411 1412 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1413 uint64_t tba_addr, 1414 uint64_t tma_addr) 1415 { 1416 if (qpd->cwsr_kaddr) { 1417 /* KFD trap handler is bound, record as second-level TBA/TMA 1418 * in first-level TMA. First-level trap will jump to second. 1419 */ 1420 uint64_t *tma = 1421 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1422 tma[0] = tba_addr; 1423 tma[1] = tma_addr; 1424 } else { 1425 /* No trap handler bound, bind as first-level TBA/TMA. */ 1426 qpd->tba_addr = tba_addr; 1427 qpd->tma_addr = tma_addr; 1428 } 1429 } 1430 1431 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1432 { 1433 int i; 1434 1435 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1436 * boot time retry setting. Mixing processes with different 1437 * XNACK/retry settings can hang the GPU. 1438 * 1439 * Different GPUs can have different noretry settings depending 1440 * on HW bugs or limitations. We need to find at least one 1441 * XNACK mode for this process that's compatible with all GPUs. 1442 * Fortunately GPUs with retry enabled (noretry=0) can run code 1443 * built for XNACK-off. On GFXv9 it may perform slower. 1444 * 1445 * Therefore applications built for XNACK-off can always be 1446 * supported and will be our fallback if any GPU does not 1447 * support retry. 1448 */ 1449 for (i = 0; i < p->n_pdds; i++) { 1450 struct kfd_node *dev = p->pdds[i]->dev; 1451 1452 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1453 * support the SVM APIs and don't need to be considered 1454 * for the XNACK mode selection. 1455 */ 1456 if (!KFD_IS_SOC15(dev)) 1457 continue; 1458 /* Aldebaran can always support XNACK because it can support 1459 * per-process XNACK mode selection. But let the dev->noretry 1460 * setting still influence the default XNACK mode. 1461 */ 1462 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1463 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1464 pr_debug("SRIOV platform xnack not supported\n"); 1465 return false; 1466 } 1467 continue; 1468 } 1469 1470 /* GFXv10 and later GPUs do not support shader preemption 1471 * during page faults. This can lead to poor QoS for queue 1472 * management and memory-manager-related preemptions or 1473 * even deadlocks. 1474 */ 1475 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1476 return false; 1477 1478 if (dev->kfd->noretry) 1479 return false; 1480 } 1481 1482 return true; 1483 } 1484 1485 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1486 bool enabled) 1487 { 1488 if (qpd->cwsr_kaddr) { 1489 uint64_t *tma = 1490 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1491 tma[2] = enabled; 1492 } 1493 } 1494 1495 /* 1496 * On return the kfd_process is fully operational and will be freed when the 1497 * mm is released 1498 */ 1499 static struct kfd_process *create_process(const struct task_struct *thread) 1500 { 1501 struct kfd_process *process; 1502 struct mmu_notifier *mn; 1503 int err = -ENOMEM; 1504 1505 process = kzalloc(sizeof(*process), GFP_KERNEL); 1506 if (!process) 1507 goto err_alloc_process; 1508 1509 kref_init(&process->ref); 1510 mutex_init(&process->mutex); 1511 process->mm = thread->mm; 1512 process->lead_thread = thread->group_leader; 1513 process->n_pdds = 0; 1514 process->queues_paused = false; 1515 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1516 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1517 process->last_restore_timestamp = get_jiffies_64(); 1518 err = kfd_event_init_process(process); 1519 if (err) 1520 goto err_event_init; 1521 process->is_32bit_user_mode = in_compat_syscall(); 1522 process->debug_trap_enabled = false; 1523 process->debugger_process = NULL; 1524 process->exception_enable_mask = 0; 1525 atomic_set(&process->debugged_process_count, 0); 1526 sema_init(&process->runtime_enable_sema, 0); 1527 1528 process->pasid = kfd_pasid_alloc(); 1529 if (process->pasid == 0) { 1530 err = -ENOSPC; 1531 goto err_alloc_pasid; 1532 } 1533 1534 err = pqm_init(&process->pqm, process); 1535 if (err != 0) 1536 goto err_process_pqm_init; 1537 1538 /* init process apertures*/ 1539 err = kfd_init_apertures(process); 1540 if (err != 0) 1541 goto err_init_apertures; 1542 1543 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1544 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1545 1546 err = svm_range_list_init(process); 1547 if (err) 1548 goto err_init_svm_range_list; 1549 1550 /* alloc_notifier needs to find the process in the hash table */ 1551 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1552 (uintptr_t)process->mm); 1553 1554 /* Avoid free_notifier to start kfd_process_wq_release if 1555 * mmu_notifier_get failed because of pending signal. 