xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74 
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76 
77 struct kfd_procfs_tree {
78 	struct kobject *kobj;
79 };
80 
81 static struct kfd_procfs_tree procfs;
82 
83 /*
84  * Structure for SDMA activity tracking
85  */
86 struct kfd_sdma_activity_handler_workarea {
87 	struct work_struct sdma_activity_work;
88 	struct kfd_process_device *pdd;
89 	uint64_t sdma_activity_counter;
90 };
91 
92 struct temp_sdma_queue_list {
93 	uint64_t __user *rptr;
94 	uint64_t sdma_val;
95 	unsigned int queue_id;
96 	struct list_head list;
97 };
98 
99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 	struct kfd_sdma_activity_handler_workarea *workarea;
102 	struct kfd_process_device *pdd;
103 	uint64_t val;
104 	struct mm_struct *mm;
105 	struct queue *q;
106 	struct qcm_process_device *qpd;
107 	struct device_queue_manager *dqm;
108 	int ret = 0;
109 	struct temp_sdma_queue_list sdma_q_list;
110 	struct temp_sdma_queue_list *sdma_q, *next;
111 
112 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 				sdma_activity_work);
114 
115 	pdd = workarea->pdd;
116 	if (!pdd)
117 		return;
118 	dqm = pdd->dev->dqm;
119 	qpd = &pdd->qpd;
120 	if (!dqm || !qpd)
121 		return;
122 	/*
123 	 * Total SDMA activity is current SDMA activity + past SDMA activity
124 	 * Past SDMA count is stored in pdd.
125 	 * To get the current activity counters for all active SDMA queues,
126 	 * we loop over all SDMA queues and get their counts from user-space.
127 	 *
128 	 * We cannot call get_user() with dqm_lock held as it can cause
129 	 * a circular lock dependency situation. To read the SDMA stats,
130 	 * we need to do the following:
131 	 *
132 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 	 *    with dqm_lock/dqm_unlock().
134 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 	 *    Save the SDMA count for each node and also add the count to the total
136 	 *    SDMA count counter.
137 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138 	 *    from the qpd->queues_list.
139 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 	 *    If any node got deleted, its SDMA count would be captured in the sdma
141 	 *    past activity counter. So subtract the SDMA counter stored in step 2
142 	 *    for this node from the total SDMA count.
143 	 */
144 	INIT_LIST_HEAD(&sdma_q_list.list);
145 
146 	/*
147 	 * Create the temp list of all SDMA queues
148 	 */
149 	dqm_lock(dqm);
150 
151 	list_for_each_entry(q, &qpd->queues_list, list) {
152 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 			continue;
155 
156 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 		if (!sdma_q) {
158 			dqm_unlock(dqm);
159 			goto cleanup;
160 		}
161 
162 		INIT_LIST_HEAD(&sdma_q->list);
163 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 		sdma_q->queue_id = q->properties.queue_id;
165 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 	}
167 
168 	/*
169 	 * If the temp list is empty, then no SDMA queues nodes were found in
170 	 * qpd->queues_list. Return the past activity count as the total sdma
171 	 * count
172 	 */
173 	if (list_empty(&sdma_q_list.list)) {
174 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 		dqm_unlock(dqm);
176 		return;
177 	}
178 
179 	dqm_unlock(dqm);
180 
181 	/*
182 	 * Get the usage count for each SDMA queue in temp_list.
183 	 */
184 	mm = get_task_mm(pdd->process->lead_thread);
185 	if (!mm)
186 		goto cleanup;
187 
188 	kthread_use_mm(mm);
189 
190 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 		val = 0;
192 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 		if (ret) {
194 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 				 sdma_q->queue_id);
196 		} else {
197 			sdma_q->sdma_val = val;
198 			workarea->sdma_activity_counter += val;
199 		}
200 	}
201 
202 	kthread_unuse_mm(mm);
203 	mmput(mm);
204 
205 	/*
206 	 * Do a second iteration over qpd_queues_list to check if any SDMA
207 	 * nodes got deleted while fetching SDMA counter.
208 	 */
209 	dqm_lock(dqm);
210 
211 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212 
213 	list_for_each_entry(q, &qpd->queues_list, list) {
214 		if (list_empty(&sdma_q_list.list))
215 			break;
216 
217 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 			continue;
220 
221 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 			     (sdma_q->queue_id == q->properties.queue_id)) {
224 				list_del(&sdma_q->list);
225 				kfree(sdma_q);
226 				break;
227 			}
228 		}
229 	}
230 
231 	dqm_unlock(dqm);
232 
233 	/*
234 	 * If temp list is not empty, it implies some queues got deleted
235 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 	 * count for each node from the total SDMA count.
237 	 */
238 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 		list_del(&sdma_q->list);
241 		kfree(sdma_q);
242 	}
243 
244 	return;
245 
246 cleanup:
247 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 		list_del(&sdma_q->list);
249 		kfree(sdma_q);
250 	}
251 }
252 
253 /**
254  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255  * by current process. Translates acquired wave count into number of compute units
256  * that are occupied.
257  *
258  * @attr: Handle of attribute that allows reporting of wave count. The attribute
259  * handle encapsulates GPU device it is associated with, thereby allowing collection
260  * of waves in flight, etc
261  * @buffer: Handle of user provided buffer updated with wave count
262  *
263  * Return: Number of bytes written to user buffer or an error value
264  */
265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 	int cu_cnt;
268 	int wave_cnt;
269 	int max_waves_per_cu;
270 	struct kfd_node *dev = NULL;
271 	struct kfd_process *proc = NULL;
272 	struct kfd_process_device *pdd = NULL;
273 	int i;
274 	struct kfd_cu_occupancy *cu_occupancy;
275 	u32 queue_format;
276 
277 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
278 	dev = pdd->dev;
279 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
280 		return -EINVAL;
281 
282 	cu_cnt = 0;
283 	proc = pdd->process;
284 	if (pdd->qpd.queue_count == 0) {
285 		pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
286 			 dev->id, (int)proc->lead_thread->pid);
287 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
288 	}
289 
290 	/* Collect wave count from device if it supports */
291 	wave_cnt = 0;
292 	max_waves_per_cu = 0;
293 
294 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
295 	if (!cu_occupancy)
296 		return -ENOMEM;
297 
298 	/*
299 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
300 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
301 	 * by number of XCCs in the partition to get the total wave counts across all
302 	 * XCCs in the partition.
