1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mutex.h> 25 #include <linux/log2.h> 26 #include <linux/sched.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/task.h> 29 #include <linux/mmu_context.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 #include "amdgpu_reset.h" 39 40 struct mm_struct; 41 42 #include "kfd_priv.h" 43 #include "kfd_device_queue_manager.h" 44 #include "kfd_svm.h" 45 #include "kfd_smi_events.h" 46 #include "kfd_debug.h" 47 48 /* 49 * List of struct kfd_process (field kfd_process). 50 * Unique/indexed by mm_struct* 51 */ 52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 53 DEFINE_MUTEX(kfd_processes_mutex); 54 55 DEFINE_SRCU(kfd_processes_srcu); 56 57 /* For process termination handling */ 58 static struct workqueue_struct *kfd_process_wq; 59 60 /* Ordered, single-threaded workqueue for restoring evicted 61 * processes. Restoring multiple processes concurrently under memory 62 * pressure can lead to processes blocking each other from validating 63 * their BOs and result in a live-lock situation where processes 64 * remain evicted indefinitely. 65 */ 66 static struct workqueue_struct *kfd_restore_wq; 67 68 static struct kfd_process *find_process(const struct task_struct *thread, 69 bool ref); 70 static void kfd_process_ref_release(struct kref *ref); 71 static struct kfd_process *create_process(const struct task_struct *thread); 72 73 static void evict_process_worker(struct work_struct *work); 74 static void restore_process_worker(struct work_struct *work); 75 76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); 77 78 struct kfd_procfs_tree { 79 struct kobject *kobj; 80 }; 81 82 static struct kfd_procfs_tree procfs; 83 84 /* 85 * Structure for SDMA activity tracking 86 */ 87 struct kfd_sdma_activity_handler_workarea { 88 struct work_struct sdma_activity_work; 89 struct kfd_process_device *pdd; 90 uint64_t sdma_activity_counter; 91 }; 92 93 struct temp_sdma_queue_list { 94 uint64_t __user *rptr; 95 uint64_t sdma_val; 96 unsigned int queue_id; 97 struct list_head list; 98 }; 99 100 static void kfd_sdma_activity_worker(struct work_struct *work) 101 { 102 struct kfd_sdma_activity_handler_workarea *workarea; 103 struct kfd_process_device *pdd; 104 uint64_t val; 105 struct mm_struct *mm; 106 struct queue *q; 107 struct qcm_process_device *qpd; 108 struct device_queue_manager *dqm; 109 int ret = 0; 110 struct temp_sdma_queue_list sdma_q_list; 111 struct temp_sdma_queue_list *sdma_q, *next; 112 113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 114 sdma_activity_work); 115 116 pdd = workarea->pdd; 117 if (!pdd) 118 return; 119 dqm = pdd->dev->dqm; 120 qpd = &pdd->qpd; 121 if (!dqm || !qpd) 122 return; 123 /* 124 * Total SDMA activity is current SDMA activity + past SDMA activity 125 * Past SDMA count is stored in pdd. 126 * To get the current activity counters for all active SDMA queues, 127 * we loop over all SDMA queues and get their counts from user-space. 128 * 129 * We cannot call get_user() with dqm_lock held as it can cause 130 * a circular lock dependency situation. To read the SDMA stats, 131 * we need to do the following: 132 * 133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 134 * with dqm_lock/dqm_unlock(). 135 * 2. Call get_user() for each node in temporary list without dqm_lock. 136 * Save the SDMA count for each node and also add the count to the total 137 * SDMA count counter. 138 * Its possible, during this step, a few SDMA queue nodes got deleted 139 * from the qpd->queues_list. 140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 141 * If any node got deleted, its SDMA count would be captured in the sdma 142 * past activity counter. So subtract the SDMA counter stored in step 2 143 * for this node from the total SDMA count. 144 */ 145 INIT_LIST_HEAD(&sdma_q_list.list); 146 147 /* 148 * Create the temp list of all SDMA queues 149 */ 150 dqm_lock(dqm); 151 152 list_for_each_entry(q, &qpd->queues_list, list) { 153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 155 continue; 156 157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 158 if (!sdma_q) { 159 dqm_unlock(dqm); 160 goto cleanup; 161 } 162 163 INIT_LIST_HEAD(&sdma_q->list); 164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 165 sdma_q->queue_id = q->properties.queue_id; 166 list_add_tail(&sdma_q->list, &sdma_q_list.list); 167 } 168 169 /* 170 * If the temp list is empty, then no SDMA queues nodes were found in 171 * qpd->queues_list. Return the past activity count as the total sdma 172 * count 173 */ 174 if (list_empty(&sdma_q_list.list)) { 175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 176 dqm_unlock(dqm); 177 return; 178 } 179 180 dqm_unlock(dqm); 181 182 /* 183 * Get the usage count for each SDMA queue in temp_list. 184 */ 185 mm = get_task_mm(pdd->process->lead_thread); 186 if (!mm) 187 goto cleanup; 188 189 kthread_use_mm(mm); 190 191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 192 val = 0; 193 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 194 if (ret) { 195 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 196 sdma_q->queue_id); 197 } else { 198 sdma_q->sdma_val = val; 199 workarea->sdma_activity_counter += val; 200 } 201 } 202 203 kthread_unuse_mm(mm); 204 mmput(mm); 205 206 /* 207 * Do a second iteration over qpd_queues_list to check if any SDMA 208 * nodes got deleted while fetching SDMA counter. 209 */ 210 dqm_lock(dqm); 211 212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 213 214 list_for_each_entry(q, &qpd->queues_list, list) { 215 if (list_empty(&sdma_q_list.list)) 216 break; 217 218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 220 continue; 221 222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 224 (sdma_q->queue_id == q->properties.queue_id)) { 225 list_del(&sdma_q->list); 226 kfree(sdma_q); 227 break; 228 } 229 } 230 } 231 232 dqm_unlock(dqm); 233 234 /* 235 * If temp list is not empty, it implies some queues got deleted 236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 237 * count for each node from the total SDMA count. 238 */ 239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 240 workarea->sdma_activity_counter -= sdma_q->sdma_val; 241 list_del(&sdma_q->list); 242 kfree(sdma_q); 243 } 244 245 return; 246 247 cleanup: 248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 249 list_del(&sdma_q->list); 250 kfree(sdma_q); 251 } 252 } 253 254 /** 255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device 256 * by current process. Translates acquired wave count into number of compute units 257 * that are occupied. 258 * 259 * @attr: Handle of attribute that allows reporting of wave count. The attribute 260 * handle encapsulates GPU device it is associated with, thereby allowing collection 261 * of waves in flight, etc 262 * @buffer: Handle of user provided buffer updated with wave count 263 * 264 * Return: Number of bytes written to user buffer or an error value 265 */ 266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 267 { 268 int cu_cnt; 269 int wave_cnt; 270 int max_waves_per_cu; 271 struct kfd_node *dev = NULL; 272 struct kfd_process *proc = NULL; 273 struct kfd_process_device *pdd = NULL; 274 int i; 275 struct kfd_cu_occupancy *cu_occupancy; 276 u32 queue_format; 277 278 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 279 dev = pdd->dev; 280 if (dev->kfd2kgd->get_cu_occupancy == NULL) 281 return -EINVAL; 282 283 cu_cnt = 0; 284 proc = pdd->process; 285 if (pdd->qpd.queue_count == 0) { 286 pr_debug("Gpu-Id: %d has no active queues for process pid %d\n", 287 dev->id, (int)proc->lead_thread->pid); 288 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 289 } 290 291 /* Collect wave count from device if it supports */ 292 wave_cnt = 0; 293 max_waves_per_cu = 0; 294 295 cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL); 296 if (!cu_occupancy) 297 return -ENOMEM; 298 299 /* 300 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition. 301 * For AQL queues, because of cooperative dispatch we multiply the wave count 302 * by number of XCCs in the partition to get the total wave counts across all 303 * XCCs in the partition. 