1556 */ 1557 kref_get(&process->ref); 1558 1559 /* MMU notifier registration must be the last call that can fail 1560 * because after this point we cannot unwind the process creation. 1561 * After this point, mmu_notifier_put will trigger the cleanup by 1562 * dropping the last process reference in the free_notifier. 1563 */ 1564 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1565 if (IS_ERR(mn)) { 1566 err = PTR_ERR(mn); 1567 goto err_register_notifier; 1568 } 1569 BUG_ON(mn != &process->mmu_notifier); 1570 1571 kfd_unref_process(process); 1572 get_task_struct(process->lead_thread); 1573 1574 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1575 1576 return process; 1577 1578 err_register_notifier: 1579 hash_del_rcu(&process->kfd_processes); 1580 svm_range_list_fini(process); 1581 err_init_svm_range_list: 1582 kfd_process_free_outstanding_kfd_bos(process); 1583 kfd_process_destroy_pdds(process); 1584 err_init_apertures: 1585 pqm_uninit(&process->pqm); 1586 err_process_pqm_init: 1587 kfd_pasid_free(process->pasid); 1588 err_alloc_pasid: 1589 kfd_event_free_process(process); 1590 err_event_init: 1591 mutex_destroy(&process->mutex); 1592 kfree(process); 1593 err_alloc_process: 1594 return ERR_PTR(err); 1595 } 1596 1597 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1598 struct kfd_process *p) 1599 { 1600 int i; 1601 1602 for (i = 0; i < p->n_pdds; i++) 1603 if (p->pdds[i]->dev == dev) 1604 return p->pdds[i]; 1605 1606 return NULL; 1607 } 1608 1609 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1610 struct kfd_process *p) 1611 { 1612 struct kfd_process_device *pdd = NULL; 1613 1614 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1615 return NULL; 1616 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1617 if (!pdd) 1618 return NULL; 1619 1620 pdd->dev = dev; 1621 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1622 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1623 pdd->qpd.dqm = dev->dqm; 1624 pdd->qpd.pqm = &p->pqm; 1625 pdd->qpd.evicted = 0; 1626 pdd->qpd.mapped_gws_queue = false; 1627 pdd->process = p; 1628 pdd->bound = PDD_UNBOUND; 1629 pdd->already_dequeued = false; 1630 pdd->runtime_inuse = false; 1631 atomic64_set(&pdd->vram_usage, 0); 1632 pdd->sdma_past_activity_counter = 0; 1633 pdd->user_gpu_id = dev->id; 1634 atomic64_set(&pdd->evict_duration_counter, 0); 1635 1636 p->pdds[p->n_pdds++] = pdd; 1637 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1638 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1639 pdd->dev->adev, 1640 false, 1641 0); 1642 1643 /* Init idr used for memory handle translation */ 1644 idr_init(&pdd->alloc_idr); 1645 1646 return pdd; 1647 } 1648 1649 /** 1650 * kfd_process_device_init_vm - Initialize a VM for a process-device 1651 * 1652 * @pdd: The process-device 1653 * @drm_file: Optional pointer to a DRM file descriptor 1654 * 1655 * If @drm_file is specified, it will be used to acquire the VM from 1656 * that file descriptor. If successful, the @pdd takes ownership of 1657 * the file descriptor. 1658 * 1659 * If @drm_file is NULL, a new VM is created. 1660 * 1661 * Returns 0 on success, -errno on failure. 