303 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
304 	 */
305 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
306 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
307 
308 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
309 		if (cu_occupancy[i].wave_cnt != 0 &&
310 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
311 						cu_occupancy[i].doorbell_off,
312 						&queue_format)) {
313 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
314 				wave_cnt += cu_occupancy[i].wave_cnt;
315 			else
316 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
317 						cu_occupancy[i].wave_cnt);
318 		}
319 	}
320 
321 	/* Translate wave count to number of compute units */
322 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
323 	kfree(cu_occupancy);
324 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
325 }
326 
327 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
328 			       char *buffer)
329 {
330 	if (strcmp(attr->name, "pasid") == 0)
331 		return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
332 	else if (strncmp(attr->name, "vram_", 5) == 0) {
333 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
334 							      attr_vram);
335 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
336 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
337 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338 							      attr_sdma);
339 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
340 
341 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
342 				  kfd_sdma_activity_worker);
343 
344 		sdma_activity_work_handler.pdd = pdd;
345 		sdma_activity_work_handler.sdma_activity_counter = 0;
346 
347 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
348 
349 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
350 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
351 
352 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
353 				(sdma_activity_work_handler.sdma_activity_counter)/
354 				 SDMA_ACTIVITY_DIVISOR);
355 	} else {
356 		pr_err("Invalid attribute");
357 		return -EINVAL;
358 	}
359 
360 	return 0;
361 }
362 
363 static void kfd_procfs_kobj_release(struct kobject *kobj)
364 {
365 	kfree(kobj);
366 }
367 
368 static const struct sysfs_ops kfd_procfs_ops = {
369 	.show = kfd_procfs_show,
370 };
371 
372 static const struct kobj_type procfs_type = {
373 	.release = kfd_procfs_kobj_release,
374 	.sysfs_ops = &kfd_procfs_ops,
375 };
376 
377 void kfd_procfs_init(void)
378 {
379 	int ret = 0;
380 
381 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
382 	if (!procfs.kobj)
383 		return;
384 
385 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
386 				   &kfd_device->kobj, "proc");
387 	if (ret) {
388 		pr_warn("Could not create procfs proc folder");
389 		/* If we fail to create the procfs, clean up */
390 		kfd_procfs_shutdown();
391 	}
392 }
393 
394 void kfd_procfs_shutdown(void)
395 {
396 	if (procfs.kobj) {
397 		kobject_del(procfs.kobj);
398 		kobject_put(procfs.kobj);
399 		procfs.kobj = NULL;
400 	}
401 }
402 
403 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
404 				     struct attribute *attr, char *buffer)
405 {
406 	struct queue *q = container_of(kobj, struct queue, kobj);
407 
408 	if (!strcmp(attr->name, "size"))
409 		return snprintf(buffer, PAGE_SIZE, "%llu",
410 				q->properties.queue_size);
411 	else if (!strcmp(attr->name, "type"))
412 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
413 	else if (!strcmp(attr->name, "gpuid"))
414 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
415 	else
416 		pr_err("Invalid attribute");
417 
418 	return 0;
419 }
420 
421 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
422 				     struct attribute *attr, char *buffer)
423 {
424 	if (strcmp(attr->name, "evicted_ms") == 0) {
425 		struct kfd_process_device *pdd = container_of(attr,
426 				struct kfd_process_device,
427 				attr_evict);
428 		uint64_t evict_jiffies;
429 
430 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
431 
432 		return snprintf(buffer,
433 				PAGE_SIZE,
434 				"%llu\n",
435 				jiffies64_to_msecs(evict_jiffies));
436 
437 	/* Sysfs handle that gets CU occupancy is per device */
438 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
439 		return kfd_get_cu_occupancy(attr, buffer);
440 	} else {
441 		pr_err("Invalid attribute");
442 	}
443 
444 	return 0;
445 }
446 
447 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
448 				       struct attribute *attr, char *buf)
449 {
450 	struct kfd_process_device *pdd;
451 
452 	if (!strcmp(attr->name, "faults")) {
453 		pdd = container_of(attr, struct kfd_process_device,
454 				   attr_faults);
455 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
456 	}
457 	if (!strcmp(attr->name, "page_in")) {
458 		pdd = container_of(attr, struct kfd_process_device,
459 				   attr_page_in);
460 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
461 	}
462 	if (!strcmp(attr->name, "page_out")) {
463 		pdd = container_of(attr, struct kfd_process_device,
464 				   attr_page_out);
465 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
466 	}
467 	return 0;
468 }
469 
470 static struct attribute attr_queue_size = {
471 	.name = "size",
472 	.mode = KFD_SYSFS_FILE_MODE
473 };
474 
475 static struct attribute attr_queue_type = {
476 	.name = "type",
477 	.mode = KFD_SYSFS_FILE_MODE
478 };
479 
480 static struct attribute attr_queue_gpuid = {
481 	.name = "gpuid",
482 	.mode = KFD_SYSFS_FILE_MODE
483 };
484 
485 static struct attribute *procfs_queue_attrs[] = {
486 	&attr_queue_size,
487 	&attr_queue_type,
488 	&attr_queue_gpuid,
489 	NULL
490 };
491 ATTRIBUTE_GROUPS(procfs_queue);
492 
493 static const struct sysfs_ops procfs_queue_ops = {
494 	.show = kfd_procfs_queue_show,
495 };
496 
497 static const struct kobj_type procfs_queue_type = {
498 	.sysfs_ops = &procfs_queue_ops,
499 	.default_groups = procfs_queue_groups,
500 };
501 
502 static const struct sysfs_ops procfs_stats_ops = {
503 	.show = kfd_procfs_stats_show,
504 };
505 
506 static const struct kobj_type procfs_stats_type = {
507 	.sysfs_ops = &procfs_stats_ops,
508 	.release = kfd_procfs_kobj_release,
509 };
510 
511 static const struct sysfs_ops sysfs_counters_ops = {
512 	.show = kfd_sysfs_counters_show,
513 };
514 
515 static const struct kobj_type sysfs_counters_type = {
516 	.sysfs_ops = &sysfs_counters_ops,
517 	.release = kfd_procfs_kobj_release,
518 };
519 
520 int kfd_procfs_add_queue(struct queue *q)
521 {
522 	struct kfd_process *proc;
523 	int ret;
524 
525 	if (!q || !q->process)
526 		return -EINVAL;
527 	proc = q->process;
528 
529 	/* Create proc/<pid>/queues/<queue id> folder */
530 	if (!proc->kobj_queues)
531 		return -EFAULT;
532 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
533 			proc->kobj_queues, "%u", q->properties.queue_id);
534 	if (ret < 0) {
535 		pr_warn("Creating proc/<pid>/queues/%u failed",
536 			q->properties.queue_id);
537 		kobject_put(&q->kobj);
538 		return ret;
539 	}
540 
541 	return 0;
542 }
543 
544 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
545 				 char *name)
546 {
547 	int ret;
548 
549 	if (!kobj || !attr || !name)
550 		return;
551 
552 	attr->name = name;
553 	attr->mode = KFD_SYSFS_FILE_MODE;
554 	sysfs_attr_init(attr);
555 
556 	ret = sysfs_create_file(kobj, attr);
557 	if (ret)
558 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
559 }
560 
561 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
562 {
563 	int ret;
564 	int i;
565 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
566 
567 	if (!p || !p->kobj)
568 		return;
569 
570 	/*
571 	 * Create sysfs files for each GPU:
572 	 * - proc/<pid>/stats_<gpuid>/
573 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
574 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
575 	 */
576 	for (i = 0; i < p->n_pdds; i++) {
577 		struct kfd_process_device *pdd = p->pdds[i];
578 
579 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
580 				"stats_%u", pdd->dev->id);
581 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
582 		if (!pdd->kobj_stats)
583 			return;
584 
585 		ret = kobject_init_and_add(pdd->kobj_stats,
586 					   &procfs_stats_type,
587 					   p->kobj,
588 					   stats_dir_filename);
589 
590 		if (ret) {
591 			pr_warn("Creating KFD proc/stats_%s folder failed",
592 				stats_dir_filename);
593 			kobject_put(pdd->kobj_stats);
594 			pdd->kobj_stats = NULL;
595 			return;
596 		}
597 
598 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
599 				      "evicted_ms");
600 		/* Add sysfs file to report compute unit occupancy */
601 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
602 			kfd_sysfs_create_file(pdd->kobj_stats,
603 					      &pdd->attr_cu_occupancy,
604 					      "cu_occupancy");
605 	}
606 }
607 
608 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
609 {
610 	int ret = 0;
611 	int i;
612 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
613 
614 	if (!p || !p->kobj)
615 		return;
616 
617 	/*
618 	 * Create sysfs files for each GPU which supports SVM
619 	 * - proc/<pid>/counters_<gpuid>/
620 	 * - proc/<pid>/counters_<gpuid>/faults
621 	 * - proc/<pid>/counters_<gpuid>/page_in
622 	 * - proc/<pid>/counters_<gpuid>/page_out
623 	 */
624 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
625 		struct kfd_process_device *pdd = p->pdds[i];
626 		struct kobject *kobj_counters;
627 
628 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
629 			"counters_%u", pdd->dev->id);
630 		kobj_counters = kfd_alloc_struct(kobj_counters);
631 		if (!kobj_counters)
632 			return;
633 
634 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
635 					   p->kobj, counters_dir_filename);
636 		if (ret) {
637 			pr_warn("Creating KFD proc/%s folder failed",
638 				counters_dir_filename);
639 			kobject_put(kobj_counters);
640 			return;
641 		}
642 
643 		pdd->kobj_counters = kobj_counters;
644 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
645 				      "faults");
646 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
647 				      "page_in");
648 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
649 				      "page_out");
650 	}
651 }
652 
653 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
654 {
655 	int i;
656 
657 	if (!p || !p->kobj)
658 		return;
659 
660 	/*
661 	 * Create sysfs files for each GPU:
662 	 * - proc/<pid>/vram_<gpuid>
663 	 * - proc/<pid>/sdma_<gpuid>
664 	 */
665 	for (i = 0; i < p->n_pdds; i++) {
666 		struct kfd_process_device *pdd = p->pdds[i];
667 
668 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
669 			 pdd->dev->id);
670 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
671 				      pdd->vram_filename);
672 
673 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
674 			 pdd->dev->id);
675 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
676 					    pdd->sdma_filename);
677 	}
678 }
679 
680 void kfd_procfs_del_queue(struct queue *q)
681 {
682 	if (!q)
683 		return;
684 
685 	kobject_del(&q->kobj);
686 	kobject_put(&q->kobj);
687 }
688 
689 int kfd_process_create_wq(void)
690 {
691 	if (!kfd_process_wq)
692 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
693 	if (!kfd_restore_wq)
694 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
695 							 WQ_FREEZABLE);
696 
697 	if (!kfd_process_wq || !kfd_restore_wq) {
698 		kfd_process_destroy_wq();
699 		return -ENOMEM;
700 	}
701 
702 	return 0;
703 }
704 
705 void kfd_process_destroy_wq(void)
706 {
707 	if (kfd_process_wq) {
708 		destroy_workqueue(kfd_process_wq);
709 		kfd_process_wq = NULL;
710 	}
711 	if (kfd_restore_wq) {
712 		destroy_workqueue(kfd_restore_wq);
713 		kfd_restore_wq = NULL;
714 	}
715 }
716 
717 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
718 			struct kfd_process_device *pdd, void **kptr)
719 {
720 	struct kfd_node *dev = pdd->dev;
721 
722 	if (kptr && *kptr) {
723 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
724 		*kptr = NULL;
725 	}
726 
727 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
728 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
729 					       NULL);
730 }
731 
732 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
733  *	This function should be only called right after the process
734  *	is created and when kfd_processes_mutex is still being held
735  *	to avoid concurrency. Because of that exclusiveness, we do
736  *	not need to take p->mutex.
