xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_node *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 	int i;
275 	struct kfd_cu_occupancy *cu_occupancy;
276 	u32 queue_format;
277 
278 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
279 	dev = pdd->dev;
280 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
281 		return -EINVAL;
282 
283 	cu_cnt = 0;
284 	proc = pdd->process;
285 	if (pdd->qpd.queue_count == 0) {
286 		pr_debug("Gpu-Id: %d has no active queues for process pid %d\n",
287 			 dev->id, (int)proc->lead_thread->pid);
288 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
289 	}
290 
291 	/* Collect wave count from device if it supports */
292 	wave_cnt = 0;
293 	max_waves_per_cu = 0;
294 
295 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
296 	if (!cu_occupancy)
297 		return -ENOMEM;
298 
299 	/*
300 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 	 * by number of XCCs in the partition to get the total wave counts across all
303 	 * XCCs in the partition.
304 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 	 */
306 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308 
309 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 		if (cu_occupancy[i].wave_cnt != 0 &&
311 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 						cu_occupancy[i].doorbell_off,
313 						&queue_format)) {
314 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 				wave_cnt += cu_occupancy[i].wave_cnt;
316 			else
317 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 						cu_occupancy[i].wave_cnt);
319 		}
320 	}
321 
322 	/* Translate wave count to number of compute units */
323 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 	kfree(cu_occupancy);
325 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326 }
327 
328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 			       char *buffer)
330 {
331 	if (strcmp(attr->name, "pasid") == 0)
332 		return snprintf(buffer, PAGE_SIZE, "%d\n", 0);
333 	else if (strncmp(attr->name, "vram_", 5) == 0) {
334 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
335 							      attr_vram);
336 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
337 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
338 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
339 							      attr_sdma);
340 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
341 
342 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
343 				  kfd_sdma_activity_worker);
344 
345 		sdma_activity_work_handler.pdd = pdd;
346 		sdma_activity_work_handler.sdma_activity_counter = 0;
347 
348 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
349 
350 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
351 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
352 
353 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
354 				(sdma_activity_work_handler.sdma_activity_counter)/
355 				 SDMA_ACTIVITY_DIVISOR);
356 	} else {
357 		pr_err("Invalid attribute");
358 		return -EINVAL;
359 	}
360 
361 	return 0;
362 }
363 
364 static void kfd_procfs_kobj_release(struct kobject *kobj)
365 {
366 	kfree(kobj);
367 }
368 
369 static const struct sysfs_ops kfd_procfs_ops = {
370 	.show = kfd_procfs_show,
371 };
372 
373 static const struct kobj_type procfs_type = {
374 	.release = kfd_procfs_kobj_release,
375 	.sysfs_ops = &kfd_procfs_ops,
376 };
377 
378 void kfd_procfs_init(void)
379 {
380 	int ret = 0;
381 
382 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
383 	if (!procfs.kobj)
384 		return;
385 
386 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
387 				   &kfd_device->kobj, "proc");
388 	if (ret) {
389 		pr_warn("Could not create procfs proc folder");
390 		/* If we fail to create the procfs, clean up */
391 		kfd_procfs_shutdown();
392 	}
393 }
394 
395 void kfd_procfs_shutdown(void)
396 {
397 	if (procfs.kobj) {
398 		kobject_del(procfs.kobj);
399 		kobject_put(procfs.kobj);
400 		procfs.kobj = NULL;
401 	}
402 }
403 
404 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
405 				     struct attribute *attr, char *buffer)
406 {
407 	struct queue *q = container_of(kobj, struct queue, kobj);
408 
409 	if (!strcmp(attr->name, "size"))
410 		return snprintf(buffer, PAGE_SIZE, "%llu",
411 				q->properties.queue_size);
412 	else if (!strcmp(attr->name, "type"))
413 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
414 	else if (!strcmp(attr->name, "gpuid"))
415 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
416 	else
417 		pr_err("Invalid attribute");
418 
419 	return 0;
420 }
421 
422 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
423 				     struct attribute *attr, char *buffer)
424 {
425 	if (strcmp(attr->name, "evicted_ms") == 0) {
426 		struct kfd_process_device *pdd = container_of(attr,
427 				struct kfd_process_device,
428 				attr_evict);
429 		uint64_t evict_jiffies;
430 
431 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
432 
433 		return snprintf(buffer,
434 				PAGE_SIZE,
435 				"%llu\n",
436 				jiffies64_to_msecs(evict_jiffies));
437 
438 	/* Sysfs handle that gets CU occupancy is per device */
439 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
440 		return kfd_get_cu_occupancy(attr, buffer);
441 	} else {
442 		pr_err("Invalid attribute");
443 	}
444 
445 	return 0;
446 }
447 
448 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
449 				       struct attribute *attr, char *buf)
450 {
451 	struct kfd_process_device *pdd;
452 
453 	if (!strcmp(attr->name, "faults")) {
454 		pdd = container_of(attr, struct kfd_process_device,
455 				   attr_faults);
456 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
457 	}
458 	if (!strcmp(attr->name, "page_in")) {
459 		pdd = container_of(attr, struct kfd_process_device,
460 				   attr_page_in);
461 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
462 	}
463 	if (!strcmp(attr->name, "page_out")) {
464 		pdd = container_of(attr, struct kfd_process_device,
465 				   attr_page_out);
466 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
467 	}
468 	return 0;
469 }
470 
471 static struct attribute attr_queue_size = {
472 	.name = "size",
473 	.mode = KFD_SYSFS_FILE_MODE
474 };
475 
476 static struct attribute attr_queue_type = {
477 	.name = "type",
478 	.mode = KFD_SYSFS_FILE_MODE
479 };
480 
481 static struct attribute attr_queue_gpuid = {
482 	.name = "gpuid",
483 	.mode = KFD_SYSFS_FILE_MODE
484 };
485 
486 static struct attribute *procfs_queue_attrs[] = {
487 	&attr_queue_size,
488 	&attr_queue_type,
489 	&attr_queue_gpuid,
490 	NULL
491 };
492 ATTRIBUTE_GROUPS(procfs_queue);
493 
494 static const struct sysfs_ops procfs_queue_ops = {
495 	.show = kfd_procfs_queue_show,
496 };
497 
498 static const struct kobj_type procfs_queue_type = {
499 	.sysfs_ops = &procfs_queue_ops,
500 	.default_groups = procfs_queue_groups,
501 };
502 
503 static const struct sysfs_ops procfs_stats_ops = {
504 	.show = kfd_procfs_stats_show,
505 };
506 
507 static const struct kobj_type procfs_stats_type = {
508 	.sysfs_ops = &procfs_stats_ops,
509 	.release = kfd_procfs_kobj_release,
510 };
511 
512 static const struct sysfs_ops sysfs_counters_ops = {
513 	.show = kfd_sysfs_counters_show,
514 };
515 
516 static const struct kobj_type sysfs_counters_type = {
517 	.sysfs_ops = &sysfs_counters_ops,
518 	.release = kfd_procfs_kobj_release,
519 };
520 
521 int kfd_procfs_add_queue(struct queue *q)
522 {
523 	struct kfd_process *proc;
524 	int ret;
525 
526 	if (!q || !q->process)
527 		return -EINVAL;
528 	proc = q->process;
529 
530 	/* Create proc/<pid>/queues/<queue id> folder */
531 	if (!proc->kobj_queues)
532 		return -EFAULT;
533 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
534 			proc->kobj_queues, "%u", q->properties.queue_id);
535 	if (ret < 0) {
536 		pr_warn("Creating proc/<pid>/queues/%u failed",
537 			q->properties.queue_id);
538 		kobject_put(&q->kobj);
539 		return ret;
540 	}
541 
542 	return 0;
543 }
544 
545 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
546 				 char *name)
547 {
548 	int ret;
549 
550 	if (!kobj || !attr || !name)
551 		return;
552 
553 	attr->name = name;
554 	attr->mode = KFD_SYSFS_FILE_MODE;
555 	sysfs_attr_init(attr);
556 