1662 */ 1663 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1664 struct file *drm_file) 1665 { 1666 struct amdgpu_fpriv *drv_priv; 1667 struct amdgpu_vm *avm; 1668 struct kfd_process *p; 1669 struct dma_fence *ef; 1670 struct kfd_node *dev; 1671 int ret; 1672 1673 if (!drm_file) 1674 return -EINVAL; 1675 1676 if (pdd->drm_priv) 1677 return -EBUSY; 1678 1679 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1680 if (ret) 1681 return ret; 1682 avm = &drv_priv->vm; 1683 1684 p = pdd->process; 1685 dev = pdd->dev; 1686 1687 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1688 &p->kgd_process_info, 1689 p->ef ? NULL : &ef); 1690 if (ret) { 1691 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1692 return ret; 1693 } 1694 1695 if (!p->ef) 1696 RCU_INIT_POINTER(p->ef, ef); 1697 1698 pdd->drm_priv = drm_file->private_data; 1699 1700 ret = kfd_process_device_reserve_ib_mem(pdd); 1701 if (ret) 1702 goto err_reserve_ib_mem; 1703 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1704 if (ret) 1705 goto err_init_cwsr; 1706 1707 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); 1708 if (ret) 1709 goto err_set_pasid; 1710 1711 pdd->drm_file = drm_file; 1712 1713 return 0; 1714 1715 err_set_pasid: 1716 kfd_process_device_destroy_cwsr_dgpu(pdd); 1717 err_init_cwsr: 1718 kfd_process_device_destroy_ib_mem(pdd); 1719 err_reserve_ib_mem: 1720 pdd->drm_priv = NULL; 1721 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1722 1723 return ret; 1724 } 1725 1726 /* 1727 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1728 * to the device. 1729 * Unbinding occurs when the process dies or the device is removed. 1730 * 1731 * Assumes that the process lock is held. 1732 */ 1733 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1734 struct kfd_process *p) 1735 { 1736 struct kfd_process_device *pdd; 1737 int err; 1738 1739 pdd = kfd_get_process_device_data(dev, p); 1740 if (!pdd) { 1741 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1742 return ERR_PTR(-ENOMEM); 1743 } 1744 1745 if (!pdd->drm_priv) 1746 return ERR_PTR(-ENODEV); 1747 1748 /* 1749 * signal runtime-pm system to auto resume and prevent 1750 * further runtime suspend once device pdd is created until 1751 * pdd is destroyed. 1752 */ 1753 if (!pdd->runtime_inuse) { 1754 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1755 if (err < 0) { 1756 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1757 return ERR_PTR(err); 1758 } 1759 } 1760 1761 /* 1762 * make sure that runtime_usage counter is incremented just once 1763 * per pdd 1764 */ 1765 pdd->runtime_inuse = true; 1766 1767 return pdd; 1768 } 1769 1770 /* Create specific handle mapped to mem from process local memory idr 1771 * Assumes that the process lock is held. 1772 */ 1773 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1774 void *mem) 1775 { 1776 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1777 } 1778 1779 /* Translate specific handle from process local memory idr 1780 * Assumes that the process lock is held. 1781 */ 1782 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1783 int handle) 1784 { 1785 if (handle < 0) 1786 return NULL; 1787 1788 return idr_find(&pdd->alloc_idr, handle); 1789 } 1790 1791 /* Remove specific handle from process local memory idr 1792 * Assumes that the process lock is held. 1793 */ 1794 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1795 int handle) 1796 { 1797 if (handle >= 0) 1798 idr_remove(&pdd->alloc_idr, handle); 1799 } 1800 1801 /* This increments the process->ref counter. */ 1802 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1803 { 1804 struct kfd_process *p, *ret_p = NULL; 1805 unsigned int temp; 1806 1807 int idx = srcu_read_lock(&kfd_processes_srcu); 1808 1809 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1810 if (p->pasid == pasid) { 1811 kref_get(&p->ref); 1812 ret_p = p; 1813 break; 1814 } 1815 } 1816 1817 srcu_read_unlock(&kfd_processes_srcu, idx); 1818 1819 return ret_p; 1820 } 1821 1822 /* This increments the process->ref counter. */ 1823 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1824 { 1825 struct kfd_process *p; 1826 1827 int idx = srcu_read_lock(&kfd_processes_srcu); 1828 1829 p = find_process_by_mm(mm); 1830 if (p) 1831 kref_get(&p->ref); 1832 1833 srcu_read_unlock(&kfd_processes_srcu, idx); 1834 1835 return p; 1836 } 1837 1838 /* kfd_process_evict_queues - Evict all user queues of a process 1839 * 1840 * Eviction is reference-counted per process-device. This means multiple 1841 * evictions from different sources can be nested safely. 