737  */
738 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
739 				   uint64_t gpu_va, uint32_t size,
740 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
741 {
742 	struct kfd_node *kdev = pdd->dev;
743 	int err;
744 
745 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
746 						 pdd->drm_priv, mem, NULL,
747 						 flags, false);
748 	if (err)
749 		goto err_alloc_mem;
750 
751 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
752 			pdd->drm_priv);
753 	if (err)
754 		goto err_map_mem;
755 
756 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
757 	if (err) {
758 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
759 		goto sync_memory_failed;
760 	}
761 
762 	if (kptr) {
763 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
764 				(struct kgd_mem *)*mem, kptr, NULL);
765 		if (err) {
766 			pr_debug("Map GTT BO to kernel failed\n");
767 			goto sync_memory_failed;
768 		}
769 	}
770 
771 	return err;
772 
773 sync_memory_failed:
774 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
775 
776 err_map_mem:
777 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
778 					       NULL);
779 err_alloc_mem:
780 	*mem = NULL;
781 	*kptr = NULL;
782 	return err;
783 }
784 
785 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
786  *	process for IB usage The memory reserved is for KFD to submit
787  *	IB to AMDGPU from kernel.  If the memory is reserved
788  *	successfully, ib_kaddr will have the CPU/kernel
789  *	address. Check ib_kaddr before accessing the memory.
790  */
791 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
792 {
793 	struct qcm_process_device *qpd = &pdd->qpd;
794 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
795 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
796 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
797 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
798 	struct kgd_mem *mem;
799 	void *kaddr;
800 	int ret;
801 
802 	if (qpd->ib_kaddr || !qpd->ib_base)
803 		return 0;
804 
805 	/* ib_base is only set for dGPU */
806 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
807 				      &mem, &kaddr);
808 	if (ret)
809 		return ret;
810 
811 	qpd->ib_mem = mem;
812 	qpd->ib_kaddr = kaddr;
813 
814 	return 0;
815 }
816 
817 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
818 {
819 	struct qcm_process_device *qpd = &pdd->qpd;
820 
821 	if (!qpd->ib_kaddr || !qpd->ib_base)
822 		return;
823 
824 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
825 }
826 
827 int kfd_create_process_sysfs(struct kfd_process *process)
828 {
829 	struct kfd_process *primary_process;
830 	int ret;
831 
832 	if (process->kobj) {
833 		pr_warn("kobject already exists for the kfd_process\n");
834 		return -EINVAL;
835 	}
836 
837 	process->kobj = kfd_alloc_struct(process->kobj);
838 	if (!process->kobj) {
839 		pr_warn("Creating procfs kobject failed");
840 		return -ENOMEM;
841 	}
842 
843 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
844 		ret = kobject_init_and_add(process->kobj, &procfs_type,
845 					   procfs.kobj, "%d",
846 					   (int)process->lead_thread->pid);
847 	else {
848 		primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
849 		if (!primary_process)
850 			return -ESRCH;
851 
852 		ret = kobject_init_and_add(process->kobj, &procfs_type,
853 					   primary_process->kobj, "context_%u",
854 					   process->context_id);
855 		kfd_unref_process(primary_process);
856 	}
857 
858 	if (ret) {
859 		pr_warn("Creating procfs pid directory failed");
860 		kobject_put(process->kobj);
861 		return ret;
862 	}
863 
864 	kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
865 			      "pasid");
866 
867 	process->kobj_queues = kobject_create_and_add("queues",
868 						process->kobj);
869 	if (!process->kobj_queues)
870 		pr_warn("Creating KFD proc/queues folder failed");
871 
872 	kfd_procfs_add_sysfs_stats(process);
873 	kfd_procfs_add_sysfs_files(process);
874 	kfd_procfs_add_sysfs_counters(process);
875 
876 	return 0;
877 }
878 
879 static int kfd_process_alloc_id(struct kfd_process *process)
880 {
881 	int ret;
882 	struct kfd_process *primary_process;
883 
884 	/* already assign 0xFFFF when create */
885 	if (process->context_id == KFD_CONTEXT_ID_PRIMARY)
886 		return 0;
887 
888 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
889 	if (!primary_process)
890 		return -ESRCH;
891 
892 	/* id range: KFD_CONTEXT_ID_MIN to 0xFFFE */
893 	ret = ida_alloc_range(&primary_process->id_table, KFD_CONTEXT_ID_MIN,
894 	      KFD_CONTEXT_ID_PRIMARY - 1, GFP_KERNEL);
895 	if (ret < 0)
896 		goto out;
897 
898 	process->context_id = ret;
899 	ret = 0;
900 
901 out:
902 	kfd_unref_process(primary_process);
903 
904 	return ret;
905 }
906 
907 static void kfd_process_free_id(struct kfd_process *process)
908 {
909 	struct kfd_process *primary_process;
910 
911 	if (process->context_id != KFD_CONTEXT_ID_PRIMARY)
912 		return;
913 
914 	primary_process = kfd_lookup_process_by_mm(process->lead_thread->mm);
915 	if (!primary_process)
916 		return;
917 
918 	ida_free(&primary_process->id_table, process->context_id);
919 
920 	kfd_unref_process(primary_process);
921 }
922 
923 struct kfd_process *kfd_create_process(struct task_struct *thread)
924 {
925 	struct kfd_process *process;
926 	int ret;
927 
928 	if (!(thread->mm && mmget_not_zero(thread->mm)))
929 		return ERR_PTR(-EINVAL);
930 
931 	/* If the process just called exec(3), it is possible that the
932 	 * cleanup of the kfd_process (following the release of the mm
933 	 * of the old process image) is still in the cleanup work queue.
934 	 * Make sure to drain any job before trying to recreate any
935 	 * resource for this process.
936 	 */
937 	flush_workqueue(kfd_process_wq);
938 
939 	/*
940 	 * take kfd processes mutex before starting of process creation
941 	 * so there won't be a case where two threads of the same process
942 	 * create two kfd_process structures
943 	 */
944 	mutex_lock(&kfd_processes_mutex);
945 
946 	if (kfd_gpu_node_num() <= 0) {
947 		pr_warn("no gpu node! Cannot create KFD process");
948 		process = ERR_PTR(-EINVAL);
949 		goto out;
950 	}
951 
952 	if (kfd_is_locked(NULL)) {
953 		pr_debug("KFD is locked! Cannot create process");
954 		process = ERR_PTR(-EINVAL);
955 		goto out;
956 	}
957 
958 	/* A prior open of /dev/kfd could have already created the process.