557 	ret = sysfs_create_file(kobj, attr);
558 	if (ret)
559 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
560 }
561 
562 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
563 {
564 	int ret;
565 	int i;
566 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
567 
568 	if (!p || !p->kobj)
569 		return;
570 
571 	/*
572 	 * Create sysfs files for each GPU:
573 	 * - proc/<pid>/stats_<gpuid>/
574 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
575 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
576 	 */
577 	for (i = 0; i < p->n_pdds; i++) {
578 		struct kfd_process_device *pdd = p->pdds[i];
579 
580 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
581 				"stats_%u", pdd->dev->id);
582 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
583 		if (!pdd->kobj_stats)
584 			return;
585 
586 		ret = kobject_init_and_add(pdd->kobj_stats,
587 					   &procfs_stats_type,
588 					   p->kobj,
589 					   stats_dir_filename);
590 
591 		if (ret) {
592 			pr_warn("Creating KFD proc/stats_%s folder failed",
593 				stats_dir_filename);
594 			kobject_put(pdd->kobj_stats);
595 			pdd->kobj_stats = NULL;
596 			return;
597 		}
598 
599 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
600 				      "evicted_ms");
601 		/* Add sysfs file to report compute unit occupancy */
602 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
603 			kfd_sysfs_create_file(pdd->kobj_stats,
604 					      &pdd->attr_cu_occupancy,
605 					      "cu_occupancy");
606 	}
607 }
608 
609 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
610 {
611 	int ret = 0;
612 	int i;
613 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
614 
615 	if (!p || !p->kobj)
616 		return;
617 
618 	/*
619 	 * Create sysfs files for each GPU which supports SVM
620 	 * - proc/<pid>/counters_<gpuid>/
621 	 * - proc/<pid>/counters_<gpuid>/faults
622 	 * - proc/<pid>/counters_<gpuid>/page_in
623 	 * - proc/<pid>/counters_<gpuid>/page_out
624 	 */
625 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
626 		struct kfd_process_device *pdd = p->pdds[i];
627 		struct kobject *kobj_counters;
628 
629 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
630 			"counters_%u", pdd->dev->id);
631 		kobj_counters = kfd_alloc_struct(kobj_counters);
632 		if (!kobj_counters)
633 			return;
634 
635 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
636 					   p->kobj, counters_dir_filename);
637 		if (ret) {
638 			pr_warn("Creating KFD proc/%s folder failed",
639 				counters_dir_filename);
640 			kobject_put(kobj_counters);
641 			return;
642 		}
643 
644 		pdd->kobj_counters = kobj_counters;
645 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
646 				      "faults");
647 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
648 				      "page_in");
649 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
650 				      "page_out");
651 	}
652 }
653 
654 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
655 {
656 	int i;
657 
658 	if (!p || !p->kobj)
659 		return;
660 
661 	/*
662 	 * Create sysfs files for each GPU:
663 	 * - proc/<pid>/vram_<gpuid>
664 	 * - proc/<pid>/sdma_<gpuid>
665 	 */
666 	for (i = 0; i < p->n_pdds; i++) {
667 		struct kfd_process_device *pdd = p->pdds[i];
668 
669 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
670 			 pdd->dev->id);
671 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
672 				      pdd->vram_filename);
673 
674 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
675 			 pdd->dev->id);
676 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
677 					    pdd->sdma_filename);
678 	}
679 }
680 
681 void kfd_procfs_del_queue(struct queue *q)
682 {
683 	if (!q)
684 		return;
685 
686 	kobject_del(&q->kobj);
687 	kobject_put(&q->kobj);
688 }
689 
690 int kfd_process_create_wq(void)
691 {
692 	if (!kfd_process_wq)
693 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
694 	if (!kfd_restore_wq)
695 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
696 							 WQ_FREEZABLE);
697 
698 	if (!kfd_process_wq || !kfd_restore_wq) {
699 		kfd_process_destroy_wq();
700 		return -ENOMEM;
701 	}
702 
703 	return 0;
704 }
705 
706 void kfd_process_destroy_wq(void)
707 {
708 	if (kfd_process_wq) {
709 		destroy_workqueue(kfd_process_wq);
710 		kfd_process_wq = NULL;
711 	}
712 	if (kfd_restore_wq) {
713 		destroy_workqueue(kfd_restore_wq);
714 		kfd_restore_wq = NULL;
715 	}
716 }
717 
718 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
719 			struct kfd_process_device *pdd, void **kptr)
720 {
721 	struct kfd_node *dev = pdd->dev;
722 
723 	if (kptr && *kptr) {
724 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
725 		*kptr = NULL;
726 	}
727 
728 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
729 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
730 					       NULL);
731 }
732 
733 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
734  *	This function should be only called right after the process
735  *	is created and when kfd_processes_mutex is still being held
736  *	to avoid concurrency. Because of that exclusiveness, we do
737  *	not need to take p->mutex.
738  */
739 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
740 				   uint64_t gpu_va, uint32_t size,
741 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
742 {
743 	struct kfd_node *kdev = pdd->dev;
744 	int err;
745 
746 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
747 						 pdd->drm_priv, mem, NULL,
748 						 flags, false);
749 	if (err)
750 		goto err_alloc_mem;
751 
752 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
753 			pdd->drm_priv);
754 	if (err)
755 		goto err_map_mem;
756 
757 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
758 	if (err) {
759 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
760 		goto sync_memory_failed;
761 	}
762 
763 	if (kptr) {
764 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
765 				(struct kgd_mem *)*mem, kptr, NULL);
766 		if (err) {
767 			pr_debug("Map GTT BO to kernel failed\n");
768 			goto sync_memory_failed;
769 		}
770 	}
771 
772 	return err;
773 
774 sync_memory_failed:
775 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
776 
777 err_map_mem:
778 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
779 					       NULL);
780 err_alloc_mem:
781 	*mem = NULL;
782 	*kptr = NULL;
783 	return err;
784 }
785 
786 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
787  *	process for IB usage The memory reserved is for KFD to submit
788  *	IB to AMDGPU from kernel.  If the memory is reserved
789  *	successfully, ib_kaddr will have the CPU/kernel
790  *	address. Check ib_kaddr before accessing the memory.
791  */
792 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
793 {
794 	struct qcm_process_device *qpd = &pdd->qpd;
795 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
796 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
797 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
798 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
799 	struct kgd_mem *mem;
800 	void *kaddr;
801 	int ret;
802 
803 	if (qpd->ib_kaddr || !qpd->ib_base)
804 		return 0;
805 
806 	/* ib_base is only set for dGPU */
807 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
808 				      &mem, &kaddr);
809 	if (ret)
810 		return ret;
811 
812 	qpd->ib_mem = mem;
813 	qpd->ib_kaddr = kaddr;
814 
815 	return 0;
816 }
817 
818 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
819 {
820 	struct qcm_process_device *qpd = &pdd->qpd;
821 
822 	if (!qpd->ib_kaddr || !qpd->ib_base)
823 		return;
824 
825 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
826 }
827 
828 struct kfd_process *kfd_create_process(struct task_struct *thread)
829 {
830 	struct kfd_process *process;
831 	int ret;
832 
833 	if (!(thread->mm && mmget_not_zero(thread->mm)))
834 		return ERR_PTR(-EINVAL);
835 
836 	/* Only the pthreads threading model is supported. */
837 	if (thread->group_leader->mm != thread->mm) {
838 		mmput(thread->mm);
839 		return ERR_PTR(-EINVAL);
840 	}
841 
842 	/* If the process just called exec(3), it is possible that the
843 	 * cleanup of the kfd_process (following the release of the mm
844 	 * of the old process image) is still in the cleanup work queue.