304 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is. 305 */ 306 dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy, 307 &max_waves_per_cu, ffs(dev->xcc_mask) - 1); 308 309 for (i = 0; i < AMDGPU_MAX_QUEUES; i++) { 310 if (cu_occupancy[i].wave_cnt != 0 && 311 kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd, 312 cu_occupancy[i].doorbell_off, 313 &queue_format)) { 314 if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4)) 315 wave_cnt += cu_occupancy[i].wave_cnt; 316 else 317 wave_cnt += (NUM_XCC(dev->xcc_mask) * 318 cu_occupancy[i].wave_cnt); 319 } 320 } 321 322 /* Translate wave count to number of compute units */ 323 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 324 kfree(cu_occupancy); 325 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 326 } 327 328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 329 char *buffer) 330 { 331 if (strcmp(attr->name, "pasid") == 0) 332 return snprintf(buffer, PAGE_SIZE, "%d\n", 0); 333 else if (strncmp(attr->name, "vram_", 5) == 0) { 334 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 335 attr_vram); 336 return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage)); 337 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 338 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 339 attr_sdma); 340 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 341 342 INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work, 343 kfd_sdma_activity_worker); 344 345 sdma_activity_work_handler.pdd = pdd; 346 sdma_activity_work_handler.sdma_activity_counter = 0; 347 348 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 349 350 flush_work(&sdma_activity_work_handler.sdma_activity_work); 351 destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work); 352 353 return snprintf(buffer, PAGE_SIZE, "%llu\n", 354 (sdma_activity_work_handler.sdma_activity_counter)/ 355 SDMA_ACTIVITY_DIVISOR); 356 } else { 357 pr_err("Invalid attribute"); 358 return -EINVAL; 359 } 360 361 return 0; 362 } 363 364 static void kfd_procfs_kobj_release(struct kobject *kobj) 365 { 366 kfree(kobj); 367 } 368 369 static const struct sysfs_ops kfd_procfs_ops = { 370 .show = kfd_procfs_show, 371 }; 372 373 static const struct kobj_type procfs_type = { 374 .release = kfd_procfs_kobj_release, 375 .sysfs_ops = &kfd_procfs_ops, 376 }; 377 378 void kfd_procfs_init(void) 379 { 380 int ret = 0; 381 382 procfs.kobj = kfd_alloc_struct(procfs.kobj); 383 if (!procfs.kobj) 384 return; 385 386 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 387 &kfd_device->kobj, "proc"); 388 if (ret) { 389 pr_warn("Could not create procfs proc folder"); 390 /* If we fail to create the procfs, clean up */ 391 kfd_procfs_shutdown(); 392 } 393 } 394 395 void kfd_procfs_shutdown(void) 396 { 397 if (procfs.kobj) { 398 kobject_del(procfs.kobj); 399 kobject_put(procfs.kobj); 400 procfs.kobj = NULL; 401 } 402 } 403 404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 405 struct attribute *attr, char *buffer) 406 { 407 struct queue *q = container_of(kobj, struct queue, kobj); 408 409 if (!strcmp(attr->name, "size")) 410 return snprintf(buffer, PAGE_SIZE, "%llu", 411 q->properties.queue_size); 412 else if (!strcmp(attr->name, "type")) 413 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 414 else if (!strcmp(attr->name, "gpuid")) 415 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 416 else 417 pr_err("Invalid attribute"); 418 419 return 0; 420 } 421 422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 423 struct attribute *attr, char *buffer) 424 { 425 if (strcmp(attr->name, "evicted_ms") == 0) { 426 struct kfd_process_device *pdd = container_of(attr, 427 struct kfd_process_device, 428 attr_evict); 429 uint64_t evict_jiffies; 430 431 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 432 433 return snprintf(buffer, 434 PAGE_SIZE, 435 "%llu\n", 436 jiffies64_to_msecs(evict_jiffies)); 437 438 /* Sysfs handle that gets CU occupancy is per device */ 439 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 440 return kfd_get_cu_occupancy(attr, buffer); 441 } else { 442 pr_err("Invalid attribute"); 443 } 444 445 return 0; 446 } 447 448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, 449 struct attribute *attr, char *buf) 450 { 451 struct kfd_process_device *pdd; 452 453 if (!strcmp(attr->name, "faults")) { 454 pdd = container_of(attr, struct kfd_process_device, 455 attr_faults); 456 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults)); 457 } 458 if (!strcmp(attr->name, "page_in")) { 459 pdd = container_of(attr, struct kfd_process_device, 460 attr_page_in); 461 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in)); 462 } 463 if (!strcmp(attr->name, "page_out")) { 464 pdd = container_of(attr, struct kfd_process_device, 465 attr_page_out); 466 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out)); 467 } 468 return 0; 469 } 470 471 static struct attribute attr_queue_size = { 472 .name = "size", 473 .mode = KFD_SYSFS_FILE_MODE 474 }; 475 476 static struct attribute attr_queue_type = { 477 .name = "type", 478 .mode = KFD_SYSFS_FILE_MODE 479 }; 480 481 static struct attribute attr_queue_gpuid = { 482 .name = "gpuid", 483 .mode = KFD_SYSFS_FILE_MODE 484 }; 485 486 static struct attribute *procfs_queue_attrs[] = { 487 &attr_queue_size, 488 &attr_queue_type, 489 &attr_queue_gpuid, 490 NULL 491 }; 492 ATTRIBUTE_GROUPS(procfs_queue); 493 494 static const struct sysfs_ops procfs_queue_ops = { 495 .show = kfd_procfs_queue_show, 496 }; 497 498 static const struct kobj_type procfs_queue_type = { 499 .sysfs_ops = &procfs_queue_ops, 500 .default_groups = procfs_queue_groups, 501 }; 502 503 static const struct sysfs_ops procfs_stats_ops = { 504 .show = kfd_procfs_stats_show, 505 }; 506 507 static const struct kobj_type procfs_stats_type = { 508 .sysfs_ops = &procfs_stats_ops, 509 .release = kfd_procfs_kobj_release, 510 }; 511 512 static const struct sysfs_ops sysfs_counters_ops = { 513 .show = kfd_sysfs_counters_show, 514 }; 515 516 static const struct kobj_type sysfs_counters_type = { 517 .sysfs_ops = &sysfs_counters_ops, 518 .release = kfd_procfs_kobj_release, 519 }; 520 521 int kfd_procfs_add_queue(struct queue *q) 522 { 523 struct kfd_process *proc; 524 int ret; 525 526 if (!q || !q->process) 527 return -EINVAL; 528 proc = q->process; 529 530 /* Create proc/<pid>/queues/<queue id> folder */ 531 if (!proc->kobj_queues) 532 return -EFAULT; 533 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 534 proc->kobj_queues, "%u", q->properties.queue_id); 535 if (ret < 0) { 536 pr_warn("Creating proc/<pid>/queues/%u failed", 537 q->properties.queue_id); 538 kobject_put(&q->kobj); 539 return ret; 540 } 541 542 return 0; 543 } 544 545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, 546 char *name) 547 { 548 int ret; 549 550 if (!kobj || !attr || !name) 551 return; 552 553 attr->name = name; 554 attr->mode = KFD_SYSFS_FILE_MODE; 555 sysfs_attr_init(attr); 556 557 ret = sysfs_create_file(kobj, attr); 558 if (ret) 559 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); 560 } 561 562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) 563 { 564 int ret; 565 int i; 566 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 567 568 if (!p || !p->kobj) 569 return; 570 571 /* 572 * Create sysfs files for each GPU: 573 * - proc/<pid>/stats_<gpuid>/ 574 * - proc/<pid>/stats_<gpuid>/evicted_ms 575 * - proc/<pid>/stats_<gpuid>/cu_occupancy 576 */ 577 for (i = 0; i < p->n_pdds; i++) { 578 struct kfd_process_device *pdd = p->pdds[i]; 579 580 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 581 "stats_%u", pdd->dev->id); 582 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); 583 if (!pdd->kobj_stats) 584 return; 585 586 ret = kobject_init_and_add(pdd->kobj_stats, 587 &procfs_stats_type, 588 p->kobj, 589 stats_dir_filename); 590 591 if (ret) { 592 pr_warn("Creating KFD proc/stats_%s folder failed", 593 stats_dir_filename); 594 kobject_put(pdd->kobj_stats); 595 pdd->kobj_stats = NULL; 596 return; 597 } 598 599 