959 	 * find_process will increase process kref in this case
960 	 */
961 	process = find_process(thread, true);
962 	if (process) {
963 		pr_debug("Process already found\n");
964 	} else {
965 		process = create_process(thread, true);
966 		if (IS_ERR(process))
967 			goto out;
968 
969 		if (!procfs.kobj)
970 			goto out;
971 
972 		ret = kfd_create_process_sysfs(process);
973 		if (ret)
974 			pr_warn("Failed to create sysfs entry for the kfd_process");
975 
976 		kfd_debugfs_add_process(process);
977 
978 		init_waitqueue_head(&process->wait_irq_drain);
979 	}
980 out:
981 	mutex_unlock(&kfd_processes_mutex);
982 	mmput(thread->mm);
983 
984 	return process;
985 }
986 
987 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
988 {
989 	struct kfd_process *process;
990 
991 	hash_for_each_possible_rcu(kfd_processes_table, process,
992 					kfd_processes, (uintptr_t)mm)
993 		if (process->mm == mm && process->context_id == KFD_CONTEXT_ID_PRIMARY)
994 			return process;
995 
996 	return NULL;
997 }
998 
999 static struct kfd_process *find_process(const struct task_struct *thread,
1000 					bool ref)
1001 {
1002 	struct kfd_process *p;
1003 	int idx;
1004 
1005 	idx = srcu_read_lock(&kfd_processes_srcu);
1006 	p = find_process_by_mm(thread->mm);
1007 	if (p && ref)
1008 		kref_get(&p->ref);
1009 	srcu_read_unlock(&kfd_processes_srcu, idx);
1010 
1011 	return p;
1012 }
1013 
1014 void kfd_unref_process(struct kfd_process *p)
1015 {
1016 	kref_put(&p->ref, kfd_process_ref_release);
1017 }
1018 
1019 /* This increments the process->ref counter. */
1020 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
1021 {
1022 	struct task_struct *task = NULL;
1023 	struct kfd_process *p    = NULL;
1024 
1025 	if (!pid) {
1026 		task = current;
1027 		get_task_struct(task);
1028 	} else {
1029 		task = get_pid_task(pid, PIDTYPE_PID);
1030 	}
1031 
1032 	if (task) {
1033 		p = find_process(task, true);
1034 		put_task_struct(task);
1035 	}
1036 
1037 	return p;
1038 }
1039 
1040 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
1041 {
1042 	struct kfd_process *p = pdd->process;
1043 	void *mem;
1044 	int id;
1045 	int i;
1046 
1047 	/*
1048 	 * Remove all handles from idr and release appropriate
1049 	 * local memory object
1050 	 */
1051 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1052 
1053 		for (i = 0; i < p->n_pdds; i++) {
1054 			struct kfd_process_device *peer_pdd = p->pdds[i];
1055 
1056 			if (!peer_pdd->drm_priv)
1057 				continue;
1058 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1059 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1060 		}
1061 
1062 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1063 						       pdd->drm_priv, NULL);
1064 		kfd_process_device_remove_obj_handle(pdd, id);
1065 	}
1066 }
1067 
1068 /*
1069  * Just kunmap and unpin signal BO here. It will be freed in
1070  * kfd_process_free_outstanding_kfd_bos()
1071  */
1072 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1073 {
1074 	struct kfd_process_device *pdd;
1075 	struct kfd_node *kdev;
1076 	void *mem;
1077 
1078 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1079 	if (!kdev)
1080 		return;
1081 
1082 	mutex_lock(&p->mutex);
1083 
1084 	pdd = kfd_get_process_device_data(kdev, p);
1085 	if (!pdd)
1086 		goto out;
1087 
1088 	mem = kfd_process_device_translate_handle(
1089 		pdd, GET_IDR_HANDLE(p->signal_handle));
1090 	if (!mem)
1091 		goto out;
1092 
1093 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1094 
1095 out:
1096 	mutex_unlock(&p->mutex);
1097 }
1098 
1099 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1100 {
1101 	int i;
1102 
1103 	for (i = 0; i < p->n_pdds; i++)
1104 		kfd_process_device_free_bos(p->pdds[i]);
1105 }
1106 
1107 static void kfd_process_destroy_pdds(struct kfd_process *p)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < p->n_pdds; i++) {
1112 		struct kfd_process_device *pdd = p->pdds[i];
1113 
1114 		kfd_smi_event_process(pdd, false);
1115 
1116 		pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1117 			pdd->dev->id, p->lead_thread->pid);
1118 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1119 		kfd_process_device_destroy_ib_mem(pdd);
1120 
1121 		if (pdd->drm_file)
1122 			fput(pdd->drm_file);
1123 
1124 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1125 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1126 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1127 
1128 		idr_destroy(&pdd->alloc_idr);
1129 
1130 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1131 
1132 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1133 			pdd->proc_ctx_cpu_ptr)
1134 			amdgpu_amdkfd_free_kernel_mem(pdd->dev->adev,
1135 						   &pdd->proc_ctx_bo);
1136 		/*
1137 		 * before destroying pdd, make sure to report availability
1138 		 * for auto suspend
1139 		 */
1140 		if (pdd->runtime_inuse) {
1141 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1142 			pdd->runtime_inuse = false;
1143 		}
1144 
1145 		atomic_dec(&pdd->dev->kfd->kfd_processes_count);
1146 
1147 		kfree(pdd);
1148 		p->pdds[i] = NULL;
1149 	}
1150 	p->n_pdds = 0;
1151 }
1152 
1153 static void kfd_process_remove_sysfs(struct kfd_process *p)
1154 {
1155 	struct kfd_process_device *pdd;
1156 	int i;
1157 
1158 	if (!p->kobj)
1159 		return;
1160 
1161 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1162 	kobject_del(p->kobj_queues);
1163 	kobject_put(p->kobj_queues);
1164 	p->kobj_queues = NULL;
1165 
1166 	for (i = 0; i < p->n_pdds; i++) {
1167 		pdd = p->pdds[i];
1168 
1169 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1170 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1171 
1172 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1173 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1174 			sysfs_remove_file(pdd->kobj_stats,
1175 					  &pdd->attr_cu_occupancy);
1176 		kobject_del(pdd->kobj_stats);
1177 		kobject_put(pdd->kobj_stats);
1178 		pdd->kobj_stats = NULL;
1179 	}
1180 
1181 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1182 		pdd = p->pdds[i];
1183 
1184 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1185 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1186 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1187 		kobject_del(pdd->kobj_counters);
1188 		kobject_put(pdd->kobj_counters);
1189 		pdd->kobj_counters = NULL;
1190 	}
1191 
1192 	kobject_del(p->kobj);
1193 	kobject_put(p->kobj);
1194 	p->kobj = NULL;
1195 }
1196 
1197 /*
1198  * If any GPU is ongoing reset, wait for reset complete.
1199  */
1200 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < p->n_pdds; i++)
1205 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1206 }
1207 
1208 /* No process locking is needed in this function, because the process
1209  * is not findable any more. We must assume that no other thread is
1210  * using it any more, otherwise we couldn't safely free the process
1211  * structure in the end.
1212  */
1213 static void kfd_process_wq_release(struct work_struct *work)
1214 {
1215 	struct kfd_process *p = container_of(work, struct kfd_process,
1216 					     release_work);
1217 	struct dma_fence *ef;
1218 
1219 	/*
1220 	 * If GPU in reset, user queues may still running, wait for reset complete.
1221 	 */
1222 	kfd_process_wait_gpu_reset_complete(p);
1223 
1224 	/* Signal the eviction fence after user mode queues are
1225 	 * destroyed. This allows any BOs to be freed without
1226 	 * triggering pointless evictions or waiting for fences.
1227 	 */
1228 	synchronize_rcu();
1229 	ef = rcu_access_pointer(p->ef);
1230 	if (ef)
1231 		dma_fence_signal(ef);
1232 
1233 	if (p->context_id != KFD_CONTEXT_ID_PRIMARY)
1234 		kfd_process_free_id(p);
1235 	else
1236 		ida_destroy(&p->id_table);
1237 
1238 	kfd_debugfs_remove_process(p);
1239 
1240 	kfd_process_kunmap_signal_bo(p);
1241 	kfd_process_free_outstanding_kfd_bos(p);
1242 	svm_range_list_fini(p);
1243 
1244 	kfd_process_destroy_pdds(p);
1245 	dma_fence_put(ef);
1246 
1247 	kfd_event_free_process(p);
1248 
1249 	mutex_destroy(&p->mutex);
1250 
1251 	put_task_struct(p->lead_thread);
1252 
1253 	/* the last step is removing process entries under /sys
1254 	 * to indicate the process has been terminated.
1255 	 */
1256 	kfd_process_remove_sysfs(p);
1257 
1258 	kfree(p);
1259 }
1260 
1261 static void kfd_process_ref_release(struct kref *ref)
1262 {
1263 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1264 
1265 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1266 	queue_work(kfd_process_wq, &p->release_work);
1267 }
1268 
1269 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1270 {
1271 	/* This increments p->ref counter if kfd process p exists */
1272 	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1273 
1274 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1275 }
1276 
1277 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1278 {
1279 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1280 }
1281 
1282 static void kfd_process_table_remove(struct kfd_process *p)
1283 {
1284 	mutex_lock(&kfd_processes_mutex);
1285 	/*
1286 	 * Do early return if table is empty.