1842 */ 1843 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1844 { 1845 int r = 0; 1846 int i; 1847 unsigned int n_evicted = 0; 1848 1849 for (i = 0; i < p->n_pdds; i++) { 1850 struct kfd_process_device *pdd = p->pdds[i]; 1851 struct device *dev = pdd->dev->adev->dev; 1852 1853 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1854 trigger); 1855 1856 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1857 &pdd->qpd); 1858 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1859 * we would like to set all the queues to be in evicted state to prevent 1860 * them been add back since they actually not be saved right now. 1861 */ 1862 if (r && r != -EIO) { 1863 dev_err(dev, "Failed to evict process queues\n"); 1864 goto fail; 1865 } 1866 n_evicted++; 1867 1868 pdd->dev->dqm->is_hws_hang = false; 1869 } 1870 1871 return r; 1872 1873 fail: 1874 /* To keep state consistent, roll back partial eviction by 1875 * restoring queues 1876 */ 1877 for (i = 0; i < p->n_pdds; i++) { 1878 struct kfd_process_device *pdd = p->pdds[i]; 1879 1880 if (n_evicted == 0) 1881 break; 1882 1883 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1884 1885 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1886 &pdd->qpd)) 1887 dev_err(pdd->dev->adev->dev, 1888 "Failed to restore queues\n"); 1889 1890 n_evicted--; 1891 } 1892 1893 return r; 1894 } 1895 1896 /* kfd_process_restore_queues - Restore all user queues of a process */ 1897 int kfd_process_restore_queues(struct kfd_process *p) 1898 { 1899 int r, ret = 0; 1900 int i; 1901 1902 for (i = 0; i < p->n_pdds; i++) { 1903 struct kfd_process_device *pdd = p->pdds[i]; 1904 struct device *dev = pdd->dev->adev->dev; 1905 1906 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1907 1908 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1909 &pdd->qpd); 1910 if (r) { 1911 dev_err(dev, "Failed to restore process queues\n"); 1912 if (!ret) 1913 ret = r; 1914 } 1915 } 1916 1917 return ret; 1918 } 1919 1920 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1921 { 1922 int i; 1923 1924 for (i = 0; i < p->n_pdds; i++) 1925 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1926 return i; 1927 return -EINVAL; 1928 } 1929 1930 int 1931 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1932 uint32_t *gpuid, uint32_t *gpuidx) 1933 { 1934 int i; 1935 1936 for (i = 0; i < p->n_pdds; i++) 1937 if (p->pdds[i] && p->pdds[i]->dev == node) { 1938 *gpuid = p->pdds[i]->user_gpu_id; 1939 *gpuidx = i; 1940 return 0; 1941 } 1942 return -EINVAL; 1943 } 1944 1945 static int signal_eviction_fence(struct kfd_process *p) 1946 { 1947 struct dma_fence *ef; 1948 int ret; 1949 1950 rcu_read_lock(); 1951 ef = dma_fence_get_rcu_safe(&p->ef); 1952 rcu_read_unlock(); 1953 if (!ef) 1954 return -EINVAL; 1955 1956 ret = dma_fence_signal(ef); 1957 dma_fence_put(ef); 1958 1959 return ret; 1960 } 1961 1962 static void evict_process_worker(struct work_struct *work) 1963 { 1964 int ret; 1965 struct kfd_process *p; 1966 struct delayed_work *dwork; 1967 1968 dwork = to_delayed_work(work); 1969 1970 /* Process termination destroys this worker thread. So during the 1971 * lifetime of this thread, kfd_process p will be valid 1972 */ 1973 p = container_of(dwork, struct kfd_process, eviction_work); 1974 1975 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1976 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 1977 if (!ret) { 1978 /* If another thread already signaled the eviction fence, 1979 * they are responsible stopping the queues and scheduling 1980 * the restore work. 1981 */ 1982 if (signal_eviction_fence(p) || 1983 mod_delayed_work(kfd_restore_wq, &p->restore_work, 1984 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 1985 kfd_process_restore_queues(p); 1986 1987 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1988 } else 1989 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1990 } 1991 1992 static int restore_process_helper(struct kfd_process *p) 1993 { 1994 int ret = 0; 1995 1996 /* VMs may not have been acquired yet during debugging. */ 