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict, 600 "evicted_ms"); 601 /* Add sysfs file to report compute unit occupancy */ 602 if (pdd->dev->kfd2kgd->get_cu_occupancy) 603 kfd_sysfs_create_file(pdd->kobj_stats, 604 &pdd->attr_cu_occupancy, 605 "cu_occupancy"); 606 } 607 } 608 609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) 610 { 611 int ret = 0; 612 int i; 613 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; 614 615 if (!p || !p->kobj) 616 return; 617 618 /* 619 * Create sysfs files for each GPU which supports SVM 620 * - proc/<pid>/counters_<gpuid>/ 621 * - proc/<pid>/counters_<gpuid>/faults 622 * - proc/<pid>/counters_<gpuid>/page_in 623 * - proc/<pid>/counters_<gpuid>/page_out 624 */ 625 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 626 struct kfd_process_device *pdd = p->pdds[i]; 627 struct kobject *kobj_counters; 628 629 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN, 630 "counters_%u", pdd->dev->id); 631 kobj_counters = kfd_alloc_struct(kobj_counters); 632 if (!kobj_counters) 633 return; 634 635 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type, 636 p->kobj, counters_dir_filename); 637 if (ret) { 638 pr_warn("Creating KFD proc/%s folder failed", 639 counters_dir_filename); 640 kobject_put(kobj_counters); 641 return; 642 } 643 644 pdd->kobj_counters = kobj_counters; 645 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults, 646 "faults"); 647 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in, 648 "page_in"); 649 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out, 650 "page_out"); 651 } 652 } 653 654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p) 655 { 656 int i; 657 658 if (!p || !p->kobj) 659 return; 660 661 /* 662 * Create sysfs files for each GPU: 663 * - proc/<pid>/vram_<gpuid> 664 * - proc/<pid>/sdma_<gpuid> 665 */ 666 for (i = 0; i < p->n_pdds; i++) { 667 struct kfd_process_device *pdd = p->pdds[i]; 668 669 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 670 pdd->dev->id); 671 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram, 672 pdd->vram_filename); 673 674 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 675 pdd->dev->id); 676 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma, 677 pdd->sdma_filename); 678 } 679 } 680 681 void kfd_procfs_del_queue(struct queue *q) 682 { 683 if (!q) 684 return; 685 686 kobject_del(&q->kobj); 687 kobject_put(&q->kobj); 688 } 689 690 int kfd_process_create_wq(void) 691 { 692 if (!kfd_process_wq) 693 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 694 if (!kfd_restore_wq) 695 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 696 WQ_FREEZABLE); 697 698 if (!kfd_process_wq || !kfd_restore_wq) { 699 kfd_process_destroy_wq(); 700 return -ENOMEM; 701 } 702 703 return 0; 704 } 705 706 void kfd_process_destroy_wq(void) 707 { 708 if (kfd_process_wq) { 709 destroy_workqueue(kfd_process_wq); 710 kfd_process_wq = NULL; 711 } 712 if (kfd_restore_wq) { 713 destroy_workqueue(kfd_restore_wq); 714 kfd_restore_wq = NULL; 715 } 716 } 717 718 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 719 struct kfd_process_device *pdd, void **kptr) 720 { 721 struct kfd_node *dev = pdd->dev; 722 723 if (kptr && *kptr) { 724 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 725 *kptr = NULL; 726 } 727 728 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); 729 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, 730 NULL); 731 } 732 733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 734 * This function should be only called right after the process 735 * is created and when kfd_processes_mutex is still being held 736 * to avoid concurrency. Because of that exclusiveness, we do 737 * not need to take p->mutex. 738 */ 739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 740 uint64_t gpu_va, uint32_t size, 741 uint32_t flags, struct kgd_mem **mem, void **kptr) 742 { 743 struct kfd_node *kdev = pdd->dev; 744 int err; 745 746 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, 747 pdd->drm_priv, mem, NULL, 748 flags, false); 749 if (err) 750 goto err_alloc_mem; 751 752 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, 753 pdd->drm_priv); 754 if (err) 755 goto err_map_mem; 756 757 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); 758 if (err) { 759 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 760 goto sync_memory_failed; 761 } 762 763 if (kptr) { 764 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( 765 (struct kgd_mem *)*mem, kptr, NULL); 766 if (err) { 767 pr_debug("Map GTT BO to kernel failed\n"); 768 goto sync_memory_failed; 769 } 770 } 771 772 return err; 773 774 sync_memory_failed: 775 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); 776 777 err_map_mem: 778 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, 779 NULL); 780 err_alloc_mem: 781 *mem = NULL; 782 *kptr = NULL; 783 return err; 784 } 785 786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 787 * process for IB usage The memory reserved is for KFD to submit 788 * IB to AMDGPU from kernel. If the memory is reserved 789 * successfully, ib_kaddr will have the CPU/kernel 790 * address. Check ib_kaddr before accessing the memory. 791 */ 792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 793 { 794 struct qcm_process_device *qpd = &pdd->qpd; 795 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 796 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 797 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 798 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 799 struct kgd_mem *mem; 800 void *kaddr; 801 int ret; 802 803 if (qpd->ib_kaddr || !qpd->ib_base) 804 return 0; 805 806 /* ib_base is only set for dGPU */ 807 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 808 &mem, &kaddr); 809 if (ret) 810 return ret; 811 812 qpd->ib_mem = mem; 813 qpd->ib_kaddr = kaddr; 814 815 return 0; 816 } 817 818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) 819 { 820 struct qcm_process_device *qpd = &pdd->qpd; 821 822 if (!qpd->ib_kaddr || !qpd->ib_base) 823 return; 824 825 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr); 826 } 827 828 struct kfd_process *kfd_create_process(struct task_struct *thread) 829 { 830 struct kfd_process *process; 831 int ret; 832 833 if (!(thread->mm && mmget_not_zero(thread->mm))) 834 return ERR_PTR(-EINVAL); 835 836 /* Only the pthreads threading model is supported. */ 837 if (thread->group_leader->mm != thread->mm) { 838 mmput(thread->mm); 839 return ERR_PTR(-EINVAL); 840 } 841 842 /* If the process just called exec(3), it is possible that the 843 * cleanup of the kfd_process (following the release of the mm 844 * of the old process image) is still in the cleanup work queue. 845 * Make sure to drain any job before trying to recreate any 846 * resource for this process. 847 */ 848 flush_workqueue(kfd_process_wq); 849 850 /* 851 * take kfd processes mutex before starting of process creation 852 * so there won't be a case where two threads of the same process 853 * create two kfd_process structures 854 */ 855 mutex_lock(&kfd_processes_mutex); 856 857 if (kfd_is_locked(NULL)) { 858 pr_debug("KFD is locked! Cannot create process"); 859 process = ERR_PTR(-EINVAL); 860 goto out; 861 } 862 863 /* A prior open of /dev/kfd could have already created the process. 