1287 	 *
1288 	 * This could potentially happen if this function is called concurrently
1289 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1290 	 *
1291 	 */
1292 	if (hash_empty(kfd_processes_table)) {
1293 		mutex_unlock(&kfd_processes_mutex);
1294 		return;
1295 	}
1296 	hash_del_rcu(&p->kfd_processes);
1297 	mutex_unlock(&kfd_processes_mutex);
1298 	synchronize_srcu(&kfd_processes_srcu);
1299 }
1300 
1301 void kfd_process_notifier_release_internal(struct kfd_process *p)
1302 {
1303 	int i;
1304 
1305 	kfd_process_table_remove(p);
1306 	cancel_delayed_work_sync(&p->eviction_work);
1307 	cancel_delayed_work_sync(&p->restore_work);
1308 
1309 	/*
1310 	 * Dequeue and destroy user queues, it is not safe for GPU to access
1311 	 * system memory after mmu release notifier callback returns because
1312 	 * exit_mmap free process memory afterwards.
1313 	 */
1314 	kfd_process_dequeue_from_all_devices(p);
1315 	pqm_uninit(&p->pqm);
1316 
1317 	for (i = 0; i < p->n_pdds; i++) {
1318 		struct kfd_process_device *pdd = p->pdds[i];
1319 
1320 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1321 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1322 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1323 	}
1324 
1325 	/* Indicate to other users that MM is no longer valid */
1326 	p->mm = NULL;
1327 	kfd_dbg_trap_disable(p);
1328 
1329 	if (atomic_read(&p->debugged_process_count) > 0) {
1330 		struct kfd_process *target;
1331 		unsigned int temp;
1332 		int idx = srcu_read_lock(&kfd_processes_srcu);
1333 
1334 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1335 			if (target->debugger_process && target->debugger_process == p) {
1336 				mutex_lock_nested(&target->mutex, 1);
1337 				kfd_dbg_trap_disable(target);
1338 				mutex_unlock(&target->mutex);
1339 				if (atomic_read(&p->debugged_process_count) == 0)
1340 					break;
1341 			}
1342 		}
1343 
1344 		srcu_read_unlock(&kfd_processes_srcu, idx);
1345 	}
1346 
1347 	if (p->context_id == KFD_CONTEXT_ID_PRIMARY)
1348 		mmu_notifier_put(&p->mmu_notifier);
1349 }
1350 
1351 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1352 					struct mm_struct *mm)
1353 {
1354 	struct kfd_process *p;
1355 
1356 	/*
1357 	 * The kfd_process structure can not be free because the
1358 	 * mmu_notifier srcu is read locked
1359 	 */
1360 	p = container_of(mn, struct kfd_process, mmu_notifier);
1361 	if (WARN_ON(p->mm != mm))
1362 		return;
1363 
1364 	kfd_process_notifier_release_internal(p);
1365 }
1366 
1367 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1368 	.release = kfd_process_notifier_release,
1369 	.alloc_notifier = kfd_process_alloc_notifier,
1370 	.free_notifier = kfd_process_free_notifier,
1371 };
1372 
1373 /*
1374  * This code handles the case when driver is being unloaded before all
1375  * mm_struct are released.  We need to safely free the kfd_process and
1376  * avoid race conditions with mmu_notifier that might try to free them.
1377  *
1378  */
1379 void kfd_cleanup_processes(void)
1380 {
1381 	struct kfd_process *p;
1382 	struct hlist_node *p_temp;
1383 	unsigned int temp;
1384 	HLIST_HEAD(cleanup_list);
1385 
1386 	/*
1387 	 * Move all remaining kfd_process from the process table to a
1388 	 * temp list for processing.   Once done, callback from mmu_notifier
1389 	 * release will not see the kfd_process in the table and do early return,
1390 	 * avoiding double free issues.
1391 	 */
1392 	mutex_lock(&kfd_processes_mutex);
1393 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1394 		hash_del_rcu(&p->kfd_processes);
1395 		synchronize_srcu(&kfd_processes_srcu);
1396 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1397 	}
1398 	mutex_unlock(&kfd_processes_mutex);
1399 
1400 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1401 		kfd_process_notifier_release_internal(p);
1402 
1403 	/*
1404 	 * Ensures that all outstanding free_notifier get called, triggering
1405 	 * the release of the kfd_process struct.
1406 	 */
1407 	mmu_notifier_synchronize();
1408 }
1409 
1410 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1411 {
1412 	unsigned long  offset;
1413 	int i;
1414 
1415 	if (p->has_cwsr)
1416 		return 0;
1417 
1418 	for (i = 0; i < p->n_pdds; i++) {
1419 		struct kfd_node *dev = p->pdds[i]->dev;
1420 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1421 
1422 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1423 			continue;
1424 
1425 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1426 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1427 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1428 			MAP_SHARED, offset);
1429 
1430 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1431 			int err = qpd->tba_addr;
1432 
1433 			dev_err(dev->adev->dev,
1434 				"Failure to set tba address. error %d.\n", err);
1435 			qpd->tba_addr = 0;
1436 			qpd->cwsr_kaddr = NULL;
1437 			return err;
1438 		}
1439 
1440 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1441 
1442 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1443 
1444 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1445 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1446 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1447 	}
1448 
1449 	p->has_cwsr = true;
1450 
1451 	return 0;
1452 }
1453 
1454 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1455 {
1456 	struct kfd_node *dev = pdd->dev;
1457 	struct qcm_process_device *qpd = &pdd->qpd;
1458 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1459 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1460 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1461 	struct kgd_mem *mem;
1462 	void *kaddr;
1463 	int ret;
1464 
1465 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1466 		return 0;
1467 
1468 	/* cwsr_base is only set for dGPU */
1469 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1470 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1471 	if (ret)
1472 		return ret;
1473 
1474 	qpd->cwsr_mem = mem;
1475 	qpd->cwsr_kaddr = kaddr;
1476 	qpd->tba_addr = qpd->cwsr_base;
1477 
1478 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1479 
1480 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1481 					pdd->process->debug_trap_enabled);
1482 
1483 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1484 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1485 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1486 
1487 	return 0;
1488 }
1489 
1490 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1491 {
1492 	struct kfd_node *dev = pdd->dev;
1493 	struct qcm_process_device *qpd = &pdd->qpd;
1494 
1495 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1496 		return;
1497 
1498 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1499 }
1500 
1501 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1502 				  uint64_t tba_addr,
1503 				  uint64_t tma_addr)
1504 {
1505 	if (qpd->cwsr_kaddr) {
1506 		/* KFD trap handler is bound, record as second-level TBA/TMA
1507 		 * in first-level TMA. First-level trap will jump to second.
1508 		 */
1509 		uint64_t *tma =
1510 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1511 		tma[0] = tba_addr;
1512 		tma[1] = tma_addr;
1513 	} else {
1514 		/* No trap handler bound, bind as first-level TBA/TMA. */
1515 		qpd->tba_addr = tba_addr;
1516 		qpd->tma_addr = tma_addr;
1517 	}
1518 }
1519 
1520 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1521 {
1522 	int i;
1523 
1524 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1525 	 * boot time retry setting. Mixing processes with different
1526 	 * XNACK/retry settings can hang the GPU.
1527 	 *
1528 	 * Different GPUs can have different noretry settings depending
1529 	 * on HW bugs or limitations. We need to find at least one
1530 	 * XNACK mode for this process that's compatible with all GPUs.
1531 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1532 	 * built for XNACK-off. On GFXv9 it may perform slower.
1533 	 *
1534 	 * Therefore applications built for XNACK-off can always be
1535 	 * supported and will be our fallback if any GPU does not
1536 	 * support retry.
1537 	 */
1538 	for (i = 0; i < p->n_pdds; i++) {
1539 		struct kfd_node *dev = p->pdds[i]->dev;
1540 
1541 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1542 		 * support the SVM APIs and don't need to be considered
1543 		 * for the XNACK mode selection.
1544 		 */
1545 		if (!KFD_IS_SOC15(dev))
1546 			continue;
1547 		/* Aldebaran can always support XNACK because it can support
1548 		 * per-process XNACK mode selection. But let the dev->noretry
1549 		 * setting still influence the default XNACK mode.
1550 		 */
1551 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1552 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1553 				pr_debug("SRIOV platform xnack not supported\n");
1554 				return false;
1555 			}
1556 			continue;
1557 		}
1558 
1559 		/* GFXv10 and later GPUs do not support shader preemption
1560 		 * during page faults. This can lead to poor QoS for queue
1561 		 * management and memory-manager-related preemptions or
1562 		 * even deadlocks.