845 	 * Make sure to drain any job before trying to recreate any
846 	 * resource for this process.
847 	 */
848 	flush_workqueue(kfd_process_wq);
849 
850 	/*
851 	 * take kfd processes mutex before starting of process creation
852 	 * so there won't be a case where two threads of the same process
853 	 * create two kfd_process structures
854 	 */
855 	mutex_lock(&kfd_processes_mutex);
856 
857 	if (kfd_is_locked(NULL)) {
858 		pr_debug("KFD is locked! Cannot create process");
859 		process = ERR_PTR(-EINVAL);
860 		goto out;
861 	}
862 
863 	/* A prior open of /dev/kfd could have already created the process.
864 	 * find_process will increase process kref in this case
865 	 */
866 	process = find_process(thread, true);
867 	if (process) {
868 		pr_debug("Process already found\n");
869 	} else {
870 		process = create_process(thread);
871 		if (IS_ERR(process))
872 			goto out;
873 
874 		if (!procfs.kobj)
875 			goto out;
876 
877 		process->kobj = kfd_alloc_struct(process->kobj);
878 		if (!process->kobj) {
879 			pr_warn("Creating procfs kobject failed");
880 			goto out;
881 		}
882 		ret = kobject_init_and_add(process->kobj, &procfs_type,
883 					   procfs.kobj, "%d",
884 					   (int)process->lead_thread->pid);
885 		if (ret) {
886 			pr_warn("Creating procfs pid directory failed");
887 			kobject_put(process->kobj);
888 			goto out;
889 		}
890 
891 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
892 				      "pasid");
893 
894 		process->kobj_queues = kobject_create_and_add("queues",
895 							process->kobj);
896 		if (!process->kobj_queues)
897 			pr_warn("Creating KFD proc/queues folder failed");
898 
899 		kfd_procfs_add_sysfs_stats(process);
900 		kfd_procfs_add_sysfs_files(process);
901 		kfd_procfs_add_sysfs_counters(process);
902 
903 		kfd_debugfs_add_process(process);
904 
905 		init_waitqueue_head(&process->wait_irq_drain);
906 	}
907 out:
908 	mutex_unlock(&kfd_processes_mutex);
909 	mmput(thread->mm);
910 
911 	return process;
912 }
913 
914 struct kfd_process *kfd_get_process(const struct task_struct *thread)
915 {
916 	struct kfd_process *process;
917 
918 	if (!thread->mm)
919 		return ERR_PTR(-EINVAL);
920 
921 	/* Only the pthreads threading model is supported. */
922 	if (thread->group_leader->mm != thread->mm)
923 		return ERR_PTR(-EINVAL);
924 
925 	process = find_process(thread, false);
926 	if (!process)
927 		return ERR_PTR(-EINVAL);
928 
929 	return process;
930 }
931 
932 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
933 {
934 	struct kfd_process *process;
935 
936 	hash_for_each_possible_rcu(kfd_processes_table, process,
937 					kfd_processes, (uintptr_t)mm)
938 		if (process->mm == mm)
939 			return process;
940 
941 	return NULL;
942 }
943 
944 static struct kfd_process *find_process(const struct task_struct *thread,
945 					bool ref)
946 {
947 	struct kfd_process *p;
948 	int idx;
949 
950 	idx = srcu_read_lock(&kfd_processes_srcu);
951 	p = find_process_by_mm(thread->mm);
952 	if (p && ref)
953 		kref_get(&p->ref);
954 	srcu_read_unlock(&kfd_processes_srcu, idx);
955 
956 	return p;
957 }
958 
959 void kfd_unref_process(struct kfd_process *p)
960 {
961 	kref_put(&p->ref, kfd_process_ref_release);
962 }
963 
964 /* This increments the process->ref counter. */
965 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
966 {
967 	struct task_struct *task = NULL;
968 	struct kfd_process *p    = NULL;
969 
970 	if (!pid) {
971 		task = current;
972 		get_task_struct(task);
973 	} else {
974 		task = get_pid_task(pid, PIDTYPE_PID);
975 	}
976 
977 	if (task) {
978 		p = find_process(task, true);
979 		put_task_struct(task);
980 	}
981 
982 	return p;
983 }
984 
985 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
986 {
987 	struct kfd_process *p = pdd->process;
988 	void *mem;
989 	int id;
990 	int i;
991 
992 	/*
993 	 * Remove all handles from idr and release appropriate
994 	 * local memory object
995 	 */
996 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
997 
998 		for (i = 0; i < p->n_pdds; i++) {
999 			struct kfd_process_device *peer_pdd = p->pdds[i];
1000 
1001 			if (!peer_pdd->drm_priv)
1002 				continue;
1003 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005 		}
1006 
1007 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008 						       pdd->drm_priv, NULL);
1009 		kfd_process_device_remove_obj_handle(pdd, id);
1010 	}
1011 }
1012 
1013 /*
1014  * Just kunmap and unpin signal BO here. It will be freed in
1015  * kfd_process_free_outstanding_kfd_bos()
1016  */
1017 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018 {
1019 	struct kfd_process_device *pdd;
1020 	struct kfd_node *kdev;
1021 	void *mem;
1022 
1023 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024 	if (!kdev)
1025 		return;
1026 
1027 	mutex_lock(&p->mutex);
1028 
1029 	pdd = kfd_get_process_device_data(kdev, p);
1030 	if (!pdd)
1031 		goto out;
1032 
1033 	mem = kfd_process_device_translate_handle(
1034 		pdd, GET_IDR_HANDLE(p->signal_handle));
1035 	if (!mem)
1036 		goto out;
1037 
1038 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039 
1040 out:
1041 	mutex_unlock(&p->mutex);
1042 }
1043 
1044 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < p->n_pdds; i++)
1049 		kfd_process_device_free_bos(p->pdds[i]);
1050 }
1051 
1052 static void kfd_process_destroy_pdds(struct kfd_process *p)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < p->n_pdds; i++) {
1057 		struct kfd_process_device *pdd = p->pdds[i];
1058 
1059 		kfd_smi_event_process(pdd, false);
1060 
1061 		pr_debug("Releasing pdd (topology id %d, for pid %d)\n",
1062 			pdd->dev->id, p->lead_thread->pid);
1063 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1064 		kfd_process_device_destroy_ib_mem(pdd);
1065 
1066 		if (pdd->drm_file)
1067 			fput(pdd->drm_file);
1068 
1069 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1070 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1071 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1072 
1073 		idr_destroy(&pdd->alloc_idr);
1074 
1075 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1076 
1077 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1078 			pdd->proc_ctx_cpu_ptr)
1079 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1080 						   &pdd->proc_ctx_bo);
1081 		/*
1082 		 * before destroying pdd, make sure to report availability
1083 		 * for auto suspend
1084 		 */
1085 		if (pdd->runtime_inuse) {
1086 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1087 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1088 			pdd->runtime_inuse = false;
1089 		}
1090 
1091 		atomic_dec(&pdd->dev->kfd->kfd_processes_count);
1092 
1093 		kfree(pdd);
1094 		p->pdds[i] = NULL;
1095 	}
1096 	p->n_pdds = 0;
1097 }
1098 
1099 static void kfd_process_remove_sysfs(struct kfd_process *p)
1100 {
1101 	struct kfd_process_device *pdd;
1102 	int i;
1103 
1104 	if (!p->kobj)
1105 		return;
1106 
1107 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1108 	kobject_del(p->kobj_queues);
1109 	kobject_put(p->kobj_queues);
1110 	p->kobj_queues = NULL;
1111 
1112 	for (i = 0; i < p->n_pdds; i++) {
1113 		pdd = p->pdds[i];
1114 
1115 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1116 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1117 
1118 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1119 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1120 			sysfs_remove_file(pdd->kobj_stats,
1121 					  &pdd->attr_cu_occupancy);
1122 		kobject_del(pdd->kobj_stats);
1123 		kobject_put(pdd->kobj_stats);
1124 		pdd->kobj_stats = NULL;
1125 	}
1126 
1127 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1128 		pdd = p->pdds[i];
1129 
1130 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1131 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1132 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1133 		kobject_del(pdd->kobj_counters);
1134 		kobject_put(pdd->kobj_counters);
1135 		pdd->kobj_counters = NULL;
1136 	}
1137 
1138 	kobject_del(p->kobj);
1139 	kobject_put(p->kobj);
1140 	p->kobj = NULL;
1141 }
1142 
1143 /*
1144  * If any GPU is ongoing reset, wait for reset complete.