864 * find_process will increase process kref in this case 865 */ 866 process = find_process(thread, true); 867 if (process) { 868 pr_debug("Process already found\n"); 869 } else { 870 process = create_process(thread); 871 if (IS_ERR(process)) 872 goto out; 873 874 if (!procfs.kobj) 875 goto out; 876 877 process->kobj = kfd_alloc_struct(process->kobj); 878 if (!process->kobj) { 879 pr_warn("Creating procfs kobject failed"); 880 goto out; 881 } 882 ret = kobject_init_and_add(process->kobj, &procfs_type, 883 procfs.kobj, "%d", 884 (int)process->lead_thread->pid); 885 if (ret) { 886 pr_warn("Creating procfs pid directory failed"); 887 kobject_put(process->kobj); 888 goto out; 889 } 890 891 kfd_sysfs_create_file(process->kobj, &process->attr_pasid, 892 "pasid"); 893 894 process->kobj_queues = kobject_create_and_add("queues", 895 process->kobj); 896 if (!process->kobj_queues) 897 pr_warn("Creating KFD proc/queues folder failed"); 898 899 kfd_procfs_add_sysfs_stats(process); 900 kfd_procfs_add_sysfs_files(process); 901 kfd_procfs_add_sysfs_counters(process); 902 903 kfd_debugfs_add_process(process); 904 905 init_waitqueue_head(&process->wait_irq_drain); 906 } 907 out: 908 mutex_unlock(&kfd_processes_mutex); 909 mmput(thread->mm); 910 911 return process; 912 } 913 914 struct kfd_process *kfd_get_process(const struct task_struct *thread) 915 { 916 struct kfd_process *process; 917 918 if (!thread->mm) 919 return ERR_PTR(-EINVAL); 920 921 /* Only the pthreads threading model is supported. */ 922 if (thread->group_leader->mm != thread->mm) 923 return ERR_PTR(-EINVAL); 924 925 process = find_process(thread, false); 926 if (!process) 927 return ERR_PTR(-EINVAL); 928 929 return process; 930 } 931 932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 933 { 934 struct kfd_process *process; 935 936 hash_for_each_possible_rcu(kfd_processes_table, process, 937 kfd_processes, (uintptr_t)mm) 938 if (process->mm == mm) 939 return process; 940 941 return NULL; 942 } 943 944 static struct kfd_process *find_process(const struct task_struct *thread, 945 bool ref) 946 { 947 struct kfd_process *p; 948 int idx; 949 950 idx = srcu_read_lock(&kfd_processes_srcu); 951 p = find_process_by_mm(thread->mm); 952 if (p && ref) 953 kref_get(&p->ref); 954 srcu_read_unlock(&kfd_processes_srcu, idx); 955 956 return p; 957 } 958 959 void kfd_unref_process(struct kfd_process *p) 960 { 961 kref_put(&p->ref, kfd_process_ref_release); 962 } 963 964 /* This increments the process->ref counter. */ 965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) 966 { 967 struct task_struct *task = NULL; 968 struct kfd_process *p = NULL; 969 970 if (!pid) { 971 task = current; 972 get_task_struct(task); 973 } else { 974 task = get_pid_task(pid, PIDTYPE_PID); 975 } 976 977 if (task) { 978 p = find_process(task, true); 979 put_task_struct(task); 980 } 981 982 return p; 983 } 984 985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 986 { 987 struct kfd_process *p = pdd->process; 988 void *mem; 989 int id; 990 int i; 991 992 /* 993 * Remove all handles from idr and release appropriate 994 * local memory object 995 */ 996 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 997 998 for (i = 0; i < p->n_pdds; i++) { 999 struct kfd_process_device *peer_pdd = p->pdds[i]; 1000 1001 if (!peer_pdd->drm_priv) 1002 continue; 1003 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1004 peer_pdd->dev->adev, mem, peer_pdd->drm_priv); 1005 } 1006 1007 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, 1008 pdd->drm_priv, NULL); 1009 kfd_process_device_remove_obj_handle(pdd, id); 1010 } 1011 } 1012 1013 /* 1014 * Just kunmap and unpin signal BO here. It will be freed in 1015 * kfd_process_free_outstanding_kfd_bos() 1016 */ 1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p) 1018 { 1019 struct kfd_process_device *pdd; 1020 struct kfd_node *kdev; 1021 void *mem; 1022 1023 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); 1024 if (!kdev) 1025 return; 1026 1027 mutex_lock(&p->mutex); 1028 1029 pdd = kfd_get_process_device_data(kdev, p); 1030 if (!pdd) 1031 goto out; 1032 1033 mem = kfd_process_device_translate_handle( 1034 pdd, GET_IDR_HANDLE(p->signal_handle)); 1035 if (!mem) 1036 goto out; 1037 1038 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 1039 1040 out: 1041 mutex_unlock(&p->mutex); 1042 } 1043 1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 1045 { 1046 int i; 1047 1048 for (i = 0; i < p->n_pdds; i++) 1049 kfd_process_device_free_bos(p->pdds[i]); 1050 } 1051 1052 static void kfd_process_destroy_pdds(struct kfd_process *p) 1053 { 1054 int i; 1055 1056 for (i = 0; i < p->n_pdds; i++) { 1057 struct kfd_process_device *pdd = p->pdds[i]; 1058 1059 kfd_smi_event_process(pdd, false); 1060 1061 pr_debug("Releasing pdd (topology id %d, for pid %d)\n", 1062 pdd->dev->id, p->lead_thread->pid); 1063 kfd_process_device_destroy_cwsr_dgpu(pdd); 1064 kfd_process_device_destroy_ib_mem(pdd); 1065 1066 if (pdd->drm_file) 1067 fput(pdd->drm_file); 1068 1069 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 1070 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 1071 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1072 1073 idr_destroy(&pdd->alloc_idr); 1074 1075 kfd_free_process_doorbells(pdd->dev->kfd, pdd); 1076 1077 if (pdd->dev->kfd->shared_resources.enable_mes && 1078 pdd->proc_ctx_cpu_ptr) 1079 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, 1080 &pdd->proc_ctx_bo); 1081 /* 1082 * before destroying pdd, make sure to report availability 1083 * for auto suspend 1084 */ 1085 if (pdd->runtime_inuse) { 1086 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev); 1087 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev); 1088 pdd->runtime_inuse = false; 1089 } 1090 1091 kfree(pdd); 1092 p->pdds[i] = NULL; 1093 } 1094 p->n_pdds = 0; 1095 } 1096 1097 static void kfd_process_remove_sysfs(struct kfd_process *p) 1098 { 1099 struct kfd_process_device *pdd; 1100 int i; 1101 1102 if (!p->kobj) 1103 return; 1104 1105 sysfs_remove_file(p->kobj, &p->attr_pasid); 1106 kobject_del(p->kobj_queues); 1107 kobject_put(p->kobj_queues); 1108 p->kobj_queues = NULL; 1109 1110 for (i = 0; i < p->n_pdds; i++) { 1111 pdd = p->pdds[i]; 1112 1113 sysfs_remove_file(p->kobj, &pdd->attr_vram); 1114 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 1115 1116 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 1117 if (pdd->dev->kfd2kgd->get_cu_occupancy) 1118 sysfs_remove_file(pdd->kobj_stats, 1119 &pdd->attr_cu_occupancy); 1120 kobject_del(pdd->kobj_stats); 1121 kobject_put(pdd->kobj_stats); 1122 pdd->kobj_stats = NULL; 1123 } 1124 1125 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { 1126 pdd = p->pdds[i]; 1127 1128 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults); 1129 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in); 1130 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out); 1131 kobject_del(pdd->kobj_counters); 1132 kobject_put(pdd->kobj_counters); 1133 pdd->kobj_counters = NULL; 1134 } 1135 1136 kobject_del(p->kobj); 1137 kobject_put(p->kobj); 1138 p->kobj = NULL; 1139 } 1140 1141 /* 1142 * If any GPU is ongoing reset, wait for reset complete. 1143 */ 1144 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p) 1145 { 1146 int i; 1147 1148 for (i = 0; i < p->n_pdds; i++) 1149 flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq); 1150 } 1151 1152 /* No process locking is needed in this function, because the process 1153 * is not findable any more. We must assume that no other thread is 1154 * using it any more, otherwise we couldn't safely free the process 1155 * structure in the end. 1156 */ 1157 static void kfd_process_wq_release(struct work_struct *work) 1158 { 1159 struct kfd_process *p = container_of(work, struct kfd_process, 1160 release_work); 1161 struct dma_fence *ef; 1162 1163 kfd_process_dequeue_from_all_devices(p); 1164 pqm_uninit(&p->pqm); 1165 1166 /* 1167 * If GPU in reset, user queues may still running, wait for reset complete. 1168 */ 1169 kfd_process_wait_gpu_reset_complete(p); 1170 1171 /* Signal the eviction fence after user mode queues are 1172 * destroyed. This allows any BOs to be freed without 1173 * triggering pointless evictions or waiting for fences. 