1563 		 */
1564 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1) &&
1565 		    KFD_GC_VERSION(dev) < IP_VERSION(12, 1, 0))
1566 			return false;
1567 
1568 		if (dev->kfd->noretry)
1569 			return false;
1570 	}
1571 
1572 	return true;
1573 }
1574 
1575 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1576 				     bool enabled)
1577 {
1578 	if (qpd->cwsr_kaddr) {
1579 		uint64_t *tma =
1580 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1581 		tma[2] = enabled;
1582 	}
1583 }
1584 
1585 /*
1586  * On return the kfd_process is fully operational and will be freed when the
1587  * mm is released
1588  */
1589 struct kfd_process *create_process(const struct task_struct *thread, bool primary)
1590 {
1591 	struct kfd_process *process;
1592 	struct mmu_notifier *mn;
1593 	int err = -ENOMEM;
1594 
1595 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1596 	if (!process)
1597 		goto err_alloc_process;
1598 
1599 	kref_init(&process->ref);
1600 	mutex_init(&process->mutex);
1601 	process->mm = thread->mm;
1602 	process->lead_thread = thread->group_leader;
1603 	process->n_pdds = 0;
1604 	process->queues_paused = false;
1605 
1606 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1607 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1608 	process->last_restore_timestamp = get_jiffies_64();
1609 	err = kfd_event_init_process(process);
1610 	if (err)
1611 		goto err_event_init;
1612 	process->is_32bit_user_mode = in_compat_syscall();
1613 	process->debug_trap_enabled = false;
1614 	process->debugger_process = NULL;
1615 	process->exception_enable_mask = 0;
1616 	atomic_set(&process->debugged_process_count, 0);
1617 	sema_init(&process->runtime_enable_sema, 0);
1618 
1619 	err = pqm_init(&process->pqm, process);
1620 	if (err != 0)
1621 		goto err_process_pqm_init;
1622 
1623 	/* init process apertures*/
1624 	err = kfd_init_apertures(process);
1625 	if (err != 0)
1626 		goto err_init_apertures;
1627 
1628 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1629 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1630 
1631 	err = svm_range_list_init(process);
1632 	if (err)
1633 		goto err_init_svm_range_list;
1634 
1635 	/* alloc_notifier needs to find the process in the hash table */
1636 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1637 			(uintptr_t)process->mm);
1638 
1639 	/* Avoid free_notifier to start kfd_process_wq_release if
1640 	 * mmu_notifier_get failed because of pending signal.
1641 	 */
1642 	kref_get(&process->ref);
1643 
1644 	/* MMU notifier registration must be the last call that can fail
1645 	 * because after this point we cannot unwind the process creation.
1646 	 * After this point, mmu_notifier_put will trigger the cleanup by
1647 	 * dropping the last process reference in the free_notifier.
1648 	 */
1649 	if (primary) {
1650 		process->context_id = KFD_CONTEXT_ID_PRIMARY;
1651 		mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1652 		if (IS_ERR(mn)) {
1653 			err = PTR_ERR(mn);
1654 			goto err_register_notifier;
1655 		}
1656 		BUG_ON(mn != &process->mmu_notifier);
1657 		ida_init(&process->id_table);
1658 	}
1659 
1660 	err = kfd_process_alloc_id(process);
1661 	if (err) {
1662 		pr_err("Creating kfd process: failed to alloc an id\n");
1663 		goto err_alloc_id;
1664 	}
1665 
1666 	kfd_unref_process(process);
1667 	get_task_struct(process->lead_thread);
1668 
1669 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1670 
1671 	return process;
1672 
1673 err_alloc_id:
1674 	kfd_process_free_id(process);
1675 err_register_notifier:
1676 	hash_del_rcu(&process->kfd_processes);
1677 	svm_range_list_fini(process);
1678 err_init_svm_range_list:
1679 	kfd_process_free_outstanding_kfd_bos(process);
1680 	kfd_process_destroy_pdds(process);
1681 err_init_apertures:
1682 	pqm_uninit(&process->pqm);
1683 err_process_pqm_init:
1684 	kfd_event_free_process(process);
1685 err_event_init:
1686 	mutex_destroy(&process->mutex);
1687 	kfree(process);
1688 err_alloc_process:
1689 	return ERR_PTR(err);
1690 }
1691 
1692 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1693 							struct kfd_process *p)
1694 {
1695 	int i;
1696 
1697 	for (i = 0; i < p->n_pdds; i++)
1698 		if (p->pdds[i]->dev == dev)
1699 			return p->pdds[i];
1700 
1701 	return NULL;
1702 }
1703 
1704 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1705 							struct kfd_process *p)
1706 {
1707 	struct kfd_process_device *pdd = NULL;
1708 
1709 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1710 		return NULL;
1711 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1712 	if (!pdd)
1713 		return NULL;
1714 
1715 	pdd->dev = dev;
1716 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1717 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1718 	pdd->qpd.dqm = dev->dqm;
1719 	pdd->qpd.pqm = &p->pqm;
1720 	pdd->qpd.evicted = 0;
1721 	pdd->qpd.mapped_gws_queue = false;
1722 	pdd->process = p;
1723 	pdd->bound = PDD_UNBOUND;
1724 	pdd->already_dequeued = false;
1725 	pdd->runtime_inuse = false;
1726 	atomic64_set(&pdd->vram_usage, 0);
1727 	pdd->sdma_past_activity_counter = 0;
1728 	pdd->user_gpu_id = dev->id;
1729 	atomic64_set(&pdd->evict_duration_counter, 0);
1730 
1731 	p->pdds[p->n_pdds++] = pdd;
1732 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1733 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1734 							pdd->dev->adev,
1735 							false,
1736 							0);
1737 
1738 	/* Init idr used for memory handle translation */
1739 	idr_init(&pdd->alloc_idr);
1740 
1741 	atomic_inc(&dev->kfd->kfd_processes_count);
1742 
1743 	return pdd;
1744 }
1745 
1746 /**
1747  * kfd_process_device_init_vm - Initialize a VM for a process-device
1748  *
1749  * @pdd: The process-device
1750  * @drm_file: Optional pointer to a DRM file descriptor
1751  *
1752  * If @drm_file is specified, it will be used to acquire the VM from
1753  * that file descriptor. If successful, the @pdd takes ownership of
1754  * the file descriptor.
1755  *
1756  * If @drm_file is NULL, a new VM is created.
1757  *
1758  * Returns 0 on success, -errno on failure.
1759  */
1760 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1761 			       struct file *drm_file)
1762 {
1763 	struct amdgpu_fpriv *drv_priv;
1764 	struct amdgpu_vm *avm;
1765 	struct kfd_process *p;
1766 	struct dma_fence *ef;
1767 	struct kfd_node *dev;
1768 	int ret;
1769 
1770 	if (!drm_file)
1771 		return -EINVAL;
1772 
1773 	if (pdd->drm_priv)
1774 		return -EBUSY;
1775 
1776 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1777 	if (ret)
1778 		return ret;
1779 	avm = &drv_priv->vm;
1780 
1781 	p = pdd->process;
1782 	dev = pdd->dev;
1783 
1784 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1785 						     &p->kgd_process_info,
1786 						     p->ef ? NULL : &ef);
1787 	if (ret) {
1788 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1789 		return ret;
1790 	}
1791 
1792 	if (!p->ef)
1793 		RCU_INIT_POINTER(p->ef, ef);
1794 
1795 	pdd->drm_priv = drm_file->private_data;
1796 
1797 	ret = kfd_process_device_reserve_ib_mem(pdd);
1798 	if (ret)
1799 		goto err_reserve_ib_mem;
1800 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1801 	if (ret)
1802 		goto err_init_cwsr;
1803 
1804 	if (unlikely(!avm->pasid)) {
1805 		dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1806 				 avm);
1807 		ret = -EINVAL;
1808 		goto err_get_pasid;
1809 	}
1810 
1811 	pdd->pasid = avm->pasid;
1812 	pdd->drm_file = drm_file;
1813 
1814 	kfd_smi_event_process(pdd, true);
1815 
1816 	return 0;
1817 
1818 err_get_pasid:
1819 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1820 err_init_cwsr:
1821 	kfd_process_device_destroy_ib_mem(pdd);
1822 err_reserve_ib_mem:
1823 	pdd->drm_priv = NULL;
1824 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1825 
1826 	return ret;
1827 }
1828 
1829 /*
1830  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1831  * to the device.
1832  * Unbinding occurs when the process dies or the device is removed.
1833  *
1834  * Assumes that the process lock is held.
1835  */
1836 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1837 							struct kfd_process *p)
1838 {
1839 	struct kfd_process_device *pdd;
1840 	int err;
1841 
1842 	pdd = kfd_get_process_device_data(dev, p);
1843 	if (!pdd) {
1844 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1845 		return ERR_PTR(-ENOMEM);
1846 	}
1847 
1848 	if (!pdd->drm_priv)
1849 		return ERR_PTR(-ENODEV);
1850 
1851 	/*
1852 	 * signal runtime-pm system to auto resume and prevent
1853 	 * further runtime suspend once device pdd is created until
1854 	 * pdd is destroyed.