1997 if (p->kgd_process_info) { 1998 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 1999 p->kgd_process_info, &p->ef); 2000 if (ret) 2001 return ret; 2002 } 2003 2004 ret = kfd_process_restore_queues(p); 2005 if (!ret) 2006 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 2007 else 2008 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 2009 2010 return ret; 2011 } 2012 2013 static void restore_process_worker(struct work_struct *work) 2014 { 2015 struct delayed_work *dwork; 2016 struct kfd_process *p; 2017 int ret = 0; 2018 2019 dwork = to_delayed_work(work); 2020 2021 /* Process termination destroys this worker thread. So during the 2022 * lifetime of this thread, kfd_process p will be valid 2023 */ 2024 p = container_of(dwork, struct kfd_process, restore_work); 2025 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 2026 2027 /* Setting last_restore_timestamp before successful restoration. 2028 * Otherwise this would have to be set by KGD (restore_process_bos) 2029 * before KFD BOs are unreserved. If not, the process can be evicted 2030 * again before the timestamp is set. 2031 * If restore fails, the timestamp will be set again in the next 2032 * attempt. This would mean that the minimum GPU quanta would be 2033 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2034 * functions) 2035 */ 2036 2037 p->last_restore_timestamp = get_jiffies_64(); 2038 2039 ret = restore_process_helper(p); 2040 if (ret) { 2041 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 2042 p->pasid, PROCESS_BACK_OFF_TIME_MS); 2043 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2044 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2045 kfd_process_restore_queues(p); 2046 } 2047 } 2048 2049 void kfd_suspend_all_processes(void) 2050 { 2051 struct kfd_process *p; 2052 unsigned int temp; 2053 int idx = srcu_read_lock(&kfd_processes_srcu); 2054 2055 WARN(debug_evictions, "Evicting all processes"); 2056 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2057 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2058 pr_err("Failed to suspend process 0x%x\n", p->pasid); 2059 signal_eviction_fence(p); 2060 } 2061 srcu_read_unlock(&kfd_processes_srcu, idx); 2062 } 2063 2064 int kfd_resume_all_processes(void) 2065 { 2066 struct kfd_process *p; 2067 unsigned int temp; 2068 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2069 2070 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2071 if (restore_process_helper(p)) { 2072 pr_err("Restore process %d failed during resume\n", 2073 p->pasid); 2074 ret = -EFAULT; 2075 } 2076 } 2077 srcu_read_unlock(&kfd_processes_srcu, idx); 2078 return ret; 2079 } 2080 2081 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2082 struct vm_area_struct *vma) 2083 { 2084 struct kfd_process_device *pdd; 2085 struct qcm_process_device *qpd; 2086 2087 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2088 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2089 return -EINVAL; 2090 } 2091 2092 pdd = kfd_get_process_device_data(dev, process); 2093 if (!pdd) 2094 return -EINVAL; 2095 qpd = &pdd->qpd; 2096 2097 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2098 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2099 if (!qpd->cwsr_kaddr) { 2100 dev_err(dev->adev->dev, 2101 "Error allocating per process CWSR buffer.\n"); 2102 return -ENOMEM; 2103 } 2104 2105 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2106 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2107 /* Mapping pages to user process */ 2108 return remap_pfn_range(vma, vma->vm_start, 2109 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2110 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2111 } 2112 2113 /* assumes caller holds process lock. */ 2114 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2115 { 2116 uint32_t irq_drain_fence[8]; 2117 uint8_t node_id = 0; 2118 int r = 0; 2119 2120 if (!KFD_IS_SOC15(pdd->dev)) 2121 return 0; 2122 2123 pdd->process->irq_drain_is_open = true; 2124 2125 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2126 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2127 