1145  */
1146 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1147 {
1148 	int i;
1149 
1150 	for (i = 0; i < p->n_pdds; i++)
1151 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1152 }
1153 
1154 /* No process locking is needed in this function, because the process
1155  * is not findable any more. We must assume that no other thread is
1156  * using it any more, otherwise we couldn't safely free the process
1157  * structure in the end.
1158  */
1159 static void kfd_process_wq_release(struct work_struct *work)
1160 {
1161 	struct kfd_process *p = container_of(work, struct kfd_process,
1162 					     release_work);
1163 	struct dma_fence *ef;
1164 
1165 	kfd_process_dequeue_from_all_devices(p);
1166 	pqm_uninit(&p->pqm);
1167 
1168 	/*
1169 	 * If GPU in reset, user queues may still running, wait for reset complete.
1170 	 */
1171 	kfd_process_wait_gpu_reset_complete(p);
1172 
1173 	/* Signal the eviction fence after user mode queues are
1174 	 * destroyed. This allows any BOs to be freed without
1175 	 * triggering pointless evictions or waiting for fences.
1176 	 */
1177 	synchronize_rcu();
1178 	ef = rcu_access_pointer(p->ef);
1179 	if (ef)
1180 		dma_fence_signal(ef);
1181 
1182 	kfd_process_remove_sysfs(p);
1183 	kfd_debugfs_remove_process(p);
1184 
1185 	kfd_process_kunmap_signal_bo(p);
1186 	kfd_process_free_outstanding_kfd_bos(p);
1187 	svm_range_list_fini(p);
1188 
1189 	kfd_process_destroy_pdds(p);
1190 	dma_fence_put(ef);
1191 
1192 	kfd_event_free_process(p);
1193 
1194 	mutex_destroy(&p->mutex);
1195 
1196 	put_task_struct(p->lead_thread);
1197 
1198 	kfree(p);
1199 }
1200 
1201 static void kfd_process_ref_release(struct kref *ref)
1202 {
1203 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1204 
1205 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1206 	queue_work(kfd_process_wq, &p->release_work);
1207 }
1208 
1209 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1210 {
1211 	/* This increments p->ref counter if kfd process p exists */
1212 	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1213 
1214 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1215 }
1216 
1217 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1218 {
1219 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1220 }
1221 
1222 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1223 {
1224 	int i;
1225 
1226 	cancel_delayed_work_sync(&p->eviction_work);
1227 	cancel_delayed_work_sync(&p->restore_work);
1228 
1229 	for (i = 0; i < p->n_pdds; i++) {
1230 		struct kfd_process_device *pdd = p->pdds[i];
1231 
1232 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1233 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1234 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1235 	}
1236 
1237 	/* Indicate to other users that MM is no longer valid */
1238 	p->mm = NULL;
1239 	kfd_dbg_trap_disable(p);
1240 
1241 	if (atomic_read(&p->debugged_process_count) > 0) {
1242 		struct kfd_process *target;
1243 		unsigned int temp;
1244 		int idx = srcu_read_lock(&kfd_processes_srcu);
1245 
1246 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1247 			if (target->debugger_process && target->debugger_process == p) {
1248 				mutex_lock_nested(&target->mutex, 1);
1249 				kfd_dbg_trap_disable(target);
1250 				mutex_unlock(&target->mutex);
1251 				if (atomic_read(&p->debugged_process_count) == 0)
1252 					break;
1253 			}
1254 		}
1255 
1256 		srcu_read_unlock(&kfd_processes_srcu, idx);
1257 	}
1258 
1259 	mmu_notifier_put(&p->mmu_notifier);
1260 }
1261 
1262 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1263 					struct mm_struct *mm)
1264 {
1265 	struct kfd_process *p;
1266 
1267 	/*
1268 	 * The kfd_process structure can not be free because the
1269 	 * mmu_notifier srcu is read locked
1270 	 */
1271 	p = container_of(mn, struct kfd_process, mmu_notifier);
1272 	if (WARN_ON(p->mm != mm))
1273 		return;
1274 
1275 	mutex_lock(&kfd_processes_mutex);
1276 	/*
1277 	 * Do early return if table is empty.
1278 	 *
1279 	 * This could potentially happen if this function is called concurrently
1280 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1281 	 *
1282 	 */
1283 	if (hash_empty(kfd_processes_table)) {
1284 		mutex_unlock(&kfd_processes_mutex);
1285 		return;
1286 	}
1287 	hash_del_rcu(&p->kfd_processes);
1288 	mutex_unlock(&kfd_processes_mutex);
1289 	synchronize_srcu(&kfd_processes_srcu);
1290 
1291 	kfd_process_notifier_release_internal(p);
1292 }
1293 
1294 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1295 	.release = kfd_process_notifier_release,
1296 	.alloc_notifier = kfd_process_alloc_notifier,
1297 	.free_notifier = kfd_process_free_notifier,
1298 };
1299 
1300 /*
1301  * This code handles the case when driver is being unloaded before all
1302  * mm_struct are released.  We need to safely free the kfd_process and
1303  * avoid race conditions with mmu_notifier that might try to free them.
1304  *
1305  */
1306 void kfd_cleanup_processes(void)
1307 {
1308 	struct kfd_process *p;
1309 	struct hlist_node *p_temp;
1310 	unsigned int temp;
1311 	HLIST_HEAD(cleanup_list);
1312 
1313 	/*
1314 	 * Move all remaining kfd_process from the process table to a
1315 	 * temp list for processing.   Once done, callback from mmu_notifier
1316 	 * release will not see the kfd_process in the table and do early return,
1317 	 * avoiding double free issues.
1318 	 */
1319 	mutex_lock(&kfd_processes_mutex);
1320 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1321 		hash_del_rcu(&p->kfd_processes);
1322 		synchronize_srcu(&kfd_processes_srcu);
1323 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1324 	}
1325 	mutex_unlock(&kfd_processes_mutex);
1326 
1327 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1328 		kfd_process_notifier_release_internal(p);
1329 
1330 	/*
1331 	 * Ensures that all outstanding free_notifier get called, triggering
1332 	 * the release of the kfd_process struct.