1855 	 */
1856 	if (!pdd->runtime_inuse) {
1857 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1858 		if (err < 0) {
1859 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1860 			return ERR_PTR(err);
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * make sure that runtime_usage counter is incremented just once
1866 	 * per pdd
1867 	 */
1868 	pdd->runtime_inuse = true;
1869 
1870 	return pdd;
1871 }
1872 
1873 /* Create specific handle mapped to mem from process local memory idr
1874  * Assumes that the process lock is held.
1875  */
1876 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1877 					void *mem)
1878 {
1879 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1880 }
1881 
1882 /* Translate specific handle from process local memory idr
1883  * Assumes that the process lock is held.
1884  */
1885 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1886 					int handle)
1887 {
1888 	if (handle < 0)
1889 		return NULL;
1890 
1891 	return idr_find(&pdd->alloc_idr, handle);
1892 }
1893 
1894 /* Remove specific handle from process local memory idr
1895  * Assumes that the process lock is held.
1896  */
1897 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1898 					int handle)
1899 {
1900 	if (handle >= 0)
1901 		idr_remove(&pdd->alloc_idr, handle);
1902 }
1903 
1904 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1905 {
1906 	struct kfd_process_device *ret_p = NULL;
1907 	struct kfd_process *p;
1908 	unsigned int temp;
1909 	int i;
1910 
1911 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1912 		for (i = 0; i < p->n_pdds; i++) {
1913 			if (p->pdds[i]->pasid == pasid) {
1914 				ret_p = p->pdds[i];
1915 				break;
1916 			}
1917 		}
1918 		if (ret_p)
1919 			break;
1920 	}
1921 	return ret_p;
1922 }
1923 
1924 /* This increments the process->ref counter. */
1925 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1926 						struct kfd_process_device **pdd)
1927 {
1928 	struct kfd_process_device *ret_p;
1929 
1930 	int idx = srcu_read_lock(&kfd_processes_srcu);
1931 
1932 	ret_p = kfd_lookup_process_device_by_pasid(pasid);
1933 	if (ret_p) {
1934 		if (pdd)
1935 			*pdd = ret_p;
1936 		kref_get(&ret_p->process->ref);
1937 
1938 		srcu_read_unlock(&kfd_processes_srcu, idx);
1939 		return ret_p->process;
1940 	}
1941 
1942 	srcu_read_unlock(&kfd_processes_srcu, idx);
1943 
1944 	if (pdd)
1945 		*pdd = NULL;
1946 
1947 	return NULL;
1948 }
1949 
1950 /* This increments the process->ref counter. */
1951 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1952 {
1953 	struct kfd_process *p;
1954 
1955 	int idx = srcu_read_lock(&kfd_processes_srcu);
1956 
1957 	p = find_process_by_mm(mm);
1958 	if (p)
1959 		kref_get(&p->ref);
1960 
1961 	srcu_read_unlock(&kfd_processes_srcu, idx);
1962 
1963 	return p;
1964 }
1965 
1966 /* This increments the process->ref counter. */
1967 struct kfd_process *kfd_lookup_process_by_id(const struct mm_struct *mm, u16 id)
1968 {
1969 	struct kfd_process *p, *ret_p = NULL;
1970 	unsigned int temp;
1971 
1972 	int idx = srcu_read_lock(&kfd_processes_srcu);
1973 
1974 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1975 		if (p->mm == mm && p->context_id == id) {
1976 			kref_get(&p->ref);
1977 			ret_p = p;
1978 			break;
1979 		}
1980 	}
1981 
1982 	srcu_read_unlock(&kfd_processes_srcu, idx);
1983 
1984 	return ret_p;
1985 }
1986 
1987 /* kfd_process_evict_queues - Evict all user queues of a process
1988  *
1989  * Eviction is reference-counted per process-device. This means multiple
1990  * evictions from different sources can be nested safely.
1991  */
1992 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1993 {
1994 	int r = 0;
1995 	int i;
1996 	unsigned int n_evicted = 0;
1997 
1998 	for (i = 0; i < p->n_pdds; i++) {
1999 		struct kfd_process_device *pdd = p->pdds[i];
2000 		struct device *dev = pdd->dev->adev->dev;
2001 
2002 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
2003 					     trigger);
2004 
2005 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
2006 							    &pdd->qpd);
2007 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
2008 		 * we would like to set all the queues to be in evicted state to prevent
2009 		 * them been add back since they actually not be saved right now.
2010 		 */
2011 		if (r && r != -EIO) {
2012 			dev_err(dev, "Failed to evict process queues\n");
2013 			goto fail;
2014 		}
2015 		n_evicted++;
2016 
2017 		pdd->dev->dqm->is_hws_hang = false;
2018 	}
2019 
2020 	return r;
2021 
2022 fail:
2023 	/* To keep state consistent, roll back partial eviction by
2024 	 * restoring queues
2025 	 */
2026 	for (i = 0; i < p->n_pdds; i++) {
2027 		struct kfd_process_device *pdd = p->pdds[i];
2028 
2029 		if (n_evicted == 0)
2030 			break;
2031 
2032 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2033 
2034 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2035 							      &pdd->qpd))
2036 			dev_err(pdd->dev->adev->dev,
2037 				"Failed to restore queues\n");
2038 
2039 		n_evicted--;
2040 	}
2041 
2042 	return r;
2043 }
2044 
2045 /* kfd_process_restore_queues - Restore all user queues of a process */
2046 int kfd_process_restore_queues(struct kfd_process *p)
2047 {
2048 	int r, ret = 0;
2049 	int i;
2050 
2051 	for (i = 0; i < p->n_pdds; i++) {
2052 		struct kfd_process_device *pdd = p->pdds[i];
2053 		struct device *dev = pdd->dev->adev->dev;
2054 
2055 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
2056 
2057 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
2058 							      &pdd->qpd);
2059 		if (r) {
2060 			dev_err(dev, "Failed to restore process queues\n");
2061 			if (!ret)
2062 				ret = r;
2063 		}
2064 	}
2065 
2066 	return ret;
2067 }
2068 
2069 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
2070 {
2071 	int i;
2072 
2073 	for (i = 0; i < p->n_pdds; i++)
2074 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
2075 			return i;
2076 	return -EINVAL;
2077 }
2078 
2079 int
2080 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
2081 			    uint32_t *gpuid, uint32_t *gpuidx)
2082 {
2083 	int i;
2084 
2085 	for (i = 0; i < p->n_pdds; i++)
2086 		if (p->pdds[i] && p->pdds[i]->dev == node) {
2087 			*gpuid = p->pdds[i]->user_gpu_id;
2088 			*gpuidx = i;
2089 			return 0;
2090 		}
2091 	return -EINVAL;
2092 }
2093 
2094 static bool signal_eviction_fence(struct kfd_process *p)
2095 {
2096 	struct dma_fence *ef;
2097 	bool ret;
2098 
2099 	rcu_read_lock();
2100 	ef = dma_fence_get_rcu_safe(&p->ef);
2101 	rcu_read_unlock();
2102 	if (!ef)
2103 		return true;
2104 
2105 	ret = dma_fence_check_and_signal(ef);
2106 	dma_fence_put(ef);
2107 
2108 	return ret;
2109 }
2110 
2111 static void evict_process_worker(struct work_struct *work)
2112 {
2113 	int ret;
2114 	struct kfd_process *p;
2115 	struct delayed_work *dwork;
2116 
2117 	dwork = to_delayed_work(work);
2118 
2119 	/* Process termination destroys this worker thread. So during the
2120 	 * lifetime of this thread, kfd_process p will be valid
2121 	 */
2122 	p = container_of(dwork, struct kfd_process, eviction_work);
2123 
2124 	pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2125 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2126 	if (!ret) {
2127 		/* If another thread already signaled the eviction fence,
2128 		 * they are responsible stopping the queues and scheduling
2129 		 * the restore work.