KFD_IRQ_FENCE_CLIENTID; 2128 irq_drain_fence[3] = pdd->process->pasid; 2129 2130 /* 2131 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] 2132 */ 2133 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2134 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) { 2135 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2136 irq_drain_fence[3] |= node_id << 16; 2137 } 2138 2139 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2140 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2141 irq_drain_fence)) { 2142 pdd->process->irq_drain_is_open = false; 2143 return 0; 2144 } 2145 2146 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2147 !READ_ONCE(pdd->process->irq_drain_is_open)); 2148 if (r) 2149 pdd->process->irq_drain_is_open = false; 2150 2151 return r; 2152 } 2153 2154 void kfd_process_close_interrupt_drain(unsigned int pasid) 2155 { 2156 struct kfd_process *p; 2157 2158 p = kfd_lookup_process_by_pasid(pasid); 2159 2160 if (!p) 2161 return; 2162 2163 WRITE_ONCE(p->irq_drain_is_open, false); 2164 wake_up_all(&p->wait_irq_drain); 2165 kfd_unref_process(p); 2166 } 2167 2168 struct send_exception_work_handler_workarea { 2169 struct work_struct work; 2170 struct kfd_process *p; 2171 unsigned int queue_id; 2172 uint64_t error_reason; 2173 }; 2174 2175 static void send_exception_work_handler(struct work_struct *work) 2176 { 2177 struct send_exception_work_handler_workarea *workarea; 2178 struct kfd_process *p; 2179 struct queue *q; 2180 struct mm_struct *mm; 2181 struct kfd_context_save_area_header __user *csa_header; 2182 uint64_t __user *err_payload_ptr; 2183 uint64_t cur_err; 2184 uint32_t ev_id; 2185 2186 workarea = container_of(work, 2187 struct send_exception_work_handler_workarea, 2188 work); 2189 p = workarea->p; 2190 2191 mm = get_task_mm(p->lead_thread); 2192 2193 if (!mm) 2194 return; 2195 2196 kthread_use_mm(mm); 2197 2198 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2199 2200 if (!q) 2201 goto out; 2202 2203 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2204 2205 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2206 get_user(cur_err, err_payload_ptr); 2207 cur_err |= workarea->error_reason; 2208 put_user(cur_err, err_payload_ptr); 2209 get_user(ev_id, &csa_header->err_event_id); 2210 2211 kfd_set_event(p, ev_id); 2212 2213 out: 2214 kthread_unuse_mm(mm); 2215 mmput(mm); 2216 } 2217 2218 int kfd_send_exception_to_runtime(struct kfd_process *p, 2219 unsigned int queue_id, 2220 uint64_t error_reason) 2221 { 2222 struct send_exception_work_handler_workarea worker; 2223 2224 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2225 2226 worker.p = p; 2227 worker.queue_id = queue_id; 2228 worker.error_reason = error_reason; 2229 2230 schedule_work(&worker.work); 2231 flush_work(&worker.work); 2232 destroy_work_on_stack(&worker.work); 2233 2234 return 0; 2235 } 2236 2237 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2238 { 2239 int i; 2240 2241 if (gpu_id) { 2242 for (i = 0; i < p->n_pdds; i++) { 2243 struct kfd_process_device *pdd = p->pdds[i]; 2244 2245 if (pdd->user_gpu_id == gpu_id) 2246 return pdd; 2247 } 2248 } 2249 return NULL; 2250 } 2251 2252 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2253 { 2254 int i; 2255 2256 if (!actual_gpu_id) 2257 return 0; 2258 2259 for (i = 0; i < p->n_pdds; i++) { 2260 struct kfd_process_device *pdd = p->pdds[i]; 2261 2262 if (pdd->dev->id == actual_gpu_id) 2263 return pdd->user_gpu_id; 2264 } 2265 return -EINVAL; 2266 } 2267 2268 #if defined(CONFIG_DEBUG_FS) 2269 2270 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2271 { 2272 struct kfd_process *p; 2273 unsigned int temp; 2274 int r = 0; 2275 2276 int idx = srcu_read_lock(&kfd_processes_srcu); 2277 2278 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2279 seq_printf(m, "Process %d PASID 0x%x:\n", 2280 p->lead_thread->tgid, p->pasid); 2281 2282 mutex_lock(&p->mutex); 2283 r = pqm_debugfs_mqds(m, &p->pqm); 2284 mutex_unlock(&p->mutex); 2285 2286 if (r) 2287 break; 2288 } 2289 2290 srcu_read_unlock(&kfd_processes_srcu, idx); 2291 2292 return r; 2293 } 2294 2295 #endif 2296