1333 	 */
1334 	mmu_notifier_synchronize();
1335 }
1336 
1337 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1338 {
1339 	unsigned long  offset;
1340 	int i;
1341 
1342 	if (p->has_cwsr)
1343 		return 0;
1344 
1345 	for (i = 0; i < p->n_pdds; i++) {
1346 		struct kfd_node *dev = p->pdds[i]->dev;
1347 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1348 
1349 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1350 			continue;
1351 
1352 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1353 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1354 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1355 			MAP_SHARED, offset);
1356 
1357 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1358 			int err = qpd->tba_addr;
1359 
1360 			dev_err(dev->adev->dev,
1361 				"Failure to set tba address. error %d.\n", err);
1362 			qpd->tba_addr = 0;
1363 			qpd->cwsr_kaddr = NULL;
1364 			return err;
1365 		}
1366 
1367 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1368 
1369 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1370 
1371 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1372 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1373 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1374 	}
1375 
1376 	p->has_cwsr = true;
1377 
1378 	return 0;
1379 }
1380 
1381 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1382 {
1383 	struct kfd_node *dev = pdd->dev;
1384 	struct qcm_process_device *qpd = &pdd->qpd;
1385 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1386 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1387 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1388 	struct kgd_mem *mem;
1389 	void *kaddr;
1390 	int ret;
1391 
1392 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1393 		return 0;
1394 
1395 	/* cwsr_base is only set for dGPU */
1396 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1397 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1398 	if (ret)
1399 		return ret;
1400 
1401 	qpd->cwsr_mem = mem;
1402 	qpd->cwsr_kaddr = kaddr;
1403 	qpd->tba_addr = qpd->cwsr_base;
1404 
1405 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1406 
1407 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1408 					pdd->process->debug_trap_enabled);
1409 
1410 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1411 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1412 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1413 
1414 	return 0;
1415 }
1416 
1417 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1418 {
1419 	struct kfd_node *dev = pdd->dev;
1420 	struct qcm_process_device *qpd = &pdd->qpd;
1421 
1422 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1423 		return;
1424 
1425 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1426 }
1427 
1428 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1429 				  uint64_t tba_addr,
1430 				  uint64_t tma_addr)
1431 {
1432 	if (qpd->cwsr_kaddr) {
1433 		/* KFD trap handler is bound, record as second-level TBA/TMA
1434 		 * in first-level TMA. First-level trap will jump to second.
1435 		 */
1436 		uint64_t *tma =
1437 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1438 		tma[0] = tba_addr;
1439 		tma[1] = tma_addr;
1440 	} else {
1441 		/* No trap handler bound, bind as first-level TBA/TMA. */
1442 		qpd->tba_addr = tba_addr;
1443 		qpd->tma_addr = tma_addr;
1444 	}
1445 }
1446 
1447 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1448 {
1449 	int i;
1450 
1451 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1452 	 * boot time retry setting. Mixing processes with different
1453 	 * XNACK/retry settings can hang the GPU.
1454 	 *
1455 	 * Different GPUs can have different noretry settings depending
1456 	 * on HW bugs or limitations. We need to find at least one
1457 	 * XNACK mode for this process that's compatible with all GPUs.
1458 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1459 	 * built for XNACK-off. On GFXv9 it may perform slower.
1460 	 *
1461 	 * Therefore applications built for XNACK-off can always be
1462 	 * supported and will be our fallback if any GPU does not
1463 	 * support retry.
1464 	 */
1465 	for (i = 0; i < p->n_pdds; i++) {
1466 		struct kfd_node *dev = p->pdds[i]->dev;
1467 
1468 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1469 		 * support the SVM APIs and don't need to be considered
1470 		 * for the XNACK mode selection.
1471 		 */
1472 		if (!KFD_IS_SOC15(dev))
1473 			continue;
1474 		/* Aldebaran can always support XNACK because it can support
1475 		 * per-process XNACK mode selection. But let the dev->noretry
1476 		 * setting still influence the default XNACK mode.
1477 		 */
1478 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1479 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1480 				pr_debug("SRIOV platform xnack not supported\n");
1481 				return false;
1482 			}
1483 			continue;
1484 		}
1485 
1486 		/* GFXv10 and later GPUs do not support shader preemption
1487 		 * during page faults. This can lead to poor QoS for queue
1488 		 * management and memory-manager-related preemptions or
1489 		 * even deadlocks.
1490 		 */
1491 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1492 			return false;
1493 
1494 		if (dev->kfd->noretry)
1495 			return false;
1496 	}
1497 
1498 	return true;
1499 }
1500 
1501 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1502 				     bool enabled)
1503 {
1504 	if (qpd->cwsr_kaddr) {
1505 		uint64_t *tma =
1506 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1507 		tma[2] = enabled;
1508 	}
1509 }
1510 
1511 /*
1512  * On return the kfd_process is fully operational and will be freed when the
1513  * mm is released
1514  */
1515 static struct kfd_process *create_process(const struct task_struct *thread)
1516 {
1517 	struct kfd_process *process;
1518 	struct mmu_notifier *mn;
1519 	int err = -ENOMEM;
1520 
1521 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1522 	if (!process)
1523 		goto err_alloc_process;
1524 
1525 	kref_init(&process->ref);
1526 	mutex_init(&process->mutex);
1527 	process->mm = thread->mm;
1528 	process->lead_thread = thread->group_leader;
1529 	process->n_pdds = 0;
1530 	process->queues_paused = false;
1531 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1532 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1533 	process->last_restore_timestamp = get_jiffies_64();
1534 	err = kfd_event_init_process(process);
1535 	if (err)
1536 		goto err_event_init;
1537 	process->is_32bit_user_mode = in_compat_syscall();
1538 	process->debug_trap_enabled = false;
1539 	process->debugger_process = NULL;
1540 	process->exception_enable_mask = 0;
1541 	atomic_set(&process->debugged_process_count, 0);
1542 	sema_init(&process->runtime_enable_sema, 0);
1543 
1544 	err = pqm_init(&process->pqm, process);
1545 	if (err != 0)
1546 		goto err_process_pqm_init;
1547 
1548 	/* init process apertures*/
1549 	err = kfd_init_apertures(process);
1550 	if (err != 0)
1551 		goto err_init_apertures;
1552 
1553 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1554 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1555 
1556 	err = svm_range_list_init(process);
1557 	if (err)
1558 		goto err_init_svm_range_list;
1559 
1560 	/* alloc_notifier needs to find the process in the hash table */
1561 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1562 			(uintptr_t)process->mm);
1563 
1564 	/* Avoid free_notifier to start kfd_process_wq_release if
1565 	 * mmu_notifier_get failed because of pending signal.
1566 	 */
1567 	kref_get(&process->ref);
1568 
1569 	/* MMU notifier registration must be the last call that can fail
1570 	 * because after this point we cannot unwind the process creation.
1571 	 * After this point, mmu_notifier_put will trigger the cleanup by
1572 	 * dropping the last process reference in the free_notifier.