1174 */ 1175 synchronize_rcu(); 1176 ef = rcu_access_pointer(p->ef); 1177 if (ef) 1178 dma_fence_signal(ef); 1179 1180 kfd_process_remove_sysfs(p); 1181 kfd_debugfs_remove_process(p); 1182 1183 kfd_process_kunmap_signal_bo(p); 1184 kfd_process_free_outstanding_kfd_bos(p); 1185 svm_range_list_fini(p); 1186 1187 kfd_process_destroy_pdds(p); 1188 dma_fence_put(ef); 1189 1190 kfd_event_free_process(p); 1191 1192 mutex_destroy(&p->mutex); 1193 1194 put_task_struct(p->lead_thread); 1195 1196 kfree(p); 1197 } 1198 1199 static void kfd_process_ref_release(struct kref *ref) 1200 { 1201 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1202 1203 INIT_WORK(&p->release_work, kfd_process_wq_release); 1204 queue_work(kfd_process_wq, &p->release_work); 1205 } 1206 1207 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) 1208 { 1209 /* This increments p->ref counter if kfd process p exists */ 1210 struct kfd_process *p = kfd_lookup_process_by_mm(mm); 1211 1212 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); 1213 } 1214 1215 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1216 { 1217 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1218 } 1219 1220 static void kfd_process_notifier_release_internal(struct kfd_process *p) 1221 { 1222 int i; 1223 1224 cancel_delayed_work_sync(&p->eviction_work); 1225 cancel_delayed_work_sync(&p->restore_work); 1226 1227 for (i = 0; i < p->n_pdds; i++) { 1228 struct kfd_process_device *pdd = p->pdds[i]; 1229 1230 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ 1231 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup) 1232 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 1233 } 1234 1235 /* Indicate to other users that MM is no longer valid */ 1236 p->mm = NULL; 1237 kfd_dbg_trap_disable(p); 1238 1239 if (atomic_read(&p->debugged_process_count) > 0) { 1240 struct kfd_process *target; 1241 unsigned int temp; 1242 int idx = srcu_read_lock(&kfd_processes_srcu); 1243 1244 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { 1245 if (target->debugger_process && target->debugger_process == p) { 1246 mutex_lock_nested(&target->mutex, 1); 1247 kfd_dbg_trap_disable(target); 1248 mutex_unlock(&target->mutex); 1249 if (atomic_read(&p->debugged_process_count) == 0) 1250 break; 1251 } 1252 } 1253 1254 srcu_read_unlock(&kfd_processes_srcu, idx); 1255 } 1256 1257 mmu_notifier_put(&p->mmu_notifier); 1258 } 1259 1260 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1261 struct mm_struct *mm) 1262 { 1263 struct kfd_process *p; 1264 1265 /* 1266 * The kfd_process structure can not be free because the 1267 * mmu_notifier srcu is read locked 1268 */ 1269 p = container_of(mn, struct kfd_process, mmu_notifier); 1270 if (WARN_ON(p->mm != mm)) 1271 return; 1272 1273 mutex_lock(&kfd_processes_mutex); 1274 /* 1275 * Do early return if table is empty. 1276 * 1277 * This could potentially happen if this function is called concurrently 1278 * by mmu_notifier and by kfd_cleanup_pocesses. 1279 * 1280 */ 1281 if (hash_empty(kfd_processes_table)) { 1282 mutex_unlock(&kfd_processes_mutex); 1283 return; 1284 } 1285 hash_del_rcu(&p->kfd_processes); 1286 mutex_unlock(&kfd_processes_mutex); 1287 synchronize_srcu(&kfd_processes_srcu); 1288 1289 kfd_process_notifier_release_internal(p); 1290 } 1291 1292 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1293 .release = kfd_process_notifier_release, 1294 .alloc_notifier = kfd_process_alloc_notifier, 1295 .free_notifier = kfd_process_free_notifier, 1296 }; 1297 1298 /* 1299 * This code handles the case when driver is being unloaded before all 1300 * mm_struct are released. We need to safely free the kfd_process and 1301 * avoid race conditions with mmu_notifier that might try to free them. 1302 * 1303 */ 1304 void kfd_cleanup_processes(void) 1305 { 1306 struct kfd_process *p; 1307 struct hlist_node *p_temp; 1308 unsigned int temp; 1309 HLIST_HEAD(cleanup_list); 1310 1311 /* 1312 * Move all remaining kfd_process from the process table to a 1313 * temp list for processing. Once done, callback from mmu_notifier 1314 * release will not see the kfd_process in the table and do early return, 1315 * avoiding double free issues. 1316 */ 1317 mutex_lock(&kfd_processes_mutex); 1318 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { 1319 hash_del_rcu(&p->kfd_processes); 1320 synchronize_srcu(&kfd_processes_srcu); 1321 hlist_add_head(&p->kfd_processes, &cleanup_list); 1322 } 1323 mutex_unlock(&kfd_processes_mutex); 1324 1325 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) 1326 kfd_process_notifier_release_internal(p); 1327 1328 /* 1329 * Ensures that all outstanding free_notifier get called, triggering 1330 * the release of the kfd_process struct. 1331 */ 1332 mmu_notifier_synchronize(); 1333 } 1334 1335 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1336 { 1337 unsigned long offset; 1338 int i; 1339 1340 if (p->has_cwsr) 1341 return 0; 1342 1343 for (i = 0; i < p->n_pdds; i++) { 1344 struct kfd_node *dev = p->pdds[i]->dev; 1345 struct qcm_process_device *qpd = &p->pdds[i]->qpd; 1346 1347 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1348 continue; 1349 1350 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1351 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1352 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1353 MAP_SHARED, offset); 1354 1355 if (IS_ERR_VALUE(qpd->tba_addr)) { 1356 int err = qpd->tba_addr; 1357 1358 dev_err(dev->adev->dev, 1359 "Failure to set tba address. error %d.\n", err); 1360 qpd->tba_addr = 0; 1361 qpd->cwsr_kaddr = NULL; 1362 return err; 1363 } 1364 1365 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1366 1367 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled); 1368 1369 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1370 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1371 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1372 } 1373 1374 p->has_cwsr = true; 1375 1376 return 0; 1377 } 1378 1379 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1380 { 1381 struct kfd_node *dev = pdd->dev; 1382 struct qcm_process_device *qpd = &pdd->qpd; 1383 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1384 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1385 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1386 struct kgd_mem *mem; 1387 void *kaddr; 1388 int ret; 1389 1390 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1391 return 0; 1392 1393 /* cwsr_base is only set for dGPU */ 1394 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1395 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr); 1396 if (ret) 1397 return ret; 1398 1399 qpd->cwsr_mem = mem; 1400 qpd->cwsr_kaddr = kaddr; 1401 qpd->tba_addr = qpd->cwsr_base; 1402 1403 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); 1404 1405 kfd_process_set_trap_debug_flag(&pdd->qpd, 1406 pdd->process->debug_trap_enabled); 1407 1408 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1409 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1410 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1411 1412 return 0; 1413 } 1414 1415 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) 1416 { 1417 struct kfd_node *dev = pdd->dev; 1418 struct qcm_process_device *qpd = &pdd->qpd; 1419 1420 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) 1421 return; 1422 1423 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr); 1424 } 1425 1426 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1427 uint64_t tba_addr, 1428 uint64_t tma_addr) 1429 { 1430 if (qpd->cwsr_kaddr) { 1431 /* KFD trap handler is bound, record as second-level TBA/TMA 1432 * in first-level TMA. First-level trap will jump to second. 1433 */ 1434 uint64_t *tma = 1435 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1436 tma[0] = tba_addr; 1437 tma[1] = tma_addr; 1438 } else { 1439 /* No trap handler bound, bind as first-level TBA/TMA. */ 1440 qpd->tba_addr = tba_addr; 1441 qpd->tma_addr = tma_addr; 1442 } 1443 } 1444 1445 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) 1446 { 1447 int i; 1448 1449 /* On most GFXv9 GPUs, the retry mode in the SQ must match the 1450 * boot time retry setting. Mixing processes with different 1451 * XNACK/retry settings can hang the GPU. 1452 * 1453 * Different GPUs can have different noretry settings depending 1454 * on HW bugs or limitations. We need to find at least one 1455 * XNACK mode for this process that's compatible with all GPUs. 1456 * Fortunately GPUs with retry enabled (noretry=0) can run code 1457 * built for XNACK-off. On GFXv9 it may perform slower. 1458 * 1459 * Therefore applications built for XNACK-off can always be 1460 * supported and will be our fallback if any GPU does not 1461 * support retry. 