2130 		 */
2131 		if (signal_eviction_fence(p) ||
2132 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2133 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2134 			kfd_process_restore_queues(p);
2135 
2136 		pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2137 	} else
2138 		pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2139 }
2140 
2141 static int restore_process_helper(struct kfd_process *p)
2142 {
2143 	int ret = 0;
2144 
2145 	/* VMs may not have been acquired yet during debugging. */
2146 	if (p->kgd_process_info) {
2147 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2148 			p->kgd_process_info, &p->ef);
2149 		if (ret)
2150 			return ret;
2151 	}
2152 
2153 	ret = kfd_process_restore_queues(p);
2154 	if (!ret)
2155 		pr_debug("Finished restoring process pid %d\n",
2156 			p->lead_thread->pid);
2157 	else
2158 		pr_err("Failed to restore queues of process pid %d\n",
2159 		      p->lead_thread->pid);
2160 
2161 	return ret;
2162 }
2163 
2164 static void restore_process_worker(struct work_struct *work)
2165 {
2166 	struct delayed_work *dwork;
2167 	struct kfd_process *p;
2168 	int ret = 0;
2169 
2170 	dwork = to_delayed_work(work);
2171 
2172 	/* Process termination destroys this worker thread. So during the
2173 	 * lifetime of this thread, kfd_process p will be valid
2174 	 */
2175 	p = container_of(dwork, struct kfd_process, restore_work);
2176 	pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2177 
2178 	/* Setting last_restore_timestamp before successful restoration.
2179 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2180 	 * before KFD BOs are unreserved. If not, the process can be evicted
2181 	 * again before the timestamp is set.
2182 	 * If restore fails, the timestamp will be set again in the next
2183 	 * attempt. This would mean that the minimum GPU quanta would be
2184 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2185 	 * functions)
2186 	 */
2187 
2188 	p->last_restore_timestamp = get_jiffies_64();
2189 
2190 	ret = restore_process_helper(p);
2191 	if (ret) {
2192 		pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2193 			 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2194 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2195 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2196 			kfd_process_restore_queues(p);
2197 	}
2198 }
2199 
2200 void kfd_suspend_all_processes(void)
2201 {
2202 	struct kfd_process *p;
2203 	unsigned int temp;
2204 	int idx = srcu_read_lock(&kfd_processes_srcu);
2205 
2206 	WARN(debug_evictions, "Evicting all processes");
2207 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2208 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2209 			pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2210 		signal_eviction_fence(p);
2211 	}
2212 	srcu_read_unlock(&kfd_processes_srcu, idx);
2213 }
2214 
2215 int kfd_resume_all_processes(void)
2216 {
2217 	struct kfd_process *p;
2218 	unsigned int temp;
2219 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2220 
2221 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2222 		if (restore_process_helper(p)) {
2223 			pr_err("Restore process pid %d failed during resume\n",
2224 			      p->lead_thread->pid);
2225 			ret = -EFAULT;
2226 		}
2227 	}
2228 	srcu_read_unlock(&kfd_processes_srcu, idx);
2229 	return ret;
2230 }
2231 
2232 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2233 			  struct vm_area_struct *vma)
2234 {
2235 	struct kfd_process_device *pdd;
2236 	struct qcm_process_device *qpd;
2237 
2238 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2239 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2240 		return -EINVAL;
2241 	}
2242 
2243 	pdd = kfd_get_process_device_data(dev, process);
2244 	if (!pdd)
2245 		return -EINVAL;
2246 	qpd = &pdd->qpd;
2247 
2248 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2249 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2250 	if (!qpd->cwsr_kaddr) {
2251 		dev_err(dev->adev->dev,
2252 			"Error allocating per process CWSR buffer.\n");
2253 		return -ENOMEM;
2254 	}
2255 
2256 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2257 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2258 	/* Mapping pages to user process */
2259 	return remap_pfn_range(vma, vma->vm_start,
2260 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2261 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2262 }
2263 
2264 /* assumes caller holds process lock. */
2265 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2266 {
2267 	uint32_t irq_drain_fence[8];
2268 	uint8_t node_id = 0;
2269 	int r = 0;
2270 
2271 	if (!KFD_IS_SOC15(pdd->dev))
2272 		return 0;
2273 
2274 	pdd->process->irq_drain_is_open = true;
2275 
2276 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2277 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2278 							KFD_IRQ_FENCE_CLIENTID;
2279 	irq_drain_fence[3] = pdd->pasid;
2280 
2281 	/*
2282 	 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2283 	 */
2284 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2285 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2286 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0) ||
2287 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(12, 1, 0)) {
2288 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2289 		irq_drain_fence[3] |= node_id << 16;
2290 	}
2291 
2292 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2293 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2294 						     irq_drain_fence)) {
2295 		pdd->process->irq_drain_is_open = false;
2296 		return 0;
2297 	}
2298 
2299 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2300 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2301 	if (r)
2302 		pdd->process->irq_drain_is_open = false;
2303 
2304 	return r;
2305 }
2306 
2307 void kfd_process_close_interrupt_drain(unsigned int pasid)
2308 {
2309 	struct kfd_process *p;
2310 
2311 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2312 
2313 	if (!p)
2314 		return;
2315 
2316 	WRITE_ONCE(p->irq_drain_is_open, false);
2317 	wake_up_all(&p->wait_irq_drain);
2318 	kfd_unref_process(p);
2319 }
2320 
2321 struct send_exception_work_handler_workarea {
2322 	struct work_struct work;
2323 	struct kfd_process *p;
2324 	unsigned int queue_id;
2325 	uint64_t error_reason;
2326 };
2327 
2328 static void send_exception_work_handler(struct work_struct *work)
2329 {
2330 	struct send_exception_work_handler_workarea *workarea;
2331 	struct kfd_process *p;
2332 	struct queue *q;
2333 	struct mm_struct *mm;
2334 	struct kfd_context_save_area_header __user *csa_header;
2335 	uint64_t __user *err_payload_ptr;
2336 	uint64_t cur_err;
2337 	uint32_t ev_id;
2338 
2339 	workarea = container_of(work,
2340 				struct send_exception_work_handler_workarea,
2341 				work);
2342 	p = workarea->p;
2343 
2344 	mm = get_task_mm(p->lead_thread);
2345 
2346 	if (!mm)
2347 		return;
2348 
2349 	kthread_use_mm(mm);
2350 
2351 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2352 
2353 	if (!q)
2354 		goto out;
2355 
2356 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2357 
2358 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2359 	get_user(cur_err, err_payload_ptr);
2360 	cur_err |= workarea->error_reason;
2361 	put_user(cur_err, err_payload_ptr);
2362 	get_user(ev_id, &csa_header->err_event_id);
2363 
2364 	kfd_set_event(p, ev_id);
2365 
2366 out:
2367 	kthread_unuse_mm(mm);
2368 	mmput(mm);
2369 }
2370 
2371 int kfd_send_exception_to_runtime(struct kfd_process *p,
2372 			unsigned int queue_id,
2373 			uint64_t error_reason)
2374 {
2375 	struct send_exception_work_handler_workarea worker;
2376 
2377 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2378 
2379 	worker.p = p;
2380 	worker.queue_id = queue_id;
2381 	worker.error_reason = error_reason;
2382 
2383 	schedule_work(&worker.work);
2384 	flush_work(&worker.work);
2385 	destroy_work_on_stack(&worker.work);
2386 
2387 	return 0;
2388 }
2389 
2390 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2391 {
2392 	int i;
2393 
2394 	if (gpu_id) {
2395 		for (i = 0; i < p->n_pdds; i++) {
2396 			struct kfd_process_device *pdd = p->pdds[i];
2397 
2398 			if (pdd->user_gpu_id == gpu_id)
2399 				return pdd;
2400 		}
2401 	}
2402 	return NULL;
2403 }
2404 
2405 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2406 {
2407 	int i;
2408 
2409 	if (!actual_gpu_id)
2410 		return 0;
2411 
2412 	for (i = 0; i < p->n_pdds; i++) {
2413 		struct kfd_process_device *pdd = p->pdds[i];
2414 
2415 		if (pdd->dev->id == actual_gpu_id)
2416 			return pdd->user_gpu_id;
2417 	}
2418 	return -EINVAL;
2419 }
2420 
2421 #if defined(CONFIG_DEBUG_FS)
2422 
2423 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2424 {
2425 	struct kfd_process *p;
2426 	unsigned int temp;
2427 	int r = 0;
2428 
2429 	int idx = srcu_read_lock(&kfd_processes_srcu);
2430 
2431 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2432 		seq_printf(m, "Process %d PASID %d:\n",
2433 			   p->lead_thread->tgid, p->lead_thread->pid);
2434 
2435 		mutex_lock(&p->mutex);
2436 		r = pqm_debugfs_mqds(m, &p->pqm);
2437 		mutex_unlock(&p->mutex);
2438 
2439 		if (r)
2440 			break;
2441 	}
2442 
2443 	srcu_read_unlock(&kfd_processes_srcu, idx);
2444 
2445 	return r;
2446 }
2447 
2448 #endif
2449