1573 	 */
1574 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1575 	if (IS_ERR(mn)) {
1576 		err = PTR_ERR(mn);
1577 		goto err_register_notifier;
1578 	}
1579 	BUG_ON(mn != &process->mmu_notifier);
1580 
1581 	kfd_unref_process(process);
1582 	get_task_struct(process->lead_thread);
1583 
1584 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1585 
1586 	return process;
1587 
1588 err_register_notifier:
1589 	hash_del_rcu(&process->kfd_processes);
1590 	svm_range_list_fini(process);
1591 err_init_svm_range_list:
1592 	kfd_process_free_outstanding_kfd_bos(process);
1593 	kfd_process_destroy_pdds(process);
1594 err_init_apertures:
1595 	pqm_uninit(&process->pqm);
1596 err_process_pqm_init:
1597 	kfd_event_free_process(process);
1598 err_event_init:
1599 	mutex_destroy(&process->mutex);
1600 	kfree(process);
1601 err_alloc_process:
1602 	return ERR_PTR(err);
1603 }
1604 
1605 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1606 							struct kfd_process *p)
1607 {
1608 	int i;
1609 
1610 	for (i = 0; i < p->n_pdds; i++)
1611 		if (p->pdds[i]->dev == dev)
1612 			return p->pdds[i];
1613 
1614 	return NULL;
1615 }
1616 
1617 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1618 							struct kfd_process *p)
1619 {
1620 	struct kfd_process_device *pdd = NULL;
1621 
1622 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1623 		return NULL;
1624 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1625 	if (!pdd)
1626 		return NULL;
1627 
1628 	pdd->dev = dev;
1629 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1630 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1631 	pdd->qpd.dqm = dev->dqm;
1632 	pdd->qpd.pqm = &p->pqm;
1633 	pdd->qpd.evicted = 0;
1634 	pdd->qpd.mapped_gws_queue = false;
1635 	pdd->process = p;
1636 	pdd->bound = PDD_UNBOUND;
1637 	pdd->already_dequeued = false;
1638 	pdd->runtime_inuse = false;
1639 	atomic64_set(&pdd->vram_usage, 0);
1640 	pdd->sdma_past_activity_counter = 0;
1641 	pdd->user_gpu_id = dev->id;
1642 	atomic64_set(&pdd->evict_duration_counter, 0);
1643 
1644 	p->pdds[p->n_pdds++] = pdd;
1645 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1646 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1647 							pdd->dev->adev,
1648 							false,
1649 							0);
1650 
1651 	/* Init idr used for memory handle translation */
1652 	idr_init(&pdd->alloc_idr);
1653 
1654 	atomic_inc(&dev->kfd->kfd_processes_count);
1655 
1656 	return pdd;
1657 }
1658 
1659 /**
1660  * kfd_process_device_init_vm - Initialize a VM for a process-device
1661  *
1662  * @pdd: The process-device
1663  * @drm_file: Optional pointer to a DRM file descriptor
1664  *
1665  * If @drm_file is specified, it will be used to acquire the VM from
1666  * that file descriptor. If successful, the @pdd takes ownership of
1667  * the file descriptor.
1668  *
1669  * If @drm_file is NULL, a new VM is created.
1670  *
1671  * Returns 0 on success, -errno on failure.
1672  */
1673 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1674 			       struct file *drm_file)
1675 {
1676 	struct amdgpu_fpriv *drv_priv;
1677 	struct amdgpu_vm *avm;
1678 	struct kfd_process *p;
1679 	struct dma_fence *ef;
1680 	struct kfd_node *dev;
1681 	int ret;
1682 
1683 	if (!drm_file)
1684 		return -EINVAL;
1685 
1686 	if (pdd->drm_priv)
1687 		return -EBUSY;
1688 
1689 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1690 	if (ret)
1691 		return ret;
1692 	avm = &drv_priv->vm;
1693 
1694 	p = pdd->process;
1695 	dev = pdd->dev;
1696 
1697 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1698 						     &p->kgd_process_info,
1699 						     p->ef ? NULL : &ef);
1700 	if (ret) {
1701 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1702 		return ret;
1703 	}
1704 
1705 	if (!p->ef)
1706 		RCU_INIT_POINTER(p->ef, ef);
1707 
1708 	pdd->drm_priv = drm_file->private_data;
1709 
1710 	ret = kfd_process_device_reserve_ib_mem(pdd);
1711 	if (ret)
1712 		goto err_reserve_ib_mem;
1713 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1714 	if (ret)
1715 		goto err_init_cwsr;
1716 
1717 	if (unlikely(!avm->pasid)) {
1718 		dev_warn(pdd->dev->adev->dev, "WARN: vm %p has no pasid associated",
1719 				 avm);
1720 		ret = -EINVAL;
1721 		goto err_get_pasid;
1722 	}
1723 
1724 	pdd->pasid = avm->pasid;
1725 	pdd->drm_file = drm_file;
1726 
1727 	kfd_smi_event_process(pdd, true);
1728 
1729 	return 0;
1730 
1731 err_get_pasid:
1732 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1733 err_init_cwsr:
1734 	kfd_process_device_destroy_ib_mem(pdd);
1735 err_reserve_ib_mem:
1736 	pdd->drm_priv = NULL;
1737 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1738 
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1744  * to the device.
1745  * Unbinding occurs when the process dies or the device is removed.
1746  *
1747  * Assumes that the process lock is held.
1748  */
1749 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1750 							struct kfd_process *p)
1751 {
1752 	struct kfd_process_device *pdd;
1753 	int err;
1754 
1755 	pdd = kfd_get_process_device_data(dev, p);
1756 	if (!pdd) {
1757 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1758 		return ERR_PTR(-ENOMEM);
1759 	}
1760 
1761 	if (!pdd->drm_priv)
1762 		return ERR_PTR(-ENODEV);
1763 
1764 	/*
1765 	 * signal runtime-pm system to auto resume and prevent
1766 	 * further runtime suspend once device pdd is created until
1767 	 * pdd is destroyed.
1768 	 */
1769 	if (!pdd->runtime_inuse) {
1770 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1771 		if (err < 0) {
1772 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1773 			return ERR_PTR(err);
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * make sure that runtime_usage counter is incremented just once
1779 	 * per pdd
1780 	 */
1781 	pdd->runtime_inuse = true;
1782 
1783 	return pdd;
1784 }
1785 
1786 /* Create specific handle mapped to mem from process local memory idr
1787  * Assumes that the process lock is held.
1788  */
1789 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1790 					void *mem)
1791 {
1792 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1793 }
1794 
1795 /* Translate specific handle from process local memory idr
1796  * Assumes that the process lock is held.
1797  */
1798 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1799 					int handle)
1800 {
1801 	if (handle < 0)
1802 		return NULL;
1803 
1804 	return idr_find(&pdd->alloc_idr, handle);
1805 }
1806 
1807 /* Remove specific handle from process local memory idr
1808  * Assumes that the process lock is held.