1462 */ 1463 for (i = 0; i < p->n_pdds; i++) { 1464 struct kfd_node *dev = p->pdds[i]->dev; 1465 1466 /* Only consider GFXv9 and higher GPUs. Older GPUs don't 1467 * support the SVM APIs and don't need to be considered 1468 * for the XNACK mode selection. 1469 */ 1470 if (!KFD_IS_SOC15(dev)) 1471 continue; 1472 /* Aldebaran can always support XNACK because it can support 1473 * per-process XNACK mode selection. But let the dev->noretry 1474 * setting still influence the default XNACK mode. 1475 */ 1476 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { 1477 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) { 1478 pr_debug("SRIOV platform xnack not supported\n"); 1479 return false; 1480 } 1481 continue; 1482 } 1483 1484 /* GFXv10 and later GPUs do not support shader preemption 1485 * during page faults. This can lead to poor QoS for queue 1486 * management and memory-manager-related preemptions or 1487 * even deadlocks. 1488 */ 1489 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 1490 return false; 1491 1492 if (dev->kfd->noretry) 1493 return false; 1494 } 1495 1496 return true; 1497 } 1498 1499 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1500 bool enabled) 1501 { 1502 if (qpd->cwsr_kaddr) { 1503 uint64_t *tma = 1504 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1505 tma[2] = enabled; 1506 } 1507 } 1508 1509 /* 1510 * On return the kfd_process is fully operational and will be freed when the 1511 * mm is released 1512 */ 1513 static struct kfd_process *create_process(const struct task_struct *thread) 1514 { 1515 struct kfd_process *process; 1516 struct mmu_notifier *mn; 1517 int err = -ENOMEM; 1518 1519 process = kzalloc(sizeof(*process), GFP_KERNEL); 1520 if (!process) 1521 goto err_alloc_process; 1522 1523 kref_init(&process->ref); 1524 mutex_init(&process->mutex); 1525 process->mm = thread->mm; 1526 process->lead_thread = thread->group_leader; 1527 process->n_pdds = 0; 1528 process->queues_paused = false; 1529 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1530 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1531 process->last_restore_timestamp = get_jiffies_64(); 1532 err = kfd_event_init_process(process); 1533 if (err) 1534 goto err_event_init; 1535 process->is_32bit_user_mode = in_compat_syscall(); 1536 process->debug_trap_enabled = false; 1537 process->debugger_process = NULL; 1538 process->exception_enable_mask = 0; 1539 atomic_set(&process->debugged_process_count, 0); 1540 sema_init(&process->runtime_enable_sema, 0); 1541 1542 err = pqm_init(&process->pqm, process); 1543 if (err != 0) 1544 goto err_process_pqm_init; 1545 1546 /* init process apertures*/ 1547 err = kfd_init_apertures(process); 1548 if (err != 0) 1549 goto err_init_apertures; 1550 1551 /* Check XNACK support after PDDs are created in kfd_init_apertures */ 1552 process->xnack_enabled = kfd_process_xnack_mode(process, false); 1553 1554 err = svm_range_list_init(process); 1555 if (err) 1556 goto err_init_svm_range_list; 1557 1558 /* alloc_notifier needs to find the process in the hash table */ 1559 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1560 (uintptr_t)process->mm); 1561 1562 /* Avoid free_notifier to start kfd_process_wq_release if 1563 * mmu_notifier_get failed because of pending signal. 1564 */ 1565 kref_get(&process->ref); 1566 1567 /* MMU notifier registration must be the last call that can fail 1568 * because after this point we cannot unwind the process creation. 1569 * After this point, mmu_notifier_put will trigger the cleanup by 1570 * dropping the last process reference in the free_notifier. 1571 */ 1572 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); 1573 if (IS_ERR(mn)) { 1574 err = PTR_ERR(mn); 1575 goto err_register_notifier; 1576 } 1577 BUG_ON(mn != &process->mmu_notifier); 1578 1579 kfd_unref_process(process); 1580 get_task_struct(process->lead_thread); 1581 1582 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); 1583 1584 return process; 1585 1586 err_register_notifier: 1587 hash_del_rcu(&process->kfd_processes); 1588 svm_range_list_fini(process); 1589 err_init_svm_range_list: 1590 kfd_process_free_outstanding_kfd_bos(process); 1591 kfd_process_destroy_pdds(process); 1592 err_init_apertures: 1593 pqm_uninit(&process->pqm); 1594 err_process_pqm_init: 1595 kfd_event_free_process(process); 1596 err_event_init: 1597 mutex_destroy(&process->mutex); 1598 kfree(process); 1599 err_alloc_process: 1600 return ERR_PTR(err); 1601 } 1602 1603 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1604 struct kfd_process *p) 1605 { 1606 int i; 1607 1608 for (i = 0; i < p->n_pdds; i++) 1609 if (p->pdds[i]->dev == dev) 1610 return p->pdds[i]; 1611 1612 return NULL; 1613 } 1614 1615 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1616 struct kfd_process *p) 1617 { 1618 struct kfd_process_device *pdd = NULL; 1619 1620 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) 1621 return NULL; 1622 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1623 if (!pdd) 1624 return NULL; 1625 1626 pdd->dev = dev; 1627 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1628 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1629 pdd->qpd.dqm = dev->dqm; 1630 pdd->qpd.pqm = &p->pqm; 1631 pdd->qpd.evicted = 0; 1632 pdd->qpd.mapped_gws_queue = false; 1633 pdd->process = p; 1634 pdd->bound = PDD_UNBOUND; 1635 pdd->already_dequeued = false; 1636 pdd->runtime_inuse = false; 1637 atomic64_set(&pdd->vram_usage, 0); 1638 pdd->sdma_past_activity_counter = 0; 1639 pdd->user_gpu_id = dev->id; 1640 atomic64_set(&pdd->evict_duration_counter, 0); 1641 1642 p->pdds[p->n_pdds++] = pdd; 1643 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) 1644 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( 1645 pdd->dev->adev, 1646 false, 1647 0); 1648 1649 /* Init idr used for memory handle translation */ 1650 idr_init(&pdd->alloc_idr); 1651 1652 return pdd; 1653 } 1654 1655 /** 1656 * kfd_process_device_init_vm - Initialize a VM for a process-device 1657 * 1658 * @pdd: The process-device 1659 * @drm_file: Optional pointer to a DRM file descriptor 1660 * 1661 * If @drm_file is specified, it will be used to acquire the VM from 1662 * that file descriptor. If successful, the @pdd takes ownership of 1663 * the file descriptor. 1664 * 1665 * If @drm_file is NULL, a new VM is created. 1666 * 1667 * Returns 0 on success, -errno on failure. 1668 */ 1669 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1670 struct file *drm_file) 1671 { 1672 struct amdgpu_fpriv *drv_priv; 1673 struct amdgpu_vm *avm; 1674 struct kfd_process *p; 1675 struct dma_fence *ef; 1676 struct kfd_node *dev; 1677 int ret; 1678 1679 if (!drm_file) 1680 return -EINVAL; 1681 1682 if (pdd->drm_priv) 1683 return -EBUSY; 1684 1685 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); 1686 if (ret) 1687 return ret; 1688 avm = &drv_priv->vm; 1689 1690 p = pdd->process; 1691 dev = pdd->dev; 1692 1693 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, 1694 &p->kgd_process_info, 1695 p->ef ? NULL : &ef); 1696 if (ret) { 1697 dev_err(dev->adev->dev, "Failed to create process VM object\n"); 1698 return ret; 1699 } 1700 1701 if (!p->ef) 1702 RCU_INIT_POINTER(p->ef, ef); 1703 1704 pdd->drm_priv = drm_file->private_data; 1705 1706 ret = kfd_process_device_reserve_ib_mem(pdd); 1707 if (ret) 1708 goto err_reserve_ib_mem; 1709 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1710 if (ret) 1711 goto err_init_cwsr; 1712 1713 if (unlikely(!avm->pasid)) { 1714 dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated", 1715 avm); 1716 ret = -EINVAL; 1717 goto err_get_pasid; 1718 } 1719 1720 pdd->pasid = avm->pasid; 1721 pdd->drm_file = drm_file; 1722 1723 kfd_smi_event_process(pdd, true); 1724 1725 return 0; 1726 1727 err_get_pasid: 1728 kfd_process_device_destroy_cwsr_dgpu(pdd); 1729 err_init_cwsr: 1730 kfd_process_device_destroy_ib_mem(pdd); 1731 err_reserve_ib_mem: 1732 pdd->drm_priv = NULL; 1733 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); 1734 1735 return ret; 1736 } 1737 1738 /* 1739 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1740 * to the device. 