1809  */
1810 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1811 					int handle)
1812 {
1813 	if (handle >= 0)
1814 		idr_remove(&pdd->alloc_idr, handle);
1815 }
1816 
1817 static struct kfd_process_device *kfd_lookup_process_device_by_pasid(u32 pasid)
1818 {
1819 	struct kfd_process_device *ret_p = NULL;
1820 	struct kfd_process *p;
1821 	unsigned int temp;
1822 	int i;
1823 
1824 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1825 		for (i = 0; i < p->n_pdds; i++) {
1826 			if (p->pdds[i]->pasid == pasid) {
1827 				ret_p = p->pdds[i];
1828 				break;
1829 			}
1830 		}
1831 		if (ret_p)
1832 			break;
1833 	}
1834 	return ret_p;
1835 }
1836 
1837 /* This increments the process->ref counter. */
1838 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1839 						struct kfd_process_device **pdd)
1840 {
1841 	struct kfd_process_device *ret_p;
1842 
1843 	int idx = srcu_read_lock(&kfd_processes_srcu);
1844 
1845 	ret_p = kfd_lookup_process_device_by_pasid(pasid);
1846 	if (ret_p) {
1847 		if (pdd)
1848 			*pdd = ret_p;
1849 		kref_get(&ret_p->process->ref);
1850 
1851 		srcu_read_unlock(&kfd_processes_srcu, idx);
1852 		return ret_p->process;
1853 	}
1854 
1855 	srcu_read_unlock(&kfd_processes_srcu, idx);
1856 
1857 	if (pdd)
1858 		*pdd = NULL;
1859 
1860 	return NULL;
1861 }
1862 
1863 /* This increments the process->ref counter. */
1864 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1865 {
1866 	struct kfd_process *p;
1867 
1868 	int idx = srcu_read_lock(&kfd_processes_srcu);
1869 
1870 	p = find_process_by_mm(mm);
1871 	if (p)
1872 		kref_get(&p->ref);
1873 
1874 	srcu_read_unlock(&kfd_processes_srcu, idx);
1875 
1876 	return p;
1877 }
1878 
1879 /* kfd_process_evict_queues - Evict all user queues of a process
1880  *
1881  * Eviction is reference-counted per process-device. This means multiple
1882  * evictions from different sources can be nested safely.
1883  */
1884 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1885 {
1886 	int r = 0;
1887 	int i;
1888 	unsigned int n_evicted = 0;
1889 
1890 	for (i = 0; i < p->n_pdds; i++) {
1891 		struct kfd_process_device *pdd = p->pdds[i];
1892 		struct device *dev = pdd->dev->adev->dev;
1893 
1894 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1895 					     trigger);
1896 
1897 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1898 							    &pdd->qpd);
1899 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1900 		 * we would like to set all the queues to be in evicted state to prevent
1901 		 * them been add back since they actually not be saved right now.
1902 		 */
1903 		if (r && r != -EIO) {
1904 			dev_err(dev, "Failed to evict process queues\n");
1905 			goto fail;
1906 		}
1907 		n_evicted++;
1908 
1909 		pdd->dev->dqm->is_hws_hang = false;
1910 	}
1911 
1912 	return r;
1913 
1914 fail:
1915 	/* To keep state consistent, roll back partial eviction by
1916 	 * restoring queues
1917 	 */
1918 	for (i = 0; i < p->n_pdds; i++) {
1919 		struct kfd_process_device *pdd = p->pdds[i];
1920 
1921 		if (n_evicted == 0)
1922 			break;
1923 
1924 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1925 
1926 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1927 							      &pdd->qpd))
1928 			dev_err(pdd->dev->adev->dev,
1929 				"Failed to restore queues\n");
1930 
1931 		n_evicted--;
1932 	}
1933 
1934 	return r;
1935 }
1936 
1937 /* kfd_process_restore_queues - Restore all user queues of a process */
1938 int kfd_process_restore_queues(struct kfd_process *p)
1939 {
1940 	int r, ret = 0;
1941 	int i;
1942 
1943 	for (i = 0; i < p->n_pdds; i++) {
1944 		struct kfd_process_device *pdd = p->pdds[i];
1945 		struct device *dev = pdd->dev->adev->dev;
1946 
1947 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1948 
1949 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1950 							      &pdd->qpd);
1951 		if (r) {
1952 			dev_err(dev, "Failed to restore process queues\n");
1953 			if (!ret)
1954 				ret = r;
1955 		}
1956 	}
1957 
1958 	return ret;
1959 }
1960 
1961 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1962 {
1963 	int i;
1964 
1965 	for (i = 0; i < p->n_pdds; i++)
1966 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1967 			return i;
1968 	return -EINVAL;
1969 }
1970 
1971 int
1972 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1973 			    uint32_t *gpuid, uint32_t *gpuidx)
1974 {
1975 	int i;
1976 
1977 	for (i = 0; i < p->n_pdds; i++)
1978 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1979 			*gpuid = p->pdds[i]->user_gpu_id;
1980 			*gpuidx = i;
1981 			return 0;
1982 		}
1983 	return -EINVAL;
1984 }
1985 
1986 static int signal_eviction_fence(struct kfd_process *p)
1987 {
1988 	struct dma_fence *ef;
1989 	int ret;
1990 
1991 	rcu_read_lock();
1992 	ef = dma_fence_get_rcu_safe(&p->ef);
1993 	rcu_read_unlock();
1994 	if (!ef)
1995 		return -EINVAL;
1996 
1997 	ret = dma_fence_signal(ef);
1998 	dma_fence_put(ef);
1999 
2000 	return ret;
2001 }
2002 
2003 static void evict_process_worker(struct work_struct *work)
2004 {
2005 	int ret;
2006 	struct kfd_process *p;
2007 	struct delayed_work *dwork;
2008 
2009 	dwork = to_delayed_work(work);
2010 
2011 	/* Process termination destroys this worker thread. So during the
2012 	 * lifetime of this thread, kfd_process p will be valid
2013 	 */
2014 	p = container_of(dwork, struct kfd_process, eviction_work);
2015 
2016 	pr_debug("Started evicting process pid %d\n", p->lead_thread->pid);
2017 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
2018 	if (!ret) {
2019 		/* If another thread already signaled the eviction fence,
2020 		 * they are responsible stopping the queues and scheduling
2021 		 * the restore work.
2022 		 */
2023 		if (signal_eviction_fence(p) ||
2024 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2025 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2026 			kfd_process_restore_queues(p);
2027 
2028 		pr_debug("Finished evicting process pid %d\n", p->lead_thread->pid);
2029 	} else
2030 		pr_err("Failed to evict queues of process pid %d\n", p->lead_thread->pid);
2031 }
2032 
2033 static int restore_process_helper(struct kfd_process *p)
2034 {
2035 	int ret = 0;
2036 
2037 	/* VMs may not have been acquired yet during debugging. */
2038 	if (p->kgd_process_info) {
2039 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2040 			p->kgd_process_info, &p->ef);
2041 		if (ret)
2042 			return ret;
2043 	}
2044 
2045 	ret = kfd_process_restore_queues(p);
2046 	if (!ret)
2047 		pr_debug("Finished restoring process pid %d\n",
2048 			p->lead_thread->pid);
2049 	else
2050 		pr_err("Failed to restore queues of process pid %d\n",
2051 		      p->lead_thread->pid);
2052 
2053 	return ret;
2054 }
2055 
2056 static void restore_process_worker(struct work_struct *work)
2057 {
2058 	struct delayed_work *dwork;
2059 	struct kfd_process *p;
2060 	int ret = 0;
2061 
2062 	dwork = to_delayed_work(work);
2063 
2064 	/* Process termination destroys this worker thread. So during the
2065 	 * lifetime of this thread, kfd_process p will be valid
2066 	 */
2067 	p = container_of(dwork, struct kfd_process, restore_work);
2068 	pr_debug("Started restoring process pasid %d\n", (int)p->lead_thread->pid);
2069 
2070 	/* Setting last_restore_timestamp before successful restoration.
2071 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2072 	 * before KFD BOs are unreserved. If not, the process can be evicted
2073 	 * again before the timestamp is set.
2074 	 * If restore fails, the timestamp will be set again in the next
2075 	 * attempt. This would mean that the minimum GPU quanta would be
2076 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2077 	 * functions)
2078 	 */
2079 
2080 	p->last_restore_timestamp = get_jiffies_64();
2081 
2082 	ret = restore_process_helper(p);
2083 	if (ret) {
2084 		pr_debug("Failed to restore BOs of process pid %d, retry after %d ms\n",
2085 			 p->lead_thread->pid, PROCESS_BACK_OFF_TIME_MS);
2086 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2087 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2088 			kfd_process_restore_queues(p);
2089 	}
2090 }
2091 
2092 void kfd_suspend_all_processes(void)
2093 {
2094 	struct kfd_process *p;
2095 	unsigned int temp;
2096 	int idx = srcu_read_lock(&kfd_processes_srcu);
2097 
2098 	WARN(debug_evictions, "Evicting all processes");
2099 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2100 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2101 			pr_err("Failed to suspend process pid %d\n", p->lead_thread->pid);
2102 		signal_eviction_fence(p);
2103 	}
2104 	srcu_read_unlock(&kfd_processes_srcu, idx);
2105 }
2106 
2107 int kfd_resume_all_processes(void)
2108 {
2109 	struct kfd_process *p;
2110 	unsigned int temp;
2111 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2112 
2113 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2114 		if (restore_process_helper(p)) {
2115 			pr_err("Restore process pid %d failed during resume\n",
2116 			      p->lead_thread->pid);
2117 			ret = -EFAULT;
2118 		}
2119 	}
2120 	srcu_read_unlock(&kfd_processes_srcu, idx);
2121 	return ret;
2122 }
2123 
2124 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2125 			  struct vm_area_struct *vma)
2126 {
2127 	struct kfd_process_device *pdd;
2128 	struct qcm_process_device *qpd;
2129 
2130 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2131 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2132 		return -EINVAL;
2133 	}
2134 
2135 	pdd = kfd_get_process_device_data(dev, process);
2136 	if (!pdd)
2137 		return -EINVAL;
2138 	qpd = &pdd->qpd;
2139 
2140 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2141 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2142 	if (!qpd->cwsr_kaddr) {
2143 		dev_err(dev->adev->dev,
2144 			"Error allocating per process CWSR buffer.\n");
2145 		return -ENOMEM;
2146 	}
2147 
2148 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2149 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2150 	/* Mapping pages to user process */
2151 	return remap_pfn_range(vma, vma->vm_start,
2152 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2153 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2154 }
2155 
2156 /* assumes caller holds process lock. */
2157 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2158 {
2159 	uint32_t irq_drain_fence[8];
2160 	uint8_t node_id = 0;
2161 	int r = 0;
2162 
2163 	if (!KFD_IS_SOC15(pdd->dev))
2164 		return 0;
2165 
2166 	pdd->process->irq_drain_is_open = true;
2167 
2168 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2169 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2170 							KFD_IRQ_FENCE_CLIENTID;
2171 	irq_drain_fence[3] = pdd->pasid;
2172 
2173 	/*
2174 	 * For GFX 9.4.3/9.5.0, send the NodeId also in IH cookie DW[3]
2175 	 */
2176 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2177 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4) ||
2178 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 5, 0)) {
2179 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2180 		irq_drain_fence[3] |= node_id << 16;
2181 	}
2182 
2183 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2184 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2185 						     irq_drain_fence)) {
2186 		pdd->process->irq_drain_is_open = false;
2187 		return 0;
2188 	}
2189 
2190 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2191 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2192 	if (r)
2193 		pdd->process->irq_drain_is_open = false;
2194 
2195 	return r;
2196 }
2197 
2198 void kfd_process_close_interrupt_drain(unsigned int pasid)
2199 {
2200 	struct kfd_process *p;
2201 
2202 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2203 
2204 	if (!p)
2205 		return;
2206 
2207 	WRITE_ONCE(p->irq_drain_is_open, false);
2208 	wake_up_all(&p->wait_irq_drain);
2209 	kfd_unref_process(p);
2210 }
2211 
2212 struct send_exception_work_handler_workarea {
2213 	struct work_struct work;
2214 	struct kfd_process *p;
2215 	unsigned int queue_id;
2216 	uint64_t error_reason;
2217 };
2218 
2219 static void send_exception_work_handler(struct work_struct *work)
2220 {
2221 	struct send_exception_work_handler_workarea *workarea;
2222 	struct kfd_process *p;
2223 	struct queue *q;
2224 	struct mm_struct *mm;
2225 	struct kfd_context_save_area_header __user *csa_header;
2226 	uint64_t __user *err_payload_ptr;
2227 	uint64_t cur_err;
2228 	uint32_t ev_id;
2229 
2230 	workarea = container_of(work,
2231 				struct send_exception_work_handler_workarea,
2232 				work);
2233 	p = workarea->p;
2234 
2235 	mm = get_task_mm(p->lead_thread);
2236 
2237 	if (!mm)
2238 		return;
2239 
2240 	kthread_use_mm(mm);
2241 
2242 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2243 
2244 	if (!q)
2245 		goto out;
2246 
2247 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2248 
2249 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2250 	get_user(cur_err, err_payload_ptr);
2251 	cur_err |= workarea->error_reason;
2252 	put_user(cur_err, err_payload_ptr);
2253 	get_user(ev_id, &csa_header->err_event_id);
2254 
2255 	kfd_set_event(p, ev_id);
2256 
2257 out:
2258 	kthread_unuse_mm(mm);
2259 	mmput(mm);
2260 }
2261 
2262 int kfd_send_exception_to_runtime(struct kfd_process *p,
2263 			unsigned int queue_id,
2264 			uint64_t error_reason)
2265 {
2266 	struct send_exception_work_handler_workarea worker;
2267 
2268 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2269 
2270 	worker.p = p;
2271 	worker.queue_id = queue_id;
2272 	worker.error_reason = error_reason;
2273 
2274 	schedule_work(&worker.work);
2275 	flush_work(&worker.work);
2276 	destroy_work_on_stack(&worker.work);
2277 
2278 	return 0;
2279 }
2280 
2281 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2282 {
2283 	int i;
2284 
2285 	if (gpu_id) {
2286 		for (i = 0; i < p->n_pdds; i++) {
2287 			struct kfd_process_device *pdd = p->pdds[i];
2288 
2289 			if (pdd->user_gpu_id == gpu_id)
2290 				return pdd;
2291 		}
2292 	}
2293 	return NULL;
2294 }
2295 
2296 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2297 {
2298 	int i;
2299 
2300 	if (!actual_gpu_id)
2301 		return 0;
2302 
2303 	for (i = 0; i < p->n_pdds; i++) {
2304 		struct kfd_process_device *pdd = p->pdds[i];
2305 
2306 		if (pdd->dev->id == actual_gpu_id)
2307 			return pdd->user_gpu_id;
2308 	}
2309 	return -EINVAL;
2310 }
2311 
2312 #if defined(CONFIG_DEBUG_FS)
2313 
2314 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2315 {
2316 	struct kfd_process *p;
2317 	unsigned int temp;
2318 	int r = 0;
2319 
2320 	int idx = srcu_read_lock(&kfd_processes_srcu);
2321 
2322 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2323 		seq_printf(m, "Process %d PASID %d:\n",
2324 			   p->lead_thread->tgid, p->lead_thread->pid);
2325 
2326 		mutex_lock(&p->mutex);
2327 		r = pqm_debugfs_mqds(m, &p->pqm);
2328 		mutex_unlock(&p->mutex);
2329 
2330 		if (r)
2331 			break;
2332 	}
2333 
2334 	srcu_read_unlock(&kfd_processes_srcu, idx);
2335 
2336 	return r;
2337 }
2338 
2339 #endif
2340