1741 * Unbinding occurs when the process dies or the device is removed. 1742 * 1743 * Assumes that the process lock is held. 1744 */ 1745 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1746 struct kfd_process *p) 1747 { 1748 struct kfd_process_device *pdd; 1749 int err; 1750 1751 pdd = kfd_get_process_device_data(dev, p); 1752 if (!pdd) { 1753 dev_err(dev->adev->dev, "Process device data doesn't exist\n"); 1754 return ERR_PTR(-ENOMEM); 1755 } 1756 1757 if (!pdd->drm_priv) 1758 return ERR_PTR(-ENODEV); 1759 1760 /* 1761 * signal runtime-pm system to auto resume and prevent 1762 * further runtime suspend once device pdd is created until 1763 * pdd is destroyed. 1764 */ 1765 if (!pdd->runtime_inuse) { 1766 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev); 1767 if (err < 0) { 1768 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev); 1769 return ERR_PTR(err); 1770 } 1771 } 1772 1773 /* 1774 * make sure that runtime_usage counter is incremented just once 1775 * per pdd 1776 */ 1777 pdd->runtime_inuse = true; 1778 1779 return pdd; 1780 } 1781 1782 /* Create specific handle mapped to mem from process local memory idr 1783 * Assumes that the process lock is held. 1784 */ 1785 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1786 void *mem) 1787 { 1788 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1789 } 1790 1791 /* Translate specific handle from process local memory idr 1792 * Assumes that the process lock is held. 1793 */ 1794 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1795 int handle) 1796 { 1797 if (handle < 0) 1798 return NULL; 1799 1800 return idr_find(&pdd->alloc_idr, handle); 1801 } 1802 1803 /* Remove specific handle from process local memory idr 1804 * Assumes that the process lock is held. 1805 */ 1806 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1807 int handle) 1808 { 1809 if (handle >= 0) 1810 idr_remove(&pdd->alloc_idr, handle); 1811 } 1812 1813 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid) 1814 { 1815 struct kfd_process_device *ret_p = NULL; 1816 struct kfd_process *p; 1817 unsigned int temp; 1818 int i; 1819 1820 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1821 for (i = 0; i < p->n_pdds; i++) { 1822 if (p->pdds[i]->pasid == pasid) { 1823 ret_p = p->pdds[i]; 1824 break; 1825 } 1826 } 1827 if (ret_p) 1828 break; 1829 } 1830 return ret_p; 1831 } 1832 1833 /* This increments the process->ref counter. */ 1834 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1835 struct kfd_process_device **pdd) 1836 { 1837 struct kfd_process_device *ret_p; 1838 1839 int idx = srcu_read_lock(&kfd_processes_srcu); 1840 1841 ret_p = kfd_lookup_process_device_by_pasid(pasid); 1842 if (ret_p) { 1843 if (pdd) 1844 *pdd = ret_p; 1845 kref_get(&ret_p->process->ref); 1846 1847 srcu_read_unlock(&kfd_processes_srcu, idx); 1848 return ret_p->process; 1849 } 1850 1851 srcu_read_unlock(&kfd_processes_srcu, idx); 1852 1853 if (pdd) 1854 *pdd = NULL; 1855 1856 return NULL; 1857 } 1858 1859 /* This increments the process->ref counter. */ 1860 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1861 { 1862 struct kfd_process *p; 1863 1864 int idx = srcu_read_lock(&kfd_processes_srcu); 1865 1866 p = find_process_by_mm(mm); 1867 if (p) 1868 kref_get(&p->ref); 1869 1870 srcu_read_unlock(&kfd_processes_srcu, idx); 1871 1872 return p; 1873 } 1874 1875 /* kfd_process_evict_queues - Evict all user queues of a process 1876 * 1877 * Eviction is reference-counted per process-device. This means multiple 1878 * evictions from different sources can be nested safely. 1879 */ 1880 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) 1881 { 1882 int r = 0; 1883 int i; 1884 unsigned int n_evicted = 0; 1885 1886 for (i = 0; i < p->n_pdds; i++) { 1887 struct kfd_process_device *pdd = p->pdds[i]; 1888 struct device *dev = pdd->dev->adev->dev; 1889 1890 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid, 1891 trigger); 1892 1893 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1894 &pdd->qpd); 1895 /* evict return -EIO if HWS is hang or asic is resetting, in this case 1896 * we would like to set all the queues to be in evicted state to prevent 1897 * them been add back since they actually not be saved right now. 1898 */ 1899 if (r && r != -EIO) { 1900 dev_err(dev, "Failed to evict process queues\n"); 1901 goto fail; 1902 } 1903 n_evicted++; 1904 1905 pdd->dev->dqm->is_hws_hang = false; 1906 } 1907 1908 return r; 1909 1910 fail: 1911 /* To keep state consistent, roll back partial eviction by 1912 * restoring queues 1913 */ 1914 for (i = 0; i < p->n_pdds; i++) { 1915 struct kfd_process_device *pdd = p->pdds[i]; 1916 1917 if (n_evicted == 0) 1918 break; 1919 1920 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1921 1922 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1923 &pdd->qpd)) 1924 dev_err(pdd->dev->adev->dev, 1925 "Failed to restore queues\n"); 1926 1927 n_evicted--; 1928 } 1929 1930 return r; 1931 } 1932 1933 /* kfd_process_restore_queues - Restore all user queues of a process */ 1934 int kfd_process_restore_queues(struct kfd_process *p) 1935 { 1936 int r, ret = 0; 1937 int i; 1938 1939 for (i = 0; i < p->n_pdds; i++) { 1940 struct kfd_process_device *pdd = p->pdds[i]; 1941 struct device *dev = pdd->dev->adev->dev; 1942 1943 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid); 1944 1945 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1946 &pdd->qpd); 1947 if (r) { 1948 dev_err(dev, "Failed to restore process queues\n"); 1949 if (!ret) 1950 ret = r; 1951 } 1952 } 1953 1954 return ret; 1955 } 1956 1957 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) 1958 { 1959 int i; 1960 1961 for (i = 0; i < p->n_pdds; i++) 1962 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) 1963 return i; 1964 return -EINVAL; 1965 } 1966 1967 int 1968 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1969 uint32_t *gpuid, uint32_t *gpuidx) 1970 { 1971 int i; 1972 1973 for (i = 0; i < p->n_pdds; i++) 1974 if (p->pdds[i] && p->pdds[i]->dev == node) { 1975 *gpuid = p->pdds[i]->user_gpu_id; 1976 *gpuidx = i; 1977 return 0; 1978 } 1979 return -EINVAL; 1980 } 1981 1982 static int signal_eviction_fence(struct kfd_process *p) 1983 { 1984 struct dma_fence *ef; 1985 int ret; 1986 1987 rcu_read_lock(); 1988 ef = dma_fence_get_rcu_safe(&p->ef); 1989 rcu_read_unlock(); 1990 if (!ef) 1991 return -EINVAL; 1992 1993 ret = dma_fence_signal(ef); 1994 dma_fence_put(ef); 1995 1996 return ret; 1997 } 1998 1999 static void evict_process_worker(struct work_struct *work) 2000 { 2001 int ret; 2002 struct kfd_process *p; 2003 struct delayed_work *dwork; 2004 2005 dwork = to_delayed_work(work); 2006 2007 /* Process termination destroys this worker thread. So during the 2008 * lifetime of this thread, kfd_process p will be valid 2009 */ 2010 p = container_of(dwork, struct kfd_process, eviction_work); 2011 2012 pr_debug("Started evicting process pid %d\n", p->lead_thread->pid); 2013 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM); 2014 if (!ret) { 2015 /* If another thread already signaled the eviction fence, 2016 * they are responsible stopping the queues and scheduling 2017 * the restore work. 2018 */ 2019 if (signal_eviction_fence(p) || 2020 mod_delayed_work(kfd_restore_wq, &p->restore_work, 2021 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2022 kfd_process_restore_queues(p); 2023 2024 pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid); 2025 } else 2026 pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid); 2027 } 2028 2029 static int restore_process_helper(struct kfd_process *p) 2030 { 2031 int ret = 0; 2032 2033 /* VMs may not have been acquired yet during debugging. */ 2034 if (p->kgd_process_info) { 2035 ret = amdgpu_amdkfd_gpuvm_restore_process_bos( 2036 p->kgd_process_info, &p->ef); 2037 if (ret) 2038 return ret; 2039 } 2040 2041 ret = kfd_process_restore_queues(p); 2042 if (!ret) 2043 pr_debug("Finished restoring process pid %d\n", 2044 p->lead_thread->pid); 2045 else 2046 pr_err("Failed to restore queues of process pid %d\n", 2047 p->lead_thread->pid); 2048 2049 return ret; 2050 } 2051 2052 static void restore_process_worker(struct work_struct *work) 2053 { 2054 struct delayed_work *dwork; 2055 struct kfd_process *p; 2056 int ret = 0; 2057 2058 dwork = to_delayed_work(work); 2059 2060 /* Process termination destroys this worker thread. So during the 2061 * lifetime of this thread, kfd_process p will be valid 2062 */ 2063 p = container_of(dwork, struct kfd_process, restore_work); 2064 pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid); 2065 2066 /* Setting last_restore_timestamp before successful restoration. 2067 * Otherwise this would have to be set by KGD (restore_process_bos) 2068 * before KFD BOs are unreserved. If not, the process can be evicted 2069 * again before the timestamp is set. 2070 * If restore fails, the timestamp will be set again in the next 2071 * attempt. This would mean that the minimum GPU quanta would be 2072 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 2073 * functions) 2074 */ 2075 2076 p->last_restore_timestamp = get_jiffies_64(); 2077 2078 ret = restore_process_helper(p); 2079 if (ret) { 2080 pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n", 2081 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS); 2082 if (mod_delayed_work(kfd_restore_wq, &p->restore_work, 2083 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS))) 2084 kfd_process_restore_queues(p); 2085 } 2086 } 2087 2088 void kfd_suspend_all_processes(void) 2089 { 2090 struct kfd_process *p; 2091 unsigned int temp; 2092 int idx = srcu_read_lock(&kfd_processes_srcu); 2093 2094 WARN(debug_evictions, "Evicting all processes"); 2095 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2096 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) 2097 pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid); 2098 signal_eviction_fence(p); 2099 } 2100 srcu_read_unlock(&kfd_processes_srcu, idx); 2101 } 2102 2103 int kfd_resume_all_processes(void) 2104 { 2105 struct kfd_process *p; 2106 unsigned int temp; 2107 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 2108 2109 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2110 if (restore_process_helper(p)) { 2111 pr_err("Restore process pid %d failed during resume\n", 2112 p->lead_thread->pid); 2113 ret = -EFAULT; 2114 } 2115 } 2116 srcu_read_unlock(&kfd_processes_srcu, idx); 2117 return ret; 2118 } 2119 2120 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 2121 struct vm_area_struct *vma) 2122 { 2123 struct kfd_process_device *pdd; 2124 struct qcm_process_device *qpd; 2125 2126 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 2127 dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n"); 2128 return -EINVAL; 2129 } 2130 2131 pdd = kfd_get_process_device_data(dev, process); 2132 if (!pdd) 2133 return -EINVAL; 2134 qpd = &pdd->qpd; 2135 2136 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2137 get_order(KFD_CWSR_TBA_TMA_SIZE)); 2138 if (!qpd->cwsr_kaddr) { 2139 dev_err(dev->adev->dev, 2140 "Error allocating per process CWSR buffer.\n"); 2141 return -ENOMEM; 2142 } 2143 2144 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND 2145 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); 2146 /* Mapping pages to user process */ 2147 return remap_pfn_range(vma, vma->vm_start, 2148 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 2149 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 2150 } 2151 2152 /* assumes caller holds process lock. */ 2153 int kfd_process_drain_interrupts(struct kfd_process_device *pdd) 2154 { 2155 uint32_t irq_drain_fence[8]; 2156 uint8_t node_id = 0; 2157 int r = 0; 2158 2159 if (!KFD_IS_SOC15(pdd->dev)) 2160 return 0; 2161 2162 pdd->process->irq_drain_is_open = true; 2163 2164 memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); 2165 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | 2166 KFD_IRQ_FENCE_CLIENTID; 2167 irq_drain_fence[3] = pdd->pasid; 2168 2169 /* 2170 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3] 2171 */ 2172 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) || 2173 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) || 2174 KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) { 2175 node_id = ffs(pdd->dev->interrupt_bitmap) - 1; 2176 irq_drain_fence[3] |= node_id << 16; 2177 } 2178 2179 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ 2180 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev, 2181 irq_drain_fence)) { 2182 pdd->process->irq_drain_is_open = false; 2183 return 0; 2184 } 2185 2186 r = wait_event_interruptible(pdd->process->wait_irq_drain, 2187 !READ_ONCE(pdd->process->irq_drain_is_open)); 2188 if (r) 2189 pdd->process->irq_drain_is_open = false; 2190 2191 return r; 2192 } 2193 2194 void kfd_process_close_interrupt_drain(unsigned int pasid) 2195 { 2196 struct kfd_process *p; 2197 2198 p = kfd_lookup_process_by_pasid(pasid, NULL); 2199 2200 if (!p) 2201 return; 2202 2203 WRITE_ONCE(p->irq_drain_is_open, false); 2204 wake_up_all(&p->wait_irq_drain); 2205 kfd_unref_process(p); 2206 } 2207 2208 struct send_exception_work_handler_workarea { 2209 struct work_struct work; 2210 struct kfd_process *p; 2211 unsigned int queue_id; 2212 uint64_t error_reason; 2213 }; 2214 2215 static void send_exception_work_handler(struct work_struct *work) 2216 { 2217 struct send_exception_work_handler_workarea *workarea; 2218 struct kfd_process *p; 2219 struct queue *q; 2220 struct mm_struct *mm; 2221 struct kfd_context_save_area_header __user *csa_header; 2222 uint64_t __user *err_payload_ptr; 2223 uint64_t cur_err; 2224 uint32_t ev_id; 2225 2226 workarea = container_of(work, 2227 struct send_exception_work_handler_workarea, 2228 work); 2229 p = workarea->p; 2230 2231 mm = get_task_mm(p->lead_thread); 2232 2233 if (!mm) 2234 return; 2235 2236 kthread_use_mm(mm); 2237 2238 q = pqm_get_user_queue(&p->pqm, workarea->queue_id); 2239 2240 if (!q) 2241 goto out; 2242 2243 csa_header = (void __user *)q->properties.ctx_save_restore_area_address; 2244 2245 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); 2246 get_user(cur_err, err_payload_ptr); 2247 cur_err |= workarea->error_reason; 2248 put_user(cur_err, err_payload_ptr); 2249 get_user(ev_id, &csa_header->err_event_id); 2250 2251 kfd_set_event(p, ev_id); 2252 2253 out: 2254 kthread_unuse_mm(mm); 2255 mmput(mm); 2256 } 2257 2258 int kfd_send_exception_to_runtime(struct kfd_process *p, 2259 unsigned int queue_id, 2260 uint64_t error_reason) 2261 { 2262 struct send_exception_work_handler_workarea worker; 2263 2264 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); 2265 2266 worker.p = p; 2267 worker.queue_id = queue_id; 2268 worker.error_reason = error_reason; 2269 2270 schedule_work(&worker.work); 2271 flush_work(&worker.work); 2272 destroy_work_on_stack(&worker.work); 2273 2274 return 0; 2275 } 2276 2277 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) 2278 { 2279 int i; 2280 2281 if (gpu_id) { 2282 for (i = 0; i < p->n_pdds; i++) { 2283 struct kfd_process_device *pdd = p->pdds[i]; 2284 2285 if (pdd->user_gpu_id == gpu_id) 2286 return pdd; 2287 } 2288 } 2289 return NULL; 2290 } 2291 2292 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) 2293 { 2294 int i; 2295 2296 if (!actual_gpu_id) 2297 return 0; 2298 2299 for (i = 0; i < p->n_pdds; i++) { 2300 struct kfd_process_device *pdd = p->pdds[i]; 2301 2302 if (pdd->dev->id == actual_gpu_id) 2303 return pdd->user_gpu_id; 2304 } 2305 return -EINVAL; 2306 } 2307 2308 #if defined(CONFIG_DEBUG_FS) 2309 2310 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 2311 { 2312 struct kfd_process *p; 2313 unsigned int temp; 2314 int r = 0; 2315 2316 int idx = srcu_read_lock(&kfd_processes_srcu); 2317 2318 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 2319 seq_printf(m, "Process %d PASID %d:\n", 2320 p->lead_thread->tgid, p->lead_thread->pid); 2321 2322 mutex_lock(&p->mutex); 2323 r = pqm_debugfs_mqds(m, &p->pqm); 2324 mutex_unlock(&p->mutex); 2325 2326 if (r) 2327 break; 2328 } 2329 2330 srcu_read_unlock(&kfd_processes_srcu, idx); 2331 2332 return r; 2333 } 2334 2335 #endif 2336